Cofibre of τ, first take

Yorick Fuhrmann

February 2024

Abstract

By following [Isa19], [Ghe18] and [DI10] we explain how the motivic Adams and Adams-Novikov spectral sequences are related to their classical analogues and how the cofibre of the map of motivic spectra τ can be used to compute the classical AdamsNovikov spectral sequence and thus classical stable homotopy groups of spheres.

Contents

1 The motivic Adams spectral sequence 1
2 Cofibre of τ using Adams 4
3 The motivic Adams-Novikov spectral sequence 5
4 Cofibre of τ using Adams-Novikov 6

References
 8

1 The motivic Adams spectral sequence

Let F be an algebraically closed field of characteristic 0 . Most of the time we will work with $F=\mathbb{C}$. Recall that objects in the stable motivic homotopy category

$$
\mathrm{Sp}_{F}=L_{\mathbb{A}^{1}, \mathrm{Nis}}\left(\mathcal{P}\left(\operatorname{Sm}_{F}\right)\right)_{*}\left[\left(S^{1}\right)^{-1}, \mathbb{G}_{m}^{-1}\right],
$$

where S^{1} is the usual simplicial circle and \mathbb{G}_{m} is the punctured affine line $\mathbb{A}^{1} \backslash 0$, are bigraded motivic spectra representing generalised motivic cohomology theories. Write \mathbb{S}_{F} for the motivic sphere spectrum and write $\mathbb{S}_{F}^{n, w}:=\mathbb{G}_{m}^{\wedge w} \wedge \sum^{n-w} \mathbb{S}$ for its (n, w)-suspension. The stable motivic homotopy groups of spheres are given by

$$
\pi_{n, w}:=\pi_{n, w}\left(\mathbb{S}_{F}\right):=\operatorname{hom}_{\text {Sp }_{F}}\left(\mathbb{S}_{F}^{n, w}, \mathbb{S}_{F}\right) .
$$

In motivic weight 0 and over \mathbb{C}, they are isomorphic to the classical stable homotopy groups:

$$
\pi_{n, 0}\left(\mathbb{S}_{\mathbb{C}}\right) \xrightarrow{\sim} \pi_{n}(\mathbb{S}) .
$$

Analogous to singular cohomology, there is a cohomology theory called motivic cohomology with coefficients in an abelian group, represented by a (motivic) Eilenberg-MacLane spectrum. We will consider motivic cohomology with \mathbb{F}_{2}-coefficients, represented by the mod 2 motivic Eilenberg-MacLane spectrum $M \mathbb{F}_{2}$. Write \mathbb{M}_{2} for the bigraded motivic cohomology ring with \mathbb{F}_{2}-coefficients $H^{*, *}(\operatorname{Spec}(F))=M \mathbb{F}_{2}^{*, *}(\operatorname{Spec}(F))$. All cohomology groups we write (whether motivic or classical) are to be understood with \mathbb{F}_{2}-coefficients.

Theorem 1.1 (Voevodsky). The bigraded ring \mathbb{M}_{2} is isomorphic to the polynomial ring $\mathbb{F}_{2}[\tau]$ on one generator τ of bidegree $(0,1)$.

We write $\mathcal{A}_{*, *}=\left[M \mathbb{F}_{2}, M \mathbb{F}_{2}\right]_{*, *}$ for the ring of stable cohomology operations in mod 2 motivic cohomology. It is called motivic Steenrod algebra, and it is generated over \mathbb{M}_{2} by motivic Steenrod operations $S q^{i}$, as the following theorem shows:

Theorem 1.2 (Voevodsky). The motivic Steenrod algebra \mathcal{A} is the \mathbb{M}_{2}-algebra generated by elements $S q^{2 k}$ of bidegree $(2 k, k)$ and $S q^{2 k-1}$ of bidegree $(2 k-1, k-1)$ for all $k \geq 1$, satisfying the following relations for $a<2 b$:

$$
S q^{a} S q^{b}=\sum_{c}\binom{b-1-c}{a-2 c} \tau^{?} S q^{a+b-c} S q^{c}
$$

where the exponent? is either 0 or 1 , easily determined by degrees.
Over \mathbb{C}, we can describe the dual motivic Steenrod algebra $\mathcal{A}_{*, *}$ (which we notationally will not distinguish from the motivic Steenrod algebra) even more explicitly by

$$
\mathbb{M}_{2}\left[\tau_{0}, \tau_{1}, \ldots, \xi_{1}, \xi_{2}, \ldots\right] /\left(\tau_{i}^{2}=\tau \xi_{i+1}\right),\left|\tau_{i}\right|=\left(2^{n}-1,2^{n-1}-1\right),|\xi|=\left(2^{n+1}-2,2^{n}-1\right)
$$

If we invert τ, we will see that we obtain a polynomial algebra that is essentially the same as the classical dual Steenrod algebra. The motivic Adams spectral sequence is the trigraded spectral sequence with E_{2}-page

$$
E_{2}^{s, t, v}\left(\mathbb{S}_{F}\right)=\operatorname{Ext}_{\mathcal{A}}^{s, t, v}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right) \Rightarrow \pi_{t-s, v}\left(\left(\mathbb{S}_{F}\right)_{(2)}\right)
$$

with differentials of the form $d_{r}: E_{r}^{s, t+s, v} \rightarrow E_{r}^{s-1, t+r, v}$, where s is the homological degree of the Ext-group (the Adams filtration), and (t, v) is the internal bigrading coming from the bigrading on \mathcal{A} and \mathbb{M}_{2}, so t is the topological dimension and v is the motivic weight. For $x \in E_{\infty}(\mathbb{S})$, we write $\{x\}$ for the set of all elements of $\pi_{*, *}$ that are represented by x.

It is constructed analogously to the classical Adams spectral sequence: starting with the motivic sphere spectrum \mathbb{S}_{F}, one can inductively construct a motivic Adams resolution

where each K_{i} is a motivically finite type wedge of suspensions of $M \mathbb{F}_{2}$, the maps $X_{i} \rightarrow K_{i}$ are surjective on mod 2 motivic cohomology, and X_{i+1} is the homotopy fiber of $X_{i} \rightarrow K_{i}$. Applying $\pi_{*, v}$ gives an exact couple for each v, so a \mathbb{Z}-graded family of spectral sequences
indexed by v. The E_{2}-term is $E x t_{\mathcal{A}}^{s, t, v}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$ and abuts to the stable motivic homotopy group $\pi_{t-s, u}\left(\left(\mathbb{S}_{F}\right)_{(2)}\right)$ of the 2-completed motivic sphere spectrum.
The relation of the classical Adams spectral sequence and the motivic Adams spectral sequence we first would like to understand is the following one:

Theorem 1.3 ([[DI10]). After inverting τ, the motivic Adams spectral sequence becomes isomorphic to the classical Adams spectral sequence.

The functor $\mathrm{Sm}_{\mathbb{C}} \rightarrow \mathrm{Sp}, X \mapsto \Sigma_{+}^{\infty} X(\mathbb{C})$ induces a topological realisation functor

$$
\operatorname{Re}_{\mathbb{C}}: \mathrm{Sp}_{\mathbb{C}} \rightarrow \mathrm{Sp}
$$

uniquely determined up to homotopy by the fact that it preserves homotopy colimits and weak equivalences and that it sends the motivic suspension spectrum of a smooth scheme X to the ordinary suspension spectrum of the topological space of complex-valued points $X(\mathbb{C})$. It is called Betti realisation and maps $\mathbb{S}_{\mathbb{C}}^{n, w} \mapsto \mathbb{S}^{n}$.
It also sends the mod 2 motivic Eilenberg-MacLane spectrum $M \mathbb{F}_{2}$ to the classical mod 2 Eilenberg MacLane spectrum $H \mathbb{F}_{2}$, so induces a natural transformation

$$
H^{p, q}(X) \rightarrow H^{p}(X(\mathbb{C})), \alpha \mapsto \alpha(\mathbb{C})
$$

where we view $H^{*}(X(\mathbb{C}))$ as bigraded concentrated in weight 0 .
Definition 1.4. For X a motivic spectrum, let

$$
\theta_{X}: H^{*, *}(X) \otimes_{\mathbb{M}_{2}} \mathbb{M}_{2}\left[\tau^{-1}\right] \rightarrow H^{*}(X(\mathbb{C})) \otimes_{\mathbb{F}_{2}} \mathbb{M}_{2}\left[\tau^{-1}\right]
$$

be the $\mathbb{M}_{2}\left[\tau^{-1}\right]$-linear map that takes a class α of weight w in $H^{*, *}(X)$ to $\tau^{w} \alpha(\mathbb{C})$.
Lemma 1.5. For X the motivic sphere spectrum $\mathbb{S}_{\mathbb{C}}$ or the mod 2 motivic Eilenberg-MacLane spectrum $M \mathbb{F}_{2}$, the map θ_{X} is an isomorphism of bigraded $\mathbb{M}_{2}\left[\tau^{-1}\right]$-modules.

Proof. \quad For $X=\mathbb{S}_{\mathbb{C}}$, the map θ_{X} is given by $\mathbb{M}_{2} \otimes_{\mathbb{M}_{2}} \mathbb{M}_{2}\left[\tau^{-1}\right] \rightarrow \mathbb{F}_{2} \otimes_{\mathbb{F}_{2}} \mathbb{M}\left[\tau^{-1}\right]$, which clearly is an isomorphism.

- For $X=M \mathbb{F}_{2}, H^{*, *}(X)=H^{*, *}\left(M \mathbb{F}_{2}\right)$ is the motivic Steenrod algebra \mathcal{A} and $H^{*}(X(\mathbb{C})=$ $H^{*}\left(H \mathbb{F}_{2}\right)$ is the classical Steenrod algebra $\mathcal{A}_{\mathrm{cl}}$. The map θ_{X} maps $S q^{2 k}$ to $\tau^{-k} S q^{2 k}$ and $S q^{2 k-1}$ to $\tau^{-k} S q^{2 k-1}$. Now $\mathcal{A} \otimes_{\mathbb{M}_{2}} \mathbb{M}_{2}\left[\tau^{-1}\right]$ is free as an $\mathbb{M}_{2}\left[\tau^{-1}\right]$-module on the admissible monomials, and $\mathcal{A}_{\mathrm{cl}} \otimes_{\mathbb{F}_{2}} \mathbb{M}\left[\tau^{-1}\right]$ is free as an $\mathbb{M}_{2}\left[\tau^{-1}\right]$-module on the admissible monomials, so θ_{X} is an isomorphism.

Corollary 1.6. The map $\mathcal{A}\left[\tau^{-1}\right] \cong \mathcal{A} \otimes_{\mathbb{M}_{2}} \mathbb{M}_{2}\left[\tau^{-1}\right] \rightarrow \mathcal{A}_{\mathrm{cl}} \otimes_{\mathbb{F}_{2}} \mathbb{M}_{2}\left[\tau^{-1}\right]$ that takes $S q^{2 k}$ to $\tau^{-k} S q^{2 k}$ and $S q^{2 k+1}$ to $\tau^{-k} S q^{2 k+1}$ is an isomorphism of bigraded rings.

Considering a motivic Adams resolution from before, we can apply the topological realization functor to obtain a tower of homotopy fiber sequences of classical spectra.

It can be shown that this indeed is a classical Adams resolution, which amounts to showing that the maps $X_{i}(\mathbb{C}) \rightarrow K(\mathbb{C})$ are surjective on mod 2 singular cohomology. Topological realization gives maps $\pi_{p, q}(Z) \rightarrow \pi_{p}(Z(\mathbb{C}))$ for any motivic spectrum Z, so we get a map from the homotopy exact couple of (X, K) to that of $(X(\mathbb{C}), K(\mathbb{C}))$. We obtain a map from the motivic spectral sequence for the motivic sphere spectrum to the classical Adams spectral sequence for the classical sphere spectrum. On E_{2}-pages:

$$
\operatorname{Ext}_{\mathcal{A}}^{s, t, v}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathcal{A}_{c l}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

Note that $\operatorname{Ext}_{\mathcal{A}}^{0, *, *}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)=\operatorname{hom}_{\mathcal{A}}^{* * *}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)=\mathbb{F}_{2}[\tilde{\tau}]$, where $\tilde{\tau}$ is the dual of τ and has degree $(0,0,-1)$. By abuse of notation, write τ instead of $\tilde{\tau}$ and write $\tilde{\mathbb{M}}_{2}$ for $\mathbb{F}_{2}[\tilde{\tau}]$. With what we have discussed so far, one can show the following:

Proposition 1.7. There is an isomorphism of rings

$$
\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right) \otimes_{\tilde{\mathbb{M}}_{2}} \tilde{\mathbb{M}}_{2}\left[\tau^{-1}\right] \cong \operatorname{Ext}_{\mathcal{A}_{\mathrm{cl}}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \otimes_{\mathbb{F}_{2}} \mathbb{F}_{2}\left[\tau, \tau^{-1}\right]
$$

This gives Theorem 1.3, which in turn implies that the motivic differentials and motivic hidden extension ${ }^{11}$ must be compatible with their classical analogues, a key computational tool.

2 Cofibre of τ using Adams

The E_{2}-page $\operatorname{Ext}_{\mathcal{A}}^{s, t, v}\left(\mathbb{M}_{2}, \mathbb{M}_{2}\right)$ of the motivic Adams spectral sequence contains a non-trivial element in Adams-filtration 0:

$$
\mathbb{M}_{2}=\mathbb{F}_{2}[\tau] \xrightarrow{\cdot \tau} \mathbb{F}_{2}[\tau]=\mathbb{M}_{2},
$$

multiplication by τ on $\mathbb{F}_{2}[\tau]$. This is different from the topological Adams spectral sequence for \mathbb{S}, where the only elements in Adams filtration 0 are the identity and the zero map. It can be seen that this element survives to the E_{∞}-page as it cannot be involved with any differentials for degree reasons, so it detects a map

$$
\mathbb{S}_{\mathbb{C}}^{0,-1} \xrightarrow{\tau}\left(\mathbb{S}_{\mathbb{C}}^{0,0}\right)_{(2)} .
$$

To avoid complications about the existence of a non-completed version of this map, we will from now on work 2 -completed, that is, in 2 -completed spectra obtained by localisation at either the Moore spectrum $\mathbb{S}_{\mathbb{C}} / 2$ or the EM-spectrum $M \mathbb{F}_{2}$, but we will stick to the original notation for 2 -completed spectra. The motivic Adams spectral sequence produces a nontrivial map

$$
\mathbb{S}_{\mathbb{C}}^{0,-1} \xrightarrow{\tau} \mathbb{S}_{\mathbb{C}}^{0,0} .
$$

The Betti relisation functor $\mathrm{Re}_{\mathbb{C}}: \mathrm{Sp}_{\mathbb{C}} \rightarrow \mathrm{Sp}$ induces a split surjection $\pi_{n, w}\left(\mathbb{S}_{\mathbb{C}}\right) \rightarrow \pi_{n}(\mathbb{S})$ with section induced by the constant functor. It sends the map $\mathbb{S}_{\mathbb{C}}^{0,-1} \xrightarrow{\tau} \mathbb{S}_{\mathbb{C}}^{0,0}$ to the identity $\mathbb{S} \xrightarrow{\text { id }} \mathbb{S}_{\mathbb{C}}$, and it sends C_{τ} to a contractibe spectrum. Hence, C_{τ} is a purely motivic spectrum

[^0]living in the kernel of Betti realization, and computationally, the Betti realisation functor can be interpreted as sending the element τ to 1 . The above map gives a cofibre sequence
$$
\mathbb{S}_{\mathbb{C}}^{0,-1} \xrightarrow{\tau} \mathbb{S}_{\mathbb{C}}^{0,0} \longrightarrow C_{\tau} \longrightarrow \mathbb{S}_{\mathbb{C}}^{1,-1}
$$
where we write C_{τ} for the cofibre of τ. In other words, the diagram

is a pushout square in $\left(\mathrm{Sp}_{\mathbb{C}}\right)_{(2)}$. We will now be interested in the motivic Adams spectral sequence for C_{τ}, which takes the form
$$
E_{2}^{s, t, v}\left(C_{\tau}\right)=\operatorname{Ext}_{\mathcal{A}}^{s, t, v}\left(H^{*, *}\left(C_{\tau}\right), \mathbb{M}_{2}\right) \Rightarrow \pi_{t-s, v}\left(C_{\tau}\right)
$$
where the stable homotopy groups of C_{τ} are to be understood 2-completed. The main tool to compute it is the long exact sequence
$$
\cdots \longrightarrow E_{2}\left(\mathbb{S}_{\mathbb{C}}\right) \xrightarrow{\tau} E_{2}\left(\mathbb{S}_{\mathbb{C}}\right) \longrightarrow E_{2}\left(C_{\tau}\right) \longrightarrow \cdots
$$
associated to the cofibre sequence above. We get a short exact sequence
$$
0 \longrightarrow \operatorname{coker}(\tau) \longrightarrow E_{2}\left(C_{\tau}\right) \longrightarrow \operatorname{ker}(\tau) \longrightarrow 0,
$$
by which the desired $E_{2}\left(C_{\tau}\right)$ is almost entirely described. An important method to compute Adams differentials for $E_{2}\left(C_{\tau}\right)$ is to borrow results about the motivic Adams spectral sequence for $\mathbb{S}_{\mathbb{F}}$, furthermore analyses of brackets and hidden extensions are necessary.

Theorem 2.1 ([[Isa19]). The E_{∞}-page of the motivic Adams spectral sequence for C_{τ} is known up to the 63 -stem.

3 The motivic Adams-Novikov spectral sequence

The classical Brown-Peterson spectrum $B P$ which is used to define the classical AdamsNovikov spectral sequence

$$
E_{2}^{s, t}(\mathbb{S} ; B P)=\operatorname{Ext}_{B P_{*} B P}^{s, t}\left(B P_{*}, B P_{*}\right) \Rightarrow \pi_{t-s}\left(\mathbb{S}_{(2)}\right)
$$

has a motivic analogue, the motivic Brown-Peterson spectrum $B P L$. Analogous to going from the classical Adams spectral sequence to the generalized Adams spectral sequence and the Adams-Novikov spectral sequence, one can obtain the motivic Adams-Novikov spectral sequence

$$
E_{2}^{s, t, v}\left(\mathbb{S}_{F} ; B P L\right)=\operatorname{Ext}_{B P L_{*, *} B P L}^{s, t}\left(B P L_{*, *}, B P L_{*, *}\right) \Rightarrow \pi_{t-s, v}\left(\left(\mathbb{S}_{\mathbb{F}}\right)_{(2)}\right)
$$

from the motivic Adams spectral sequence by replacing the spectra used. Again, classical and motivic spectral sequence are closely related.

Definition 3.1. Define a trigraded object $\bar{E}_{2}\left(\mathbb{S}_{F}, B P L\right)$ as follows:

$$
\begin{aligned}
\bar{E}_{2}^{s, t, \frac{s+t}{2}}\left(\mathbb{S}_{F} ; B P L\right):=E_{2}^{s, t}(\mathbb{S}, B P), \\
\bar{E}_{2}^{s, t, v}\left(\mathbb{S}_{F} ; B P L\right):=0 \quad \text { if } v \neq \frac{s+t}{2} .
\end{aligned}
$$

Theorem 3.2 ([HKO11] $)$. The $E_{2}\left(\mathbb{S}_{F}, B P L\right)$-page of the motivic Adams-Novikov spectral sequence is isomorphic to the trigraded object

$$
\bar{E}_{2}\left(\mathbb{S}_{F}, B P L\right) \otimes_{\mathbb{Z}_{2}} \mathbb{Z}_{2}[\tau]
$$

where τ has degree ($0,0,-1$). In other words, in order to produce the motivic E_{2}-page, start with the classical E_{2}-page. At degree (s, t), replace each copy of \mathbb{Z}_{2} or $\mathbb{Z} / 2^{n}$ with a copy of $\mathbb{Z}_{2}[\tau]$ or $\mathbb{Z} / 2^{n}[\tau]$ respectively, where the generator has weight $\frac{s+t}{2}$.

Analogous to the case of the Adams spectral sequence, we have:
Theorem 3.3. After inverting τ. the motivic Adams-Novikov spectral sequence is isomorphic to the classical Adams-Novikov spectral sequence tensored over \mathbb{Z}_{2} with $\mathbb{Z}_{2}\left[\tau^{ \pm 1}\right]$.

4 Cofibre of τ using Adams-Novikov

As in the Adams case, we can say something about the motivic Adams-Novikov spectral sequence for the cofibre of τ.

Lemma 4.1. $E_{2}\left(C_{\tau} ; B P L\right) \cong \bar{E}_{2}^{s, t, v}\left(\mathbb{S}_{F} ; B P L\right)$.
Proof. The cofibre sequence

$$
\mathbb{S}_{\mathbb{C}}^{0,-1} \xrightarrow{\tau} \mathbb{S}_{\mathbb{C}}^{0,0} \longrightarrow C_{\tau} \longrightarrow \mathbb{S}_{\mathbb{C}}^{1,-1}
$$

induces a long exact sequence

$$
\cdots \longrightarrow E_{2}\left(\mathbb{S}_{F} ; B P L\right) \xrightarrow{\tau} E_{2}\left(\mathbb{S}_{F} ; B P L\right) \longrightarrow E_{2}\left(C_{\tau} ; B P L\right) \longrightarrow \cdots .
$$

By Theorem 3.2 the map $E_{2}\left(\mathbb{S}_{F} ; B P L\right) \xrightarrow{\tau} E_{2}\left(\mathbb{S}_{F} ; B P L\right)$ is injective. So $E_{2}\left(\mathbb{S}_{F} ; B P L\right)$ is isomorphic to the cokernel of τ, which again by Theorem 3.2 is isomorphic to $\bar{E}_{2}^{s, t, v}\left(\mathbb{S}_{F} ; B P L\right)$.

Lemma 4.2. All differentials in the motivic Adams-Novikov spectral sequence for C_{τ} vanish.
Proof. By Lemma 4.1, $E_{2}\left(C_{\tau} ; B P L\right)$ in concentrated in degrees (s, t, v) with $s+t-2 v=0$. But the Adams-Novikov differential d_{r} increases $s+t-2 v$ by $r-1$, so all differentials are zero.

Lemma 4.3. There are no hidden τ-extensions in $E_{\infty}\left(C_{\tau} ; B P L\right)$.
Proof. Let x and y be nonzero elements of $E_{\infty}\left(C_{\tau} ; B P L\right)$ of degrees (s, t, v) and $\left(s, t^{\prime}, v^{\prime}\right)$ with $t^{\prime}>t$. Then $v^{\prime} \geq v$ since $v=(s+t) / 2$ and $v^{\prime}=\left(s+t^{\prime}\right) / 2$. The lifts $\{x\}$ live in degree $(t-s, v)$, so $\tau \beta$ for $\beta \in\{x\}$ lives in degree $(t-s, v-1)$ as τ has degree $(0,-1)$. Hence, $\tau \beta$ can't be in the degree of $\{y\}$ which is $\left(t^{\prime}-s, v^{\prime}\right)$.

Theorem 4.4 ([[Isa19]). There is an isomorphism of bigraded abelian groups

$$
\pi_{s, v}\left(C_{\tau}\right) \xrightarrow{\sim} E_{2}^{s, 2 v-s}\left(\mathbb{S}_{F} ; B P\right)=\operatorname{Ext}_{B P_{*} B P}^{s, 2 v-s}\left(B P_{*}, B P_{*}\right) \quad \text { for any } s, v \in \mathbb{Z}
$$

Proof. By Lemma 4.1, $E_{2}\left(C_{\tau} ; B P L\right)$ is isomorphic to $E_{2}(\mathbb{S}, B P)$ when taking appropriate degrees. By Lemma 4.2, $E_{\infty}\left(C_{\tau}, B P L\right)$ is also isomorphic to $E_{2}(\mathbb{S}, B P)$. As in the proof of Lemma 4.3 there are no hidden extensions of any kind for degree reasons. Hence, $\pi_{s, v}\left(C_{\tau}\right)$ is also isomorphic to $E_{2}(\mathbb{S}, B P)$.

This is very surprising, as it shows that the homotopy groups of a motivic 2-cell complex, which in principle could be as complicated as $\pi_{*, *}\left(\mathbb{S}_{\mathbb{C}}\right)$, are completely algebraic.
Corollary 4.5 ([G17]]). The group $\pi_{s, v}\left(C_{\tau}\right)$ is zero when $v>s, v \leq \frac{1}{2} s$ or $s<0$, except that $\pi_{0,0}\left(C_{\tau}\right)=\mathbb{Z}_{(2)}$, as depicted in Figure 1 .

Figure 1: Vanishing regions of the homotopy groups $\pi_{s, w}\left(C_{\tau}\right)$, taken from [Ghe18].
Going the other way, we can also use results about $\pi_{*, *}\left(C_{\tau}\right)$ to compute the classical Adams-Novikov E_{2}-page. With this technique, the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, could be computed in a larger rang than previously known.

Theorem 4.6 ([Isa19]]). Apart from few uncertainties, the E_{∞}-page of the classical AdamsNovikov spectral sequence is known through the 59-stem.

In fact, the isomorphism of Theorem 4.4 can be refined to an isomorphism of rings.
Theorem 4.7 ([Ghe18]). There exists a unique E_{∞}-ring structure on C_{τ}.
(The module category $\operatorname{Mod}_{C_{\tau}}\left(\mathrm{Sp}_{\mathbb{C}}\right)$ will be considered in more detail in the next talk.)
Theorem 4.8 ([Ghe18] $)$. The isomorphism

$$
\pi_{*, *}\left(C_{\tau}\right) \cong \operatorname{Ext}_{B P_{*} B P}^{*, *}\left(B P_{*}, B P_{*}\right)
$$

is an isomorphism of rings which sends Toda brackets in $\pi_{*, *}$ to Massey products in Ext, and vice-versa.

Even more: by [GWX21], the \mathbb{C}-motivic Adams spectral sequence $E_{\star}\left(C_{\tau}\right)$ converging to the stable motivic homotopy groups $\pi_{*, *}\left(C_{\tau}\right)$ of the cofibre of τ is (up to reindexing) completely identical to the algebraic Novikov spectral sequence which converges to the E_{2}-page $\operatorname{Ext}_{B P_{*} B P}^{*, *}\left(B P_{*}, B P_{*}\right)$ of the classical Adams-Novikov spectral sequence at $p=2$ (next talk).

References

[DI10] Daniel Dugger and Daniel C. Isaksen. 'The motivic Adams spectral sequence'. In: Geom. Topol. 14.2 (2010), pp. 967-1014. ISSN: 1465-3060,1364-0380. DOI: $10.2140 /$ gt.2010.14.967.
[Ghe18] Bogdan Gheorghe. 'The motivic cofiber of τ '. In: Doc. Math. 23 (2018), pp. 10771127. ISSN: 1431-0635,1431-0643. DOI: $10.4153 / \mathrm{cjm}-1971-110-9$.
[GI17] Bogdan Gheorghe and Daniel C. Isaksen. 'The structure of motivic homotopy groups'. In: Bol. Soc. Mat. Mex. (3) 23.1 (2017), pp. 389-397. ISSN: 1405-213X,22964495. DOI: 10.1007/s40590-016-0094-x.
[GWX21] Bogdan Gheorghe, Guozhen Wang and Zhouli Xu. 'The special fiber of the motivic deformation of the stable homotopy category is algebraic'. In: Acta Mathematica 226.2 (2021), pp. 319-407. DOI: $10.4310 /$ ACTA. 2021.v226.n2.a2
[HKO11] Po Hu, Igor Kriz and Kyle Ormsby. 'Remarks on motivic homotopy theory over algebraically closed fields'. In: J. K-Theory 7.1 (2011), pp. 55-89. ISSN: 1865-2433,18655394. DOI: 10.1017 /is010001012jkt098.
[Isa19] Daniel C. Isaksen. 'Stable stems'. In: Mem. Amer. Math. Soc. 262.1269 (2019), pp. viii+159. ISSN: 0065-9266,1947-6221. DOI: $10.1090 / \mathrm{memo} / 1269$.

[^0]: ${ }^{1}$ Let α be an element of $\pi_{*, *}$ that is detected by an element a of the motivic Adams spectral sequence. A hidden extension by α is a pair of elements b, c of E_{∞} such that $a b=0$ in the E_{∞}-page; there is an element $\beta \in\{b\}$ such that $\alpha \beta \in\{c\}$; and if there exists an element $\beta^{\prime} \in\left\{b^{\prime}\right\}$ such that $\alpha \beta^{\prime} \in\{c\}$, then the Adams filtration of b^{\prime} is less than or equal to the Adams filtration of b.

