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Abstract

By following [Isa19], [Ghe18] and [DI10] we explain how the motivic Adams and

Adams-Novikov spectral sequences are related to their classical analogues and how the

cofibre of the map of motivic spectra τ can be used to compute the classical Adams-

Novikov spectral sequence and thus classical stable homotopy groups of spheres.
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1 The motivic Adams spectral sequence
Let F be an algebraically closed field of characteristic 0. Most of the time we will work with

F = C. Recall that objects in the stable motivic homotopy category

SpF = LA1,Nis
(P(SmF ))∗[(S1)−1,G−1m ],

where S1
is the usual simplicial circle and Gm is the punctured affine line A1 ∖0, are bigraded

motivic spectra representing generalised motivic cohomology theories. Write SF for the mo-

tivic sphere spectrum and write Sn,w
F

.

.= G∧wm ∧ Σn−wS for its (n,w)-suspension. The stable
motivic homotopy groups of spheres are given by

πn,w
.
.= πn,w(SF ) .

.= homSpF (S
n,w
F ,SF ).

In motivic weight 0 and over C, they are isomorphic to the classical stable homotopy groups:

πn,0(SC)
∼Ð→ πn(S).
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Analogous to singular cohomology, there is a cohomology theory called motivic cohomology
with coefficients in an abelian group, represented by a (motivic) Eilenberg-MacLane spec-

trum. We will consider motivic cohomology with F2-coefficients, represented by the mod

2 motivic Eilenberg-MacLane spectrum MF2. Write M2 for the bigraded motivic cohomo-

logy ring with F2-coefficients H∗,∗(Spec(F )) = MF∗,∗2 (Spec(F )). All cohomology groups

we write (whether motivic or classical) are to be understood with F2-coefficients.

Theorem 1.1 (Voevodsky). The bigraded ring M2 is isomorphic to the polynomial ring F2[τ]
on one generator τ of bidegree (0,1).

We write A∗,∗ = [MF2,MF2]∗,∗ for the ring of stable cohomology operations in mod

2 motivic cohomology. It is called motivic Steenrod algebra, and it is generated over M2 by

motivic Steenrod operations Sqi, as the following theorem shows:

Theorem 1.2 (Voevodsky). The motivic Steenrod algebra A is the M2-algebra generated by
elements Sq2k of bidegree (2k, k) and Sq2k−1 of bidegree (2k − 1, k − 1) for all k ≥ 1, satisfying
the following relations for a < 2b:

SqaSqb =∑
c

(b − 1 − c
a − 2c ) τ

?Sqa+b−cSqc,

where the exponent ? is either 0 or 1, easily determined by degrees.

Over C, we can describe the dual motivic Steenrod algebra A∗,∗ (which we notationally

will not distinguish from the motivic Steenrod algebra) even more explicitly by

M2[τ0, τ1, . . . , ξ1, ξ2, . . .]/(τ 2i = τξi+1), ∣τi∣ = (2n − 1,2n−1 − 1), ∣ξ∣ = (2n+1 − 2,2n − 1).

If we invert τ , we will see that we obtain a polynomial algebra that is essentially the same

as the classical dual Steenrod algebra. The motivic Adams spectral sequence is the trigraded

spectral sequence with E2-page

Es,t,v
2 (SF ) = Ext

s,t,v
A (M2,M2)⇒ πt−s,v((SF )(2))

with differentials of the form dr ∶ Es,t+s,v
r → Es−1,t+r,v

r , where s is the homological degree of the

Ext-group (the Adams filtration), and (t, v) is the internal bigrading coming from the bigrad-

ing onA and M2, so t is the topological dimension and v is the motivic weight. For x ∈ E∞(S),
we write {x} for the set of all elements of π∗,∗ that are represented by x.

It is constructed analogously to the classical Adams spectral sequence: starting with the

motivic sphere spectrum SF , one can inductively construct a motivic Adams resolution

K2 K1 K0

⋯ X2 X1 X0 SF

where each Ki is a motivically finite type wedge of suspensions of MF2, the maps Xi → Ki

are surjective on mod 2 motivic cohomology, and Xi+1 is the homotopy fiber of Xi → Ki.

Applying π∗,v gives an exact couple for each v, so a Z-graded family of spectral sequences
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indexed by v. The E2-term is Ext
s,t,v
A (M2,M2) and abuts to the stable motivic homotopy group

πt−s,u((SF )(2)) of the 2-completed motivic sphere spectrum.

The relation of the classical Adams spectral sequence and the motivic Adams spectral sequence

we first would like to understand is the following one:

Theorem 1.3 ([DI10]). After inverting τ , the motivic Adams spectral sequence becomes iso-
morphic to the classical Adams spectral sequence.

The functor SmC → Sp, X ↦ Σ∞+ X(C) induces a topological realisation functor

ReC ∶ SpC → Sp

uniquely determined up to homotopy by the fact that it preserves homotopy colimits and weak

equivalences and that it sends the motivic suspension spectrum of a smooth scheme X to the

ordinary suspension spectrum of the topological space of complex-valued points X(C). It is

called Betti realisation and maps Sn,w
C ↦ Sn

.

It also sends the mod 2 motivic Eilenberg-MacLane spectrum MF2 to the classical mod 2

Eilenberg MacLane spectrum HF2, so induces a natural transformation

Hp,q(X)→Hp(X(C)), α ↦ α(C),

where we view H∗(X(C)) as bigraded concentrated in weight 0.

Definition 1.4. For X a motivic spectrum, let

θX ∶H∗,∗(X)⊗M2 M2[τ−1]→H∗(X(C))⊗F2 M2[τ−1]

be the M2[τ−1]-linear map that takes a class α of weight w in H∗,∗(X) to τwα(C).

Lemma 1.5. For X the motivic sphere spectrum SC or the mod 2 motivic Eilenberg-MacLane
spectrum MF2, the map θX is an isomorphism of bigraded M2[τ−1]-modules.

Proof. • For X = SC, the map θX is given by M2 ⊗M2 M2[τ−1] → F2 ⊗F2 M[τ−1], which

clearly is an isomorphism.

• ForX =MF2,H∗,∗(X) =H∗,∗(MF2) is the motivic Steenrod algebraA andH∗(X(C) =
H∗(HF2) is the classical Steenrod algebra Acl. The map θX maps Sq2k to τ−kSq2k and

Sq2k−1 to τ−kSq2k−1. Now A⊗M2 M2[τ−1] is free as an M2[τ−1]-module on the admiss-

ible monomials, and Acl ⊗F2 M[τ−1] is free as an M2[τ−1]-module on the admissible

monomials, so θX is an isomorphism.

Corollary 1.6. The mapA[τ−1] ≅ A⊗M2M2[τ−1]→ Acl⊗F2M2[τ−1] that takesSq2k to τ−kSq2k
and Sq2k+1 to τ−kSq2k+1 is an isomorphism of bigraded rings.

Considering a motivic Adams resolution from before, we can apply the topological realiz-

ation functor to obtain a tower of homotopy fiber sequences of classical spectra.

K2(C) K1(C) K0(C)

⋯ X2(C) X1(C) X0(C) S
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It can be shown that this indeed is a classical Adams resolution, which amounts to showing

that the maps Xi(C) → K(C) are surjective on mod 2 singular cohomology. Topological

realization gives maps πp,q(Z) → πp(Z(C)) for any motivic spectrum Z , so we get a map

from the homotopy exact couple of (X,K) to that of (X(C),K(C)). We obtain a map from

the motivic spectral sequence for the motivic sphere spectrum to the classical Adams spectral

sequence for the classical sphere spectrum. On E2-pages:

Ext
s,t,v
A (M2,M2)Ð→ Ext

s,t
A

cl

(F2,F2).

Note that Ext
0,∗,∗
A (M2,M2) = hom∗,∗A (M2,M2) = F2[τ̃], where τ̃ is the dual of τ and has degree

(0,0,−1). By abuse of notation, write τ instead of τ̃ and write M̃2 for F2[τ̃]. With what we

have discussed so far, one can show the following:

Proposition 1.7. There is an isomorphism of rings

ExtA(M2,M2)⊗M̃2
M̃2[τ−1] ≅ ExtA

cl
(F2,F2)⊗F2 F2[τ, τ−1].

This gives Theorem 1.3, which in turn implies that the motivic differentials and motivic

hidden extension
1

must be compatible with their classical analogues, a key computational tool.

2 Cofibre of τ using Adams
The E2-page Ext

s,t,v
A (M2,M2) of the motivic Adams spectral sequence contains a non-trivial

element in Adams-filtration 0:

M2 = F2[τ]
⋅τÐ→ F2[τ] =M2,

multiplication by τ on F2[τ]. This is different from the topological Adams spectral sequence

for S, where the only elements in Adams filtration 0 are the identity and the zero map. It can be

seen that this element survives to the E∞-page as it cannot be involved with any differentials

for degree reasons, so it detects a map

S0,−1
C

τÐ→ (S0,0
C )(2).

To avoid complications about the existence of a non-completed version of this map, we will

from now on work 2-completed, that is, in 2-completed spectra obtained by localisation at

either the Moore spectrum SC/2 or the EM-spectrum MF2, but we will stick to the original

notation for 2-completed spectra. The motivic Adams spectral sequence produces a nontrivial

map

S0,−1
C

τÐ→ S0,0
C .

The Betti relisation functor ReC ∶ SpC → Sp induces a split surjection πn,w(SC) ↠ πn(S)
with section induced by the constant functor. It sends the map S0,−1

C
τÐ→ S0,0

C to the identity

S idÐ→ SC, and it sends Cτ to a contractibe spectrum. Hence, Cτ is a purely motivic spectrum

1
Let α be an element of π∗,∗ that is detected by an element a of the motivic Adams spectral sequence. A

hidden extension by α is a pair of elements b, c of E∞ such that ab = 0 in the E∞-page; there is an element

β ∈ {b} such that αβ ∈ {c}; and if there exists an element β′ ∈ {b′} such that αβ′ ∈ {c}, then the Adams filtration

of b′ is less than or equal to the Adams filtration of b.

4



living in the kernel of Betti realization, and computationally, the Betti realisation functor can

be interpreted as sending the element τ to 1. The above map gives a cofibre sequence

S0,−1
C

τÐ→ S0,0
C Ð→ Cτ Ð→ S1,−1

C ,

where we write Cτ for the cofibre of τ . In other words, the diagram

S0,−1
C S0,0

C

∗ Cτ

is a pushout square in (SpC)(2). We will now be interested in the motivic Adams spectral

sequence for Cτ , which takes the form

Es,t,v
2 (Cτ) = Ext

s,t,v
A (H∗,∗(Cτ),M2)⇒ πt−s,v(Cτ),

where the stable homotopy groups of Cτ are to be understood 2-completed. The main tool to

compute it is the long exact sequence

⋯Ð→ E2(SC)
τÐ→ E2(SC)Ð→ E2(Cτ)Ð→ ⋯

associated to the cofibre sequence above. We get a short exact sequence

0Ð→ coker(τ)Ð→ E2(Cτ)Ð→ ker(τ)Ð→ 0,

by which the desired E2(Cτ) is almost entirely described. An important method to compute

Adams differentials forE2(Cτ) is to borrow results about the motivic Adams spectral sequence

for SF, furthermore analyses of brackets and hidden extensions are necessary.

Theorem 2.1 ([Isa19]). The E∞-page of the motivic Adams spectral sequence for Cτ is known
up to the 63-stem.

3 The motivic Adams-Novikov spectral sequence
The classical Brown-Peterson spectrum BP which is used to define the classical Adams-

Novikov spectral sequence

Es,t
2 (S;BP ) = Ext

s,t
BP∗BP (BP∗,BP∗)⇒ πt−s(S(2))

has a motivic analogue, the motivic Brown-Peterson spectrum BPL. Analogous to going

from the classical Adams spectral sequence to the generalized Adams spectral sequence and

the Adams-Novikov spectral sequence, one can obtain the motivic Adams-Novikov spectral

sequence

Es,t,v
2 (SF ;BPL) = Ext

s,t
BPL∗,∗BPL(BPL∗,∗,BPL∗,∗)⇒ πt−s,v((SF)(2))

from the motivic Adams spectral sequence by replacing the spectra used. Again, classical and

motivic spectral sequence are closely related.
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Definition 3.1. Define a trigraded object E2(SF ,BPL) as follows:

E
s,t, s+t

2
2 (SF ;BPL) .

.= Es,t
2 (S,BP ),

E
s,t,v

2 (SF ;BPL) .
.= 0 if v ≠ s + t

2
.

Theorem 3.2 ([HKO11]). The E2(SF ,BPL)-page of the motivic Adams-Novikov spectral se-
quence is isomorphic to the trigraded object

E2(SF ,BPL)⊗Z2 Z2[τ],

where τ has degree (0,0,−1). In other words, in order to produce the motivic E2-page, start with
the classical E2-page. At degree (s, t), replace each copy of Z2 or Z/2n with a copy of Z2[τ] or
Z/2n[τ] respectively, where the generator has weight s+t

2 .

Analogous to the case of the Adams spectral sequence, we have:

Theorem 3.3. After inverting τ . the motivic Adams-Novikov spectral sequence is isomorphic to
the classical Adams-Novikov spectral sequence tensored over Z2 with Z2[τ±1].

4 Cofibre of τ using Adams-Novikov
As in the Adams case, we can say something about the motivic Adams-Novikov spectral se-

quence for the cofibre of τ .

Lemma 4.1. E2(Cτ ;BPL) ≅ Es,t,v

2 (SF ;BPL).

Proof. The cofibre sequence

S0,−1
C

τÐ→ S0,0
C Ð→ Cτ Ð→ S1,−1

C

induces a long exact sequence

⋯Ð→ E2(SF ;BPL) τÐ→ E2(SF ;BPL)Ð→ E2(Cτ ;BPL)Ð→ ⋯.

By Theorem 3.2 the map E2(SF ;BPL) τÐ→ E2(SF ;BPL) is injective. So E2(SF ;BPL) is

isomorphic to the cokernel of τ , which again by Theorem 3.2 is isomorphic toE
s,t,v

2 (SF ;BPL).

Lemma 4.2. All differentials in the motivic Adams-Novikov spectral sequence for Cτ vanish.

Proof. By Lemma 4.1, E2(Cτ ;BPL) in concentrated in degrees (s, t, v)with s+t−2v = 0. But

the Adams-Novikov differential dr increases s+ t−2v by r−1, so all differentials are zero.

Lemma 4.3. There are no hidden τ -extensions in E∞(Cτ ;BPL).

Proof. Let x and y be nonzero elements ofE∞(Cτ ;BPL) of degrees (s, t, v) and (s, t′, v′)with

t′ > t. Then v′ ≥ v since v = (s + t)/2 and v′ = (s + t′)/2. The lifts {x} live in degree (t − s, v),
so τβ for β ∈ {x} lives in degree (t − s, v − 1) as τ has degree (0,−1). Hence, τβ can’t be in

the degree of {y} which is (t′ − s, v′).
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Theorem 4.4 ([Isa19]). There is an isomorphism of bigraded abelian groups

πs,v(Cτ)
∼Ð→ Es,2v−s

2 (SF ;BP ) = Ext
s,2v−s
BP∗BP (BP∗,BP∗) for any s, v ∈ Z.

Proof. By Lemma 4.1, E2(Cτ ;BPL) is isomorphic to E2(S,BP ) when taking appropriate

degrees. By Lemma 4.2, E∞(Cτ ,BPL) is also isomorphic to E2(S,BP ). As in the proof of

Lemma 4.3, there are no hidden extensions of any kind for degree reasons. Hence, πs,v(Cτ) is

also isomorphic to E2(S,BP ).

This is very surprising, as it shows that the homotopy groups of a motivic 2-cell complex,

which in principle could be as complicated as π∗,∗(SC), are completely algebraic.

Corollary 4.5 ([GI17]). The group πs,v(Cτ) is zero when v > s, v ≤ 1
2s or s < 0, except that

π0,0(Cτ) = Z(2), as depicted in Figure 1.

Figure 1: Vanishing regions of the homotopy groups πs,w(Cτ), taken from [Ghe18].

Going the other way, we can also use results about π∗,∗(Cτ) to compute the classical

Adams-NovikovE2-page. With this technique, the classical Adams-Novikov spectral sequence,

including differentials and hidden extensions, could be computed in a larger rang than previ-

ously known.

Theorem 4.6 ([Isa19]). Apart from few uncertainties, the E∞-page of the classical Adams-
Novikov spectral sequence is known through the 59-stem.

In fact, the isomorphism of Theorem 4.4 can be refined to an isomorphism of rings.

Theorem 4.7 ([Ghe18]). There exists a unique E∞-ring structure on Cτ .

(The module category ModCτ (SpC) will be considered in more detail in the next talk.)

Theorem 4.8 ([Ghe18]). The isomorphism

π∗,∗(Cτ) ≅ Ext
∗,∗
BP∗BP (BP∗,BP∗)

is an isomorphism of rings which sends Toda brackets in π∗,∗ to Massey products in Ext, and
vice-versa.

Even more: by [GWX21], the C-motivic Adams spectral sequence E∗(Cτ) converging to

the stable motivic homotopy groups π∗,∗(Cτ) of the cofibre of τ is (up to reindexing) com-

pletely identical to the algebraic Novikov spectral sequence which converges to the E2-page

Ext
∗,∗
BP∗BP (BP∗,BP∗) of the classical Adams-Novikov spectral sequence at p = 2 (next talk).
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