ERRATUM for "Calculus of Variations" (Filip Rindler, Springer 2018)

Version of November 15, 2023

- p.14, Fig. 1.4: Replace $2 r$ (on left) by $2 R$.
- p.24, l.10: For weak metrizability also boundedness of X is needed (but this also follows later from the coercivity).
- p.32, 1.-8 (Example 2.12): Replace \mathbb{R}^{m} by \mathbb{R}^{3}.
- p.39, 1.5: Replace f by F.
- p.40, 1.1: Add the condition $\operatorname{dim} X<\infty$.
- p.42, 1.1 (Example 2.26): Also assume that $\varphi \geq 0$ and $\varphi(0)=\inf \varphi=0$.
- p.54, l.-10 (Proposition 3.9): It should additionally be assumed here that $\left|\mathrm{D}_{Z} \mathrm{D}_{A} f(x, u, A)\right| \leq C(1+|u|+$ $|A|$) for $Z \in\{x, u, A\}$ in order for $\operatorname{div}\left[\mathrm{D}_{A} f(x, u(x), \nabla u(x))\right]$ to be well-defined (in fact, in (3.6) this existence is assumed).
- p.57, 1.2 (Theorem 3.11): This result also holds, with the same proof, for any weak solution $u_{*} \in$ $\mathrm{W}_{\mathrm{loc}}^{1,2}\left(\Omega ; \mathbb{R}^{m}\right)$ of the corresponding Euler-Lagrange equation (this is used in the bootstrapping argument on p.61).
- p.58, l.-4: $k \in\{1, \ldots, d\}$ (braces missing).
- p.63, l.-4: Replace $f: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}$ by $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- p.65, l.-3 (Theorem 3.21): One also needs to assume $\left|\mathrm{D}_{v} f(x, v, A)\right|,\left|\mathrm{D}_{A} f(x, v, A)\right| \leq C\left(1+|v|^{p-1}+|A|^{p-1}\right)$ for some $C>0$ and $p \in[1, \infty)$ (see Remark 3.2).
- p.69, l.15: f needs to be twice continuously differentiable and we also need to require that $H(\cdot, \tau) \in$ $\mathrm{W}^{1,2}\left(\Omega ; \mathbb{R}^{m}\right)$ for every $\tau \in \mathbb{R}$.
- p.70, 1.7 (Theorem 3.23): The growth bound should read (no p):
$\left|\mathrm{D}_{v} f(x, v, A)\right|,\left|\mathrm{D}_{A} f(x, v, A)\right| \leq C(1+|v|+|A|)$.
- p.76, 1.11 (Example 3.31): Replace \leq by \geq.
- p.78, 1.6 (Exercise 3.2): Delete point (iii).
- p.84, 1.13 (Lemma 4.3): Replace $K \subset \mathbb{R}^{m \times d}$ by $K \subset \mathbb{R}^{N}$.
- p.84, 1.15 (Lemma 4.3): Replace $\left(\nu_{j}\right)$ by $\left(\nu^{(j)}\right)$.
- p.85, l.-7 (Theorem 4.4): The family $\left(\nu_{x}\right)_{x \in \Omega} \subset \mathcal{M}^{1}\left(\mathbb{R}^{N}\right)$ is weakly* measurable with respect to κ.
- p.92, 1.2 (Lemma 4.7): Replace $\mathrm{C}_{0}(\Omega) \times \mathrm{C}_{0}\left(\mathbb{R}^{N}\right)$ by $\mathrm{C}_{0}\left(\Omega \times \mathbb{R}^{N}\right)$.
- p.93, l.-6 (Example 4.10): Ω is $(0,1)^{2}$ everywhere.
- p.97, 1.4 (proof of Lemma 4.13): Replace $\left|\tau_{k} V_{j(k)}\right|$ by $\left|\tau_{k} V_{j(k)}\right|^{p}$.
- p. $97,1.10 \& 1 .-10$ (proof of Lemma 4.13): Replace v_{k} by $v_{j(k)}$.
- p.97, l.-12 (proof of Lemma 4.13): Replace V_{k} by $V_{j(k)}$.
- p.97, l.-11 \& p.98, 1.3 (proof of Lemma 4.13): Replace $h \in \mathrm{C}_{0}\left(\mathbb{R}^{m}\right)$ by $h \in \mathrm{C}_{0}\left(\mathbb{R}^{m \times d}\right)$.
- p.103, 1.9 (Problem 4.8): Also require $\nu_{x}(\partial E)=0$.
- p.111, 1.4 (proof of Proposition 5.3): The display should read (lim sup added): $\lim \sup _{k \rightarrow \infty}\left\|\nabla v_{j, k}\right\|_{\mathrm{L}^{\infty}} \leq \lim \sup _{k \rightarrow \infty}\left\|\nabla u_{k}\right\|_{\mathrm{L}^{\infty}}+|F|<\infty$.
- p.115, 1.10 (proof of Lemma 5.8): Replace $u \mapsto M(\nabla u)$ by $u \mapsto \int_{\Omega} M(\nabla u) \mathrm{d} x$.
- p.115, 1.15 (proof of Lemma 5.8): Replace "." by " \otimes ".
- p.116, 1.4 (proof of Lemma 5.8): Replace $M_{\neg l}^{\neg k}(\nabla u)=\cdots$ by $(-1)^{k+l} M_{\neg l}^{\neg k}(\nabla u)=\cdots$.
- p.117, 1.11 (Lemma 5.10): Replace L^{∞} by $\mathrm{W}^{1, \infty}$.
- p.117, l.-11 (proof of Lemma 5.10): Replace $\int_{\Omega} M_{\neg l}^{\neg k}\left(\nabla u_{j}\right) \psi \mathrm{d} x$ by $(-1)^{k+l} \int_{\Omega} M_{\neg l}^{\neg k}\left(\nabla u_{j}\right) \psi \mathrm{d} x$; same for the following display.
- p.117, 1.10 (proof of Lemma 5.10): The density argument needs to be applied only after the displays $\int_{\Omega} M_{\neg l}^{\neg k}(\nabla u) \psi \mathrm{d} x$ and $-\sum_{l=1}^{3} \int_{\Omega}\left[u^{1}(\operatorname{cof} \nabla u)_{l}^{1}\right] \partial_{l} \psi \mathrm{~d} x=\int_{\Omega} \operatorname{det} \nabla u \psi \mathrm{~d} x$, respectively.
- p.118, l.-6 \& l.-2 (proof of Lemma 5.11): Replace Ω by $B(0,1)$.
- p.120, l.-2 (proof of Theorem 5.13): Replace $v \in \mathbb{R}^{n}$ by $v \in \mathbb{R}^{d}$.
- p.120, 1.10 (Theorem 5.13 (ii)): Replace $\operatorname{dist}\left(\nabla u_{j}(x),\{A, B\}\right.$ by $\operatorname{dist}\left(\nabla u_{j}(x),\{A, B\}\right)$.
- p.123, 1.11 (proof of Proposition 5.14): $\left(u_{j}\right) \subset \mathrm{W}^{1, p}\left(\Omega ; \mathbb{R}^{m}\right)$ is a generating sequence for ν.
- p.123, l.-3 (proof of Proposition 5.14): Replace $\mathrm{d} x$ by $\mathrm{d} y$.
- p.128, 1.2 (Lemma 5.19): The convergence in (5.15) only holds if the sequence $\left(f\left(x, u_{j}, V_{j}\right)\right)_{j}$ additionally is assumed to be uniformly L^{1}-bounded and equiintegrable (like in Theorem 4.1 (iii)) . However (and this is what we use later in the proof of Theorem 5.20), for Carathéodory integrands $f: \Omega \times$ $\mathbb{R}^{M} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfying the p-growth bound (5.14), it holds that

$$
\liminf _{j \rightarrow \infty} \int_{\Omega} f\left(x, u_{j}(x), V_{j}(x)\right) \mathrm{d} x \geq \int_{\Omega}\left\langle f(x, u(x), \cdot), \nu_{x}\right\rangle \mathrm{d} x .
$$

- p.128, l.-11 (Theorem 5.20): Replace $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow \mathbb{R}$ by $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow[0, \infty)$.
- p.129, 1.1 (Remark 5.21): Replace $q \in[1, p /(d-p))$ by $q \in[1, d p /(d-p))$.
- p.140, l.-3 (proof of Lemma 6.6): Replace C^{1} by $\mathrm{C}^{\infty}\left(\right.$ or $\left.\mathrm{C}^{2}\right)$; also several other occurrences throughout this proof.
- p.140, l.-2 (proof of Lemma 6.6): Delete $(-1)^{k+l}$.
- p.141, 1.2 (proof of Lemma 6.6): Delete $(-1)^{k+l}$.
- p.147, l.-9 (proof of Theorem 6.9): Replace $x^{\prime} \in u(\Omega)$ by $x^{\prime} \in u_{*}(\Omega)$.
- p.156, 1.6/7 (proof of Lemma 7.2): Replace D by $B(0,1)$.
- p.159, 1.-10 (proof of Theorem 7.5): A more complete proof is as follows:

The functional \mathcal{F}_{*} is weakly lower semicontinuous as the supremum of weakly lower semicontinuous functionals. Indeed, if $u_{j} \rightharpoonup u$ in X, then for all weakly lower semicontinuous $\mathcal{H}: X \rightarrow \mathbb{R}$ with $\mathcal{H} \leq \mathcal{F}$,

$$
\mathcal{H}[u] \leq \liminf _{j \rightarrow \infty} \mathcal{H}\left[u_{j}\right] \leq \liminf _{j \rightarrow \infty} \mathcal{F}_{*}\left[u_{j}\right] .
$$

Taking the supremum over all such \mathcal{H}, we see that $\mathcal{F}_{*}[u] \leq \lim \inf _{j \rightarrow \infty} \mathcal{F}_{*}\left[u_{j}\right]$.
Let $\left(u_{j}\right) \subset X$ be a mininimizing sequence for \mathcal{F}. By the weak coercivity, we may assume that $u_{j} \rightharpoonup u_{*}$ in X. Then,

$$
\inf _{X} \mathcal{F} \leq \mathcal{F}\left[u_{*}\right] \leq \liminf _{j \rightarrow \infty} \mathcal{F}_{*}\left[u_{j}\right] \leq \liminf _{j \rightarrow \infty} \mathcal{F}\left[u_{j}\right]=\inf _{X} \mathcal{F} .
$$

Hence, \mathcal{F}_{*} attains its minimum, which is equal to the infimum of \mathcal{F} over X.

- p.166, 1.7 (Example 7.10): The sentence should read: "However, since rank $B=1$, we have that $g(\mathbf{P}(A+$ $t B))=0$ is affine in $t \in \mathbb{R}$.".
- p. 172 ff . (Theorem 7.15): The functional-analytic setup in the proof needs to be changed as follows: Let $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$ for $p \in(1, \infty)$ denote the class of finite signed measures on $\mathbb{R}^{m \times d}$ with bounded p^{\prime} th-order absolute moment, that is, $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right):=\left\{\mu \in \mathcal{M}\left(\mathbb{R}^{m \times d} ; \mathbb{R}\right): \int 1+|A| \mathrm{d} \mu(A)<\infty\right\}$. Then, an integrand $h \in \mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)$ can be viewed as a linear functional on $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$ via the duality pairing $\langle\mu, h\rangle:=\int h \mathrm{~d} \mu\left(\right.$ where $\mu \in \mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$). The functionals $h \mapsto\langle\cdot, h\rangle\left(\right.$ where $h \in \mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)$) separate the points of $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$, that is, for $\mu_{1}, \mu_{2} \in \mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$ with $\mu_{1} \neq \mu_{2}$ there is an integrand $h \in \mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)$ such that $\left\langle\mu_{1}, h\right\rangle \neq\left\langle\mu_{2}, h\right\rangle$.
Let τ_{p} be the weakest topology on $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$ that makes all the functionals $h \mapsto\langle\cdot, h\rangle$ continuous. It is a general result of topology (see, e.g., Theorem 3.10 of [W. Rudin: Functional Analysis, McGrawHill, 1991]) that the topological space $\left(\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right), \tau_{p}\right)$ is a locally convex topological vector space and its dual space $\left(\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right), \tau_{p}\right)^{*}$ is given as $\mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)$ (via the above duality pairing).

The set $\mathbf{G} \mathbf{Y}_{\mathrm{hom}}^{p}(F)$ then needs to be viewed as a subset of the space $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$ (and not of $\mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)^{*}$ as before), where it is convex and τ_{p}-closed (it is not weakly*-closed in $\mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)^{*}$ because there is no tightness of the masses, e.g., for $\nu_{j}=\left(1-j^{-p}\right) \delta_{0}+\left(j^{-p} \delta_{-j A}+j^{-p} \delta_{j A}\right) / 2$ as $j \rightarrow \infty$, where A is a rank-one matrix). In Lemma 7.17 and the proof of Theorem 7.15 one thus needs to replace every occurrence of $\mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)^{*}$ by $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$ (effectively moving from a dual to a pre-dual) and use the τ_{p}-topology instead of the weak* topology everywhere; the arguments are otherwise the same. As a result, Lemma 7.17 then needs to read as follows: "For any $F \in \mathbb{R}^{m \times d}$ the set $\mathbf{G} \mathbf{Y}_{\mathrm{hom}}^{p}(F)$ is convex and τ_{p}-closed in $\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right)$." The application of the Hahn-Banach separation theorem (for locally convex topological vector spaces; see Theorem 3.10 in loc. cit.) is then also with respect to the space $\left(\mathcal{M}_{p}\left(\mathbb{R}^{m \times d}\right), \tau_{p}\right)$ and its dual $\mathbf{I}^{p}\left(\mathbb{R}^{m \times d}\right)$. [This corrected setup is due to Stefan Müller.]

- p.174, 1.13 (proof of Lemma 7.17): Replace $u_{j} \in \mathrm{~W}^{1, p}\left(\Omega ; \mathbb{R}^{m}\right)$ by $u_{j} \in \mathrm{~W}^{1, p}\left(B(0,1) ; \mathbb{R}^{m}\right)$.
- p.178, 1.16 (Theorem 7.18): Delete the second "convex".
- p.175, 1.1 (proof of Theorem 7.15): The necessity proof also needs to explicitly invoke Proposition 5.14 to localize.
- p.222, 1.5 (Lemma 8.32): Replace \rightharpoonup by $\stackrel{*}{\rightarrow}$ (in $\mathcal{M}_{\text {loc }}$).
- p.260, 1.-3: Replace $K \subset \mathbb{R}^{3 \times 12}$ by $K \subset \mathbb{R}^{3 \times 2}$.
- p.278, l.-12 (Lemma 10.6): Replace μ_{0} by μ.
- p.298, 1.4 (Problem 10.4): Replace $y \in Q_{n}\left(x_{0}, r\right)$ by $y \in Q_{n}(0,1)$.
- p.326, 1.16 (proof of Theorem 11.21): Replace $\geq \mu\left\|\nabla u_{j}\right\|_{\mathrm{L}^{1}}$ by $\geq \mu \cdot \lim \sup _{j \rightarrow \infty}\left\|\nabla u_{j}\right\|_{\mathrm{L}^{1}}$.
- p.372, 1.-4: Replace $\liminf _{k \rightarrow \infty} \mathcal{F}_{k}\left[u_{k}\right]=\liminf _{k \rightarrow \infty} \inf _{X} \mathcal{F}_{k}$ by $\lim _{k \rightarrow \infty} \mathcal{F}_{k}\left[u_{k}\right]=\liminf \operatorname{in木}_{k \rightarrow \infty} \inf _{X} \mathcal{F}_{k}$.
- p.423, 1.-7: Replace $\eta_{\delta}(x):=\frac{1}{\delta^{d}} \eta\left(\frac{x}{\delta^{d}}\right)$ by $\eta_{\delta}(x):=\frac{1}{\delta^{d}} \eta\left(\frac{x}{\delta}\right)$.
- p.426, l.-2 (Theorem A.36): $f($ not $M f)$ is Lipschitz on the set $\{M(|f|+|\nabla f|)<K\}$.

