
Galois representations

1 Introduction (Vladimir)

1.1 Galois representations

Galois representations really mean representations of Galois groups.

De�nition 1.1. An Artin representation, ρ, over a �eld K is a �nite dimensional complex representation of
Gal(K/K) which factors through a �nite quotient (by an open subgroup). I.e., there exists �nite Galois extension
F/K, such that ρ comes from a representation of Gal(F/K)

K

F

G

K

G

Gal(K/K)→ Gal(F/K)→ GLn(C)

Note. e.g., I the trivial representation is the same Artin representation for all F/K

Example. Let F = Q(ζ3,
3
√

5), K = Q, G = Gal(F/Q) = S3 =
〈
s, t|s3 = t2 = id, tst = s−1

〉
. The character table

is
id (12) (123)

I 1 1 1
ε 1 −1 1
ρ 2 0 −1

So:

• I(s) = I(t) = 1

• ε(s) = 1,ε(t) = −1

• ρ(s) =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
, ρ(t) =

(
1 0
0 −1

)
Example. Dirichlet characters: Z/NZ→ C multiplicative.

Q(ζN )

Q

G=(Z/NZ)∗

Hence Dirichlet characters can be seen as representation χ : G → C1 = GL1(C)
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De�nition 1.2. A mod l Galois representation is the same thing with matrices in GLn(Fl).

Example. Let E/Q be an elliptic curve. We know E(Q)[l] ∼= Z/lZ × Z/lZ. Set F = Q(E[l]), the smallest �eld
generated by the x-coordinates and y-coordinates of the points of order l. We end up with a Galois group

F

Q

G

G acts on E[l] and preserves addition, i.e., g(P +Q) = g(P ) + g(Q). Therefore we get ρ : G→ GL2(Fl).
E.g.: Let y2 = x3−5, then E[2] =

{
0, ( 3
√

5, 0), (ζ3
3
√

5, 0), (ζ2
3

3
√

5, 0)
}
. So take F = Q(ζ3,

3
√

5), then G = Gal(F/Q)

permutes E[2] (we see that G = S3). Let us write down the matrix, so let P = ( 3
√

5, 0) and Q = (ζ3
3
√

5, 0).

• g ∈ S3 be a 3-cycle, ρ(g) =

(
0 1
1 1

)
∈ GL2(F2)

• g ∈ S3, be a transposition, ρ(g) =

(
1 1
0 1

)
∈ GL2(F2)

1.2 l-adic representations

De�nition 1.3. A continuous l-adic representation overK is a continuous homomorphism Gal(Ksep/K)→ GLd(F)
for some �nite F/Ql.

Remark. An l-adic representation is continuous if and only if for all n there exists a �nite Galois extension Fn/K
such that Gal(Ksep/Fn)→ id mod ln. I.e., ρ mod ln factors through a �nite extension Fn/K.

So Gal(Ksep/F1) map to

(
1 + lOF lOF
lOF 1 + lOF

)
.

Example. Let E/Q be an elliptic curve:

• P1, Q1 basis for E(Q)[l].

• P2, Q2 basis for E(Q)[l2], with lP2 = P1, lQ2 = Q1

•
...

• Pn, Qn basis for E(Q)[ln], with lPn = Pn−1, lQn = Qn−1.

For g ∈ Gal(Q/Q) de�ne 0 ≤ an, bn, cn, dn < l by gP1 = a1P1 + bQ1, gQ1 = c1P1 + d1Q1, and gPn =(
a1 + · · ·+ anl

n−1
)
Pn + (b1 + · · ·+ bnl

n−1)Qn and gQn = (c1 + · · ·+ cnl
n−1)Pn + (d1 + · · ·+ dnl

n−1)Qn. Then

ρ(g) =

(
a1 + · · ·+ ln−1an + . . . c1 + · · ·+ ln−1cn + . . .
b1 + · · ·+ ln−1bn + . . . d1 + · · ·+ ln−1dn + . . .

)
∈ GL2(Zl)

Note that ρ(g) mod ln tells you what g does to E[ln]. This does give a 2d continuous l-adic representations.

2 Galois Representations: vocabulary (Matthew S)

2.1 Galois Theory of In�nite Algebraic Extensions

Notation. G(F/K) := Gal(F/K), GK = G(K/K) the absolute Galois group

For this section we assume K is a perfect �eld (so every extensions is separable) and F is a normal algebraic
extension of K.
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Example. Let p be a prime, K = Fp and F = Fp, let φp be de�ned as φp(x) = xp. Fp is �xed by 〈φp〉. Naively
we would think GFp = 〈φp〉 ∼= Z, but this is not true at all. To see this, take φ ∈ GFp such that φ|Fpn = φanp where
{an} is a sequence such that an ≡ am mod m where m|n. This shows GFp > 〈φp〉.

De�nition 2.1. Let F/K be a Galois extension. For each �nite subextension K ′ consider G(K ′/K). When we
have two of them, such that K ′ ⊆ K ′′ consider

G(K ′′/K)→ G(K ′/K).

This de�nes an inverse system of groups. G(F/K) = lim←−K′/K G(K ′/K).

B = {left/right cosets of finite index subgroups}

Fact. G(F/K) is Hausdor�, compact and totally disconnected.

Theorem 2.2. Let F/K be a Galois extension. The map K ′ → G(F/K ′) is a bijective inclusion reversing corres-
pondence between K ′ and closed subgroups of G(F/K), H → FH .

Example. Back to the example, G(Fpn/Fp) = Z/nZ, so GFp = lim←−n Z/nZ = Ẑ.

2.2 Galois groups of Q.
Fix Q→ Qp, Q→ Qp:

Qp Fp

Qur
p Fp

Qp Fp

Note G(Qur
p /Qp) ∼= GFp .

GQp
// //

CC CC
G(Qµrp /Qp)

∼= // GFp

The kernel of such a map is Ip. Ip admits a large normal p-subgroup, Wp,the wild inertia group. Ip/Wp tame
inertia

Let Θ :GQp � G(K/Qp), for a Galois extension of Qp if :

• Θ(Ip) = 0 we say that K is unrami�ed

• Θ(Wp) = 0 then we say that K is tamely rami�ed

• Θ(Wp) 6= 0 then we say that K is widely rami�ed

Example. Cyclotomic extensions:
G(Q(ζm)/Q) ∼= (Z/mZ)∗, Kl = ∪n∈Z>0

Q(ζln) we have an isomorphism G(Kl/Q) → Z∗l . Let εl : GQ → Z∗l ,
de�ned as for: σ ∈ GQ,σ(ζ) = ζεl(σ). Kl is rami�ed at ∞ and at l, For p 6= l, recall φp, then ε(φp) = p, φp(ζ) = ζp.

Conjecture. Any �nite group is a discrete quotient of GQ
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2.3 Restricting the rami�cation

Let S be a set of primes including {∞}. Let QS be the maximal extension of Q unrami�ed outside S. Let
GQ,S = G(QS/Q).

Theorem 2.3 (Hermito-Minkowski). Let K/Q �nite, S a �nite set of primes, d ∈ Z>0. Then there exists �nitely
many degree d extensions F/K unrami�ed outside F .

In particular Homcont(GK,S ,Z/pZ) is �nite.

Theorem 2.4 (p-�niteness condition). Let p be a prime, K a number �eld, S a �nite set of primes (non-
archimedean). Let G ⊂ GK,S which is open then there exists only �nitely many continuous homomorphism from G
to Z/pZ.

Theorem 2.5. If K is a �nite extension Qp then GK is topologically �nite generated.

Conjecture.

• If p ∈ S, the map GQp → GQ,S is an inclusion

• If p /∈ S, the map GQp → GQ,S has kernel exactly Ip. So GQp/Ip ↪→ GQ,S.

Suppose now that we have not �xed our embedding.

Theorem 2.6 (Chebotarov). Let K/Q be a Galois extension unrami�ed outside a �nite set of primes S. Let T ⊇ S
be a �nite set of primes. For each p /∈ T there exists a well-de�ned [φp] ⊂ G(K/Q), the union of these classes is
dense in G(K/Q)

2.4 Galois Representations

De�nition 2.7. A Galois representation over a topological ring A unrami�ed outside S (a set of primes) is a
continuous homomorphism, ρ : GQ,S → GLn(A).

Let M be a free rank n A-module, we can equip it with a G action: g · a = ρ(g) · a. More formally:
Suppose we have a free A-module M such that:

• G (a pro�nite group) acts continuously

• M = lim−→H
MH where H runs over open normal subgroups of G,

then we can make M into a A[[G]]-module: A[[G]] = lim←−H A[G/H] where H is as before.
We say ρ, a representation of GQ, is :

• unrami�ed at p if it is trivial on Ip.

• tamely rami�ed at p if it is trivial on Wp

• otherwise it is widely rami�ed.

Proposition 2.8. Let S be any set of primes:

1. An Artin representation, ρ : GQ → GLn(C), is determined by trace(ρ(φp)) on p /∈ S such that ρ is unrami�ed
at p.

2. A semisimple mod l representation, ρ : GQ → GLn(k), is determined by the values of trace(∧i(ρ(φp))) where
i = 1, . . . , n on primes p /∈ S at which ρ is unrami�ed. If l > n it is su�cient to use trace(ρ(φp)) at the same
primes.

3. A semisimple l-adic representations, ρ : GQ → GLn(A), is determined by trace(ρ(φp)) on p /∈ S at which ρ is
unrami�ed.
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2.5 Conductors of representation

The inertia group Ip is �ltered by Iup CGQ,p, closed and for u ∈ [−1,∞]

• If u ≤ v then Iup ⊃ Ivp
• If u ≤ 0, then Iup = Ip and I

∞
p = {1}

• Wp = ∪u>0I
u
p

• Iup = ∩v<uIvp
De�nition 2.9. Conductor of ρ at p is the integer

mp(ρ) = codim(ρIp) +

ˆ ∞
0

codim(ρI
u
p )du

.
The conductor of ρ is the integer

N(ρ) =
∏
p

pmp(ρ)

where p runs over all p 6= l (unless its Artin)

3 Invariants of Artin and l-adic Representations (Céline)

Notation.

• πK be a �xed uniformiser of K

• OK the ring of integers of K

• νK the normalized valuation on K

• IF/K the inertia group

• FrobF/K for a Frobenius element

• ΦF/K = Frob−1
F/K also called the Geometric Frobenius

3.1 Artin Representation

3.1.1 Local polynomials and l-functions

De�nition 3.1. The local polynomial of an Artin Representation ρ over a local �eld K is

P (ρ, T ) = det
(

1− ΦF/KT |ρIF/K
)

where ρ factors through F/K and ρIF/K is the subspace of IF/K-invariant vectors.

Remark. P (ρ, T ) is essentially the characteristic polynomial of ΦF/K on ρIF/K

Example. Consider

F = Q5(ζ3,
3
√

5)

Q5(ζ3) Q5( 3
√

5)

K = Q5

We have Gal(F/K) ∼= S3, IF/K ∼= C3
∼= Gal(F/K(S3)) and FrobF/K = t (an element of order 2). Then
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• For I we have P (I, T ) = det(1− ΦF/KT |IIF/K ) = det(1− T ) = 1− T (Since IC3 = I)

• For ε (the sign representation) P (ε, T ) = det(1− ΦF/JT |εIF/K ) = det(1− (−1)T |ε) = 1 + T (since εIF/K = ε,
so ε(t) = −1)

• For ρ the 2-dimensional representation: P (ρ, T ) = det(1 − ΦF/KT |ρIF/K ) = 1 (since ρC3 = 0, we have no

invariant subspace)

De�nition 3.2. The Artin L-function of an Artin representation over a number �eld K is

L(ρ, s) =
∏
P⊂OK

1

PP(ρ,Nm(P)−s)

where PP(ρ, T ) is the local polynomial of ρ restricted to Gal(KP/KP) .

The Euler product converges to an analytic function if re(s) > 1

Example.

• Let K be a number �eld, ρ = I then PP(I, T ) = 1 − T for all P, so L(I, s) =
∏
P

1
1−Nm(P)−s = ζK(s) the

Dedekind ζ-function of K

• K = Q, ρ the order 2 character of Gal(Q(S3)/Q) ∼= C2. Need IF/K and p(t)

� p = 3, then Q3(S3)/Q3 is totally rami�ed, hence IF/K = C2 and ρIF/K = 0. So P3(ρ, T ) = 1

� p ≡ 1 mod 3 then Qp(S3) = Qp, If/K = {e} and Pp(ρ, T ) = 1− T
� p ≡ 2 mod 3 then Qp(S3)/Qp is unrami�ed so IF/K = {e} and ρ(t) = −1. So Pp(ρ, T ) = 1 + T .

Putting it together we get

L(ρ, s) =
∏
p 6=3

1

1−
(
p
3

)
p−s

=

∞∑
n=1

(n
3

)
n−s

the L function of the non-trivial Dirichlet character Z/3Z→ C∗

Fact. The Artin L-function of 1-dimensional Artin representation over Q correspond to Dirichlet L-functions of
primitive characters.

Basic Properties

1. For ρ1 and ρ2 Artin representations over a local �eld K, P (ρ1 ⊕ ρ2, T ) = P (ρ1, T )P (ρ2, T )

2. When F/K is a �nite extension, ρ an Artin represetnations over F then PF (ρ, T f ) = PK(Indρ, T ) where f is
the residue degree of F/K.

3. When K is a number �eld, L(ρ1 ⊕ ρ2, s) = L(ρ1, s)L(ρ2, s). If F/K is �nite, ρ Artin representation over F ,
then L(ρ, s) = L(Indρ, s) (where the �rst one is an Artin L-function over F and the second over K)

Conjecture (Artin). Let ρ 6= I be irreducible Artin representation over a number �eld, then its L-function is
analytic
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3.1.2 Conductor

De�nition 3.3. The conductor exponent of an Artin representation over a local �eld K is nρ = nρ,tame + nρ,wilde,
where nρ,tame = dim ρ − dim ρIF/K and nρ,wild =

∑∞
k=1

1
[I:Ik] dim ρ/ρIk where ρfactors through F/K and IF/K =

I = I0, Ik =
{
σ ∈ GL(F/K)|σ(α)α mod πk+1∀α ∈ OF

}
are the higher rami�cation group (with lower numbering)

So I1 = SylρI =wild inertia and I/I1 =tame inertia
We say ρ is unrami�ed (respectively tame) if nρ = 0 (respectively nρ,wilde = 0) if and only if I acts trivial on ρ

(respectively I1)

De�nition 3.4. The conductor of ρ is the ideal Nρ = (πnρ)

Theorem 3.5 (Artin). np ∈ Z

Remark. nρ1⊕ρ2 = nρ1 + nρ2 . Hence Nρ1⊕ρ2 = Nρ1Nρ2

Theorem 3.6 (Swan's character). Let ρ be an Artin representation over a local �eld K which factors through
Gal(F/K). Then nρ,wild = 〈Traceρ, b〉 where

b(g) =

{
1− νF (g(πF )− πF ) for g ∈ IF/K \ {e}
−
∑
h6=e b(h) for g ∈ e

Theorem 3.7 (Conductor-Discriminant formula).

F

H

G L

K

Let F/K be Galois, ρ be a representation of H = Gal(F/L). Then nIndGHρ
= (dim ρ) · νK(∆L/K) + PL/Knρ

equivalently NIndρ = ∆dim ρ
L/K NmL/K(Nρ)

Example.

F = Q5(ζ3,
3
√

5)

Q5(ζ3) Q5( 3
√

5)

K = Q5

Then IF/K = C3, I1 = {1}:

• nI = 0 as nρ,tame = 1− 1 and nρ,wild = 0

• nε = 0

• nρ = 2 = 2− 0

By the Conductor-discriminant formula:
∆L/K = N

Ind
S3
C2

I = MρNI = 52 (up to units)

∆F/K = N
Ind

S3
{1}I

= Nρ⊕ρ⊕ε⊕I = 54 (up to units)
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De�nition 3.8. The conductor of an Artin representation over a number �eld K

Nρ =
∏
P
PnP(ρ)

where nP(ρ) is the conductor exponent of ρ restricted to Gal(KP/KP).

Example of Application:

Suppose F/Q is Galois, Gal(F/Q) = D10. Let K and L be intermediate with [K : Q] = 2 and [L : Q] = 5. Then
SF (s)SQ(s)2 = SL(s)2SK(s)

3.1.3 Functional equations

Theorem 3.9. The Artin L-function of ρ satis�es the functional equation Λ(ρ, s) = ωA1/2−sΛ(ρ̂, 1− s) where

•
Λ(s) = L(ρ, s)

∏
νreal

ΓR(s)d+(ρ)ΓR(s+ 1)d−(ρ)
∏

νcomplex

ΓC(s)

• d±(ρ) is the dimension of the ± eigenspace of the image of complex conjugation at ν, ω ∈ C∗,

• |ω| = 1 global root number

• A = Nm(Nρ)

√
|ΛK |dimρ

• ΓR(s) = π−s/2Γ(s/2)

• ΓC(s) = (2π)−sΓ(s)

• Γ(s) =

{
(s)! s ∈ N´∞

0
xs−1e−xdx

3.2 l-adic Representations

3.2.1 Local Polynomials

De�nition 3.10. Let K/Qp be �nite, ρ : Gal(K/K) → GLd(F) where F/Ql with l 6= p, be a continuous l-adic
representation. The local polynomial of ρ is

P (ρ, T ) = det(1− ΦK/KT |ρIK/K )

3.2.2 Conductor

De�nition 3.11. The conductor exponent is nρ = nρ,tame + nρ,wilde where nρ,tame = dim
ρ/ρ

I
K/K

, nρ,wild =∑
k≥1

1
[IF/K ,IF/K,k] dim ρ/ρIF/K,k where F/K is a �nite extension chosen so that the action of wild inertia factors

through. We can take F = F1, then the image of Gal(K/F ) lies in

(
1 + lOF lOF
lOF 1 + lOF

)
and im(I1) = id since it

is a (pro) p-group send into a (pro) l-group.

De�nition 3.12. The conductor of ρ is Nρ = (πK)nρ .
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4 Decomposition Theorems (Pedro)

Notation.

• Let p and l be distinct primes.

• K a p-adic �eld

• F an l-adic �eld

• IL the (absolute) inertia group of a �eld L

• IwL the (absolute) wild inertia group of a �eld L

• ΦL a geometric Frobenius element

4.1 Finite Image of Inertia

Theorem 4.1. Let τ : GK → GLd(F) be an l-adic Galois representation such that τ(IK) is �nite and ΦK acts
semisimple, for any choice of ΦK . Then we can write τ = ⊕i(ρi⊗χi) (after possible a �nite extension of F) where
ρi is an l-adic Galois representation which factors through a �nite quotient and χi is a one dimensional unrami�ed
Galois representation.

To show this thing, we use the following:

Proposition 4.2. Let k be a �eld of characteristic c ≥ 0, V a �nite dimensional vector space, G a group and
ρ : G → GL(V ) a representation of G. Assume that there exists a �nite index subgroup H ≤ G such that ρ|H is
semisimple and c - [G : H]. Then ρ is semisimple.

Proof. Choose a subrepresentation W of ρ and let W ′ be k[H]-module such that V = W ⊕W ′ (As k[H] modules).
Consider

0 // W // V
π// V/W //

f

]] 0

For u ∈ V/W , take h(u) = 1
[G:H]

∑
g∈G/H gf(g−1u).

Proof of Theorem 4.1. By the previous proposition, we can assume that τ is irreducible. We can take a totally
rami�ed extension L/K such that τ(IL) = 1

L′

〈ΦL′ 〉

Lnr

L
f

〈ΦL〉

Knr
e,H

K
e

Let L′ be the Galois closure of L. Note that Gal(Lnr/K) is generated by H and ΦL. We have ΦL′ = ΦfL,
so ΦL′ doesn't commute with ΦL. Pick σ ∈ H, we then have σ−1Φ−1

L′ σΦL′ ∈ H, but σ−1Φ−1
L′ σ ∈ 〈ΦL′〉 so

σ−1Φ−1
L′ σΦL′ ∈ 〈ΦL′〉 .Hence [σ,ΦL′ ] ∈ H ∩ 〈ΦL′〉 . So we have that [σ,ΦL′ ] = 1. By Schur's lemma we have that

τ(ΦL′) = λ idd. De�ne χ to be

• χ(IK) = 1

• χ(ΦK) = f
√
λ

Set ρ := τ ⊗ χ−1. So ρ(ΦL′) = ρ(ΦfKσ) = 1.
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4.2 In�nite image of inertia

De�nition 4.3.

1. Let tl : IK → Zl be the character de�ned in the following way: σ 7→ tl(σ) where σ( ln
√
πK) = ζ

tl(σ)
ln

ln
√
πK .

(Where ζln is a primitive lnth root of unity) This is called the l-adic tame character

2. For any n ≥ 0,

sp(n)(σ) =



1 t t2/2! . . . tn/n!

0 1
. . .

...
. . .

. . .
...

. . . t
0 1


where t = tl(σ), σ ∈ Ik. And we de�ne

sp(n) (ΦK) =


1 0

q
. . .

0 qm


where q = #FK

Theorem 4.4. Let τ : GK → GLd(F) be an l-adic Galois representation such hat ΦK acts semisimply on τ I
′
, for

every �nite index subgroup I ′ ⊆ I , and for every choice of ΦK . Then

τ = ⊕i (ρi ⊗ sp(ni))

(after a �nite extension) where ρi is an l-adic Galois representation such that ρi(IK) is �nite and with Frobenius
acting semisimply.

Remark. By continuity, we can �nd a �nite Galois extension L/K such that τ(IL) = τ(H), whereH = Gal(Ll/L
rn) ∼=

Zp , where Ll = ∪∞n−1L
nr
(
ln
√
πL
)
.

Note that σ ∈ H and ΦK is a Frobenius element, then σΦL = ΦLσ
q where q = #FL.

Proof.

Case 1. d = 1

Let σ ∈ H. Then τ(σ)q = τ(σq) = τ(Φ−1
L σΦL) = τ(Φ−1

L )τ(σ)τ(ΦL) = τ(σ). Hence τ(σ)q−1 = 1, so
τ(σ) ∈ µq−1.

Case 2. d = 2

Pick σ ∈ H which is a topological generator of H. By extending F if necessary, we can assume that

τ(σ) =

(
∗ ∗
0 ∗

)
. We have three cases:

Case i. τ(σ) =

(
λ 0
0 λ

)
. This is the same as the case d = 1.

Case ii. τ(σ) =

(
λ 0
0 µ

)
, λ 6= µ. Let Vi be the subrepresentation spanned by the ith vector. We use

the above note. Let v1 ∈ V1, then σΦK(v1) = ΦKσ
q(v1), hence ΦKV1 is a subrepresentation

of τ |H . Similarly, we can conclude that ΦKV2 is a subrepresentation of τ |H . If ΦKV1 = V2,
then µ(ΦKv1) = σ(ΦKvi) = ΦK(σqv1) = λqΦKv1. Similarly λ(ΦKv2) = µqΦKv2. Hence λ, µ
are roots of unity so the image of inertia is �nite.
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Case iii. τ(σ) =

(
λ ∗
0 λ

)
and ∗ 6= 0. ΦKV1 is a subrepresentation of τ |H implies that ΦKV1 = V1. We

can write τ ′ = τ ⊗ χ−1, τ ′(σ) =

(
1 ∗
0 1

)
with σ ∈ H.

Claim. For any Gal(Ll/L
nr) and θ ∈ Gal(Ll/K

nr) we have σθ = θσ.

5 l-adic representations of Elliptic curves (Heline)

5.1 De�nition

Notation.

• Let K = Q or Qp

• GK := Gal(K/K)

• E/K an elliptic curve

• 2 ≤ m ∈ Z

• E[m] = {P ∈
(
K
)

: mP = 0} ∼= (Z/mZ)
2

• For σ ∈ GK and P ∈ E[m], we have mσ(P ) = σ(mP ) = 0, hence GK acts on E[m].

• Pick a basis P1, Q1 for E[m], then for σ ∈ GK we have σ(P1) = aP1 + cQ1 and σ(Q1) = bP1 + dQ1 for some

a, b, c, d ∈ Z. Hence we have GK → Aut(E[m]) ∼= GL2(Z/mZ) de�ned by σ 7→
(
a b
c d

)
. If gcd(m,n′) = 1

then E[mn′] ∼= E[m]× E[n′].

• We are going to be taking m = ln with l a prime distinct from p.

Note. We have natural maps E[ln]
[l]→ E[ln−1]→ · · · → E[l]

[l]→ 0

De�nition 5.1. For E an elliptic curve and l a prime, we de�ne the l-adic Tate module of E to be TlE :=
lim←−E[ln] ∼= (Zl)2

.

We also de�ne VlE := TlE ⊗Zl Ql ∼= (Ql)2.
Note that GK acts on both TlE and VlE.

De�nition 5.2. The mod l representation of E is ρE,l : GK → Aut(E[l]) ∼= GL2(Z/lZ).
The l-adic representation is ρE,l : GK → Aut(Tl(E)) ∼= GL2(Zl) or depending of reference ρE,l : GK →

Aut(VlE) ∼= GL2(Ql) ↪→ GL2(C)

Recall the cyclotomic character εl : Gk → Z∗l de�ned by, for σ ∈ GK : σ(ζl) = ζ
εl(σ)
l .

We have the Weil pairing: e[ , ] : E[m] × E[m] → µm (Where µm is the m-th root of unity), which is bilinear,
alternating, Galois invariant, non-degenerate and �computable�.

Given σ ∈ GK with ρE,l(σ) =

(
a b
c d

)
, and P,Q ∈ E[m] be a basis, we have that

σe[P,Q] = e[σP, σQ]

= e[aP + cQ, bP + dQ]

= e[P, P ]abe[P,Q]ade[Q,P ]cbe[Q,Q]cd

e[P,Q]ad−bc

But from σ(ζ) = ζεl(σ), we see that ad− bc = εl(σ). Hence

εl(σ) = det ρ(σ)∀σ ∈ GK

11



5.2 Local invariants

Let GFp = Gal(Fp/Fp) and consider the short exact sequence 1→ I → GQp → GFp → 1 where I = {σ ∈ GQp : σ =
1} . Let Frobp be any elements of GQp that reduces to x 7→ xp. Recall that a GQp module M is unrami�ed if I acts
trivially on M .

Example. Let K = Q5 (note
√
−1 ∈ Q5 and Q5(ζ8) = Q5(ζ3), unrami�ed), E1 : y2 = x3 − 1 and E2 : y2 =

(x− 1)(x2 − 5).

Over F5 we get Ẽ1 : y2 = x3 − 1 (curve of good reduction) and Ẽ2 : y2 = x3 − x2 (multiplicative reduction, and
note that it is equivalent to (y +

√
−1x)(y −

√
−1x) = x3)

We consider E[ln] with l = 2. So E1[2] = {0, (1, 0), (ζ3, 0), (ζ2
3 , 0)} so Q5(E1[2]) is unrami�ed

E2[2] = {0, (1, 0), (
√

5, 0), (−
√

5, 0)} so in Q5(
√

5) rami�ed.

Q5(E[4]) Q5(ζ16) Q5( 4
√

5)

Q5(E[2]) Q5(ζ8) Q5(
√

5)

Q5 Q5 Q5

Recall the de�nition of the local polynomial Pp(ρE,l, T ) = det(1− Frob−1
p T |(VlE∗)I)

Good Reduction:

Theorem 5.3 (Neron-Ogg-Shaferevich). If E/Qp is an elliptic curve, l 6= p. Then E has good reduction at p if
and only if E[ln] is unrami�ed for all n (if and only if I acts trivially on E[ln] for all n)

Proof. Silverman pg 201

From this we know that I →
(

1 0
0 1

)
. Furthermore we want to know what Frobp is, but ερ(Frobp) = p =

det ρ(Frobp). Hence Frobp is a 2× 2 matrix with determinant p.

Fact.

• Q ∈ E(Fp) ⇐⇒ Frobp(Q) = Q, #E(Fp) = # ker(1 − Frobp). But 1 − Frobp is separable implies that
ker(1− Frobp) = deg(1− Frobp)

• If ψ ∈ End(E), then tr(ψ) = 1 + degψ − deg(1 − ψ). Hence tr(Frobp) = 1 + p − #E(Fp) =: ap. So the
characteristic polynomial of Frobp is T 2 − aT + p

Now (VlE
∗)I = VlE

∗, so Pp(T ) = 1− aT + pT 2.

Example. E! : y2 = x3 − 1, E1(F5) = {0, (±2, 0), (1, 0), (3,±1)}, hence #E1(F5) = 6, we have P5 = 1 + 5T 2. So in

some basis I →
(

1 0
0 1

)
and Frobp →

(
0 −5
1 0

)
.

Multiplicative Reduction:

Suppose the reduction is split multiplicative. Recall E/C ∼= C/(Z + τZ)
exp→ C∗/qZ (where q = e2πiτ ) are

isomorphic as complex Lie groups.

Theorem 5.4 (Tate). Let E/Qp has split multiplicative reduction, then there exists unique 0 6= q ∈ pZp such
that E ∼= Eq : y2 + xy = x3 + a4(q)x + a6(q) where a4(q) and q6(q) are power series in Z[[q]] which converges.

Furthermore, j(Eq) = 1/q+ 744 + 196884q+ . . . and ∆(Eq) = q
∏

(1− qn)24. Hence E(Qp) ∼= Eq(Qp) ∼= Q∗p/qZ (as
GQp-modules)

Corollary 5.5. E[l] =
〈
ζl, l
√
q
〉
and E[ln] =

〈
ζln , l

n√q
〉

So Q(E[ln]) has growing rami�cation for n ≥ 1 (it can be the same at each step, but it will slowly grow)
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Example. E2/Q5, y
2 = (x − 1)(x2 − 5). We get j(E2) = 214/5 and ∆ = 210 · 5, hence q is a 5-unit. So

Q5(E[2n]) ∼= Q5

(
2n
√

5, ζ2n
)
for all n ≥ 1.

Action of I on E[ln], so consider σ(ζln) = ζln and σ( ln
√
q) = ζtln

ln
√
q, where t = tl(σ) = l-adic tame character.

Hence I 7→
(

1 t
0 1

)
. Now we look at the action of Frobenius. We saw that Frobp(ζln) = ζpln , and we know that the

determinant is p, so Frobp 7→
(
p ∗
0 1

)
. To determine ∗, we can use the previous section: ρE = ρ ⊗ sp(1), but ρ is

trivial, so ∗ is trivial and Frobp →
(
p 0
0 1

)
.

Now we calculate (VlE)∗ and conclude that Pp(T ) = 1− T .

In the non-split case, we �nd that Pp(T ) = 1 + T . Putting all this together we get

Pp(T ) =


1− aT + pT 2 good reduction

1− T split mult

1 + T non− split mult

1 additive

For an elliptic curve E over a number �eld K we can de�ne

L(ρE , s) =
∏
P∈OK

1

PP(ρE ,Norm(P)−s)

6 Examples of l-adic representations for elliptic curves (Alejandro)

In this section ρE,l = ρl = ρ.

Notation.

• l is a prime

• V = Q2
l

• L,L′ are lattices (i.e., rank 2 Zl-submodules of V )

• Λ,Λ′ are classes of lattices L,L′ with respect to homothety

• ρ : Gk → GL(V ) ∼= GL2(Ql)

For a given l-adic Galois representation ρ, we are going to show that there exists a (non-canonical) lattice

GK //

&&
GL2(Ql)

GL2(Zl)
?�
OO

we are going to see proposition and examples. We will see Dictson's theorem and we will show that over Q for
l ≥ 5, if ρ is surjective mod l then ρ is surjective.

De�nition 6.1. The Bichat-Tits tree is the graph T with:

1. Vertices, Λ := [l], where Λ is the equivalence class of some lattice L of Q2
l

2. There is an edge between two vertices v1, v2 of T if and only if there exists L and L′ such that v1 = Λ and
v2 = Λ′ and L ⊃ L′ ⊃ lL

13



Example. There are eight 2-isogony classes for the elliptic curves of conductor

• •
• •

• • •
•

6.1 Stable lattices and Galois representations

ρ : GK → GL2(Ql)

De�nition 6.2. A lattice L is GK-stable with respect to ρ if ρ(GK)(L) ⊆ L. This property only depends on the
homothety class Λ of L.

Proposition 6.3. Every representation ρ as at least one stable lattice.

Sketch of proof. Let L be any lattice of Q2
l and H be the subgroup of GK such that ρ(σ)(L) ⊆ (L) for σ ∈ H. This

is an open subgroup since ??? �nite index in GK because GK is compact. Hence the lattice generated by the sum
is stable under GK .

De�nition 6.4. Two integral representations ρj : GK → GL2(Zl) are isogeneous if they are conjugate as repres-
entations in GL2(Ql), i.e., there exists U ∈ GL2(Ql) such that ρ2(σ) = Uρ1(σ)U−1 for all σ ∈ GK .

De�nition 6.5. Let ρ : GK → GL2(Zl) be an integral representation. The Residual representation associated to
ρ is the map ρ : GK → GL2(Fl) obtained by composing ρ with the reduction map.

GK
ρ//

ρ
&&

GL2(Zl)
mod l��

GL2(Fl)

Example. Let E1, E2 be two elliptic curve over K. Suppose there exists a K 2-rational isogeny E1 → E2. For
each curve we have ρE1,2, ρE2,2. The residual have image which is of order either 1 (if Ej(K)[2] has order 4) or 2
(if Ej(K)[2] has order 2).

Proposition 6.6. The number of stable lattice (up to homothety) is �nite if and only if ρ is irreducible.

Proposition 6.7. Let ρ be an integral representation. The number of stable lattices (up to homothety) if 1 if and
only if the residual representation ρ is irreducible.

6.2 Dickson's Theorem

Theorem 6.8. Let l ≥ 3 be a prime and H a �nite subgroup of PGL2(Fl). Then a conjugate of H is one of the
following groups:

1. A �nite subgroup of the upper triangular matrices (Borel subgroup)

2. PSL2(Flr ) or PGL2(Flr ) for some r ∈ Z>0

3. A dihedral group D2n with n ∈ Z>1 and (l, n) = 1

4. A subgroup isomorphic to either A4, S4 or A5.

14



6.3 Surjectivity l ≥ 5 and non-surjectivity for l = 2 or 3.

Here we are only talking about representations attached to elliptic curves.

• Tim and Vlad published a paper showing that ρ2 is surjective mod 2 but not mod 4; and mod 4 but not
mod 8

• Elkies showed that for l = 3, ρ3 is surjective mod 3 but not mod 9.

Theorem 6.9. Let E : y2 = x3 + ax + b be an elliptic curve over Q with ∆ = −16(4a3 + 27b2) and j invariant

−1728 4a3

∆ . Then

1. ρ2 is surjective if and only if x3 + ax+ b irreducible over Q and ∆ /∈ (Q∗)2

2. ρ4 is surjective if and only if ρ2 is surjective, ∆ /∈ −1 · (Q∗)2 and j 6= 4t3(t+ 8) for any t ∈ Q

3. ρ8 is surjective if and only if ρ4 is surjective and ∆ /∈ −2 · (Q∗)2.

7 Galois Representations of Modular Curves (Chris Williams)

7.1 Modular Curves

Let Γ = Γ0(N) ≤ SL2(Z). De�ne the (compacti�ed) modular curve to be X(Γ) = X0(N) := Γ\H∗ where
H∗ = H ∪ P1(Q)

Fact.

• X0(N) is a compact Hausdor� Riemann surface

• g(X0(N)) = dimC S2(Γ0(N))

• X0(N) has a model as an algebraic curve over Q. (In fact it has a model as a scheme over Z
[

1
N

]
)

Hecke operators have a geometric interpretation. If we de�ne γp =

(
1 0
0 p

)
, Γ′ = Γ∩γ−1

p Γγp and Γ′′ = γpΓγ
−1
p ∩Γ

we then get

Γ′� _
��

x7→γpxγ−1
p // Γ′′� _

��
Γ Γ

This descent to
X(Γ′)
π1 ��

α // X(Γ′′)
π2 ��

X(Γ) X(Γ)

To x ∈ X(Γ) = X0(N) we get Tp(x) = π2 ◦ α ◦ π−1
1 (x) ∈ Div(X(Γ)). This extends linearly to Tp : Div(X(Γ)) →

Div(X(Γ)).

7.2 Picard Groups

De�nition 7.1. LetX be an algebraic curve over a �eldK. The Picard group ofX/K is Pic(X)K = Div0(X/K)/K(X)∗.

If φ is a �nice� map X → Y , then we get maps on the Picard group as follows:

• Pushforward : φ∗ : Pic(X)→ Pic(Y ) de�ned as
∑
x nx[x] 7→

∑
x nx[φ(x)]

• Pullback : φ∗ : Pic(Y )→ Pic(X) de�ned as
∑
y ny[y] 7→

∑
y ny

∑
x∈φ−1(y) ex[x]

Fact. As endomorphism of Pic(Y ) deg(φ) = φ∗ ◦ φ∗.
Remark. The action of Tp on Div(X0(N)) descend to Pic(X0(N)).

Pic(X0(N)) �is� an abelian variety of dimension g = genus(X0(X)) = dimC S2(Γ0(N)).
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7.3 Eichler-Schimura

Recall that if E is an elliptic curve over Q, p - lNp a prime, P|p a prime of Z. Then ρE,l(FrobP) has characteristic

polynomial x2 − qp(E)X + p.
∣∣∣Ẽ(Fp)

∣∣∣ = |ker(σp − 1)| = deg(σp − 1) = (σp − 1)∗ ◦ (σp − 1)∗ as endomorphism of

Pic(E), hence
∣∣∣Ẽ(Fp)

∣∣∣ = σp∗σ
∗
p − (σp∗ + σ∗p) + 1 = p + 1 − (σp∗ + σ∗p). In particular, as endomorphism of Pic(Ẽ)

ap(E) = σp∗ + σ∗p.

Fact.

• For p - N , there exists a smooth projective curve X0(N) de�ned over Fp and a surjective map X0(N)→ X0(N),
which we call �the reduction of X0(N) mod p�.

Remark. This is base change of X0(N)/Z
[

1
N

]
to Fp

• There is a map Tp on Pic(X0(N)) making the following commute:

Pic(X0(N))
Tp //

��
Pic(X0(N))

��
Pic(X0(N))

Tp // Pic(X0(N))

Theorem 7.2 (Eichler - Shimura). Tp = σp∗ + σ∗p as endomorphism of Pic(X0(N)).

Outline of proof. Igusa's theorem (See D-S Section 8.6) says that reduction of X0(N) as a curve is compatible with
its interpretation as a moduli space. Then look at what Tp does at the level of moduli spaces.

7.4 The Galois representations of X0(N)

Assume l - N

Fact.

1. The natural inclusion Pic(X0(N)Q)[ln] ↪→ Pic(X0(N)C)[ln] ∼= (Z/lnZ)2g is an isomorphism for all n.

2. The natural surjection (for p - lN) Pic(X0(N)Q)[ln]� Pic(X0(N))[ln] is also an isomorphism.

Hence from now on X0(N) will be for X0(N)Q.

De�nition 7.3. The l-adic Tate module of Pic(X0(N)) is TalPic(X0(N)) = lim←−n Pic(X0(N))[ln] ∼= Z2g
l .

GQ := Gal(Q/Q) acts on the points of X0(N) in the natural way. This gives a natural action of GQ on
Div(X0(N)), i.e., σ ·

∑
nx[x] =

∑
nx[σ(x)]. This preserves degree 0 and principal divisors. Thus we get an action

of GQ on Pic(X0(N)). The action is linear so preserves Pic(X0(N))[ln] for all l and n. This action is compatible
with the connecting maps: Pic(X0(N))[ln+1]→ Pic(X0(N))[ln]. Thus we get an action on TalPic(X0(N)).

De�nition 7.4. For l - N , de�ne ρX0(N),l : GQ → Aut(TalPic(X0(N)) ∼= GL2g(Zl).

Theorem 7.5. Let p - lN .

1. ρX0(N),l is unrami�ed at p

2. If P|p is a prime of Z, FrobP any Frobenius element, then ρX0(N),l(FrobP) satis�es X2 − TpX + p = 0.

Proof.
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1. We have a commutative diagram

Dp

ρX0(N),l //

��

Aut(TalPic(X0(N)))
��

GFp
// Aut(TalPic(X0(N)))

Now, the inertia IP is in the kernel of the left hand map. The right hand map is an isomorphism (by fact 2. )
In particular, IP ⊂ ker(ρX0(N),l) and hence ρX0(N),l is unrami�ed at p.

2. We have a commutative diagram

Pic(X0(N)[ln]
Tp //

��
Pic(X0(N))[ln]

��
Pic(X0(N))[ln]

σp∗+σ
∗
p // Pic(X0(N))[ln]

we can describe the lifts of σp,∗ and σ
∗
p . FrobP is a lift of σp,∗ as σp is totally rami�ed of degree p. While

σ∗p([x]) =
∑
y∈σ−1(x) ex[y] = p[σ−1

p [x] so in particular, a lift is pFrob−1
P . So we get a commutative diagram:

Pic(X0(N)[ln]
FrobP+pFrob−1

P//
∼= ��

Pic(X0(N))[ln]
∼= ��

Pic(X0(N))[ln]
σp∗+σ

∗
p // Pic(X0(N))[ln]

Hence Tp = FrobP+pFrob−1
P . This holds for all n, hence it holds for TalPic(X0(N)). So Frob2

P−TpFrobP+p =
0

8 Modular Galois Representations (Nicolas)

Last week we had N ∈ N , Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N

}
This week we use Γ1(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}
. Note that Γ0(N) C Γ1(N), we

have a map Γ0(N)/Γ1(N) → (Z/NZ)∗ de�ned by

(
a b
c d

)
7→ d mod N . De�ne X1(N) =

(
H ∪ P1(Q)

)
/Γ1(N).

We have Γ0 � Γ0/Γ1 acting on X1, which gives rise to the diamond operator 〈d〉 ∈ T for all d ∈ (Z/NZ)
∗
.

Let J1(N) = Pic0(X1(N)), let l ∈ N be a prime. We de�ne TlJ1(N) = lim←−n J1(N)[ln] and VlJ1(N) = TlJ1(N)⊗Q

Theorem 8.1. GQ 	 VlJ1(N) a�ords ρX1(N),l : GQ → GL2g(Ql) (where g = genus of X1(N))) unrami�ed at lN .
For all p - lN we have ρX1(N),l(Frobp) satis�es X2 − TqX + p 〈p〉 = 0.

Actually VlJ1(N) is a free (T ⊗ Ql)-module of rank 2, so ρX1(N),l : GQ → GL2(T ⊗ Ql) and the characteristic
polynomial of ρX1(N),l(Frobp) is X2 − TqX + p 〈p〉.

Let k ∈ N, and let Nk(N) = {new forms inSk(Γ1(N))} . Reminder: a new form is an normalised eigenform
which is genuinely of level N (i.e., does not come from lower level)

Remark. For all D|N , Nk(N)
⊂
⊂ Sk(Γ1(N)).

For all f = q +
∑
anq

n ∈ Nk(N), we have that:

• Kf = Q(an) is a number �eld.

• There exists ε : (Z/NZ)∗ → C∗ such that for all d, 〈d〉 f = ε(d)f .
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• For all σ ∈ GQ, f
σ = q +

∑
σ(an)qn with σ(an) ∈ Nk(N). charεσ = σ ◦ ε

Pick f ∈ N2(N) with f =
∑
anq

n. De�ne If = {T ∈ T|Tf = 0} ⊂ T. We have the isomorphism (T⊗Q) /If → Kf

de�ned by Tp 7→ ap, 〈d〉 7→ ε(d)
De�ne Af = J1(N)//IfJ1(N). It is an abelian variety over Q of dimension d = [Kf : Q].

Theorem 8.2. J1(N) ∼
∏
D|N,F∈GQ\N2(D)A

σ0(N/D)
F . And actually VlJ1(N) ∼=

∏
D|N,F∈GQ\N2(D) VlA

σ0(N/D)
F as

GQ-modules

Kl ⊗Ql ∼=
∏
`|lKf,`, therefore

Theorem 8.3. For all `|l in Kf , there exists ρf,` : GQ → GL2(Kf,`) unrami�ed outside in lN . The characteristic
polynomial of ρf,`(Frobp) is X2 − apX + pε(p) (for p - lN).

8.1 Residual maps

Let ρ : GQ → GLd(K`) with K`/Ql �nite. There exists ρ′ ∼ ρ such that Imρ′ ⊆ GLd(ZK`). We want to de�ne
ρ = ρ′ mod `. This is not well de�ned!

Example. Let ρ =

(
χ ψ
0 χ

)
∼
(
χ lψ
0 χ

)
but reduced mod l we have

(
χ ψ
0 χ

)
6∼
(
χ 0
0 χ

)
.

De�nition 8.4. Let ρ : G→ GL(V ) be a representation. De�ne V ss = V if there is no W ⊂ V subrepresentation
with V ss = (W )⊕ (V/W )

So we de�ne ρ = (ρ′ mod `)ss

Theorem 8.5 (Brauer - Nabitt). Let G
ρ1 //

ρ2
// GL(V ) be 2 semi-simple representation. If for all g ∈ G we

have that the characteristic polynomial of ρ1(g) is equal to the characteristic polynomial of ρ2(g), then ρ1 ∼ ρ2.

8.2 Higher weights

Theorem 8.6 (Deligne 1971). Let k ≥ 2, for all f =
∑
anq

n ∈ Nk(N), for all `|l in Kf , there exists ρf,` : GQ →
GL2(Kf,`) unrami�ed outside lN . We have that the characteristic polynomial of ρf,`(Fobp) is X

2−apX + pk−1ε(p)

Remark. We have det ρf,` = χk−1
l ε where χl is the l-adic cyclotomic character. In particular, let c ∈ GQ be complex

conjugation we have det ρf,`(c) = χkl (c)ε(c) = (−1)k−1ε(−1) = −1. Hence ρf,` is odd

The last step relied on: for all γ =

(
a b
c d

)
∈ Γ0(N), f(γz) = ε(d)(cz+d)kf(z). In particular γ =

(
−1

−1

)
∈

Γ0 so ε(−1)(−1)k = +1.

Remark. For all Kf ↪→ C and for all p prime, we have |ap| ≤ 2p
k−1
2 . For all n ∈ N we have |an| ≤ σ0(n)n

k−1
2 where

σ0(n) = #{d|n}

8.3 Weight 1

Theorem 8.7 (Deligne - Serre, 1976). For all f ∈ N1(N) there exists ρf : GQ → GL2(C), unrami�ed outside N .
The characteristic polynomial of ρf (Frobp) is X2 − apX + ε(p). Actually ρf is irreducible and the conductor

is N .

Sketch of Proof. The steps for this proof are as follow

1. There exists ρf,l for in�nitely many l.

2. {ap, pprime} is �almost �nite�
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3. If Gl = Imρf,l ⊂ GL2(Fl) then there exists constant C for all l such that #Gl ≤ C

4. For l� 1, Gl may be lifted to GL2(C). This gives ρf,l to representations in GL2(C)

5. Calculate characteristic polynomials

6. For all l, l′, ρf,l ∼ ρf,l′ = ρf .

9 From l-adic to mod l representations. Serre's conjecture: the level
(Samuele)

Let N and k be integers, k ≥ 2. Let f ∈ Sk(Γ1(N)) be an eigenform, f(z) = q+
∑
n≥2 anq

n. Let E = Q({an}) , εf
a character of f , then 〈d〉 f = εf (d)f . From the previous section we know there exists a family of continuous λ-adic
representation ρf,λ : Gal(Q/Q) → GL2(Eλ) where λ ⊂ OE and Eλ is the completion of E at λ. We have ρf,λ is
irreducible and ∀p - N ·Nm(λ), Tr(ρf,λ(Frobp)) = ap and det(ρf,λ(Frobp)) = εf (p) · pk−1. To ρf,λ we can associate
ρf,λ : GQ → GL2(F) where F = OE,λ/λ and this representation is only de�ned up to semisimpli�cation.

Let ρ : GQ → GL2(Fl) the question is when is ρ ∼= ρf,λ
ss?

�Serre�: A necessary and su�cient condition is that ρ is odd if ρ is semisimple.
Let us forget about ρ : GQ → GL2(Fl) which are reducible

Theorem 9.1 (Khane, Witenberger, Kism, Dieulefait. (Serre's conjecture)). Let ρ : GQ → GL2

(
Fl
)
be a continuous,

irreducible, odd representation then ρ is modular

Modular means that there exists integers N, k such that ρ ∼= ρf,λ where f ∈ Sk(Γ1(N)). There exists N(ρ), k(ρ)
minimal. N(ρ) is the Artin conductor of ρ away from l and k(ρ) is weight in terms of ρ|Il .

Theorem 9.2 (Ribet). Assume l ≥ 3 and suppose that ρ arises from Γ1(M) when M = N · lα, gcd(N, l) = 1.Then
ρ arises from Γ1(N).

Remark. Buzzard generalised the above for the case l = 2.

Theorem 9.3. Suppose that ρ arises from Sk(Γ1(N)) with gcd(N, l) = 1 and 2 ≤ k ≤ l + 1. Assume either l > 3
or N > 3, then ρ arises from S2(Γ1(Nl)).

This theorem comes from Ash-Stevens under the condition that l ≥ 5 and Serre-Gross under the assumption
that N ≥ 4.

Theorem 9.4 (Edixhoron). Let gcd(N, l) = 1 and assume ρ arises from Sk(Γ1(N)) then ρ arises from Sk(ρ)(Γ1(N)),
where k(ρ) is Serre's weight, furthermore k ≡ k(ρ) mod l − 1 and k ≥ k(ρ) if l is odd.

Corollary 9.5. If ρ arises from Γ1(N) and gcd(N, l) = 1 then there exists i ∈ Z such that ρ ⊗ χi arises from
Sk(Γ1(N)) for k ≤ l + 1, where χ is the mod l Cyclotomic character.

Let ρ : GQ → GL2(Fl) be irreducible and consider the following four sets

• N1 =
{
N
∣∣ gcd(N, l) = 1, ρ arises fromSk(ρ)(Γ1(N))

}
• N2 =

{
N
∣∣ gcd(N, l) = 1, ρ arises from Γ1(N)

}
• N3 =

{
N
∣∣ gcd(N, l) = 1, ρ arises from Γ1(Nlα), α > 0

}
• N4 =

{
N
∣∣ gcd(N, l) = 1, ρ arises fromS2(Γ1(Nl2))

}
Theorem 9.6. If l ≥ 5 then the four sets N1,N2,N3 and N4 are equal
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Proof. N1 = N2 are equal by Theorem 9.4
N2 = N3 are equal by Theorem 9.2
By de�nition N4 ⊆ N3 so we want to show that N3 ⊆ N4 or equivalently N2 ⊆ N4 . Assume that ρ arises

from Γ1(N) and choose i ≥ 0 by Corollary 9.5 such that ρ ⊗ χi arises from Sk(Γ1(N)) with 2 ≤ k ≤ l + 1. By
Theorem 9.3 then ρ ⊗ χi arises from S2(Γ1(Nl)). Now tensoring with χi changes the level of a modular form but
not the weight. Look at χi as a Dirichlet character, f : ρf,λ ∼= ρ ⊗ χi then consider f ⊗ χ−i ∈ S2(Γ1(Nl2)). So
ρ = (ρ⊗ χi)⊗ χ−i arises from S2(Γ1(Nl2)).

We shall denote the four equal sets by N (ρ). So the question now becomes is N(ρ) ∈ N (ρ)?

Theorem 9.7 (Livne). Suppose ρ arises from Γ1(N) then N(ρ)|N .

Let f be an eigenform giving rise to ρ. Then N the level of f is such that N(ρ)|N , or better N(ρ)|N ′ where N ′
is the prime-to-l part of N .

The aim is: If N(ρ) 6= N ′ then we want to �nd another form at level N(ρ) giving rise to ρ.
Note that we can replace f by a newform, f ′, giving the same eigensystem. ρf,λ = ρf ′,λ′ . We have N(ρ)|level(f ′).

So from now on, assume f is a newform. Let us look at the conductors N(ρ) = N(ρf,λ) < N(ρf,λ) = level(f).

Assume l 6= p and consider ρp : Gal(Qp/Qp)→ GL2(Ql) and ρp reduction. We look at the conductor exponents

nρp = np = dim(V ) − dimV I + nρp,wild and nρp = np = dim(V ) − dim
(
V
I
)

+ nρp,wild. We know that nρp,wild =

nρp,wild, we also know that dimV
I ≥ dimV I , so np ≤ np. We want to study when np < np.

Theorem 9.8. The representation ρp which can degenerate (i.e., np < np) can be one of the following

1. Principal series: ρp ∼= µ⊕ ν such that nµ = 1 and nµ = 0, then np = nν + 1 and np = nν .

2. Special case (Steinberg I ): ρp = µ⊗ sp(1) such that nµ = 0 (then np = 1 and np = 0)

3. Special case (Twist Steinberg): ρp = µ⊗ sp(1) such that nµ = 1 and nµ = 0 (then np = 2 and np = 0)

4. (Super) Cuspidal case: ρp = Indζ such that nζ = 1 and nζ = 0 (then np = 2 and np = 0)

Back to modular forms:

Theorem 9.9 (Ribet level lowering). Assume that N(ρf,λ) < N where f is a newform of level Γ1(N) and

gcd(N, l) = 1. Then for every p
∣∣N/N(ρf,λ) there exists a Dirichlet character φ of conductor p and l-power or-

der such that the newform attached to f ⊗φ has level dividing N/p. In particular, ρf,λ is modular of level M where
M = N/

∏
p where p|N/N(ρf,λ).
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