Galois representations

1 Introduction (Vladimir)

1.1 Galois representations
Galois representations really mean representations of Galois groups.

Definition 1.1. An Artin representation, p, over a field K is a finite dimensional complex representation of
Gal(K/K) which factors through a finite quotient (by an open subgroup). ILe., there exists finite Galois extension
F/K, such that p comes from a representation of Gal(F'/K)

Ny —

=

Gal(K/K) — Gal(F/K) — GL,(C)

Note. e.g., I the trivial representation is the same Artin representation for all F/K
<s,t|s3 =2 =id, tst = s’1>. The character table

Example. Let F = Q((3, V/5), K = Q, G = Gal(F/Q) = S5 =

18

id [ (12) | (123)
T[1] 1 1 _
e 1| -1 T >
sl 2] 0 | -1

. (o) = (I ff),pu): (o %)

Example. Dirichlet characters: Z/NZ — C multiplicative.

Q(w)
. Q
Q

Hence Dirichlet characters can be seen as representation x : G — C! = GL;(C)



Definition 1.2. A mod | Galois representation is the same thing with matrices in GL,, (F;).

Example. Let E/Q be an elliptic curve. We know E(Q)[l] = Z/IZ x Z/IZ. Set F = Q(E]]), the smallest field
generated by the z-coordinates and y-coordinates of the points of order I. We end up with a Galois group

F

g
Q

G acts on E|[l] and preserves addition, i.e., g(P + Q) = g(P) + g(Q). Therefore we get p: G — GLy(F)).
E.g.: Let y*> = 235, then E[2] = {0, (¥/5,0), ((3¥/5,0), ((3V/5,0) }. So take F = Q((3, V/5), then G = Gal(F/Q)
permutes E[2] (we see that G = S3). Let us write down the matrix, so let P = (¥/5,0) and Q = ((3+/5,0).

e g € .53 be a 3-cycle, p(g) = (? D € GLo(Fy)

e g €53, be a transposition, p(g) = <(1) 1) € GLo(Fy)
1.2 [-adic representations

Definition 1.3. A continuous l-adic representation over K is a continuous homomorphism Gal(K*P/K) — GL4(F)
for some finite F/Q;.

Remark. An l-adic representation is continuous if and only if for all n there exists a finite Galois extension Fj, /K
such that Gal(K®*P/F,) — id mod (™. Le., p mod [" factors through a finite extension F, /K.

s 1+10Fr 1O0Fr
So Gal(K®°P/F}) map to ( 105 14 l(’);)'

Example. Let E/Q be an elliptic curve:
e P, Q) basis for E(Q)[l].
[ P27Q2 basis for E(@)[F], with ZPQ = Pl, ZQQ = Ql
o:
e P,,Q, basis for E(Q)[I"], with I[P, = P,_1, 1Q, = Q1.

For g € Gal(Q/Q) define 0 < an,bn,cnydy < 1 by gP1 = a1 Py + bQ1, gQ1 = 1Py + d1Qy, and gP, =
(al +-- anlnil) P, + (bl + -+ bnlnil)Qn and an = (Cl + -+ Cnlnil)Pn + (dl +-- dnlnil)Qn Then

(g) = a4+ ta,+..0 g4+ e,
PO =\ byt 1P Yy 4 dy 0N,

) € GL»(Z))

Note that p(g) mod " tells you what g does to E[I"]. This does give a 2d continuous /-adic representations.

2 Galois Representations: vocabulary (Matthew S)

2.1 Galois Theory of Infinite Algebraic Extensions
Notation. G(F/K) := Gal(F/K), Gk = G(K/K) the absolute Galois group

For this section we assume K is a perfect field (so every extensions is separable) and F' is a normal algebraic
extension of K.



Example. Let p be a prime, K = F, and F = F), let ¢, be defined as ¢,(z) = 2P. F, is fixed by (¢,). Naively
we would think G, = (¢,) = Z, but this is not true at all. To see this, take ¢ € Gy, such that ¢[p,, = ¢ where
{a,} is a sequence such that a,, = a,, mod m where m|n. This shows Gr, > (¢p).

Definition 2.1. Let F/K be a Galois extension. For each finite subextension K’ consider G(K'/K). When we
have two of them, such that K’ C K" consider

G(K"/K) — G(K'/K).

This defines an inverse system of groups. G(F/K) = @K//K G(K'/K).
B = {left/right cosets of finite index subgroups}

Fact. G(F/K) is Hausdorff, compact and totally disconnected.

Theorem 2.2. Let F/K be a Galois extension. The map K' — G(F/K') is a bijective inclusion reversing corres-
pondence between K' and closed subgroups of G(F/K), H — FH,

Example. Back to the example, G(Fy» /F,) = Z/nZ, so Gg, = Jim Z/nZ = 1.

2.2 Galois groups of Q.
Fix Q — Qy, Q— @p:

Q,—TF,
Qr —F,
Qp - ]FP

Note G(Q)'/Qp) = GF, .
G, — G(Qlr /Qy) — G,

~_ A

The kernel of such a map is I,. I, admits a large normal p-subgroup, Wp,the wild inertia group. I,/W, tame
inertia
Let © :Gg, — G(K/Q,), for a Galois extension of Q, if :

e O(I,) = 0 we say that K is unramified
e O(W,) =0 then we say that K is tamely ramified
e O(W,) # 0 then we say that K is widely ramified

Example. Cyclotomic extensions:
G(Q¢m)/Q) = (Z/mZ)*, K| = Upez.,Q(¢n) we have an isomorphism G(K;/Q) — Z;. Let ¢ : Gg — Zj,
defined as for: o € Gg,0(¢) = ¢e(?) | K, is ramified at oo and at [, For p # [, recall op, then e(¢,) = p, ¢,(¢) = (7.

Conjecture. Any finite group is a discrete quotient of Gg



2.3 Restricting the ramification

Let S be a set of primes including {co}. Let Qg be the maximal extension of Q unramified outside S. Let

Go,s = G(Qs/Q).

Theorem 2.3 (Hermito-Minkowski). Let K/Q finite, S a finite set of primes, d € Z~q. Then there ezists finitely
many degree d extensions F/K unramified outside F'.

In particular Homeon (Gk,s, Z/pZ) is finite.

Theorem 2.4 (p-finiteness condition). Let p be a prime, K a number field, S a finite set of primes (non-
archimedean). Let G C Gk, s which is open then there exists only finitely many continuous homomorphism from G
to Z/pZ.

Theorem 2.5. If K is a finite extension Q, then G is topologically finite generated.
Conjecture.
o Ifpe S, the map Gg, — Gq,s is an inclusion
o Ifp¢ S, the map Go, — Gq,s has kernel exactly I,,. So Gq,/I, — Gq,s.
Suppose now that we have not fixed our embedding.

Theorem 2.6 (Chebotarov). Let K/Q be a Galois extension unramified outside a finite set of primes S. Let T O S
be a finite set of primes. For each p ¢ T there exists a well-defined [¢,] C G(K/Q), the union of these classes is
dense in G(K/Q)

2.4 Galois Representations

Definition 2.7. A Galois representation over a topological ring A unramified outside S (a set of primes) is a
continuous homomorphism, p : Gg s = GL,(4).

Let M be a free rank n A-module, we can equip it with a G action: g -a = p(g) - a. More formally:
Suppose we have a free A-module M such that:

e G (a profinite group) acts continuously
o M = @H M* where H runs over open normal subgroups of G,

then we can make M into a A[[G]]-module: A[[G]] = lim A|G/H|] where H is as before.
We say p, a representation of G, is :

e unramified at p if it is trivial on I,.

o tamely ramified at p if it is trivial on W,

e otherwise it is widely ramified.
Proposition 2.8. Let S be any set of primes:

1. An Artin representation, p : Gg — GL,(C), is determined by trace(p(¢p)) onp ¢ S such that p is unramified
at p.

2. A semisimple mod [ representation, p : Gg — GL,(k), is determined by the values of trace(A*(p(¢,))) where
i=1,...,n on primesp ¢ S at which p is unramified. If | > n it is sufficient to use trace(p(¢,)) at the same
primes.

3. A semisimple l-adic representations, p : Gg — GLy(A), is determined by trace(p(¢p)) onp & S at which p is
unramified.



2.5 Conductors of representation

The inertia group I, is filtered by Iy < G, closed and for u € [~1, o0
° Ifugvthenl;;j)lg

o If u <0, then I} = I, and I;° = {1}
i Wp = Uu>OIg
o I'=Nyeul?

Definition 2.9. Conductor of p at p is the integer
my(p) = codim(p™) + / codim(p’s )du
0

The conductor of p is the integer
p)=][pm"
p

where p runs over all p # [ (unless its Artin)

3 Invariants of Artin and /-adic Representations (Céline)

Notation.

e 7 be a fixed uniformiser of K

e Ok the ring of integers of K

e v the normalized valuation on K
e Ir i the inertia group

e Frobp, i for a Frobenius element

o Op/y = Frob;} i also called the Geometric Frobenius

3.1 Artin Representation

3.1.1 Local polynomials and [-functions

Definition 3.1. The local polynomial of an Artin Representation p over a local field K is
P(p,T) = det (1 - @F/KT|pIF/K>

where p factors through F//K and p’r/x is the subspace of I/ -invariant vectors.

Remark. P(p,T) is essentially the characteristic polynomial of ®p/x on plr/x

Example. Consider

F =Qs(¢3, V5)
/ \
Q5(¢3) Qs (V/5)
\ /

K=Qs

We have Gal(F/K) 53, IF/K 03 Gal(F/K(Sg

~—

) and Frobp, i =t (an element of order 2). Then



e For I we have P(I,T) = det(1 — ®p/x 1|1z ) = det(l —T) =1 —T (Since ¢ =1)

e For ¢ (the sign representation) P(e,T) = det(1 — ®p/yT| 1p/x) = det(1 — (=1)T|) = 1 + T (since elr/x = ¢,
so e(t) = —1)

e For p the 2-dimensional representation: P(p,T) = det(1 — @F/KT\sz/K) = 1 (since p©® = 0, we have no
invariant subspace)

Definition 3.2. The Artin L-function of an Artin representation over a number field K is

1
e = 1 s

where Pp(p,T) is the local polynomial of p restricted to Gal(Kp/Kp) .
The Euler product converges to an analytic function if re(s) > 1

Example.

o Let K be a number field, p = I then Pp(L,T) = 1 T for all P, so L(I,s) = []p 7xmpy= = Cx(s) the
Dedekind (-function of K

e K =Q, p the order 2 character of Gal(Q(S3)/Q) = Cs. Need I,k and p(t)
— p =3, then Q3(S3)/Qs is totally ramified, hence I/x = Cs and plr/x =0. So P3(p,T) =1

— p=1 mod 3 then Q,(S3) = Qp, Iy/x = {e} and P,(p,T)=1-T
— p=2 mod 3 then Q,(S3)/Q, is unramified so Ir/x = {e} and p(t) = —1. So P,(p,T) =1+ T.

Putting it together we get

1
L(p,s) = H W

n=1
the L function of the non-trivial Dirichlet character Z/3Z — C*

Fact. The Artin L-function of 1-dimensional Artin representation over Q correspond to Dirichlet L-functions of
primitive characters.

Basic Properties
1. For p; and py Artin representations over a local field K, P(p1 @ p2,T) = P(p1,T)P(p2,T)

2. When F/K is a finite extension, p an Artin represetnations over F' then Pr(p,T/) = Pk (Ind,, T) where f is
the residue degree of F/K.

3. When K is a number field, L(p; @ p2,s) = L(p1,$)L(p2, s). If F/K is finite, p Artin representation over F,
then L(p,s) = L(Ind,, s) (where the first one is an Artin L-function over F' and the second over K)

Conjecture (Artin). Let p # I be irreducible Artin representation over a number field, then its L-function is
analytic



3.1.2 Conductor
Definition 3.3. The conductor exponent of an Artin representation over a local field K is n, = 1, tame + 7p,wilde,
where 1, tame = dim p — dim p’#/% and n, wia = Y pey [I—llk] dim p/p"™ where pfactors through F/K and Ip/x =
I =1y, Iy = {oc € GL(F/K)|o(a)a mod 7*TVa € Op} are the higher ramification group (with lower numbering)
So I = Syl,I =wild inertia and I/I; =tame inertia
We say p is unramified (respectively tame) if n, = 0 (respectively 7, wiide = 0) if and only if I acts trivial on p
(respectively Iy)
Definition 3.4. The conductor of p is the ideal N, = (7")
Theorem 3.5 (Artin). n, € Z

Remark. 1y, gp, = Np, +np,. Hence N, g, = N, N,

Theorem 3.6 (Swan’s character). Let p be an Artin representation over a local field K which factors through
Gal(F/K). Then n,wia = (Tracep, b) where

_J1—vr(g(nr) —7mp) forg € Ip/x \{e}
b(g)_{—zh#b(h) forg € e

Theorem 3.7 (Conductor-Discriminant formula).

Let F/K be Galois, p be a representation of H = Gal(F/L). Then nygc, = (dimp) - vk (Ar/x) + Pr/xnp

equivalently Nina, = AdLi;nKmeL/K(Np)

Example.

F =Qs(¢3, V/5)
/ \ .
Q5(¢3) Qs(V/5)
/
K =Qs
Then IF/K = Cg, Il = {1}
o 1y =0 as N, tame = 1 — 1 and n, wilg = 0
e n.=0
en,=2=2-0
By the Conductor-discriminant formula:

Apjx = Ny 455, = M,Np = 5% (up to units)

Indc2

Ap/r =N, Ind 71~ Npgpaear = 5" (up to units)



Definition 3.8. The conductor of an Artin representation over a number field K

N, = H prr(p)
P

where np(p) is the conductor exponent of p restricted to Gal(Kp/Kp).

Example of Application:

Suppose F/Q is Galois, Gal(F/Q) = D1g. Let K and L be intermediate with [K : Q] = 2 and [L : Q] = 5. Then
Sr(s)Sq(s)? = SL(5)*Sk(s)
3.1.3 Functional equations

Theorem 3.9. The Artin L-function of p satisfies the functional equation A(p,s) = wAY275A(p,1 — s) where

A(s) = L(p, 8) H F]R(S)d‘*'(p)FR(S + 1)d_(p) H F(c(s)

vreal vcomplex

e di(p) is the dimension of the + eigenspace of the image of complex conjugation at v, w € C*,

|w| =1 global root number

A= Nm(N,)y/|Ag]"™

Tr(s) = m/T(s/2)

Te(s) = (2m) 7T (s)

1_‘(S):{(s)! seN

oo — —_
fo 5 le %dx

3.2 [-adic Representations
3.2.1 Local Polynomials

Definition 3.10. Let K/Q, be finite, p : Gal(K/K) — GL4(F) where F/Q, with [ # p, be a continuous l-adic
representation. The local polynomial of p is

P(p,T) = det(1 — (I)?/KT|pI?/K)

3.2.2 Conductor

Definition 3.11. The conductor exponent is n, = N, tame + Npwilde Where n,tame = dimp/pI?/K, Npwild =
Y ok>1 77— ———dim p/p’F/%* where F/K is a finite extension chosen so that the action of wild inertia factors
21 [Ip k., Ip/ K k)

14+10F OF

through. We can take F' = F7, then the image of Gal(K/F) lies in ( 105 14105

) and im(/;) = id since it
is a (pro) p-group send into a (pro) I-group.

Definition 3.12. The conductor of p is N, = (wx)™.



4 Decomposition Theorems (Pedro)
Notation.

e Let p and [ be distinct primes.

e K a p-adic field

e F an l-adic field

I}, the (absolute) inertia group of a field L

I the (absolute) wild inertia group of a field L

e ®; a geometric Frobenius element

4.1 Finite Image of Inertia

Theorem 4.1. Let 7 : Gx — GL4(F) be an l-adic Galois representation such that T(Ix) is finite and P acts
semisimple, for any choice of . Then we can write T = ®;(p; ® x;) (after possible a finite extension of F) where
pi is an l-adic Galois representation which factors through a finite quotient and x; is a one dimensional unramified
Galois representation.

To show this thing, we use the following:

Proposition 4.2. Let k be a field of characteristic ¢ > 0, V' a finite dimensional vector space, G a group and
p: G — GL(V) a representation of G. Assume that there exists a finite index subgroup H < G such that p|p is
semisimple and ¢t [G : H]. Then p is semisimple.

Proof. Choose a subrepresentation W of p and let W’ be k[H]-module such that V.= W & W’ (As k[H] modules).
Consider

0=W =V <V/W =0
!
For u € V/W, take h(u) = ﬁ D geG/H gf (g~ tu). O

Proof of Theorem 4.1. By the previous proposition, we can assume that 7 is irreducible. We can take a totally
ramified extension L/K such that 7(I) =1

(‘DLX4>L’>

Let L’ be the Galois closure of L. Note that Gal(L™/K) is generated by H and ®;. We have ¢, = <I>£,
so @7 doesn’t commute with ®;. Pick ¢ € H, we then have 0~ '®'o®;, € H, but 0 '®'c € (@) so
o7 1® o®r, € (®r) Hence [0,®1/] € HN (®r:) . So we have that [0, ®1/] = 1. By Schur’s lemma we have that
7(®r) = Aidg. Define x to be

e x(Ix)=1
o x\(Px) = 78\
Set p := T®X_1- So p(®r) = P(¢§<U) =1 =



4.2 Infinite image of inertia

Definition 4.3.

1. Let ¢; : Ix — Z; be the character defined in the following way: o +— ¢;(c) where o( W/7g) = ltfl(a) Tk
(Where (;» is a primitive ["th root of unity) This is called the I-adic tame character

2. For any n > 0,

1ot 220 ... "/l
0 1
sp(n)(o) =
; t
0 1
where t = ¢;(0), o € Ix,. And we define
1 0
q
sp(n) (Px) =
0 q™

where ¢ = #F g

Theorem 4.4. Let 7 : Gg — GL4(F) be an l-adic Galois representation such hat ®x acts semisimply on TI/, for
every finite index subgroup I' C I , and for every choice of ®y. Then

T = ®i (p; ® sp(ni))

(after a finite extension) where p; is an l-adic Galois representation such that p;(Ix) is finite and with Frobenius
acting semisimply.

Remark. By continuity, we can find a finite Galois extension L/K such that 7(I1,) = 7(H), where H = Gal(L;/L™) =
Zy , where Lj = U3 | L™ ( lIL/WL).

Note that 0 € H and ®k is a Frobenius element, then 60®; = ®;,09 where ¢ = #F.

Proof.
Case 1.

Case 2.

d=1

Let 0 € H. Then 7(0)? = 7(0?) = 7(®;'0®r) = 7(®,")7(0)7(®L) = 7(0). Hence 7(c)?™' = 1, so
T(0) € pg—1.

d=2

Pick ¢ € H which is a topological generator of H. By extending F if necessary, we can assume that

7(0) = * ™). We have three cases:
0 =

Casei. 7(0) = (3 ?\) This is the same as the case d = 1.
Caseii. 7(o) = (3 2 , A # p. Let V; be the subrepresentation spanned by the ith vector. We use

the above note. Let vy € Vi, then 0@k (v1) = Pro?(vy), hence i V; is a subrepresentation
of 7|g. Similarly, we can conclude that ®x V5 is a subrepresentation of 7|g. If ®xVy = Vo,
then pu(®xvi) = o(Pxv;) = Pr(09v1) = NP gv;. Similarly M(®xve) = piPgve. Hence A, p
are roots of unity so the image of inertia is finite.

10



Caseiii. (o) = (8\ ;) and * # 0. Pk V7 is a subrepresentation of 7|y implies that ®x V7 = V;. We
can write 7/ =7 ®@ x 1, 7(0) = (é T) with o € H.

Claim. For any Gal(L;/L™) and 0 € Gal(L;/K™") we have 06 = fo.

5 l-adic representations of Elliptic curves (Heline)

5.1 Definition
Notation.
o Let K =QorQ,
o Gx = Gal(K/K)
e E/K an elliptic curve
e 2<meZ
o Elm]={P ¢ (K):mP =0} = (Z/mZ)
e For 0 € Gk and P € E[m], we have mo(P) = o(mP) = 0, hence Gk acts on E[m)].
e Pick a basis P, Q; for E[m], then for o € Gk we have o(P) = aP; 4+ ¢Qq and o(Q1) = bP; + dQ; for some
a,b,c,d € Z. Hence we have Gx — Aut(E[m]) & GLy(Z/mZ) defined by o — (CCL 2) If ged(m,n’) =1
then E[mn'] & E[m] x E[n/].
e We are going to be taking m = [" with [ a prime distinct from p.

Note. We have natural maps E[["] q E[lI" Y — .- — E[l] L
Definition 5.1. For E an elliptic curve and [ a prime, we define the [-adic Tate module of E to be T)E :=
lim E[I"] = (7).
H
We also define VIE := T)E ®7, Q; = (Q;)?.
Note that G acts on both T;F and V, E.

Definition 5.2. The mod [ representation of E is pp; : Gx — Aut(E[l]) = GLy(Z/IZ).
The l-adic representation is pg,; : Gx — Aut(T}(E)) = GLo(Z;) or depending of reference pg; : Gx —
Aut(ViE) = GLa(Qr) — GL2(C)

Recall the cyclotomic character ¢ : Gj, — Z; defined by, for o € G : o/(¢) = (7).
We have the Weil pairing: e[, | : E[m]| x E[m] — p, (Where u,, is the m-th root of unity), which is bilinear,
alternating, Galois invariant, non-degenerate and “computable”.

Given o € Gg with pg (o) = (i Z) , and P,Q € E[m] be a basis, we have that

oe[P,Q] = e[oPoq)]

= elaP 4+ cQ,bP + dQ)

= e[P, P]%¢[P, Q]*¢|Q, P]®[Q, Q]?
[P, Q]adfbc
But from o(¢) = ¢¢(?), we see that ad — bc = ¢;(c’). Hence

e

ei(o) =det p(0) Vo € Gk

11



5.2 Local invariants

Let Gy, = Gal(F,/F,) and consider the short exact sequence 1 — I — Gg, — Gg, — 1 where I = {0 € Gg, : 7 =
1} . Let Frob, be any elements of Gg, that reduces to x +— 2. Recall that a G, module M is unramified if I acts
trivially on M.

Example. Let K = Q5 (note v/—1 € Q5 and Q5(¢s) = Q5({3), unramified), F; : y> = 2% — 1 and E, : 3? =
(x — 1)(2? = 5). N N
Over F5 we get E : y2 = 23 — 1 (curve of good reduction) and s : y? = 2% — 22 (multiplicative reduction, and

note that it is equivalent to (y +v/—12)(y — v—1x) = %)
We consider E[I"] with [ = 2. So E1[2] = {0, (1,0), ((3,0), (¢3,0)} so Qs(E1[2]) is unramified
F»[2] = {0,(1,0), (+/5,0), (—v/5,0)} so in Q5(+/5) ramified.

Recall the definition of the local polynomial P,(pg,T) = det(1 — Frob;1T|(VlE*)1)
Good Reduction:

Theorem 5.3 (Neron-Ogg-Shaferevich). If E/Q, is an elliptic curve, I # p. Then E has good reduction at p if
and only if E[I"] is unramified for oll n (if and only if I acts trivially on E[I™] for all n)

Proof. Silverman pg 201 O
1 0
0 1
det p(Frob,,). Hence Frob, is a 2 x 2 matrix with determinant p.

From this we know that I — < . Furthermore we want to know what Frob,, is, but €,(Frob,) = p =

Fact.

e ) € E(F,) < Frob,(Q) = Q, #E(F,) = #ker(1 — Frob,). But 1 — Frob,, is separable implies that
ker(1 — Frob,) = deg(1 — Frob,)

o If 1 € End(E), then tr(y)) = 1 + degy — deg(l — ). Hence tr(Frob,) = 14+ p — #E(F,) =: ap. So the
characteristic polynomial of Frob,, is T? — aT + p

Now (ViE*)! = ViE*, so Py(T) = 1 — aT + pT.
Example. E;:y? =23 — 1, E1(F5) = {0, (£2,0), (1,0), (3, £1)}, hence #E; (F5) = 6, we have P; = 1 +572. So in

. 1 0 0 -5
some basis I — <0 1) and Frob, — <1 0 >

Multiplicative Reduction:
Suppose the reduction is split multiplicative. Recall E/C = C/(Z + 7Z) =¥ C*/¢” (where ¢ = €*™i7) are
isomorphic as complex Lie groups.

Theorem 5.4 (Tate). Let E/Q, has split multiplicative reduction, then there exists unique 0 # q € pZ, such
that E = E, : y* + 2y = 2® + a4(q)z + ae(q) where as(q) and qs(q) are power series in Z[[q]] which converges.
Furthermore, j(E,) = 1/q+ 7444 196884q + ... and A(E,) = q[[(1—q¢™)**. Hence E(Q,) = E,(Q,) = @;/qZ (as
Gq,-modules)

Corollary 5.5. E[l] = ({i,/4) and E[I"] = (¢, W/q)

So Q(E[I™]) has growing ramification for n > 1 (it can be the same at each step, but it will slowly grow)
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Example. E/Qs, y*> = (z — 1)(z? — 5). We get j(E2) = 24/5 and A = 20 .5 hence ¢ is a 5-unit. So
Qs(E[2"]) =2 Qs ( %/5,(2n) for all n > 1.
Action of I on E[I"], so consider o((n) = ¢ and o( /q) = (/. W/q, where t = t;(0) = l-adic tame character.

Hence I — (1 ¢

0 1). Now we look at the action of Frobenius. We saw that Frob,({;») = ¢}, and we know that the

determinant is p, so Frob, — (g T) To determine %, we can use the previous section: pg = p ® sp(1), but p is
p 0

0 1)
Now we calculate (V,E)* and conclude that P,(T) =1—-1T.

trivial, so * is trivial and Frob, —

In the non-split case, we find that P,(T) =1+ T. Putting all this together we get

1—aT +pT? goodreduction

Py(T) = 1-T split mult
P I I non — split mult
1 additive

For an elliptic curve FE over a number field K we can define

1

Ho. ) = pgk Pp(pm, Norm(P)~*)

6 Examples of [-adic representations for elliptic curves (Alejandro)

In this section pg; = p; = p.
Notation.

e [ is a prime
o V = le
o L, L’ are lattices (i.e., rank 2 Z;-submodules of V)

e A, A’ are classes of lattices L, L’ with respect to homothety

p:Gr — GL(V) = GLy(Q))
For a given [-adic Galois representation p, we are going to show that there exists a (non-canonical) lattice
Gk > GL2(Qy)
\ J
GLy(Z;)

we are going to see proposition and examples. We will see Dictson’s theorem and we will show that over Q for
[ > 5, if p is surjective mod [ then p is surjective.

Definition 6.1. The Bichat-Tits tree is the graph T with:
1. Vertices, A := [I], where A is the equivalence class of some lattice L of Q?

2. There is an edge between two vertices v1,vs of T if and only if there exists L and L’ such that v; = A and
vo=AN and LD>L DIL

13



Example. There are eight 2-isogony classes for the elliptic curves of conductor

6.1 Stable lattices and Galois representations
p: GK — GLQ(Q[)

Definition 6.2. A lattice L is Gk -stable with respect to p if p(Gr)(L) C L. This property only depends on the
homothety class A of L.

Proposition 6.3. Every representation p as at least one stable lattice.

Sketch of proof. Let L be any lattice of Q7 and H be the subgroup of G such that p(c)(L) C (L) for o € H. This
is an open subgroup since 7?77 finite index in G because Gk is compact. Hence the lattice generated by the sum
is stable under G . O

Definition 6.4. Two integral representations p; : Gx — GL2(Z;) are isogeneous if they are conjugate as repres-
entations in GL2(Qy), i.e., there exists U € GL2(Q;) such that ps(c) = Up1(o)U~1 for all 0 € Gk

Definition 6.5. Let p : Gx — GL3(Z;) be an integral representation. The Residual representation associated to
p is the map p: Gx — GLo(F;) obtained by composing p with the reduction map.

GK >pGL2 (Zl)
SN ¥V mod!
P GLy(Fy)

Example. Let E7, F5 be two elliptic curve over K. Suppose there exists a K 2-rational isogeny F; — Fs. For
each curve we have pg, 2, pg,,2. The residual have image which is of order either 1 (if E;(K)[2] has order 4) or 2
(if E;(K)[2] has order 2).

Proposition 6.6. The number of stable lattice (up to homothety) is finite if and only if p is irreducible.

Proposition 6.7. Let p be an integral representation. The number of stable lattices (up to homothety) if 1 if and
only if the residual representation p is irreducible.

6.2 Dickson’s Theorem

Theorem 6.8. Let | > 3 be a prime and H a finite subgroup of PGLy(F;). Then a conjugate of H is one of the
following groups:

1. A finite subgroup of the upper triangular matrices (Borel subgroup)
2. PSLy(F;r) or PGLo(FFyr) for some r € Z~q
3. A dihedral group Da,, withn € Z~1 and (I,n) =1

4. A subgroup isomorphic to either Ay, Sy or As.
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6.3 Surjectivity [ > 5 and non-surjectivity for [ =2 or 3.

Here we are only talking about representations attached to elliptic curves.

e Tim and Vlad published a paper showing that p- is surjective mod 2 but not mod 4; and mod 4 but not
mod 8

e Elkies showed that for [ = 3, p3 is surjective mod 3 but not mod 9.

Theorem 6.9. Let E : y?> = 23 + ax + b be an elliptic curve over Q with A = —16(4a® + 27b?) and j invariant
—1728%% | Then

1. py is surjective if and only if x3 + ax + b irreducible over Q and A ¢ (Q*)?
2. P, is surjective if and only if py is surjective, A ¢ —1-(Q*)2 and j # 4t3(t + 8) for any t € Q

3. pg is surjective if and only if p, is surjective and A ¢ —2 - (Q*)2.

7 Galois Representations of Modular Curves (Chris Williams)

7.1 Modular Curves

Let T' = To(N) < SLg(Z). Define the (compactified) modular curve to be X(T') = Xy(N) := T'\H* where
H*=HUP(Q)

Fact.

e Xo(N) is a compact Hausdorff Riemann surface
* g(Xo(N)) = dime S2(I'o(IV))
e Xo(N) has a model as an algebraic curve over Q. (In fact it has a model as a scheme over 7 [%])

.. . 1
Hecke operators have a geometric interpretation. If we define 7, = (O 2) , IV =T, 'Typ and I = 4, Iy, 'NT

we then get

-1
T=YpTYp

F//

H<

r

This descent to
X([I) —2—= X(T17)
Ty T2y
X(I) X(I)

To z € X(I') = Xo(N) we get Tj(z) = m 0 aom *(z) € Div(X(T)). This extends linearly to T}, : Div(X(I')) —
Div(X(I")).
7.2 Picard Groups
Definition 7.1. Let X be an algebraic curve over a field K. The Picard group of X/K is Pic(X)x = Div’(X/K)/K(X)*.
If ¢ is a “nice” map X — Y, then we get maps on the Picard group as follows:
o Pushforward: ¢, : Pic(X) — Pic(Y') defined as > na[z] — > na[o(x)]
e Pullback: ¢* : Pic(Y') — Pic(X) defined as 3=, ny[y] — 3=, ny 30 51y €2 (7]
Fact. As endomorphism of Pic(Y') deg(¢p) = ¢s o ¢*.

Remark. The action of T}, on Div(X((V)) descend to Pic(Xo(N)).
Pic(Xo(N)) “is” an abelian variety of dimension g = genus(Xo(X)) = dimg S2(To(N)).

15



7.3 Eichler-Schimura

Recall that if F is an elliptic curve over Q, p{ [N, a prime, P|p a prime of Z. Then pg (Frobp) has characteristic
polynomial z? — ¢,(E)X + p. ‘E’(]Fp)

= |ker(o, — 1)| = deg(op — 1) = (0 — 1)s 0 (0, — 1)* as endomorphism of
Pic(E), hence ’E(FP)‘ = 0ps0y — (0ps +0,) + 1 =p+ 1~ (0p +05). In particular, as endomorphism of Pic(E)
ap(E) = ops + 0.

Fact.

e Forp{ N, there exists a smooth projective curve Xo(N) defined over F,, and a surjective map Xo(N) — Xo(N),
which we call “the reduction of Xo(N) mod p”.

Remark. This is base change of Xo(N)/Z [+] to F,

e There is a map T, on Pic(Xo(N)) making the following commute:

Pic(Xo(N)) —— = Pic(Xo(N))

v T v
Pic(Xo(N)) — = Pic(Xo(N))

Theorem 7.2 (Eichler - Shimura). T}, = 0. + 0, as endomorphism of Pic(Xo(N)).
Outline of proof. Igusa’s theorem (See D-S Section 8.6) says that reduction of X¢(/N) as a curve is compatible with
its interpretation as a moduli space. Then look at what 7}, does at the level of moduli spaces. O
7.4 The Galois representations of X,(/V)
Assume [t N
Fact.

1. The natural inclusion Pic(Xo(N)g)[l"] <= Pic(Xo(N)c)[I"] = (Z/I"Z)?9 is an isomorphism for all n.

2. The natural surjection (for p{IN) Pic(Xo(N)g)[I"] — Pic(Xo(N))[I"] is also an isomorphism.

Hence from now on X, (N) will be for Xo(N)g.

Definition 7.3. The l-adic Tate module of Pic(Xo(N)) is Ta;Pic(Xo(N)) = an Pic(Xo(N))[I"] = leq.

Gg = Gal(Q/Q) acts on the points of Xo(N) in the natural way. This gives a natural action of Gg on
Div(Xo(N)), i.e., 0+ nzlx] =Y nylo(x)]. This preserves degree 0 and principal divisors. Thus we get an action
of Gg on Pic(X((N)). The action is linear so preserves Pic(Xo(N))[I"] for all [ and n. This action is compatible
with the connecting maps: Pic(Xo(N))[I"1] — Pic(Xo(N))[I"]. Thus we get an action on Ta;Pic(Xo(N)).

Definition 7.4. For [{ N, define px,(ny,; : Go — Aut(Ta;Pic(Xo(N)) = GLoy(Zy).
Theorem 7.5. Let p{IN.

1. pxy(n), 18 unramified at p

2. If Plp is a prime of Z, Frobp any Frobenius element, then Pxo(N),i(Frobp) satisfies X2 -T,X+p=0.
Proof.
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1. We have a commutative diagram
D, 20 Aut(TaPic(Xo(N)))
v Y

Gy, — Aut(Ta;Pic(Xo(NV)))

Now, the inertia Ip is in the kernel of the left hand map. The right hand map is an isomorphism (by fact 2. )
In particular, Ip C ker(px,(ny,;) and hence px,(n), is unramified at p.

2. We have a commutative diagram

Pic(Xo(N)[I"] ———%— Pic(Xo(N))[I"]
\ \
Pic(Xo(N)[1"] Pic(Xo(N))[I"]

*
Tpx +O'p

we can describe the lifts of 0. and o,. Frobp is a lift of 0, . as o, is totally ramified of degree p. While

op([z]) = X eo—1(a) €xly] = p[a;l[x] so in particular, a lift is pFrob;;.l. So we get a commutative diagram:

rob ob?!
Pic(Xo (V) ("]~ F b X o (N)) 7]
~Y ~Y

Pic(Xo(M)1"] — 27 Pie(Xo(N))[1"]

Hence T}, = Frobp +pFrob7§1. This holds for all n, hence it holds for Ta;Pic(Xo(N)). So Frob% —T,Frobp+p =
0

O

8 Modular Galois Representations (Nicolas)

Last week we had N € N, To(N) = {(Z Z) < SLQ(Z)‘ (Ccl Z - (>;

This week we use I'1(N) = {(Z Z) € SLQ(Z)‘ (Z Z) = <(1) >1k> mod N}. Note that T'o(N) < T'1(N), we

Z) — d mod N. Define X;(N) = (KUPY(Q)) /T1(N).
We have 'y — I'g/I'; acting on X1, which gives rise to the diamond operator (d) € T for all d € (Z/NZ)".
Let Ji(N) = Pic’(X1(N)), let | € N be a prime. We define 7}.J;(N) = lim Ji(N)[I"] and ViJ1(N) = T1(N)©Q

mod N

have a map I'o(N)/T1(N) — (Z/NZ)* defined by (CCL

Theorem 8.1. Gq O ViJ1(N) affords px,(n),; : Go — GL2g(Qi) (where g = genus of X1(N))) unramified at IN.
For all ptIN we have px, (N, (Frob,) satisfies X* — T, X + p (p) = 0.

Actually ViJ1(N) is a free (T @ Qq)-module of rank 2, so px,(n),; : Gg — GL2(T ® Qi) and the characteristic
polynomial of px, (ny,(Froby,) is X2 -T,X +p(p).

Let k € N, and let Ni(N) = {new formsin S;(I';(N))} . Reminder: a new form is an normalised eigenform
which is genuinely of level N (i.e., does not come from lower level)

Remark. For all DIN , Ni(N) € Sp(I1(N)).
For all f =q+ Y a,q" € Nix(N), we have that:

o Ky =Q(ay) is a number field.
e There exists € : (Z/NZ)* — C* such that for all d, (d) f = ¢(d)f.
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e For all 0 € Gg, f7 =q+ > o(an)q™ with o(a,) € Ni(N). chare” =coce

Pick f € No(N) with f =" a,q". Define Iy = {T' € T|Tf =0} C T. We have the isomorphism (T ® Q) /I; — Ky
defined by T}, — ay, (d) — €(d)

Define Ay = J1(N)//I;J1(N). It is an abelian variety over Q of dimension d = [K : Q].
Theorem 8.2. J1(N) ~ [Ip|n reco\na(n) A;O(N/D). And actually ViJ1(N) = Tp|n recowa(n) VlA?O(N/D) as
Gg-modules

K1 ® Qi =[], Ky, therefore

Theorem 8.3. For all {|l in Ky, there exists pso: Gg — GLa(K ) unramified outside in IN. The characteristic
polynomial of py(Froby,) is X? — a,X + pe(p) (for ptIN).

8.1 Residual maps

Let p : Gg — GLg(K,) with K,/Q; finite. There exists p’ ~ p such that Imp’ C GL4(Zg,). We want to define
p=p' mod £. This is not well defined!

Example. Let p = (g ;ﬁ) ~ (é l;f) but reduced mod [ we have (é zﬁ) b (g 2)

Definition 8.4. Let p: G — GL(V) be a representation. Define V*° = V if there is no W C V subrepresentation
with V** = (W) & (V/W)

So we define p = (p’ mod ¢)**

P1

Theorem 8.5 (Brauer - Nabitt). Let G GL(V) be 2 semi-simple representation. If for all g € G we

P2
have that the characteristic polynomial of p1(g) is equal to the characteristic polynomial of p2(g), then p1 ~ pa.
8.2 Higher weights

Theorem 8.6 (Deligne 1971). Let k > 2, for all f =3 anq™ € Ni(N), for all {|l in Ky, there exists pse: Gg —
GLa(Ky,¢) unramified outside IN. We have that the characteristic polynomial of py(Fob,) is X2 —a,X +p*~te(p)

Remark. We have det py, = Xffle where x; is the [-adic cyclotomic character. In particular, let ¢ € Gg be complex

conjugation we have det py¢(c) = xF(c)e(c) = (—=1)~le(—1) = —1. Hence py, is odd

The last step relied on: for all v = (Z z> €To(N), f(v2) = e(d)(cz+d)* f(2). In particular v = (1 _1> €
[y so e(—1)(=1)F = +1.
Remark. For all K; — C and for all p prime, we have |a,| < 2p"= . For all n € N we have |a,| < oo(n)n"z" where
oo(n) = ##{dln}
8.3 Weight 1

Theorem 8.7 (Deligne - Serre, 1976). For all f € N1(N) there ezists py : Gg — GL2(C), unramified outside N.
The characteristic polynomial of py(Froby,) is X? — ap,X + €(p). Actually py is irreducible and the conductor
s N.

Sketch of Proof. The steps for this proof are as follow
1. There exists p;; for infinitely many [.

2. {ap, pprime} is “almost finite”
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w

G =1Tmpy, C GLy(F;) then there exists constant C for all [ such that #G; < C

W

. For [ > 1, G| may be lifted to GL2(C). This gives ps; to representations in GL2(C)

5. Calculate characteristic polynomials

6. For all [,l', pyi ~ prr = py.

O

9 From [-adic to mod [ representations. Serre’s conjecture: the level
(Samuele)

Let N and k be integers, k > 2. Let f € Si(I'1(V)) be an eigenform, f(2) = ¢+, ~5anq". Let E = Q({an}) , €f
a character of f, then (d) f = ef(d)f. From the previous section we know there exists a family of continuous A-adic
representation py ) : Gal(Q/Q) — GL2(E)) where A C Op and E) is the completion of E at \. We have py ) is
irreducible and Vp { N - Nm(\), Tr(ps.x(Frob,)) = a, and det(ps »(Frob,)) = €;(p) - p*~1. To ps.» we can associate
P Gg = GLa(F) where F = Og 5/ and this representation is only defined up to semisimplification.

Let p: Gg — GLa(F;) the question is when is p & py ™7

“Serre”: A necessary and sufficient condition is that p is odd if p is semisimple.

Let us forget about p : Gg — GLa(F;) which are reducible

Theorem 9.1 (Khane, Witenberger, Kism, Dieulefait. (Serre’s conjecture)). Let p : Gg — GLg (E) be a continuous,
irreducible, odd representation then p is modular

Modular means that there exists integers N, k such that p = p, \ where f € Sp.(T'1(V)). There exists N(p), k(p)
minimal. N(p) is the Artin conductor of p away from [ and k(p) is weight in terms of p|y,.

Theorem 9.2 (Ribet). Assume l > 3 and suppose that p arises from T'1(M) when M = N -1%, ged(N,l) = 1.Then
p arises from T'1(N).

Remark. Buzzard generalised the above for the case [ = 2.

Theorem 9.3. Suppose that p arises from Si(T'1(N)) with gcd(N,l) =1 and 2 < k <1+ 1. Assume either | > 3
or N > 3, then p arises from Sy(I'1(N1)).

This theorem comes from Ash-Stevens under the condition that [ > 5 and Serre-Gross under the assumption
that N > 4.

Theorem 9.4 (Edixhoron). Let gcd(N,[) = 1 and assume p arises from S(I'1(N)) then p arises from Sy(,)(I'1(N)),
where k(p) is Serre’s weight, furthermore k = k(p) mod Il — 1 and k > k(p) if | is odd.

Corollary 9.5. If p arises from I't{(N) and gcd(N,l) = 1 then there exists i € 7 such that p ® X' arises from
Sk(T1(N)) for k <1+ 1, where x is the mod I Cyclotomic character.

Let p: Gg — GLa(FF;) be irreducible and consider the following four sets

o N} = {N|gcd ) = 1,parisesfromSk(p)(Fl(N>)}

1, parises fromI'y (V) }

o N3 ={N|gcd

(N, 1)
o Ny = {N|ged(N,I) (

(N,1) =1, parises from ' (N1?), a > 0}

(N, 1) (

o Ny = {N]|gcd(N,l) = 1, parises from S5(I'y (N1?)) }

Theorem 9.6. Ifl > 5 then the four sets N1, Na, N3 and Ny are equal
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Proof. N1 = N> are equal by Theorem 9.4

N2 = N3 are equal by Theorem 9.2

By definition Ny C N3 so we want to show that N3 C N or equivalently Ny C Ny . Assume that p arises
from I'; (V) and choose i > 0 by Corollary 9.5 such that p ® x* arises from Sj(I';(N)) with 2 < k <1+ 1. By
Theorem 9.3 then p @ ! arises from S3(I'1(N1)). Now tensoring with x* changes the level of a modular form but
not the weight. Look at x* as a Dirichlet character, f : pyx = p ® x* then consider f ® x~* € So(I'1(NI?)). So
p=(p®x") ®x ¢ arises from S3(T'1(NI?)). O

We shall denote the four equal sets by N(p). So the question now becomes is N(p) € N(p)?
Theorem 9.7 (Livne). Suppose p arises from I't(N) then N(p)|N.

Let f be an eigenform giving rise to p. Then N the level of f is such that N(p)|N, or better N(p)|N’ where N’
is the prime-to-I part of N.

The aim is: If N(p) # N’ then we want to find another form at level N(p) giving rise to p.

Note that we can replace f by a newform, f’, giving the same eigensystem. ps x = py.n. We have N(p)|level(f).
So from now on, assume f is a newform. Let us look at the conductors N(p) = N(p; ) < N(ps.a) = level(f).

Assume [ # p and consider p, : Gal(Q,/Q,) — GL2(Q;) and p, reduction. We look at the conductor exponents
n,, = n, = dim(V) — dim VI Ny, wild and ng, =My = dim(V) — dim (VI> + 15, wild- We know that n,, wila =
np, wild, We also know that dimVI > dim V7, so np < np. We want to study when 7, < ny,.

Theorem 9.8. The representation p, which can degenerate (i.e., T, < n,) can be one of the following

1. Principal series: p, = @ v such that n, =1 and ny =0, then n, =n, + 1 and 7y = np.

2. Special case (Steinberg I ): p, = p ®sp(1) such that n, =0 (then n, =1 and 7, =0)

3. Special case (Twist Steinberg): p, = p @ sp(1) such that n, =1 and nz =0 (then n, =2 and 7, =0)

4. (Super) Cuspidal case: p, = Ind( such that n¢ =1 and nz =0 (then n, =2 and ny =0)

Back to modular forms:

Theorem 9.9 (Ribet level lowering). Assume that N(p;,) < N where f is a newform of level T'1(N) and
ged(N,1) = 1. Then for every p‘N/N(ﬁﬂ/\) there exists a Dirichlet character ¢ of conductor p and l-power or-

der such that the newform attached to f @ ¢ has level dividing N/p. In particular, p; y is modular of level M where
M = N/[[p where p|[N/N(p;. ).
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