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1 Introduction
Any reduced cohomology theory - that is, a contravariant functor

h∗ ∶ CWop → AbGp

on the category of CW-pairs to abelian groups satisfying homotopy invariance, exactness,

additivity, and with suspension isomorphisms - is representable by an Ω-spectrum as a result

of Brown’s representability theorem of [Bro62]. This means that there is a sequence (Kn)n≥0
of CW-complexes, together with weak homotopy equivalences Kn → ΩKn+1, where ΩKn+1 is

the loop space of Kn+1, such that

hn(X) ≅ [X,Kn].

Alternatively, we can also take the other point of view: given an Ω-spectrum E = (En)n≥0, we

can define the E-cohomology of a pointed CW-complex X by E∗(X) = [X,E∗], which is a
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reduced cohomology theory. Many interesting cohomology theories are instead defined using

CW-spectra, which are pointed CW-complexes (En)n≥0 with basepoint-preserving inclusions

ΣEn ↪ En+1 of the (reduced) suspension ΣEn
.
.= S1 ∧En as a subcomplex of En+1. Then

Ẽn(X) .
.= [Σ−nX,E] = limÐ→

k→∞
[ΣkX,En+k]

defines a reduced cohomology theory, which belongs to a generalized cohomology theory

E∗ ∶ CWop → AbGp. This creates a broad variety of cohomology theories which can be very

hard to compute, even for simple spaces. Of particular interest is the cohomology of a point

E∗(pt), the coefficients of the theory.

This essay will be mainly concerned with complex cobordism, a cohomology theory obtained

as above by using E = MU , the complex Thom spectrum. This is constructed as follows: let

ξ → X be a U(n)-vector bundle, i.e. a complex vector bundle with Hermitian inner product,

over a CW-complexX . Let D(ξ) and S(ξ) be the associated unit disc and unit sphere bundles.

Then the Thom space T(ξ) .
.= D(ξ)/S(ξ) is a pointed CW-complex. In particular, we can

consider the classifying space

BU(n) .
.= Grn(H) = {V ≤H ∣ dim(V ) = n}

for U(n), where H an infinite-dimensional complex Hilbert space, together with its tautolo-

gical bundle

γn → BU(n).
It has the property that any U(n)-vector bundle over a paracompact space X is the pullback

of γn by a mapX → BU(n), unique up to homotopy. Replacing ξ by γn gives the Thom space

MU(n) .
.= T(γn). Now γn ⊕C → BU(n) is a rank (n + 1)-bundle over BU(n), so there is a

map BU(n) → BU(n + 1) for which

γn ⊕C γn+1

BU(n) BU(n + 1)

is a pullback. This induces a map T(γn ⊕C) → T(γn+1) =MU(n + 1), and

T(γn ⊕C) ≅ T(γn) ∧T(C) ≅ T(γn) ∧ S2 = Σ2MU(n),

so we have structure maps Σ2MU(n) → MU(n + 1). (Note that we can also use double

suspensions for the definition of the CW-spectrum and its cohomology theory.) As MU is a

convergent spectrum, we have

M̃Un(X) = [Σ2k−nX, MU(k)], k large,

for the corresponding reduced theory, and working relative to a subspace A ⊆X ,

M̃Un(X,A) = [Σ2k−n(X/A), MU(k)], k large.

Products in this theory can also be expressed by maps on MU : the direct sum of complex

vector bundles is classified by a multiplication map

BU(n) ×BU(m) → BU(n +m),
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induced by the block-sum of matrices. By functoriality of Thom-spaces, this descends to a

map

µ ∶MU(n) ∧MU(m) →MU(n +m).

If two elements x ∈MUn(X), y ∈MUm(X) are represented by maps f ∶ Σ2k−nX →MU(k)
and g ∶ Σ2k−mX →MU(k), their product will be represented by the composition

Σ4k−n−mX → Σ2k−nX ∧Σ2k−mX
f∧gÐ→MU(k) ∧MU(k) µÐ→MU(2k).

Furthermore, using the convention BU(0) ≃ pt, we get MU(0) = S0
, so the product map on

MU induces a map of spectra η ∶ S → MU , where S = (Sn)n≥0 is the sphere spectrum. The

maps µ ∶MU ∧MU →MU and η ∶ S →MU satisfy associativity (µ(id ∧ µ) ∼ µ(µ ∧ id)) and

unitality (µ(id ∧ η) ∼ id ∼ µ(η ∧ id)) up to homotopy and make MU into a ring spectrum.

We start to investigate this cohomology theory in Section 2, and we will see that for a (smooth,

closed) manifold X classes in MU∗(X) have a nice geometric interpretation, namely by ori-

entable maps of manifolds Z → X . An important part will be concerned with its coefficient

group MU∗(pt), called the complex cobordism ring. The structure of this ring as a polynomial

algebra on infinitely many generators was first discovered in [Mil60], [Nov60] and [Nov62]

by the use of the Adams spectral sequence. In [Qui69] it was first proved to not only be iso-

morphic to the Lazard ring, but also to carry the universal formal group law, which we will

elaborate on. Quillen was able to show this making only very little use of abstract homotopy

theory.

We will then continue by considering relations of complex cobordism with topological K-

theory in Section 3, where we prove a celebrated theorem expressing K-theory in terms of

complex cobordism by Conner and Floyd of [CF66]. This comes in the spirit of using the results

about MU∗(pt) to make new cohomology theories in the fashion

R∗(−) .
.=MU∗(−) ⊗MU∗(pt) R

for a ring R, and we will see that topological K-theory is in fact just one of them.

Using a CW-spectrum as defined above, we also get a generalized homology theory by setting

Ẽn(X) .
.= limÐ→

k→∞
πn(Ek ∧X) = limÐ→

k→∞
[Sn,MU(k) ∧X].

Applying this to the Thom spectrum MU constructed above, we obtain the theory

M̃Un(X) = πn(MU(k) ∧X), k large,

the complex bordism of X . Section 4 will be phrased in terms of this homology theory and

concerned with the Landweber exact functor theorem of [Lan76], a condition for when the

functor R∗(−) .
.=MU∗(−) ⊗MU∗(pt)R does indeed define a homology theory. We will explain

how this is analogous for cohomology theories and consider examples which opened up new

vibrant fields of research.

This essay is based on the courses Algebraic Topology and Characteristic Classes andK-Theory
lectured in the 2022/23 Part III of the Mathematical Tripos. It will freely use their notation,

which is standard.
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2 Complex cobordism
In this section we will follow [Qui71] to deduce relations of complex cobordism and formal

group laws and give a proof for the fact that the complex cobordism ring carries the universal

formal group law. We will also see that carrying formal group laws is not unique to complex

cobordism, as coefficient rings of all complex oriented cohomology theories do. This will

justify to view complex cobordism as in some way universal within these theories.

All manifolds are assumed smooth and embeddable into Euclidean space as a smooth, closed
1

submanifold. We allow different dimensions on different connected components. All maps of

manifolds are assumed smooth. We write Diff for the category of such manifolds with smooth

maps between them. Let MU∗ ∶ Topop → AbGp denote the complex cobordism functor, the

generalized cohomology theory with values in the Thom spectrum MU , as defined above.

2.1 Elementary properties of MU∗

We start by giving a geometric interpretation for elements of the cobordism group MU∗(X)
under the assumption thatX is a manifold. Let f ∶ Z →X be a map of manifolds. First suppose

that (dim Z at z) − (dim X at f(z)) is even for all z ∈ Z . If this is constant, we will call it the

dimension of the map f , written dim(f). A complex orientation of f is an equivalence class of

factorizations of the form

Z E X,
pi

where p ∶ E → X is a complex vector bundle and i ∶ Z ↪ E is an embedding equipped with a

complex structure on its normal bundle νi = TE∣i(Z)/TZ . A complex structure can be given

by a bundle map J ∶ νi → νi, where the linear map on fibres Jx ∶ Ex → Ex satisfies J2
x = −1. The

equivalence relation is given as follows: (i, p) ∼ (i′, p′) if there are inclusions of subbundles

E ↪ E′′, E′ ↪ E′′ and i and i′ are compatible with the normal complex structure of E′′ via

an isotopy i′′ ∶ X × I ↪ E′′ × I over I = [0,1], equipped with a complex structure on its

normal bundle that restricts to the corresponding complex structures ofE′ andE′′ onX ×{0}
and X × {1}, respectively. One can show with embedding and isotopy theorems that, making

the dimension of E sufficiently large, each complex orientation of f is given by exactly one

homotopy class of complex structures on νi.
If the difference (dim Z at z) − (dim X at f(z)) is odd for all z ∈ Z , a complex orientation is

an equivalence class of factorizations as above with E replaced by E ×R. For a general map

f ∶ Z → X , we can consider manifolds Z ′ and Z ′′ and maps f ′ ∶ Z ′ → X, f ′′ ∶ Z ′′ → X with

Z = Z ′ ⊔ Z ′′ so that f ′ is the even and f ′′ the odd part of f . Then a complex orientation of f
is one for f ′ and f ′′.
Two maps of manifolds f ∶ X → Z and g ∶ Y → Z are called transversal if for all x ∈ X, y ∈ Y
with f(x) = z = g(y) we have im(dfx)+ im(dgy) ≅ TzZ . If f ∶ Z →X is complex oriented and

g ∶ Y → X is transversal to f , then the pullback Y ×X Z → Y of f along g exists and has an

induced complex orientation represented by the pullback of the factorization representing the

orientation of f . We call two proper complex oriented maps fi ∶ Zi → X, i = 0,1, cobordant
if there is a proper complex oriented map b ∶ W → X ×R such that εi ∶ X → X ×R, εi(x) =
(x, i) is transversal to b and the pullback of b by εi with the induced complex orientation is

isomorphic to fi for i = 0,1, as in the commutative diagram below.

1
By closed we mean compact and without boundary.
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Zi W

X X ×Rεi

bfi

The notion of cobordant maps allows us to express the complex cobordism of a manifold

X in terms of cobordism classes of maps Z →X . This geometric viewpoint, in the form of the

following Proposition, is a generalization of a theorem of Thom from [Tho54] which expresses

cobordism groups as homotopy groups.

Proposition 2.1. For a manifold X ,

MU q(X) ≅ {f ∶ Z →X ∣ f smooth, proper, complex oriented,

of dimension -q
}/ cobordism.

Note that if the dimension of X is constant, the assertion dim(f) = −q precisely means

dim(Z) = dim(X) − q. This description allows us to phrase induced maps on cohomology in

terms of cobordism classes: for a map of manifolds g ∶ Y → X and a proper complex oriented

map f ∶ Z → X , we can assume g to be transversal to f by Thom’s transversality theorem

and homotopy invariance of MU to form the pullback g∗(f) ∶ Y ×X Z → Y of f along g. This

gives the map

MU∗(g) = g∗ ∶MU q(X) →MU q(Y ), [f] ↦ [g∗(f)].

Furthermore, a proper complex oriented map g ∶X → Y of dimension d induces a map

g∗ ∶MU q(X) →MU q−d(Y ), [f] ↦ [g ○ f],

as for [f] ∈MU q(X) represented by a proper complex oriented f ∶ Z → X of dimension −q
we have dim(Z) = dim(X) − q = dim(Y ) − (q + dim(Y ) − dim(X)) = dim(Y ) − (q − d), so

it follows dim(g ○ f) = d − q and [g ○ f] ∈ MU q−d(Y ). This induced map is called the Gysin
homomorphism for complex cobordism.

The structure ofMU∗(X) as an abelian group is represented by cobordism classes as follows:

if fi ∶ Zi → X, i = 1,2, represent two classes, then the sum of these classes is represented

by the map f1 ⊔ f2 ∶ Z1 ⊔ Z2 → X . The inverse of the class of f ∶ Z → X is the class of

f equipped with inverse orientation. If f has even dimension, this is defined as follows: let

the orientation of f be represented by a factorization Z → Cn × X = Cn
X → X , then the

inverse orientation is represented by the same factorization with the same complex structure

on the normal bundle TCn
X/Z , but with a new complex structure on Cn

for which i ∈ C acts by

i ⋅ (z1, . . . , zn) = (iz1, . . . , izn−1,−izn).
If xi is the cobordism class of fi ∶ Zi → Xi, i = 1,2, there is an external product x1 ⊠ x2 ∈
MU∗(X1 × X2) given by the class of the product map f1 × f2 ∶ Z1 × Z2 → X1 × X2. The

multiplicative structure of the cobordism ring MU∗(X) is given by x1 ⋅ x2 = ∆∗(x1 ⊠ x2),
where xi ∈MU∗(X) and ∆ ∶X →X ×X is the diagonal.

Example 2.2. The geometric interpretation of complex cobordism (Proposition 2.1) together

with the geometric picture of the group operation allows to immediately deduce facts about

the complex cobordism of X = pt. With dim(pt) = 0 we see that MU q(pt) = 0 for q > 0.

To calculate MU0(pt) we have to consider maps f ∶ Z → pt with dim(Z) = 0, so Z is discrete.
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For the orientation of f only factorizations of the form Z → Cn
pt → pt are possible, which yield

the normal bundle νi = TCn∣i(Z) ≅ Cn
Z . This admits the normal and the conjugated complex

structure over each point of Z , and furthermore two opposite complex structures over two

points of Z cancel out by the cobordism relation. So MU0(pt) ≅ Z, generated by the map

pt → pt, where the complex orientation is represented by the factorization through Cn
pt with

normal complex structure on the normal bundle.

Having discussed the geometric interpretation for complex cobordism, we introduce a first

natural transformation for this theory. Let h ∶ Diffop → Set be a functor. If g ∶ Y →X is a map

of manifolds, write g∗ for the map h(g) ∶ h(X) → h(Y ). We assume that for every proper

complex oriented map f ∶ Z → X there is a map f∗ ∶ h(Z) → h(X) such that the following

conditions hold:

(1) Suppose that

Y ×X Z Z

Y X

g′

g

ff ′

is a pullback of manifolds with g and f transversal, f proper and complex oriented, f ′

equipped with the pullback of the complex orientation of f , then g∗f∗ = f ′∗ g′∗ as maps

h(Z) → h(Y ).

(2) h is homotopy invariant, i.e. if f0 ∼ f1 ∶ Y →X , then f∗0 = f∗1 .

(3) If f ∶ Z →X and g ∶X → Y are proper complex oriented maps and gf is equipped with

the composite complex orientation, then (gf)∗ = g∗f∗.
Note that MU∗ satisfies the above properties (1)-(3). The following shows that it is fur-

thermore initial within such functors h, with respect to a fixed element of the evaluation on

the one point space h(pt).
Lemma 2.3. For every a ∈ h(pt) there exists a unique natural transformation θ ∶ MU∗ → h
commuting with Gysin homomorphisms such that θ(1) = a, where 1 ∈MU0(pt) is the cobordism
class of the identity map idpt.

Proof. First assume that θ exists as above. Let πX ∶ X → pt, and let x ∈ MU∗(X) be a

cobordism class represented by a proper complex oriented map f ∶ Z → X (where x and

thus f can have components of different dimensions). Then x = [f] = [f∗(idZ)] = f∗[idZ] =
f∗π∗X[idpt] = f∗π∗X(1), so applying θ gives θ(x) = f∗π∗Z(a) ∈ h(X), showing uniqueness of θ.

For the existence we define θ as above, so we have to show the right side does not depend on

the choice of the map representing x. For that, let u ∶ W → X × R be proper and complex

oriented, transversal to εi ∶X →X ×R, εi(x) = (x, i) such that fi ∶ Zi →X is the pullback of

u by εi with f = f0 and i = 0,1, so that f0 and f1 are cobordant.

pt

Zi W

X X ×R

vi

ufi

εi

πW

πZi
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Then f0∗π∗Z0
(1) = f0∗v∗0π∗W (1)

(1)= ε∗0u∗π∗W (1)
(2)= ε∗1u∗π∗W (1)

(1)= f1∗v∗1π∗W (1) = f1∗π∗Z1
(1),

so the definition of θ only depends on the cobordism class of x. If g ∶ Y → X , then g∗(x) =
g∗(f)∗π∗g∗(Z)(1), so θ(g∗(x)) = g∗(f)∗π∗g∗(Z)(a)

(1)= g∗f∗π∗Z(a) = g∗(θ(x)), and hence θ is a

natural transformation. If g ∶ X → Y , then g∗(x) = g∗f∗π∗Z(1)
(3)= (gf)∗π∗Z(1), so θ(g∗(x)) =

(gf)∗π∗Z(a)
(3)= g∗f∗π∗Z(a) = g∗(θ(x)), and thus θ commutes with Gysin homomorphisms.

2.2 Characteristic classes in MU∗

We constructed the complex Thom spectrum MU in such a way, that the n-th piece MU(n)
is the Thom space of the universal n-plane bundle over the classifying space BU(n) of the

unitary group U(n). In particular, complex cobordism is a cohomology theory with values in

a Thom space, so it has a theory of Thom classes for complex vector bundles. We will con-

struct these to consider Euler classes in MU∗(X) and see how we can derive a formal group

law over the complex cobordism ring MU∗(pt) out of the behaviour of Euler classes of line

bundles under tensor products.

The vector bundles below are assumed to be complex, and we again assume that X is a man-

ifold. Let π ∶ E → X be an n-dimensional vector bundle and let s ∶ X → E be its zero section,

which induces a map to the Thom space s ∶ X → T(E). Then dim(E) = dim(X) + 2n, so for

the cobordism class 1 ∈ MU0(X) of the identity we have s∗(1) ∈ MU dim(E)−dim(X)(T(E)) =
MU2n(T(E)), which is the Thom class of E. Furthermore, s∗s∗(1) ∈ MU2n(X), the Euler
class of E, denoted e(E).
For the bundle π ∶ E → X there is a projectivisation P(π) ∶ P(E) → X constructed as fol-

lows: write E# .
.= E/s(X) for the complement of the zero section, and define an equivalence

relation on E#
by v ∼ w ∶⇔ π(v) = π(w) and ∃λ ∈ C× ∶ w = λv to obtain P(E) .

.= (E#)/ ∼.
Then P(E) →X is given by [v] ↦ π(v). The projectivisation admits the canonical line bundle

LE
.
.= {(l, v) ∈ P(E) ×E ∣ v ∈ l} → P(E), (l, v) ↦ l.

As for integral cohomology or K-theory, these bundle operations give a projective bundle

formula for complex cobordism, for which we refer to 8.1 (p. 50) of [CF66]:

Theorem 2.4. Let P(π) ∶ P(E) →X be the projectivisation map induced by π ∶ E →X , let LE

be the canonical line bundle over P(E), and let ξ = e(LE) ∈MU2(P(E)). Then

P(π)∗ ∶MU∗(X) →MU∗(P(E))

makes MU∗(P(E)) into a free MU∗(X)-module with basis 1, ξ, . . . , ξn−1, where n = dim(E).

By MU∗(X)[t] we denote the graded ring MU∗(X)[t1, t2 . . .] with grading given by

∣ti∣ = −2i. As a consequence of Theorem 2.4, MU∗(P(E))[t] is a projective algebra which

is finitely generated as an MU∗(X)[t]-module. Thus, we can naturally assign an element

ct(E) ∈MU∗(X)[t] to a vector bundle E →X such that

ct(E ⊕E′) = ct(E) ⋅ ct(E′),
ct(L) = 1 +∑

i>0
tje(L)i,

where L→X is a line bundle. This is a theorem which holds in more generality for multiplic-

ative cohomology theories on finite CW-pairs, which have a projective bundle formula like
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Theorem 2.4. It also holds for integral cohomology, which we will use in Section 2.4. For the

proof we again refer to [CF66], Theorem 7.6 (p. 47f) applied to the theory MU∗(−)[t]. Later

we will also use Corollary 8.3 (p. 52), which is the analogous result for the theory MU∗(−).
So writing Z(N)≥0 for the sequences of non-negative integers with finite support, we can write

ct(E) = ∑
α∈Z(N)

≥0

tαcα(E), (2.5)

where tα = tα1
1 t

α2
2 . . . and cα(E) ∈MU2∣α∣(X) with ∣α∣ = ∑j≥1 jαj .

Let f ∶ Z → X be a complex oriented map of even dimension, and let Z
iÐ→ E

pÐ→ X
be a factorization representing the orientation of f as in Section 2.1. Then f∗(E) and νi
are bundles over Z , and νf .

.= νi − f∗(E) is an element of the K-theory K0(Z) of Z which

depends only on the choice of complex orientation for f . If f has odd dimension, we can

represent an orientation by a factorization Z
iÐ→ E × R → X and again form the difference

νf .
.= νi − f∗(E) ∈K0(Z). This can be used to define a map

st ∶MU∗(X) →MU∗(X)[t], [f] ↦ f∗(ct(νf)),

where [f] is the cobordism class of a proper complex oriented map f ∶ X → Z . We can also

obtain it using Lemma 2.3, which will additionally show that the map is well-defined. For that,

consider the functor

h ∶ Diffop → Set, X ↦MU∗(X)[t], (f ∶X → Y ) ↦ (f∗ ∶MU∗(Y )[t] →MU∗(X)[t]),

with new Gysin homomorphisms defined by

(f ∶X → Y ) ↦ (f! ∶MU∗(X)[t] →MU∗(Y )[t], x↦ f∗(ct(νf) ⋅ x)).

Note that h satisfies the properties (1)-(3) of Section 2.1. So Lemma 2.3 gives a natural trans-

formation st ∶MU∗ → h which commutes with Gysin homomorphisms. That is, the compon-

ents st ∶ MU∗(−) → MU∗(−)[t] satisfy st(f∗(x)) = f!(st(x)) = f∗(ct(νf) ⋅ st(x)) for any

proper complex oriented map f ∶ X → Y . The map st is called Landweber-Novikov operation,

and we will use it in the considerations of the following sections.

Having defined these operations we now come to the main part of this section: the relation

of complex cobordism (and later, more generally, complex oriented cohomology theories) to

formal group laws.

Definition 2.6. Let R be a commutative ring and let F ∈ RJx, yK be a power series in two

variables with coefficients inR. Then F is a (commutative, one-dimensional) formal group law,

abbreviated by fgl, if it satisfies

F (0, x) = F (x,0) = x (neutral element),

F (x, F (y, z)) = F (F (x, y), z) (associativity),

F (x, y) = F (y, x). (symmetry).

The following central proposition about Euler classes of line bundles shows that the beha-

viour of Euler classes under tensor products can be used to derive a formal group law, which

has coefficients in the complex cobordism of a point.
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Proposition 2.7. There is a unique power series F (x, y) = ∑i,j≥0 cijxiyj ∈MU∗(pt)Jx, yK with
cij ∈MU2−2i−2j(pt) such that

e(L1 ⊗L2) = F (e(L1), e(L2))

for any two line bundles L1, L2 →X , where X is a manifold. Moreover, F is a formal group law.

Proof. Using the tautological bundle γ1,n+1C → CPn
, the Gysin sequence for complex cobord-

ism, and induction on n we have MU∗(CPn) ≅MU∗(pt)[z]/(zn+1) as for ordinary cohomo-

logy, where z = e(γ1,n+1C ) is the Euler class of the line bundle γ1,n+1C . Using Theorem 2.4 and

tensoring over MU∗(pt), we obtain

MU∗(CPn ×CPn) ≅MU∗(pt)[z1, z2]/(zn+11 , zn+12 ),

where zi = e(π∗i (γ
1,n+1
C )). So we can express e(π∗1(γ

1,n+1
C ) ⊗ π∗2(γ

1,n+1
C )) ∈MU∗(CPn ×CPn)

as ∑0≤i,j≤n cnijz
i
1z

j
2 with cnij ∈MU2−2i−2j(pt).

Now ifm > n, the Euler class e(π∗1(γ
1,m+1
C )⊗π∗2(γ

1,m+1
C )) of π∗1(γ

1,m+1
C )⊗π∗2(γ

1,m+1
C ) → CPm×

CPm
is mapped to e(π∗1(γ

1,n+1
C ) ⊗ π∗2(γ

1,n+1
C )) by the quotient map

MU∗(pt)[z1, z2]/(zm+11 , zm+12 ) →MU∗(pt)[z1, z2]/(zn+11 , zn+12 ),

so it follows cnij = cmij for i, j ≤ n. This shows that with letting n → ∞ we have a well-defined

power series F (x, y) = ∑i,j≥0 cijxiyj with coefficients in MU∗(pt), where

MU∗(CP∞ ×CP∞) ≅MU∗(pt)[z1, z2], zi = e(π∗i (γ
1,∞
C )).

Then the claim e(L1 ⊗ L2) = F (e(L1), e(L2)) holds for the pullbacks of the tautological

bundles Li = π∗i (γ
1,n+1
C ) → CPn × CPn

for all n by construction of F . Now any line bundle

L → X is the pullback of the tautological bundle on CPn
along some map f ∶ X → CPn

for

some n, and for two line bundles L1, L2 → X there are maps fi ∶ X → CPn
for some n ≫ 0

which pull back γ1,n+1C to Li. Then L1⊗L2 = (f1 ×f2)∗(π∗1(γ
1,n+1
C )⊗π∗2(γ

1,n+1
C )) holds, which

gives

e(L1 ⊗L2) = (f1 × f2)∗e(π∗1(γ
1,n+1
C ) ⊗ π∗2(γ

1,n+1
C ))

= (f1 × f2)∗F (e(π∗1(γ
1,n+1
C )), e(π∗2(γ

1,n+1
C )))

= F (e(L1), e(L2)).

So the claimed equation above also holds in the general case. We finally verify that F (x, y) is

a formal group law. The neutral element equation follows from

F (0, e(π∗2(γ
1,n+1
C ))) = F (e(π∗1(C1

CPn)), e(π∗2(γ
1,n+1
C ))) = e(π∗1(C1

CPn) ⊗ π∗2(γ
1,n+1
C ))

= e(C1
CPn×CPn ⊗ π∗2(γ

1,n+1
C )) = e(π∗2(γ

1,n+1
C )), for all n.

For associativity, we compute

F (e(γ1,n+1C ), F (e(γ1,n+1C ), e(γ1,n+1C ))) = e(π∗1(γ
1,n+1
C ) ⊗ (π∗2(γ

1,n+1
C ) ⊗ π∗3(γ

1,n+1
C )))

= e((π∗1(γ
1,n+1
C ) ⊗ π∗2(γ

1,n+1
C )) ⊗ π∗3(γ

1,n+1
C )) = F (F (e(γ1,n+1C ), e(γ1,n+1C )), e(γ1,n+1C )),

for all n. Furthermore, e(π∗1(γ
1,n+1
C ) ⊗ π∗2(γ

1,n+1
C )) = e(π∗2(γ

1,n+1
C ) ⊗ π∗1(γ

1,n+1
C )) holds for all

n, which implies cij = cji, giving commutativity.
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Remark 2.8. In more generality, we could consider not only complex cobordism, but complex

oriented cohomology theories. These are multiplicative
2

cohomology theories

h∗ ∶ CWop

f
→ Rng●

with CWf the category of finite CW-pairs, which have a theory of Euler classes: for every

complex line bundleL→X over a finite CW-complexX there is an Euler class eh(L) ∈ h2(X)
such that

(i) eh is natural for bundle maps, and

(ii) h∗(CPn) ≅ h∗(pt)[z]/zn+1, where z = eh(γ1,n+1C ), for all n ≥ 0.

Such a complex orientation
3

is equivalent to having an isomorphism h∗(CP∞) ≅ h∗(pt)[z],
and then z will correspond to the Euler class eh(γ1,∞C ). If h∗ is complex oriented, then Propos-

ition 2.7 holds for h, i.e. there is a formal group law Fh(x, y) over h∗(pt) satisfying

eh(L1 ⊗L2) = Fh(eh(L1), eh(L2)).

This is proved exactly as Proposition 2.7, essentially relying on the fact that CP∞ is classifying

for line bundles and the propertiesL⊗C1 ≅ L, L1⊗L2 ≅ L2⊗L1, (L1⊗L2)⊗L3 ≅ L1⊗(L2⊗L3)
of the tensor product of line bundles. This formal group law Fh is referred to as the group law

of the theory h.

Example 2.9. (i) For integral cohomology h∗ =H∗(−;Z) we have H∗(pt;Z) = Z, and the

formula eH(L1 ⊗ L2) = eH(L1) + eH(L2) holds for line bundles L1, L2 → X . So the

associated formal group law is the additive group law FH(x, y) = x + y over Z.

(ii) For complex K-theory h∗ = K∗(−) we have K∗(pt) = Z[β, β−1], ∣β∣ = −2. In this case

the Euler class behaves differently: for a line bundle L→X we have eK(L) = Λ−1(L) =
Λ0(L) −Λ1(L) = 1 −L, which gives

eK(L1 ⊗L2) = 1 −L1 ⊗L2 = 1 −L1 ⊗L2

= 1 −L1 + 1 −L2 − (1 −L1 −L2 +L1 ⊗L2)
= eK(L1) + eK(L2) − eK(L1)eK(L2)

for two line bundles L1, L2 → X . The associated group law is FK(x, y) = x + y − xy in

the Z/2-graded case, x + y − βxy in the Z-graded case (note that sign conventions vary

for the definition of the K-theory Euler class and the associated group law, so that the

sign of the xy-term might be switched).

2
That is, each graded cohomology group is compatibly equipped with the structure of a graded ring.

3
In fact, there are many equivalent ways to express the notion of complex orientability for multiplicat-

ive cohomology theories. Another is the following: The theory h is complex orientable if the restriction map

h2
(CP∞) → h2

(CP1
) is surjective, and in this case a complex orientation is the choice of an element of h2

(CP∞)
which restricts to the canonical generator of the reduced theory h̃1

(CP1
).
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2.3 A structure theorem for MU∗(X)
This section is concerned with the main theorem of [Qui71], Theorem 5.1, p. 47, which ex-

plains the structure of the graded ring MU∗(X) for spaces with homotopy type of a finite

CW-complex. It will be the basis for further results on the cobordism ring MU∗(pt) in Sec-

tion 2.4. In that respect this section will be the central one, as it considers the technical details

underpinning the remarkable results about MU∗(pt) to come.

Choosing a basepoint for the space X , the elements of MU∗(X) which vanish under the

restriction map MU∗(X) → MU∗(pt) induced by the inclusion pt ↪ X of the basepoint

form an ideal denoted M̃U∗(X) ⊴MU∗(X), the reduced complex cobordism of (X,pt). Let

C = ⟨cij ∣ i, j ≥ 0⟩ ≤MU ev(pt) be the subring generated by the coefficients of the formal group

law of Proposition 2.7, which is contained in even degrees.

Theorem 2.10. If X has homotopy type of a finite CW complex, then

MU∗(X) = C ⋅⊕
q≥0

MU q(X),

M̃U∗(X) = C ⋅⊕
q>0

MU q(X).

We can derive an immediate consequence of this theorem: in Example 2.2 we saw that

MU q(pt) = 0 for q > 0 and MU0(pt) ≅ Z using the geometric interpretation of complex

cobordism, so MU∗(pt) = C ⋅ ⊕q≥0MU q(pt) = C ⋅Z. As C lies in even degrees this gives:

Corollary 2.11. MU even(pt) ≅ C and MU odd(pt) = 0.

We will prove Theorem 2.10 at the end of this section and first consider some technical

results the proof requires. Let G be a compact Lie group, and let

h ∶ GTopop → Rng●
be a multiplicative equivariant

4
cohomology theory forG-spaces which has Thom classes and

so Euler classes for complex G-vector bundles. That is, if X is a G-space and π ∶ E → X is

a vector bundle with an action of G on E by bundle maps which makes π equivariant (and

when we say G-vector bundle below, we will always mean such a bundle), then there is an

Euler class eh(E) ∈ h∗(X) in the theory h for E.

Example 2.12. Let Q → B be a principal G-bundle over a manifold B, i.e. a locally trivial

fibre bundle with aG-action on the total space such thatG acts freely and transitively on each

fibre. We write Q ×G X for the quotient space (Q ×X)/G, with the canonical G-action on

the product given by g(q, x) = (g−1q, gx). An important example which will be used later for

such an equivariant theory as above is the functor

MU∗(Q ×G −) ∶ GTopop → Rng●, X ↦MU∗(Q ×GX),
(f ∶ Y →X) ↦ ((1Q ×G f)∗ ∶MU∗(Q ×GX) →MU∗(Q ×G Y )),

where Gysin homomorphisms are defined similarly by

(1 ×G f)∗ ∶MU∗(Q ×GX) →MU∗(Q ×G Y )

for properG-maps f ∶X → Y with equivariant complex orientation (as defined in Section 2.1).

If E → X is a G-vector bundle, then its Euler class in the theory h =MU∗(Q ×G −) is given

by the complex cobordism Euler class: eh(E) .
.= e(Q ×G E) ∈MU∗(Q ×GX).

4
That is, the functor is defined for G-equivariant maps between G-spaces.
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Lemma 2.13. Let f ∶ Z →X be a proper complex orientedG-map of even dimension, represented
by a factorization Z iÐ→ E

pÐ→X , so that we have a commutative diagram

ZG Z

XG X

rZ

iG

irX

with horizontal maps inclusions of the fixpoint submanifolds. Using the eigenbundle decomposi-
tion forG-equivariant vector bundles of r∗X(E) and r∗Z(νi), let µ(E) and µ(i) be the sums of the
eigenbundles corresponding to the nontrivial irreducible representations of G. If z ∈ h(Z), then

eh(µ(E)) ⋅ r∗Xf∗(z) = fG
∗ (eh(µ(i)) ⋅ r∗Z(z)).

Proof sketch. First consider the situation

W Z

Y X

j′

j

ii′

where Y and Z are submanifolds of X and for W .
.= Y ∩Z we have TWx = TYx ∩ TZx for all

x ∈W . If F .
.= TX/(TY +TZ)∣W is the excess bundle of the intersection Y ∩Z , then replacing

X by a tubular neighbourhood and a computation show that j∗i∗(z) = i′∗(e(F ) ⋅ (j′)∗(z))
for z ∈ MU∗(Z). The same argument applies in the equivariant case. In particular if h =
MU∗(Q ×G −), then applying Q ×G − to the square in the statement and using the derived

formula gives the desired formula in this specific equivariant case. For the details, we refer to

[Qui71, Section 3, p. 37ff].

Using such equivariant theories as introduced above, we can complement the Landweber-

Novikov operation with the definition of a second cohomology operation, the Steenrod oper-

ation: if G acts on the set {1,2, . . . , k}, we define the external Steenrod operation

Pext ∶MU−2q(X) → h−2qk(Xk), f∗(1) ↦ (fk)∗(1),

where f ∶ Z → X is a proper complex oriented map of even dimension 2q and fk ∶ Zk → Xk

is the k-fold product of f , which is a G-map by permutation of the factors. Also, fk
has a

natural equivariant complex orientation given by the factorization Zk ikÐ→ Ek
pkÐ→ Xk

, since

the dimension of f is even. By composing with the map induced by the diagonal ∆ ∶X →Xk
,

we obtain

Pint ∶MU−2q(X) PextÐ→ h−2qk(Xk) ∆∗Ð→ h−2qk(X), f∗(1) ↦∆∗(fk)∗(1),

the (internal) Steenrod k-th power operation. We will see the relation of the Steenrod operation

and the Landweber-Novikov operation below.
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Under assumptions on G we will furthermore define two representations of G which then

induce vector bundles we can consider the Euler classes of: ifG acts transitively on {1, . . . , k},
let W .

.= {(z1, . . . , zk) ∈ Ck ∣ ∑k
i=1 zi = 0} ≤ Ck

, a subspace of dimension k − 1. Then

ρ ∶ G→ GL(W ), g ↦ ((z1, . . . , zk) ↦ (zg.1, . . . , zg.k))

defines a representation of G on W by permuting the coordinates.

For aG-spaceX , a representationG→ GL(V ) gives aG-vector bundleX×V
pr1Ð→X with fibre

V overX , which has a diagonalG-action given by g(x, v) = (x ⋅g, v ⋅g). So the representation

ρ from above gives a vector bundle also written ρ over X , and we write eh(ρ) ∈ h2(k−1)(X)
for its Euler class in the theory h.

Lemma 2.14. In the above situation, suppose f ∶ Z → X is a proper complex oriented map of
dimension 2q and m ∈ Z with m > dim(Z), so that Cm

Z + νf ∈ K0(Z) is represented by a vector
bundle (where νf was defined in Section 2.2). Then

eh(ρ)mPint(f∗(1)) = f∗eh(ρ⊗ (Cm
Z + νf)) ∈ h2m(k−1)−2qk(X).

Proof. As we assumed m > dim(Z), the complex orientation of f can be represented by a

factorization Z
iÐ→ E = Cm

X

pÐ→ X through a trivial bundle of dimension m, together with a

complex structure on the normal bundle νi. Then with νf = νi − f∗(E) = νi + Cm
Z it follows

νi = Cm
Z + νf .

Now we apply Lemma 2.13 to the map fk = pk ○ ik ∶ Zk →Xk
with z = 1. This gives

eh(µ(Ek)) ⋅ r∗Xfk
∗ (1) = (fk)G∗ eh(µ(ik)) ⋅ r∗Z(1).

Then µ(Ek) = µ((Cm
X)k) = ρ ⊗ Cm

X , µ(i) = ρ ⊗ νi = ρ ⊗ (C
m
Z − νf), and (Xk)G = X , so

the fixpoint-submanifold rXk ∶ (Xk)G → Xk
for the G-action is ∆ ∶ X → Xk

. So the above

equation simplifies to

eh(ρ)m ⋅∆∗(fk)∗(1) = f∗eh(ρ⊗ (Cm
Z + νf)),

and the claim follows by definition of Pint.

Now take G = Z/k, the cyclic group of order k, acting cyclically on {1, . . . , k} by setting

1Z/k.n as n + 1 for n < k and as 1 for n = k. As a smooth 0-manifold with discrete topology,

we can view Z/k as a compact Lie group. The case G = Z/p will be useful for the proof of

Theorem 2.10 after performing a localization at (p) ⊴ Z, p a prime number. In this specific

case a second representation of G on C is given by

η ∶ G = Z/k → GL(C), 1Z/k ↦ (x↦ x ⋅ exp(2πi/k)).

For a representation G→ GL(V ), we can form the G-vector bundle on a point V → pt, which

has an h-Euler class eh(ρ) ∈ h∗(pt). Note that theG-vector bundleX ×V →X over aG-space

X we introduced above is pulled back from the bundle V → pt, and so its Euler class which

was also written eh(ρ) ∈ h∗(X) is pulled back from the Euler class eh(ρ) ∈ h∗(pt) by natural-

ity of Euler classes.

So for the two representations ρ ∶ G → GL(W ) and η ∶ G → GL(C) we defined we get vector

bundles over a point written ρ ∶W → pt and η ∶ C → pt. Using the theory h =MU∗(Q ×G −)
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from Example 2.12, we obtain Euler classes w = eh(ρ) ∈ h2(k−1)(pt) = MU2(k−1)(Q ×G pt) =
MU2(k−1)(B) and v = e(η) ∈ h2(pt) = MU2(B). We now come to the algebraic relation

between the Steenrod k-th power operation and the Landweber-Novikov operation of Sec-

tion 2.2, using the Euler classes we just defined. This relation will be central for the proof of

Theorem 2.10.

Proposition 2.15. Let Q→ B be a principal Z/k-bundle over a manifold B and let

P ∶MU−2q(X) PintÐ→MU−2qk(Q ×Z/k X) →MU−2qk(B ×X)

be the Steenrod k-th power operation for the functorMU∗(Q×Z/k−). For the Landweber-Novikov
operation

st ∶MU∗(X) →MU∗(X)[t]

defined in Section 2.2 and a sequence α = (α1, α2, . . .) ∈ Z(N)≥0 of non-negative integers with finite
support we write sα(x) for the coefficient of tα in st(x) like in (2.5). Then the Steenrod operation
P is related to the Landweber-Novikov operation st by the formula

wn+qP (x) = ∑
α∈Z(N)

≥0

l(α)≤n

wn−l(α)a(v)αsα(x) with l(α) = ∑
j≥1
αj, (2.16)

which holds for every x ∈MU−2q(X). Here n ∈ Z is sufficiently large with respect to dim(X) and
the integer q. We write a(v)α = a1(v)α1a2(v)α2 . . . for power series aj(z) ∈ CJzK with coefficients
in the subring C ≤ MU ev(pt), which is generated by the coefficients of the formal group law F
of Proposition 2.7. Furthermore, we have the formula

w = e(ρ) = (k − 1)! vk−1 +∑
j≥k
bjv

j, (2.17)

relating the Euler classes v and w, where bj ∈ C .

Proof. Let F (x, y) ∈ CJx, yK be the formal group law of Proposition 2.7. For i ∈ Z, we define

[i]F (z) ∈ CJzK inductively by [1]F (z) .
.= z and [i]F (z) .

.= F (z, [i − 1]F (z)), so that [i]F (z) =
iz + terms of higher order.

Consider the situation of Lemma 2.14 with h =MU∗(Q ×G −). Let L be a line bundle over Z
on which G = Z/k acts trivially, and consider the bundle ρ ∶ Z ×V → Z for the representation

ρ we introduced above, where Z is a trivial G-space. We can form their tensor product

ρ⊗L = (Z × V ) ⊗L→ Z

which we consider as a G-bundle, where G acts trivially on Z . For its h-Euler class we have

eh(ρ ⊗ L) ∈ MU∗(Q ×G Z), and with Q ×G Z = (Q × Z)/G = Q/G × Z = B × Z it follows

eh(L⊗L) ∈MU∗(B ×Z). We compute

e(ρ⊗L) =
k−1
∏
i=1
e(ηi ⊗L) 2.7=

k−1
∏
i=1
F (e(ηi), e(L))

=
k−1
∏
i=1
F ([i]F (v), e(L)) = w +∑

j≥1
aj(v)e(L)j,
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where aj(z) ∈ CJzK and w = e(ρ) = (k − 1)! vk−1 +∑j≥k bj(v)vj with bj ∈ C . For a sum of line

bundles E = L1 ⊕ . . .⊕Lr using the notation (2.5) we have

e(ρ⊗E) =
r

∏
i=1
e(ρ⊗Li) =

r

∏
i=1
w +∑

j≥1
aj(v)e(Li)j

= ∑
l(α)≤r

wr−l(α)a(v)αcα(E),

where l(α) = ∑j αj . By the splitting principle this holds for all r-dimensional vector bundles.

Then by definition of the Landweber-Novikov operation sα(x) = sα(f∗(1)) = f∗(cα(νf)) for

α ∈ Z(N)≥0 , and we get

f∗e(ρ⊗ νf) = ∑
l(α)≤n

wn−l(α)a(v)αf∗cα(νf) = ∑
l(α)≤n

wn−l(α)a(v)αsα(x).

Then substituting the above for the right side of Lemma 2.14 gives the desired equation.

We need another technical lemma to prove Theorem 2.10. For this, fix a positive integer

k ∈ Z>0, a manifold Y , and let

Θ(z) .
.= [k]F (z)/z = k + d1z + d2z2 + . . . ∈ CJzK.

The group Z/k acts on S2n−1 ⊆ Cn
by 1Z/k ↦ (x ↦ x ⋅ exp(2πi/k)). This gives a principal

Z/k-bundle S2n−1 → S2n−1/(Z/k), so with η ∶ Z/k → GL(C) as above we have an induced line

bundle S2n−1×Z/kC→ S2n−1/(Z/k). Then forming the product with Y gives a line bundle over

S2n−1/(Z/k) × Y and thus an Euler class vn ∈ MU2(S2n−1/(Z/k) × Y ). Furthermore, denote

by jn ∶ S2n−1/(Z/k) → S2n+1/(Z/k) the map induced by the inclusion Cn ↪ Cn+1
. Then we

have the following:

Lemma 2.18. Let x ∈MU q(S2n−1/(Z/k) × Y ) such that x ⋅ vn+1 = 0. Then there is an element
y ∈MU q(pt × Y ) such that y ⋅Θ(vn) = j∗n(x) ∈MU q(S2n−1/(Z/k) × Y ).
Proof. The proof is a careful consideration of the Gysin sequence for the theory h∗(−) =
MU∗(− × Y ) for a fixed manifold Y . We will refer to section 4 of [Qui71] for one detail

in the proof.

If E → X is a complex vector bundle of dimension n with sphere bundle π ∶ S(E) → X , then

the Gysin sequence for the above theory reads

hq−2n(X) hq(X) hq(S(E)) hq−2n−1(X).⋅ eh(E) π∗π∗

For the representation ηn ∶ Z/k → GL(Cn), 1Z/k ↦ (x ↦ x ⋅ exp(2πi/k)) and the Z/k-bundle

S1 → S1/(Z/k) we can form the induced bundle Cn ×Z/k S1 → S1/(Z/k). Its sphere bundle is

given by the map pn ∶ S2n−1 ×Z/k S1 → S1/(Z/k), induced by the projection onto the second

factor. This gives a diagram of Gysin sequences:

hq(S1/(Z/k)) hq(S2n+1 ×(Z/k) S1) hq−2n−1(S1/(Z/k))

hq(S1/(Z/k)) hq(S2n−1 ×(Z/k) S1) hq−2n+1(S1/(Z/k))

p∗n+1 (pn+1)∗⋅ vn+11

p∗n (pn)∗

⋅ v1(j′n)∗id

⋅ vn1 (2.19)

15



where j′n ∶ S2n−1 ×(Z/k) S1 → S2n+1 ×(Z/k) S1
is induced by the inclusion Cn ↪ Cn+1

. The left

square with only Euler classes clearly commutes. The middle square commutes as all maps are

induced by maps of spaces which commute. Commutativity of the right square is nontrivial,

and it is discussed in Lemma 4.6, p. 45 of [Qui71].

Using Proposition 2.1, MU2(S1/(Z/k)) = 0, which implies that v1 ∈ h2(S1/(Z/k)) is zero as

it is induced from a line bundle over S1/(Z/k). Let πn+1 ∶ S2n+1 ×Z/k S1 → S2n+1/(Z/k) be

induced by the projection onto the first factor, which is the sphere bundle of the line bundle

S2n+1 ×Z/k C→ S2n+1/(Z/k) induced by η, so we get a Gysin sequence

hq+1(S2n+1 ×(Z/k) S1) hq(S2n+1/(Z/k)) hq+2(S2n+1/(Z/k)).(πn+1)∗ ⋅ vn+1

Now assume x ∈MU q(S2n−1/(Z/k)×Y ) such that x ⋅ vn+1 = 0. Then x = (πn+1)∗(z) for some

z ∈ hq+1(S2n+1×(Z/k)S1), so j∗n(x) = j∗n(πn+1)∗(z) = (πn)∗(j′n)∗(z). Now consider the diagram

(2.19): as v1 = 0, (pn)∗(j′n)∗(z) = v1 ⋅ (pn+1)∗(z) = 0, so (j′n)∗(z) ∈ ker((pn)∗) = im(p∗n), so

there is some z′ ∈ hq+1(S1/(Z/k)) with (j′n)∗(z) = p∗n(z′).
Let i ∶ pt↪ S1/(Z/k) be the inclusion induced by identifying Z/k with the k-th roots of unity.

Then we can write z′ = y′ ⋅ 1 + y ⋅ i∗(1), where y′ ∈ hq+1(pt) and y ∈ hq(pt).
Now π∗n(1) = 1 = p∗n(1), so by the Gysin sequence above (πn)∗p∗n(1) = (πn)∗π∗n(1) = 0. Also,

i∗(1) is the cobordism class of the map i ∶ pt = (Z/k)/(Z/k) ↪ S1/(Z/k), and so p∗ni∗(1) is

the cobordism class of the pullback p∗n(i), which is

S2n−1 ≅ S2n−1 ×(Z/k) Z/k ↪ S2n−1 ×(Z/k) S1.

Then (πn)∗p∗ni∗(1) is the cobordism class of the composition with the projection πn, which is

S2n−1 → S2n−1 ×(Z/k) S1 → S2n−1/(Z/k),

a principal Z/k-bundle. By the next Proposition 2.20, this cobordism class is given by Θ(vn),
as introduced before this lemma.

Proposition 2.20. Let f ∶ Q → B be a principal Z/k-bundle, and let L ..= Q ×Z/k C → B be the
line bundle associated to the representation η ∶ Z/k → GL(C). Then f∗ = Θ(e(L)) ∈MU0(B).
Proof. There is a canonical embedding j ∶ Q→ L, q ↦ [q,0], where we write the elements ofL
as equivalence classes [q, z] for q ∈ Q, z ∈ C, with equivalence relation given by (q ⋅ 1Z/k, z) ∼
(q, ζ ⋅ z) with ζ = exp(2πi/k). Let i ∶ B → L, b ↦ 0b be the zero section of the line bundle L,

which we write as p ∶ L → B. Then the line bundle p∗(L) = L ×B L
π1Ð→ L has a canonical

section s ∶ L→ L×BL, l ↦ (l, l), which is transversal to the zero set {(l,0p(l)) ∣ l ∈ L} ⊆ L×BL
and vanishes on i(B), as s(0b) = (0b,0b). So using s for a trivialization outside i(B), the

bundle p∗(L) extends to a line bundle M → L+ = L ⊔ pt over the one-point compactification

of L, where we suppose that B is compact and that e(M) = i∗(1) with

i∗ ∶MU q(B) ∼Ð→MU q+2(L+, pt)

is the Thom isomorphism. Then the bundle p∗(L)⊗k which is trivialized outside i(B) by the

section s⊗k extends to the bundle M⊗k
.

There is a section t ∶ L → p∗(L)⊗k, [q, z] ↦ ([q, z], [q⊗k, zk] − [q⊗k,0]) which extends to a

section of M⊗k
, which is smooth away from pt and transversal to the zero set of M⊗k

, it van-

ishes on j(Q) ⊆ L. Then j∗(1) = e(M⊗k) = [k]F (i∗(1)) = i∗(1) ⋅Θ(i∗(1)) = i∗Θ(i∗i∗(1)) =
i∗Θ(e(L)). Finally, from i ○ f = j ⇒ i∗f∗ = j∗ and the fact that i∗ is an isomorphism, we get

f∗(1) = Θ(e(L)).
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Eventually, we will need the following result of homotopy theory:

Lemma 2.21. If X has the homotopy type of a finite CW-complex, then MU q(X) is a finitely
generated abelian group.

Proof sketch. Considering spaces with the homotopy type of a finite CW-complex, it suffices to

prove the statement for the latter. An induction over cells reduces to showing that each group

MU q(pt) is a finitely generated abelian group. For any CW-spectrum E we have E∗(pt) =
π∗(E) = [S,E] = [Σ∞pt+,E] = E∗(pt) where S = (Sn)n≥0 is the sphere spectrum. So we are

considering the homotopy group π−q(MU) =MU q(pt).
By the mod C Hurewicz theorem for C the Serre-class of finitely generated abelian groups,

a space or a spectrum has all homotopy groups finitely generated if and only if it has all

integral homology groups finitely generated. Now H∗(MU ;Z) ≅ H∗(BU ;Z) by the Thom

isomorphism. The latter of these groups is dual to the cohomologyH∗(BU ;Z) = Z[c1, c2, . . .]
which is finitely generated in each degree.

We now have everything required to prove Theorem 2.10.

Proof of Theorem 2.10. First assume that

M̃U ev(X) = C ⋅⊕
q>0

MU2q(X). (2.22)

From the axioms of a generalized cohomology theory follow the suspension isomorphisms

M̃U j(X) ≅ M̃U j+1(ΣX) = M̃U j+1(S1 ∧X),
MU j(X) ≅ M̃U j+1(SX) = M̃U j+1(S1 ×X/{∗} ×X), and

MU j(X) ≅ M̃U j+2(S2X) = M̃U j+2(S2 ×X/{∗} ×X)

if X is connected and has a basepoint. Then with (2.22) it follows

MU∗(X) =MU odd(X) ⊕MU ev(X) =⊕
q∈Z

MU2q−1(X) ⊕⊕
q∈Z

MU2q(X)

≅⊕
q∈Z

M̃U2q(SX) ⊕⊕
q∈Z

M̃U2q+2(S2X) ≅ C ⋅⊕
q>0

MU2q(SX) ⊕C ⋅⊕
q>0

MU2q(S2X)

≅ C ⋅⊕
q≥0

MU2q+1(X) ⊕C ⋅⊕
q≥0

MU2q(X) = C ⋅⊕
q≥0

MU q(X),

M̃U∗(X) = M̃U odd(X) ⊕ M̃U ev(X) =⊕
q∈Z

M̃U2q−1(X) ⊕ M̃U ev(X)

≅⊕
q∈Z

M̃U2q(ΣX) ⊕ M̃U ev(X) ≅ C ⋅⊕
q>0

MU2q(ΣX) ⊕C ⋅⊕
q>0

MU2q(X)

≅ C ⋅⊕
q≥0

MU2q+1(X) ⊕C ⋅⊕
q>0

MU2q(X) = C ⋅⊕
q>0

MU q(X).

So it suffices to prove (2.22). For this, letR .
.= C ⋅⊕q>0MU2q(X), the right-hand side of (2.22).

Then R and M̃U ev(X) are submodules of the Z-module MU∗(X), so it suffices to show that

R(p) = M̃U ev(X)(p) for any prime p ∈ Z. We have R2j
(p) = M̃U2j(X)(p) for j > 0, so

R−2j(p) = M̃U−2j(X)(p) (2.23)
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holds for j < 0. Pursue by induction on q ≥ 0 and assume (2.23) holds for all j < q. Then in what

follows we show it also holds for j = q. Let x ∈ M̃U−2q(X). Using the principal Z/p-bundle

S2m+1 → S2m+1/(Z/p) in (2.16) of Proposition 2.15, we have

wn+qP (x) = ∑
l(α)≤n

wn−l(α)a(v)αsα(x) (2.24)

for some large n ≫ 0. This equation holds in MU2n−2q(S2m+1/(Z/p) ×X) for all m, where

aj(z) ∈ CJzK. Again v is the Euler class of the line bundle induced by η ∶ Z/p→ GL(C), which

is the vm+1 of Lemma 2.18, and

w = (p − 1)! vp−1 +∑
j≥p
bjv

j

with bj ∈ C by (2.17) of Proposition 2.15. As p is prime, (p−1)! is not divisible by p, so it is a unit

in Z(p), and from the formula for w above we get vp−1 = w ⋅θ(v) for some unit θ(z) ∈ C(p)JzK×.
If α ≠ 0 and [f] = x ∈ M̃U−2q(X), then cα(νf) has positive grading, and f∗ lowers degrees by

2q, so sα(x) = f∗(cα(νf)) has grading > −2q. Hence, sα(x) ∈ R by the induction hypothesis

(which was that (2.23) holds for j < q, and we can also assume it holds for these gradings

without localizing). So from (2.24) we obtain

wn+qP (x) = wn ⋅ s0(x)
²=x

+ ∑
0<l(α)≤n

wn−l(α)a(v)αsα(x), and so

wn(wqP (x) − x) = ∑
0<l(α)≤n

wn−l(α)a(v)α sα(x)
²
∈R

, which gives

vm(wqP (x) − x) = ψ(v) ∈MU∗(S2m+1/(Z/p) ×X)(p) (2.25)

for some m ≥ 1 and ψ(z) ∈ R(p)JzK using the relation vp−1 = w ⋅ θ(v). Assume that m is

minimal satisfying such a relation. We will show that m = 1 by reducing the equation two

times to arrive at an equation of the same form which contradicts the minimality of m in the

case m > 1.

Let i∗ ∶ MU∗(S2m+1/(Z/p) ×X) → MU∗(pt ×X) ≅ MU∗(X) be induced by the inclusion

i ∶ pt ×X ↪ S2m+1/(Z/p) ×X of any point. Then i∗ sends v ∈MU∗(S2m+1/(Z/p)) (or more

precisely, its pullback along the first projection) to zero, so applying i∗ to (2.25) yieldsψ(0) = 0,

so ψ has constant term 0, and we can write it as ψ(z) = zφ(z) for some φ ∈ R(p)JzK, so that

v(vm−1(wqP (x) − x) − φ(v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈MU2(m−1)−2q(S2m+1/(Z/p))

(p)

) = 0. (2.26)

Then by Lemma 2.18 there is an element y ∈MU2(m−1)−2q(X)(p) with

vm−1(wqP (x) − x) = φ(v) + y ⋅Θ(v) ∈MU∗(S2m−1/(Z/p) ×X)(p). (2.27)

Now, let j∗ ∶ MU∗(S2m+1/(Z/p) × X) → MU∗(S2m+1/(Z/p × pt) be the homomorphism

induced by the inclusion j ∶ S2m+1/(Z/p) × pt ↪ S2m+1/(Z/p) × X of the base point of X .

As x was chosen in M̃U−2q(X), applying j∗ to (2.27) gives y′ ⋅ Θ(v) = 0, where y′ is the

image of y under MU∗(X)(p) → MU∗(pt)(p). Now y − y′ ∈ M̃U∗(X)(p), so we can assume

y ∈ M̃U∗(X)(p) by subtracting y′, and then the equation (2.27) still holds.
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Ifm > 1, then 2(m−1)−2q > −2q, so as we assumed y is a reduced class we get y ∈ R(p) by the

induction hypothesis as before. As φ(z) ∈ R(p)JzK and Θ(z) ∈ CJzK, the right side of (2.27) is

in R(p)JvK. But this would contradict the minimality of m in (2.25). So m = 1, and we arrive at

the equation

wqP (x) − x = φ(v) + y ⋅Θ(v) ∈MU∗(S2m−1/(Z/p) ×X)(p).

Recall thatΘ(z) = p+d1z+d2z2+. . . ∈ CJzK. So i∗ ∶MU∗(S2m−1/(Z/p)×X) →MU∗(pt×X) ≅
MU∗(X) maps v ↦ 0, so Θ(v) ↦ p, φ(v) ↦ φ(0) and wq ↦ 0 if q > 0. The term P (x) has

X-component xp, so i∗ maps P (x) ↦ xp. Together we get

−x = φ(0) + py if q > 0, (2.28)

xp − x = φ(0) + py if q = 0, (2.29)

which hold in M̃U−2q(X)(p). For q > 0, we have M̃U−2q(X)(p) = R−2q(p) + p ⋅ M̃U−2q(X)(p),
where (⊆) holds by (2.28) and (⊇) always holds. MU−2q(X) is a finitely generated abelian

group by Lemma 2.21, so M̃U−2q(X) is finitely generated as well, and so M̃U−2q(X)(p) is

a finitely generated Z(p)-module. Then MU−2q(X)(p) = R−2q(p) follows with an application of

Nakayama’s lemma.

For q = 0, the mapping x ↦ xp − x takes M̃U0(X)(p) into R0
(p) + pM̃U0(X)(p) by (2.29), so

it is zero on M̃U0(X)(p)/(R0
(p) + pM̃U0(X)(p)). Also, the ideal M̃U0(X)(p) ⊴ MU0(X)(p)

is nilpotent. So for an element x of M̃U0(X)(p)/(R0
(p) + pM̃U0(X)(p)) the relations xp = x

and xN = 0 for some N ≫ 0 hold. Then x = xp = xpN = xN ⋅ xpN−N = 0, so M̃U0(X)(p) =
R0
(p) +pM̃U0(X)(p) and finally Nakayama’s lemma as above gives MU0(X)(p) = R0

(p), which

concludes the proof.

2.4 The complex cobordism ring MU∗(pt)
The aim of this section is to understand the complex cobordism ring MU∗(pt) and show that

it is isomorphic to the Lazard ring, which we will define below. Together with this we will

also show that the formal group law over MU∗(pt) we introduced in Proposition 2.7 is the

universal formal group law. The result for the structure of MU∗(X) from Section 2.3 will be

central to deduce that MU∗(pt) is generated by the coefficients of this formal group law.

Let Rng● be the category of graded rings and consider the functor

G ∶ Rng● → Set, R● =⊕
n∈Z

Rn ↦ {F (x, y) = ∑
i,j≥0

aijx
iyj ∈ RJx, yK ∣ F fgl, aij ∈ Ri+j−1}.

It is representable by some graded ring L called Lazard ring, which has a universal formal

group law Funi(x, y) ∈ LJx, yK over it. That is, Funi(x, y) = ∑i,j≥0 lijxiyj , where L is generated

by the coefficients lij with relations imposed by the formal group law, which are

(1) l10 = l01 = 1,

(2) lij = lji for all i, j and li0 = 0 for i ≠ 1,

(3) the relations imposed by the associativity law.
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So L has the presentation L ≅ Z[lij ∣ i, j ≥ 0]/(relations (1), (2), (3)).
The Lazard ring has the following universal property: for any ring R with formal group law

G(x, y) ∈ RJx, yK, there is a unique ring homomorphism δ ∶ L → Rmapping Funi toG. Indeed,

as for ∑i,j δ(lij)xiyj = δ(Funi) = G = ∑i,j aijx
iyj we have to define δ on the generators of L

by δ(lij) = aij , and by the formal group law properties δ is a homomorphism. Conversely,

for a homomorphism δ ∶ L → R, the unique formal group law on R corresponding to δ is

∑i,j δ(lij)xiyj ∈ RJx, yK. This gives a bijection

HomRng(L,R)
∼←→ {Formal group laws on R}. (2.30)

In fact, L has a simpler structure as the presentation above might suggest, by the following

theorem due to Lazard from [Laz55]:

Theorem 2.31. L ≅ Z[x1, x2, x3, . . .], where xi has grading −2i.

The aim for the remainder of this section will be to show that MU∗(pt) is isomorphic to

L. The choice of grading in Theorem 2.31 may seem odd, but it will turn out to be the right

one from the topological perspective of complex cobordism.

As ordinary integral cohomology H∗ ∶ Topop → AbGp satisfies the axioms (1)-(3) of Sec-

tion 2.1, Lemma 2.3 for every manifold X gives a homomorphism ε ∶ MU∗(X) → H∗(X)
commuting with Gysin homomorphisms, so in particular it preserves Thom classes, and so

also Euler classes. It induces ε ∶ MU∗(X)[t] → H∗(X)[t], where again [t] stands for infin-

itely many indeterminates [t1, t2, t3 . . .]. Set

β .
.=MU∗(X) stÐ→MU∗(X)[t] εÐ→H∗(X)[t],

where st is the Landweber-Novikov operation defined in Section 2.2. The map β is called

Boardman map, and it satisfies

β(f∗(z)) = ε(st(f∗(z))) = ε(f!(st(z)))
= ε(f∗(cMU

t (νf) ⋅ st(z))) = f∗(ε(cMU
t (νf) ⋅ st(z)))

= f∗(cHt (νf) ⋅ ε(st(z))) = f∗(cHt (νf) ⋅ β(z))

for every proper complex oriented map f ∶ Z → X , where we write cHt and cMU
t for the

elements associated to a vector bundle over X in the polynomial rings of H∗ and MU∗ re-

spectively as in Section 2.2. We will also adopt this notation for Euler classes and write eH and

eMU
for integral and complex cobordism Euler classes. Then as noted above, ε sends eMU

to

eH . With the formula cHt (L) = 1 +∑j>0 tjeH(L)j we obtain

β(eMU(L)) = β(id∗(eMU(L))) = id∗(cHt (νid) ⋅ β(eMU(L)))
= cHt (L) ⋅ β(eMU(L)) = (1 +∑

j>0
tje

H(L)j) ⋅ eH(L)

= ∑
j≥0
tje

H(L)j+1 with t0 = 1,

for every line bundle L → X . Considering two line bundles L1, L2 → X and plugging in

L1 ⊗L2 above we have

β(eMU(L1 ⊗L2)) = ∑
j≥0
tj e

H(L1 ⊗L2)j+1 = ∑
j≥0
tj (eH(L1) + eH(L2))j+1, so

βFMU(eMU(L1), eMU(L2)) = ∑
j≥0
tj FH(eH(L1), eH(L2))j+1,
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where FMU(x, y) = ∑i,j≥0 cijxiyj ∈MU∗(pt)Jx, yK is the complex cobordism group law over

MU∗(pt) from Proposition 2.7, and FH(x, y) = x + y ∈ ZJx, yK is the additive group law

corresponding to integral cohomology by Example 2.9. Using a universality argument as in

the proof of Proposition 2.7 we obtain the formula

βFMU(θt(x), θt(y)) = θt(x + y), with θt(z) = ∑
j≥0
tjz

j+1, t0 = 1.

So there are ring homomorphisms

L δÐ→MU∗(pt) βÐ→H∗(pt)[t] = Z[t],
Funi z→ FMU z→ θ∗t (x + y),

where δ exists by the universal property of the Lazard ring L with δ(Lq) ⊆ MU−2q(pt). For

an invertible power series θ(z) and a formal group law G(x, y), the conjugation is given by

θ∗(G(x, y)) = θ(G(θ−1(x), θ−1(y))). As t0 = 1, the series θt(z) from above is invertible, so

θ∗t (x + y) = θt(θ−1t (x) + θ−1t (y)) = βF (θt(θ−1t (x)), θt(θ−1t (y))) = βF (x, y).

Theorem 2.32. The map δ is an isomorphism and β is injective. Consequently, by Theorem 2.31,

MU∗(pt) ≅ Z[x1, x2, x3, . . .], with ∣xi∣ = −2i.

Proof. The map δ sends Funi ↦ FMU , so lij ↦ cij . By Corollary 2.11, MU∗(pt) is generated

by the cij , so δ is surjective. We will show that β ○ δ ∶ L → Z[t] induces an isomorphism of

rationalizations Q ⊗ L → Q ⊗ Z[t] ≅ Q[t]. A homomorphism u ∶ Z[t] → R can be identified

with the (invertible) power series θu(z) .
.= ∑j≥0 u(tj)zj+1, t0 = 1, as u is uniquely determined

by the images of the tj, j ≥ 1. Using the bijection (2.30), the composite u ○ β ○ δ ∶ L → R
corresponds to the formal group law uβδ(Funi) = u(θ∗t (x + y)) = θ∗u(x + y) on R.

By [Frö68, Proposition 1, p. 96] any formal group law over a Q-algebra R is of the form

θ∗a(x + y) for a unique power series θa = ∑j ajz
j
, which is called the logarithm of the group

law. So for any Q-algebra R the assignment (u ∶ Z[t] → R) ↦ θ∗u is bijective, and again with

(2.30), β ○ δ induces a bijection

HomRng(Z[t],R)
∼←→ HomRng(L,R).

So idQ ⊗ (β ○ δ) ∶ Q ⊗ L → Q ⊗ Z[t] ≅ Q[t] is an isomorphism. By Theorem 2.31, the Lazard

ring L is torsion free, so β ○δ is injective. Therefore, δ is also injective, hence an isomorphism,

and so β = (β ○ δ) ○ δ−1 must also be injective.

Example 2.33. The isomorphism L ≅ MU∗(pt) of Theorem 2.32 which maps Funi to FMU

allows us to build new cohomology theories from formal group laws over rings: given a ringR
and a formal group law G ∈ RJx, yK, there is a unique ring homomorphism φ ∶MU∗(pt) → R
sending the universal formal group law F over MU∗(pt) to G. In particular, φ makes R into

an MU∗(pt)-module. Then we can consider the functor

R∗(−) .
.=MU∗(−) ⊗MU∗(pt) R.

It clearly is a homotopy invariant functor and satisfies excision, and we can compute its coef-

ficient ring:

R∗(pt) =MU∗(pt) ⊗MU∗(pt) R ≅ R,
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where the isomorphism is given by a⊗ r ↦ φ(a) ⋅ r. Also, R∗(pt) carries G as a formal group

law over it, in the sense of Remark 2.8.

Indeed, we have R∗(CPn ×CPn) ≅ R∗(pt)[z1, z2]/(zn+11 , zn+12 ) ≅ R[z1, z2]/(zn+11 , zn+12 ). Writ-

ing the complex cobordism Euler class eMU(π∗1(γ
1,n+1
C ) ⊗ π∗2(γ

1,n+1
C )) ∈MU∗(CPn ×CPn) as

∑i,j≤n cnijz
i
1z

j
2 ∈ MU(pt)[z1, z2], the R-Euler class eR(π∗1(γ

1,n+1
C ) ⊗ π∗2(γ

1,n+1
C )) ∈ R∗(CPn ×

CPn) is ∑i,j≤n(cnij ⊗ 1R)zi1z
j
2, which corresponds to ∑i,j≤nφ(cij)zi1z

j
2 under the above iso-

morphism. As the φ(cij) are the coefficients of the formal group law G, we get back G as a

group law over R∗(pt) as claimed.

But in general, the functor R∗(−) is not a generalized cohomology theory, as one can not ex-

pect that tensoring with an arbitrary ring preserves exact sequences. The assumption that R
is flat overMU∗(pt)would makeR∗(pt) into a cohomology theory, but this assumption turns

out to be too strong in practise. With the Landweber exact functor theorem Section 4 will give

a more refined condition on R.

3 Relations of complex cobordism to K-theory
We already saw in Example 2.33 how to use the results about MU∗(pt) and in particular

Theorem 2.32 to construct new complex oriented cohomology theories by forming the tensor

product MU∗(−) ⊗MU∗(pt) R. This section is concerned with a special application of this

procedure. That is, we show that using the cohomology ring K∗(pt) = Z of (Z/2-graded) K-

theory instead of R, we indeed obtain the (complex) K-theory functor. This then expresses

K-theory purely in terms of complex cobordism.

At first sight it might seem surprising that complex cobordism, represented by maps from

suspensions of a space to the complex Thom spectrum, is so closely related to the set of vector

bundles the space admits. But there are relations ofK-theory to the unitary groupU(n)which

might hint in this direction: once chosen a Hermitian inner product for an n-dimensional

complex vector bundle E → X , we can choose the transition functions ψαβ ∶ Uα ∩ Uβ →
GLn(C), for (Uα) a trivializing open cover of X , to take values in U(n), which is equivalent

data as choosing a Hermitian inner product for the bundle E.

Furthermore, K-theory can not only be constructed in terms of the vector bundles a space

admits, but also as a representable functor in the sense of Section 1: lettingU(∞) .
.= ⋃n≥1U(n),

we can define an Ω-spectrum (En)n≥0 by

En
.
.= {

U(∞) for n odd,

ΩU(∞) for n even,

where Ω2U(∞) ≅ U(∞) by the Bott map, and this spectrum represents complex K-theory

(cf. [Hil71, p. 15]). In this section we follow [CF66], Chapter I & II, and we will again indicate

which specific results we are quoting.

3.1 Basic constructions and cohomology operations
As usual, topological K-theory is viewed as a (two-periodic) functor K∗ ∶ CWop

f
→ Rng● on

the category of finite CW-pairs (or a more general category as compact Hausdorff spaces).

We will introduce a different interpretation of K0(X,A) for finite CW-pairs (X,A) without

the usual procedure of taking K0(X,A) to be K0(X/A). For this, consider triples (ξ0, ξ1, φ),
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where ξ0, ξ1 → X are vector bundles over X and φ ∶ ξ1∣A
∼Ð→ ξ2∣A is a bundle isomorphism.

Two triples (ξ0, ξ1, φ) and (η0, η1, θ) are isomorphic, written as

(ξ0, ξ1, φ) ≅ (η0, η1, θ),

if ξ0 ≅ η0, ξ1 ≅ η1 as vector bundles, and restricted to A these isomorphisms commute with φ
and θ. Furthermore, write

(ξ0, ξ1, φ) ∼ (η0, η1, θ),

if there exist vector bundles ρ, ν → X such that (ξ0 ⊕ ρ, ξ1 ⊕ ρ,φ) ≅ (η0 ⊕ ν, η1 ⊕ ν, θ).
Then K0(X,A) is defined as the set of equivalence classes of such triples, which are written

d(ξ0, ξ1, φ). Component wise application of the Whitney sum and the tensor product gives a

ring structure on K0(X,A). Note that in the case A = ∅, classes can be written as d(ξ0, ξ1),
and the mapping d(ξ0, ξ1) ↦ ξ0 − ξ1 defines an isomorphism to the usual K-group K0(X). If

x0 is a basepoint of a finite CW-complex X , then the kernel of K0(X) → K0({x0}), denoted

K̃0(X), defines the reduced K-group as usual. Then the homomorphism

K0(X,x0) → K̃0(X), d(ξ0, ξ1, φ) ↦ ξ0 − ξ1

is an isomorphism, and for a finite CW-pair (X,A)we have natural isomorphismsK0(X,A) ≅
K0(X/A,x0) ≅ K̃0(X/A).
A first goal will be to define two cobordism operations. The first one is a multiplicative nat-

ural transformation MU∗ → K∗ from complex cobordism into K-theory, the second one is a

natural transformation MU∗ →H∗ into integral cohomology. A key ingredient to this will be

to represent an element of complex cobordism by a map using

M̃Un(X) = [Σ2k−nX, MU(k)], k large. (3.1)

A further ingredient for constructing the morphism into K-theory is to be able to associate to

principal U(n)-bundles an element of the complex cobordism of a certain Thom space, which

we shall construct now.

Let ξ → X be a principal U(n)-bundle over a finite CW-complex X , and let V be a complex

vector space of dimension n. Then U(n) acts on the exterior algebra

ΛV = T (V )/⟨v ⊗ v ∣ v ∈ V ⟩ =⊕
i≥0
V ⊗i/⟨v ⊗ v ∣ v ∈ V ⟩,

and (as for the C-linear representations of Section 2) with

Λ(ξ) .
.= (ξ ×ΛV )/U(n) →X

we obtain a complex vector bundle on X . Replacing ΛV by the subspaces ΛoddV and ΛevV of

odd respectively even grading yields bundles Λev(ξ) →X, Λodd(ξ) →X. LettingD2n, S2n−1 ⊆
V be the unit disk and the unit sphere in V , we have bundles

D(ξ) .
.= (ξ ×D2n)/U(n) →X and S(ξ) .

.= (ξ × S2n−1)/U(n) →X.

Then ξ′ .
.= π∗(ξ) → D(ξ) is a principal SU(n)-bundle induced by π ∶ D(ξ) →X , so we obtain

the complex vector bundle Λ(ξ′) → D(ξ), and similarly Λev(ξ′), Λodd(ξ′).
For v ∈ V there is a linear map Fv ∶ ΛV → ΛV, x ↦ v ∧ x, and it has an adjoint given by
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F ∗v ∶ ΛV → ΛV, ⟨F ∗v (x), y⟩ = ⟨x,Fv(y)⟩ = ⟨x, v ∧ x⟩. Then if v ≠ 0, φv
.
.= Fv + F ∗v ∶ ΛV → ΛV

defines a C-linear isomorphism ΛoddV ≅ ΛevV , which gives a map

φ ∶ Λ(ξ′) → Λ(ξ′), [e, v, y] ↦ [e, v,φv(y)],

where [e, v, y] ∈ Λ(ξ′) is the orbit of a point in ξ ×D2n ×ΛV under the action of U(n). So we

have a triple (Λev(ξ′), Λodd(ξ′), φ) as defined above, and we set

J (ξ) .
.= d(Λev(ξ′), Λodd(ξ′), φ) ∈K0(D(ξ),S(ξ)) ≅ K̃0(T(ξ)),

where T(ξ) = D(ξ)/S(ξ) is the Thom space of the bundle ξ.

Furthermore, we have that i∗x(J (ξ)) is a generator of K̃0(Dn
x , S

n
x ) ≅ K̃0(S2n) for every x ∈X ,

where ix ∶ (Dn
x , S

n
x ) ↪ (D(ξ),S(ξ)) is the inclusion of the fibre over x, and it is a generator of

the free K∗(pt)-module K∗(S2n). Using a Thom isomorphism argument (cf. [CF66, p. 24f]),

this implies

K0(X) ≅K0(D(ξ),S(ξ)) ≅ K̃0(T(ξ)).

In particular, we can assign to a principal U(n)-bundle ξ →X the element J (ξ) ∈ K̃0(T(ξ)),
which then corresponds to an element in K0(X) under the above isomorphism.

We can use this construction in a specific situation to obtain the first cohomology operation:

for an infinite dimensional Hilbert space H and k ∈ Z≥0, let

EU(k) .
.= {e1, . . . , ek ∈H ∣ (ei, ej) = δij}

be the space of orthonormal k-frames with natural action of U(n). Let ζk ∶ EU(k) → BU(k)
be the universal principal U(k)-bundle, where BU(k) is the classifying space of U(k) as

introduced in Section 1, so that with

E(k) .
.= EU(k) ×U(k) Ck = (EU(k) ×Ck)/U(k) → BU(k)

we get the tautological bundle γk → BU(k)we constructed to defineMU(k). ThenMU(k) =
T(ζk) = D(ζk)/S(ζk) using the definitions from above.

Definition 3.2. For a CW-complex X define a map

µX ∶ M̃U∗(X) → K̃∗(X)

as follows: let x ∈ M̃Un(X), and represent x by a map f ∶ S2k−n ∧X → MU(k) for some

large k ∈ Z≥0 using (3.1). Then let µX(x) be the image of J (ζk) ∈ K̃0(T(ζk)) = K̃0(MU(k))
under the composition

K̃0(MU(k)) f∗Ð→ K̃0(S2k−n ∧X) ≅ K̃n−2k(X) ≅ K̃n(X).

Lemma 3.3. The map µX ∶ M̃U∗(X) → K̃∗(X) from Definition 3.2 defines a multiplicative
natural transformation µ ∶ M̃U∗ → K̃∗.

Proof. By homotopy invariance of the functor K∗, the map µX does not depend on the choice

of the map f representing x ∈ M̃Un(X).
Let g ∶ Y → X be a map. Without restriction, we can choose the same k for M̃Un(Y ) and

M̃Un(X). Then there is an induced map ḡ ∶ S2k−n ∧ Y → S2k−n ∧ X . If x ∈ M̃Un(X) is
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represented by f ∶ S2k−n∧X →MU(k), it follows µY (g∗(x)) = µY ([f ○ḡ]) = (f ○ḡ)∗(J (ζ)) =
ḡ∗ ○ f∗(J (ζk)) = g∗(µX(x)), where the isomorphism K̃0(S2k−n ∧X) ≅ K̃n(X) is used. This

shows naturality.

The fact that µX is multiplicative follows by representing a product x ⋅y for x ∈ M̃Un(X) and

y ∈ M̃Um(X), represented by maps f ∶ S2k−n ∧X → MU(k) and g ∶ S2k−m ∧X → MU(k)
respectively, by the composition

Σ2k−n−mX → Σ2k−nX ∧Σ2k−mX
f∧gÐ→MU(k) ∧MU(k) →MU(2k)

and applying it to J (ζ2k).

The principal U(k)-bundle ζk ∶ EU(k) → BU(k) shows that BU(k) = EU(k)/U(k).
Now the group U(k − 1) acts on EU(k) via the inclusion U(k − 1) ↪ U(k), and this gives a

fibration

BU(k − 1) ≃ EU(k)/U(k − 1) → EU(k)/U(k) ≃ BU(k)
with fibre U(k)/U(k − 1) ≃ S2k−1

, which corresponds to the sphere bundle of the tautological

bundle γk ∶ E(k) → BU(k). Since E(k) = EU(k)×U(k)Ck
, the unit disk bundle of γk is given

by BU(k). So we get MU(k) ≃ BU(k)/BU(k − 1), which we can use to analogously define

a cohomology operation into integral cohomology.

Definition 3.4. For a pair of spaces (X,A), define a map

η(X,A) ∶ M̃U∗(X,A) → H̃∗(X,A;Z)

as follows: let x ∈ M̃Un(X,A), and represent x by a map f ∶ S2k−n ∧ (X/A) → MU(k)
for some large k ∈ Z≥0 using (3.1). Let γk → BU(k) be the tautological bundle. Then using

MU(k) ≅ BU(k)/BU(k − 1) we can identify H̃∗(MU(k)) with the ideal in H∗(BU(k))
generated by the Euler class ck ∈ H2k(BU(k)) of γk. Let c′k ∈ H2k(MU(k)) be the element

corresponding to ck. Then define η(X,A)(x) as the image of c′k under the composition

H̃2k(MU(n)) f∗Ð→H2k(S2k−n ∧ (X/A)) ≅ H̃n(X/A) ≅Hn(X,A).

Again, this defines a natural transformation of cohomology theories.

3.2 A cobordism interpretation for K-theory
In this section we show that K-theory may be rephrased in terms of complex cobordism, as

stated in the following theorem, [CF66, 10.1 Theorem, p. 60]:

Theorem 3.5. For every finite CW-pair (X,A), there is an isomorphism of Z/2-graded rings

K∗(X,A) ≅MU∗(X,A) ⊗MU∗(pt) Z.

Here Z is naturally an MU∗(pt)-module: for even gradings there is the homomorphism

of abelian groups µpt ∶ MU2n(pt) → K2n(pt) ≅ Z of Definition 3.2, and MU2n+1(pt) = 0 for

all n by Corollary 2.11, so we have a ring homomorphism

µpt ∶MU∗(pt) → Z,

and for x ∈MU∗(pt) we can view µpt(x) as an integer. Write x ⋅ a for µpt(x) ⋅ a, a ∈ Z.
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Remark 3.6. Another formulation of Theorem 3.5 is

K∗(X,A) ≅MU∗(X,A) ⊗MU∗(pt)K∗(pt),

where the isomorphism is one of Z-graded rings. But using Bott periodicity and the fact that

K2n+1(pt) = 0 = MU2n+1(pt), this really is the same statement as in the formulation above.

Furthermore, it can be shown that the homomorphism µpt ∶ MU∗(pt) → Z is in fact the one

the universal property of the Lazard ring MU∗(pt) induces, meaning that the statement of

Theorem 3.5 can entirely be viewed as in the fashion of Example 2.33.

We introduce some more maps and notation for the proof of Theorem 3.5. For a finite

CW-pair (X,A), let

Γ∗(X,A) .
.=MU∗(X,A) ⊗MU∗(pt) Z.

We regard Γ∗(X,A) as a Z/2-graded ring by setting Γ0(X,A) .
.= MU ev(X,A) ⊗MU∗(pt) Z,

Γ1(X,A) .
.=MU odd(X,A) ⊗MU∗(pt) Z. Then the map

β(X,A) ∶MU∗(X,A) → Γ∗(X,A), c↦ c⊗ 1

defines an epimorphism of MU∗(pt)-modules. Furthermore, the map

MU∗(X,A) ×Z→K∗(X,A), (c, n) ↦ n ⋅ µ(X,A)(c)

is bilinear and by the universal property of the tensor product induces the map

µ̂(X,A) ∶MU∗(X,A) ⊗MU∗(pt) Z→K∗(X,A), c⊗ n↦ n ⋅ µ(X,A)(c),

which is a homomorphism of Z/2-graded MU∗(pt)-modules, using the fact that µ(X,A) is

multiplicative. So the following diagram commutes:

MU∗(X,A) Γ∗(X,A)

K∗(X,A)

β

µ
µ̂

In Section 2.2 we used Theorem 7.5 of [CF66] to assign to a vector bundle E →X an element

ct(E) in the multiplicative cohomology theory MU∗(X)[t]. There is an analogous result for

principal U(n)-bundles which also holds in general for multiplicative cohomology theories

on finite CW-pairs, see [CF66, Theorem 7.6]. We will apply it for K-theory and state it in the

version of Corollary 8.3 in [CF66].

Lemma 3.7. There exists a unique function assigning to each principal U(n)-bundle ξ → X ,
where X is a finite CW-complex, an element

c(ξ) = 1 + c1(ξ) + . . . + cm(ξ) ∈MU∗(X),

where ck(ξ) ∈MU2k(X), such that

(1) the assignment ξ ↦ c(ξ) commutes with pullbacks,
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(2) if ξ, η are principal U(n), U(m)-bundles over X respectively, then c(ξ ⊕ η) = c(ξ) ⋅ c(η),
and

(3) for the Hopf principal U(1)-bundle ξn ∶ S2n+1 → S2n+1/S1 = CPn over CPn, we have
c(ξn) = 1 + e(i∗n(γ

1,∞
C )), where e(i∗n(γ

1,∞
C )) is the Euler class of the pullback of the tauto-

logical bundle γ1,∞C over CP∞ under the inclusion in ∶ CPn ↪ CP∞.

Then property (2) in particular implies that c1(ξ ⊕ η) = c1(ξ) + c1(η) for principal U(n)-
and U(m)-bundles ξ, η → X . Using the fact that a principle U(n)-bundle is equivalent data

to a complex vector bundle with fixed Hermitian inner product
5
, there is a homomorphism

c1 ∶K0(X) →MU2(X)

of abelian groups. Write Φ ∶ K̃0(X) ∼Ð→K2(X) for the period isomorphism. By [CF66, p. 58]

we have K̃0(X)
c1Ð→ M̃U2(X) µXÐ→ K̃2(X) Φ−1Ð→ K̃0(X) = −idK̃0(X). Then we can define

χX
.
.= K̃0(X) ≅K2(S2 ∧X) Φ−1Ð→K0(S2 ∧X)

c1Ð→MU2(S2 ∧X) ≅ M̃U0(X),

giving rise to a map χ(X,A) ∶K0(X,A) →MU(X,A) for pairs, for which again the composi-

tion with µ(X,A) satisfies K0(X,A)
χ
(X,A)Ð→ M̃U2(X,A)

µ
(X,A)Ð→ K0(X,A) = −idK0(X,A). Setting

χ̂(X,A) .
.=K∗(X,A)

χ
(X,A)Ð→ MU∗(X,A) βÐ→ Γ∗(X,A),

we have µ̂χ̂ = µ̂βχ = µχ = −idK∗(X,A). In particular, µ̂(X,A) is always surjective. We can now

use the defined operations to prove K∗(X,A) ≅MU∗(X,A)⊗MU∗(pt) Z, where it remains to

show the injectivity of µ̂(X,A).

Proof of Theorem 3.5. (1) First consider the case in which H∗(X,A;Z) is a free abelian group

which is trivial in odd gradings. In this case it follows from a spectral sequence argument (see

e.g. [CF64, Theorem 18.1, p. 49]) that there is a homogeneous basis (αj) for the MU∗(pt)-
module MU∗(X,A), such that (η(X,A)(αj)) is a basis for H∗(X,A), where we use the co-

homology transformation η(X,A) ∶MU∗(X,A) → H∗(X,A), as introduced in Definition 3.4.

It then follows that

MU∗(X,A) ≅H∗(X,A) ⊗ZMU∗(pt)

as MU∗(pt)-modules via the mapping αj ↦ η(X,A)(αj) ⊗ 1.

For µ(X,A) ∶ MU∗(X,A) → K∗(X;A) from Definition 3.2 the composition ch ○ µ(X,A) with

the Chern character ch ∶K∗(X;A) →H∗(X,A;Q) by [CF66, Theorem 6.4, p. 35] maps αj to

an element of H∗(X,A;Q) which in the highest degree has the element ±η(X,A)(αj). Using

the Atiyah-Hirzebruch spectral sequence, the µ(X,A)(αj) generate K∗(X,A) as a Z/2-graded

free K∗(pt)-module.

Now consider the kernel of µ(X,A): from µ̂β = µ it follows ker(β(X,A)) ⊆ ker(µ(X,A)). Con-

versely, assume that anMU∗(pt)-linear combination of the αj is sent to zero by µ(X,A). Then,

as the µ(X,A)(αj) generate K∗(X,A) as a free K∗(pt)-module, the coefficients must be in

the kernel of the homomorphism making K∗(pt) = Z an MU∗(pt)-module, which is the map

5
Taking isomorphism classes, the map assigning to a principle U(n)-bundle ξ → X the n-dimensional com-

plex vector bundle with Hermitian inner product ξ ×U(n) Cn
→X is bijective, because the U(n)-representation

on Cn
is faithful.
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µpt ∶ MU∗(pt) → Z. Then β(X,A) ∶ MU∗(X,A) → Γ∗(X,A) sends the combination to zero

as well, as it is an MU∗(pt)-module homomorphism. This shows ker(µ(X,A)) ⊆ ker(β(X,A)),
so the kernels are equal. As β(X,A) is surjective, µ̂(X,A) must be injective, so we have an iso-

morphism µ̂(X,A) ∶ Γ∗(X,A) ≅K∗(X,A).

(2) Now consider the case in which a ∈ ker(µ̂(X,A)) ⊆ Γ∗(X,A) such that there exists a

map of pairs f ∶ (X,A) → (Y,B) for which H∗(Y,B) is free abelian with generators in even

grading and a = f∗(b) for some b ∈ Γ∗(Y,B). We will show that this implies a = 0. The

diagram in this situation looks like this:

Γ∗(Y,B) Γ∗(X,A)

K∗(Y,B) K∗(X,A)

µ̂
(Y,B) µ̂

(X,A), a↦0χ̂
(X,A)

f∗, b↦a

f∗

χ̂
(Y,B)

As c from Lemma 3.7 commutes with pullbacks, χ is natural, and β is natural as well, so

χ̂ is natural. Similarly, naturality of µ̂ follows from naturality of µ. So the diagram com-

mutes. By the assumptions we made on H∗(Y,B) we know from part (1) that µ̂(Y,B) is an

isomorphism, and with µ̂χ̂ = −id it follows that χ̂(Y,B) is surjective. So there is a b′ ∈K∗(Y,B)
with χ̂(Y,B)(b′) = b. Then a = f∗(b) = f∗(χ̂(Y,B)(b′)) = χ̂(X,A)(f∗(b′)), so 0 = µ̂(X,A)(a) =
µ̂(X,A)(χ̂(X,A)(f∗(b′))) = −f∗(b′), and −a = χ̂(X,A)(−f∗(b′)) = χ̂(X,A)(0) = 0, so a = 0.

(3) For the general case one separately shows that µ̂(X,A) ∶ Γj(X,A) → Kj(X,A) is an

isomorphism for j = 0 and j = 1. It suffices to consider the even-graded case j = 0, as the

other one is analogous. Furthermore, as β is surjective, it will be enough to consider a general

element in complex cobordism. So let a ∈ MU ev(X,A), which we can write as a = a2k +
a2k+2 + . . . + a2k+2l with a2k+2i ∈MU2k+2i(X,A), 0 ≤ i ≤ l. By [CF66, Corollary 6.5, p. 37] the

composition

MU2m(pt) ≅MU−2m(pt)
µptÐ→K0(pt) ≅ Z

maps the bordism class [M2m] of a closed weakly compact manifold to (−1)m ⋅ Td[M2m],
where Td[M2m] is the Todd genus

6
of the manifold M2m

, and MU∗(pt) is the complex bor-

dism ring, the homology ring of the homology theory with values in the Thom spectrum

MU . In particular, there exists an element b−2 ∈ MU−2(pt) with µpt(b−2) = 1. With this

element it follows β(X,A)(a) = β(X,A)(a2k + a2k+2 ⋅ b−2 + . . . + a2k+2l ⋅ (b−2)l
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈MU2k(X,A)

), so there is an ele-

ment a′ ∈MU2k(X,A) with β(X,A)(a) = β(X,A)(a′). Using (3.1) represent a′ by a map

f ∶ S2n ∧ (X/A) →MU(k + n)

for n large enough. Performing 2n suspensions of X/A and using suspension isomorphisms

we obtain an element S2n(a′) ∈ M̃U2k+2n(S2n ∧ (X/A)), which is in the image of the map

f∗ ∶ M̃U∗(MU(k + n)) → M̃U∗(S2n ∧ (X/A))
6
The Todd genus of an almost complex manifold Mn

is defined as follows: with T (x) ..=
x

1−exp(-x)
we define

Tn(c1, . . . , cn) by 1 + T1(c1)x + T2(c1, c2)x
2
+ . . . + Tn(c1, . . . , cn)x

n
+ . . . = T (c1 ⋅ x) ⋅ . . . ⋅ T (cn ⋅ x), then

Td[Mn
]

..= Tn(c1, . . . , cn)[M
n
] ∈ Q, where the c1, . . . , cn are the Chern classes of the holomorphic tangent

bundle of Mn
, and [Mn

] ∈H2n(M
n;Z) is its fundamental homology class. Cf. [Hir95, p. 93].
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on reduced cobordism. Hence, S2n(β(X,A)(a)) = S2n(β(X,A)(a′)) is in the image of the map

f∗ ∶ Γ̃∗(MU(k + n)) → Γ̃∗(S2n ∧ (X/A))

on tensored cobordism. Then if µ̂(X,A) ∶ Γ∗(X,A) = Γ̃∗(X/A) →K∗(X,A)maps β(X,A)(a) to

zero, then µ̂Sn∧(X/A) ∶ Γ̃∗(Sn∧(X/A)) → K̃∗(Sn∧(X/A))maps S2n(β(X,A)(a)) to zero. But

now we are in the situation of part (2), as S2n(β(X,A)(a)) is in the image of f∗, and the integral

cohomologyH∗(MU(k+n)) is free abelian and vanishes in odd grading. So S2n(β(X,A)(a)) =
0, and therefore β(X,A)(a) = 0 ∈ Γ∗(X,A). Thus, µ̂(X,A) is injective on even gradings, and we

have an isomorphism

µ̂(X,A) ∶ Γ0(X,A) ∼Ð→K0(X,A).

Repeating the argument for odd gradings shows that µ̂(X,A) ∶ Γ1(X,A) →K1(X,A) is an iso-

morphism as well, so it follows Γ∗(X,A) ≅ K∗(X,A) as Z/2-graded rings, which concludes

the proof.

Remark 3.8. An important thing to notice regarding Theorem 3.5 is that its proof heavily

relied on the existence of the cohomology operation µ ∶ MU∗ → K∗, which closely related

both theories. Lemma 2.3 under assumptions ensures the existence of transformationsMU∗ →
h. As pointed out in Example 2.33, one can not expect that MU∗(−) ⊗MU∗(pt) R defines a

cohomology theory for R an arbitrary MU∗(pt)-module. One could expect that the situation

is different when you start with a multiplicative cohomology theory h∗ ∶ CWop

f
→ AbGp● and

form the functorMU∗(−)⊗MU∗(pt)h∗(pt) using a given homomorphismMU∗(pt) → h∗(pt).
AlthoughMU∗ and h∗ might be related by a cohomology operation in the first place, h∗(X) ≅
MU∗(X)⊗MU∗(pt)h∗(pt)might not hold, and furthermoreMU∗(−)⊗MU∗(pt)h∗(pt) need not

be a cohomology theory. With integral cohomology we will see an example for this in the next

section.

4 The Landweber exact functor theorem
This section is concerned with the question when the contravariant functor

R∗(−) .
.=MU∗(−) ⊗MU∗(pt) R ∶ CWop

f
→ AbGp●

defines a cohomology theory. Instead of cohomology, we will be considering the homology

theory complex bordism as defined in Section 1 via M̃Un(X) = πn(MU(k) ∧ X), k large.

Recall that E∗(pt) = π∗(E) = [S,E] = [Σ∞pt+,E] = E∗(pt) holds for any CW-spectrum E,

where S = (Sn)n≥0 is the sphere spectrum. So we see that the complex bordism ring MU∗(pt)
is isomorphic to the cobordism ring MU∗(pt), and we write it as MU∗(pt) ≅ Z[x1, x2, . . .],
where each generator xi can be chosen in MU2i(pt) (so the grading has opposite signs com-

pared to the complex cobordism ring). If the covariant functor

R∗(−) .
.=MU∗(−) ⊗MU∗(pt) R ∶ CW→ AbGp●

is a homology theory for an MU∗(pt)-module R, then the analogous contravariant theory

from above will also be a cohomology theory on finite CW-complexes (which can be shown

by precomposing with Spanier-Whitehead duality).

We already noticed in Example 2.33 that the assumption thatR is a flatMU∗(pt)-module (i.e.,
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Tor
MU∗(pt)
1 (N,R) = 0 for allMU∗(pt)-modulesN ) makesR∗(−) into a homology theory, as it

always satisfies homotopy invariance, excision and additivity. So flatness of R ensures R∗(−)
has long exact sequences. As this flatness assumption is too strong in practise, one natural

approach is to relax it to the weaker condition Tor
MU∗(pt)
1 (MU∗(X),R) = 0 for finite CW-

complexes X . This approach leads to the homological condition Landweber flatness which we

will elaborate on by following [Lan76], where it was first introduced in the form of the exact
functor theorem.

4.1 Landweber flatness
Let MU denote the category of comodules over the self homology

7 MU∗(MU) which are

finitely presented as MU∗(pt)-modules
8
. Note this is an additive category, and in particu-

lar it makes sense to speak about exactness in this category. If X is a finite CW-complex,

thenMU∗(X) is a finitely presentedMU∗(pt)-module, andMU∗(X) has a natural comodule

structure

ψ ∶MU∗(X) →MU∗(MU) ⊗MU∗(pt)MU∗(X)
as defined in [Ada69, Lecture 3]. SoMU∗(X) itself is an object of MU. Now fix generators xi ∈
MU2i(pt) of the bordism ring MU∗(pt) ≅ Z[x1, x2, . . .] such that for each prime p, all Chern

numbers of xpn−1 are divisible by p (e.g., we could take xp−1 = [CPp−1], using the geometric

interpretation of complex bordism in terms of manifolds). Then we can define the prime ideals

I(p, n) .
.= (p, xp−1, . . . , xpn−1−1) ⊴MU∗(pt)

for all primes p and n ≥ 0 (the quotient MU∗(pt)/I(p, n) is isomorphic to a polynomial ring

over Z/p which is an integral domain, so the ideals are indeed prime). We now define the

notion of Landweber flatness for MU∗(pt)-modules.

Definition 4.1. AnMU∗(pt)-moduleR is Landweber flat if for each prime p and each integer

n > 0, multiplication by p on R and by xpn−1 on R/I(p, n)R is injective (i.e., these elements

are not zero divisors in the respective rings).

The following theorem asserts that this condition is sufficient to preserve exactness when

tensoring with R on the category MU.

Theorem 4.2 (Landweber exact functor theorem). Let R be an MU∗(pt)-module. Then the
functor

MU→ AbGp●, M ↦M ⊗MU∗(pt) R

is exact if and only if R is Landweber flat.

From the fact that the functorR∗(−) .
.=MU∗(−)⊗MU∗(pt)R only possibly misses exactness

and that MU∗(X) itself is an object of MU for finite CW-complexes X , we can deduce the

following:

7
The maps MU ∧MU → MU and S → MU introduced in Section 1 can be used to define a diagonal map

∆ ∶MU∗(MU) →MU∗(MU) ⊗MU∗(pt)MU∗(MU) and a counit map ε ∶MU∗(MU) →MU∗(pt) satisfying

(id ⊗∆) ⊗∆ = (∆ ⊗ id) ○∆ and (id ⊗ ε) ⊗∆ = id = (ε ⊗ id) ○∆. That is, they make MU∗(MU) into an

MU∗(pt)-coalgebra. For the definition of the maps see [Ada69, Lecture 3].

8
So objects of MU are finitely presented MU∗(pt)-modules R with a linear map ρ ∶ R → R ⊗MU∗(MU)

satisfying (id ⊗ ∆) ○ ρ = (ρ ⊗ id) ○ ρ and (id ⊗ ε) ○ ρ = id for ∆ and ε the maps of the MU∗(pt)-coalgebra

MU∗(MU).
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Corollary 4.3. If R is Landweber flat, then the functors

R∗(−) =MU∗(−) ⊗MU∗(pt) R ∶ CWf → AbGp● and

R∗(−) =MU∗(−) ⊗MU∗(pt) R ∶ CW op

f
→ AbGp●

define generalized homology respectively cohomology theories.

Remark 4.4. For the homology theory R∗(−) we can also replace CWf by the category of

CW-complexes CW, as tensor products commute with direct limits. But in the cohomology

case, this is not true in general. It can in fact be shown that Landweber flatness is equivalent

to R∗(−) being a cohomology on the finite CW-complexes.

Remark 4.5. Corollary 4.3 can be used to show isomorphisms of (co-)homology theories: if

E is a module spectrum over the ring spectrum MU via a map of spectra MU → E, then

this induces homomorphisms MU∗(X) → E∗(X) for all CW-complexes X , and we have a

naturality square

MU∗(pt) E∗(pt)

MU∗(X) E∗(X)

which by the universal property of the tensor product induces a comparison map

MU∗(X) ⊗MU∗(pt) E∗(pt) → E∗(X).

Now if E∗(pt) is Landweber flat, then varying X the left-hand side by Corollary 4.3 defines a

homology theory, and using Zeeman’s comparison theorem for homology theories it can be

shown that the comparison map from above defines an isomorphism of homology theories.

This can analogously be done for cohomology, where the result again holds for finite CW-

complexes. Furthermore, it can be shown that the complex Thom spectrum MU is initial

within the CW-spectraE defining complex oriented cohomology theories. So if for suchE the

cohomology ringE∗(pt) happens to be Landweber flat, then we know there is an isomorphism

of cohomology theories

MU∗(−) ⊗MU∗(pt) E∗(pt)
∼Ð→ E∗(−)

which holds on the category of finite CW-complexes. We will see below that this generalizes

Theorem 3.5, the cobordism interpretation of K-theory.

The proof of Theorem 4.2 uses the following result which we will quote.

Theorem 4.6 (Filtration theorem for MU ). We have the following:

(1) Every finitely generated prime ideal p ⊴MU∗(pt) which additionally is a subcomodule of
MU∗(pt) is either the zero ideal or of the form I(p, n) for some prime p and some n ≥ 0.

(2) Each object M of MU has a filtration

0 =M0 ⊆M1 ⊆ . . . ⊆Mn =M

in MU, so that Mi/Mi−1 ≅ MU∗(pt)/pi in MU after possibly a shift of grading for some
prime ideal pi ⊴MU∗(pt) of the kind from (1), for each 1 ≤ i ≤ n.
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For the proof, we refer to [Lan73a, Corollary 2.2, p. 274] for (1) and to [Lan73b, Theorem

3.3’, p. 48] for (2). We will also need the following:

Proposition 4.7. For each M ∈ ob MU, there exists an F ∈ ob MU which is a free module over
MU∗(pt) and admits an epimorphism F ↠M .

The proof can be found in [Lan76, Proposition 2.4, p. 594]. Using these results about the

structure of MU, we can prove Theorem 4.2.

Proof of Theorem 4.2. For better readability, writeMU∗ forMU∗(pt). Consider the short exact

sequences

0 MU∗ MU∗ MU∗/(p) 0
⋅p

for each prime p, and

0 MU∗/I(p, n) MU∗/I(p, n) MU∗/I(p, n + 1) 0
⋅xpn−1

for every prime p and n > 0. The first sequence is a free resolution of MU∗/(p) by MU∗-
modules, so for an MU∗-module R the multiplication by p map R → R is injective if and

only if the map p ⊗ idR ∶ MU∗ ⊗MU∗ R → MU∗ ⊗MU∗ R is injective, and this is equivalent

to Tor
MU∗
1 (MU∗/(p),R) = 0. The second sequence may not be a projective resolution, but it

induces a long exact sequence containing

Tor
MU∗
1 (MU∗/I(p, n),R) Tor

MU∗
1 (MU∗/I(p, n + 1),R)

MU∗/I(P,n) ⊗MU∗ R MU∗/I(p, n) ⊗MU∗ R

Now multiplication by xpn−1 onR/I(p, n) is injective if and only if the map on tensor products

xpn−1 ⊗ idR ∶ MU∗/I(p, n) ⊗MU∗ R → MU∗/I(p, n) ⊗MU∗ R is injective, which by the above

is equivalent to

Tor
MU∗
1 (MU∗/I(p, n),R) → Tor

MU∗
1 (MU∗/I(p, n + 1),R)

being surjective, and in this case the right-hand side is zero if the left is. So the module R is

Landweber flat if and only if Tor
MU∗
1 (MU∗/I(p, n),R) = 0 for all n and p (where we write

I(p,1) = (p)). Then for each M ∈ ob MU, Theorem 4.6 gives a filtration

0 =M0 ⊆M1 ⊆ . . . ⊆Mn =M

in MU for which Mi/Mi−1 ≅ MU∗/p holds after a shift of grading, where p = (p) or p =
I(p, n) for some p and n, so in the Landweber flat case we have Tor

MU∗
1 (Mi/Mi−1,R) = 0

for 1 ≤ i ≤ n, which inductively shows Tor
MU∗
1 (Mi,R) = 0 for 0 ≤ i ≤ n by considering the

long exact sequence of Tor
MU∗● (−,R) for each pair (Mi,Mi−1) in degree 1. This shows that

Landweber flatness of R is equivalent to Tor
MU∗
1 (M,R) = 0 for all M ∈ ob MU, which implies

that M ↦M ⊗MU∗ R is exact on MU.

Conversely, assuming this exactness, letM ∈ ob MU, and using Proposition 4.7 choose a short

exact sequence

0 N F M 0
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where F is a free MU∗-module (and in particular Tor
MU∗
1 (F,R) = 0). The induced long exact

sequence reads

Tor
MU∗
1 (N,R) Tor

MU∗
1 (F,R)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

Tor
MU∗
1 (M,R)

N ⊗MU∗ R F ⊗MU∗ R M ⊗MU∗ R 0

where exactness being preserved under tensoring gives the injection in the bottom row. So the

connecting homomorphism is the zero map, and it follows Tor
MU∗
1 (M,R) = 0. We conclude

that R is Landweber flat.

4.2 Applications
In this last section, we show how Theorem 4.2 can be applied to form new (co-)homology

theories, and also in which cases it can not be applied.

Example 4.8. Consider R = Q with additive formal group law G(x, y) = x + y ∈ QJx, yK,

which is the formal group law corresponding to rational (co-)homology. The associated ho-

momorphism making Q an MU∗(pt)-module is the map

φ ∶MU∗(pt) ≅ Z[x1, x2, . . .] → Q, xi ↦ 0.

Multiplication by p on Q is injective, and with I(p, n) = Q for n > 0 multiplication by xpn−1 = 0
is injective on Q/I(p, n) = 0. So Theorem 4.2 applies, MU∗(−) ⊗MU∗(pt) Q is a homology

theory, and with Remark 4.5 there is an isomorphism

MU∗(X) ⊗MU∗(pt) Q ≅H∗(X;Q)

on CW-complexes. The analogous results hold for cohomology on finite CW-complexes.

Example 4.9. Now consider R = Z with additive formal group law G(x, y) = x + y ∈ ZJx, yK,

corresponding to integral (co-)homology. The associated homomorphism is

φ ∶MU∗(pt) ≅ Z[x1, x2, . . .] → Z, xi ↦ 0.

Then multiplication by xp−1 = 0 ∈ Z on Z/I(p,1) = Z/(p) is certainly not injective, so Z
(with this MU∗(pt)-module structure) is not Landweber flat. It can be shown that the functor

MU∗(−)⊗MU∗(pt)Z does not satisfy exactness, and so does not define a homology theory. One

can also explicitly construct CW-complexes for whichMU∗(X)⊗MU∗(pt)Z ≅H∗(X;Z) fails
9
.

Example 4.10. We can also show that the cobordism interpretation of K-theory we proved

with Theorem 3.5 is a consequence of the Landweber exact functor theorem (Theorem 4.2).

For this considerR = Z with the multiplicative formal group lawG(x, y) = x+y−xy ∈ ZJx, yK,

9
For an example, see https://mathoverflow.net/questions/346470/example-of-a-space-x-e

xhibiting-the-landweber-non-exactness-of-the-additive-form.
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corresponding to (Z/2-graded) K-homology. Then the associated homomorphism (up to a

sign) is

φ ∶MU∗(pt) → Z, [M] ↦ Td[M],
the Todd genus of the manifold M (as defined in [Hir95, p. 93]). By the choice of generators

we made before, xp−1 = [CPp−1] has Todd genus 1. Multiplication by p on Z is injective,

multiplication by xp−1 = 1 ∈ Z on Z/(p) = Z/I(p,1) is injective, and with I(p, n) = Z for n ≥ 2
it follows that multiplication by xpn−1 on Z/I(p,1) = 0 is also injective. So with this module

structure, Z is in fact Landweber flat.

In Section 3 we introduced the transformation µ ∶ MU∗ → K∗, and it had an associated

transformation µ̂ ∶MU∗(−)⊗MU∗(pt)Z→K∗(−) of Z/2Z-graded cohomology theories. Now

µpt ∶MU∗(pt) →K∗(pt) agrees (up to a sign) with φ ∶MU∗(pt) → Z. So Remark 4.5 gives an

isomorphism

µ̂X ∶MU∗(X) ⊗MU∗(pt) Z
∼Ð→K∗(X).

Equivalently, we could consider the Z-graded case by taking R = K∗(pt) = Z[β, β−1], ∣β∣ = 2,

with multiplicative formal group law G(x, y) = x + y − βxy ∈ ZJx, yK corresponding to Z-

graded K-homology. Then the associated homomorphism is

φ ∶MU∗(pt) → Z, [M2n] ↦ T [M2n]βn.

Analogously, Z[β, β−1] is Landweber flat, MU∗(−) ⊗MU∗(pt) Z[β, β−1] is a homology theory,

and we have an isomorphism

µ̂X ∶MU∗(X) ⊗MU∗(pt) Z
∼Ð→K∗(X)

of the Z-graded cohomology theories on finite CW-complexes.

Example 4.11. The last example we consider is of a somewhat more exotic flavour: let δ, ε ∈ C
with discriminant ∆ .

.= ε(δ2 − ε)2 ≠ 0. Then we can consider an elliptic curve C ⊆ CP2
given

by (homogenizing) the Jacobi quartic equation

y2 = R(x) = 1 − 2δx2 + εx4.

It comes with a formal group law FR(t1, t2) = t1
√
R(t1)+t2

√
R(t2)

1−εt21t22
, which can be extended as a

power series over the ring Z[12 , δ, ε,∆−1]. Checking Landweber flatness is a bit more subtle in

this situation, and we refer to [Fra92, p. 5]. We then get the cohomology theory

E∗(−) .
.=MU∗(−) ⊗MU∗(pt) Z[

1

2
, δ, ε,∆−1]

associated to the elliptic curve C on finite CW-complexes. More generally, given an elliptic

curve C with homogenized Weierstrass form

Y 2Z + a1XY Z + a3Y Z2 =X3 + a2X2Z + a4XZ2 + a6Z3

by Hensel’s lemma there is a unique power series w ∈ Z[a1, . . . , a6]JtK so that (t,w(t)) gives

a parametrization of C on the affine piece Y ≠ 0. Another application of Hensel’s lemma then

gives a power series F ∈ Z[a1, . . . , a6]Jt1, t2K with

F (0,0) = 0 and (t1,w(t1)) + (t2,w(t2)) = (F (t1, t2),w(F (t1, t2))).

34



The group law of the elliptic curve C ensures that F is a formal group law, called the formal

group law associated to C .

This motivates to consider cohomology theories arising from group laws over elliptic curves

in more generality, which are called elliptic cohomology theories. They consist of

(i) a multiplicative cohomology theory E which is even periodic, i.e. E2n+1(pt) = 0 for all

n ∈ Z with an element β ∈ E−2(pt) invertible in the ring E∗(pt),

(ii) an elliptic curve C over a commutative ring R, and

(iii) an isomorphism E∗(pt) ≅ R as well as an isomorphism of the formal group law from E
and the one associated to C over E∗(pt) ≅ R.

It is then of interest to know if there is some kind of universal elliptic cohomology theory,

which would belong to some universal elliptic curve. As there is no canonical choice of Wei-

erstrass equation, this question can not be answered with a single elliptic curve. This search

leads to the consideration of topological modular forms, where one considers not a single el-

liptic curve, but a whole moduli stack of those.

To conclude the essay, we briefly want to indicate how the procedure of Quillen which

associates formal group laws to complex oriented cohomology theories opened up new areas

of research.

Recall that for a formal group law F ∈ RJx, yK over a ring R and n ∈ Z≥0, we defined the

n-series [n]F (t) ∈ RJtK recursively by [1]F (t) .
.= t and [n]F (t) .

.= F (t, [n − 1]F (t)). It gives a

homomorphism of formal group laws from F to itself:

F ([n]F (x), [n]F (y)) = [n]F (F (x, y)).
Then one shows that if R is a commutative ring in which a prime number p is zero (i.e., R is

a Z/p-algebra), then either [p]F (t) = 0, or [p]F (t) = λtp
n + terms of degree ≥ pn + 1, for some

n > 0 and λ ∈ R.

Fixing a prime number p and letting vn denote the coefficient of tn
p

in the p-series [p]F (t), we

say F has height ≥ n if vi = 0 for i < n, and height n if it has height ≥ n and vn ∈ R is invertible.

Furthermore, F has height∞ if it has height ≥ n for all n ≥ 0. Then the height of formal group

laws can be used to organize complex oriented cohomology theories by their formal groups,

which is the chromatic point of view in stable homotopy theory.

To illustrate this, we restrict to perfect fields. First assume that k is an algebraically closed

field. Then if char(k) = 0, it can be shown that every formal group law is isomorphic to the

additive group law F (x, y) = x + y over k, so in this case the situation is not very interesting.

If char(k) > 0, then formal group laws are in fact determined by their height (which is a

positive integer or∞). For example, the multiplicative formal group law F (x, y) = x + y + xy
over k has p-series [p]F (t) = (1 + t)p − 1 = tp, so it has height 1. The additive formal group

law F (x, y) = x + y over k has p-series [p]F (t) = 0, so it has height∞.

Now if F (x, y) ∈ kJx, yK is a formal group law of height 0 < n < ∞ over a perfect field k, then

by a theorem of Morava it comes from an even periodic cohomology theory K(n), which is

called Morava K-theory and said to lie on the n-th chromatic level.
For instance, if k = Fp and F (x, y) = x + y + xy is the multiplicative group law which has

height 1, then K(1) can be taken as the mod p reduction of complex K-theory.

Modern research in chromatic homotopy theory tries to understand the behaviour of these

chromatic levels and to make use of them, e.g. in the form of chromatic towers of spectra to

compute homotopy groups of spheres.

35



References
[Ada69] John Frank Adams. ‘Lectures on generalised cohomology’. In: Category Theory,

Homology Theory and Their Applications III. Springer Berlin Heidelberg, 1969, pp. 1–

138. doi: https://doi.org/10.1007/BFb0081960.

[Bro62] Edgar H. Brown. ‘Cohomology Theories’. In: Annals of Mathematics 75.3 (1962),

pp. 467–484. doi: https://doi.org/10.2307/1970209.

[CF64] Pierre E. Conner and Edwin E. Floyd. Differentiable Periodic Maps. Ergebnisse der

Mathematik und ihrer Grenzgebiete. 2. Folge. Springer Berlin Heidelberg, 1964.

doi: https://doi.org/10.1007/978-3-662-41633-4.

[CF66] Pierre E. Conner and Edwin E. Floyd. The Relation of Cobordism to K-Theories.
Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1966. doi: https://
doi.org/10.1007/BFb0071092.

[Fra92] Jens Franke. ‘On the Construction of Elliptic Cohomology’. In: Mathematische Na-
chrichten 158.1 (1992), pp. 43–65. doi: https://doi.org/10.1002/mana.
19921580104.

[Frö68] Albrecht Fröhlich. Formal Groups. Lecture Notes in Mathematics. Springer Berlin

Heidelberg, 1968. doi: https://doi.org/10.1007/BFb0074373.

[Hil71] Peter Hilton. General Cohomology Theory andK-Theory. London Mathematical So-

ciety Lecture Note Series. Cambridge University Press, 1971. doi: https://doi.
org/10.1017/CBO9780511662577.

[Hir95] Friedrich Hirzebruch. Topological Methods in Algebraic Geometry. Reprint of the
1978 Edition. Classics in Mathematics. Springer Berlin Heidelberg, 1995. doi: https:
//doi.org/10.1007/978-3-642-62018-8.

[Lan73a] Peter S. Landweber. ‘Annihilator ideals and primitive elements in complex bor-

dism’. In: Illinois Journal of Mathematics 17.2 (1973), pp. 273–284. doi: https:
//doi.org/10.1215/ijm/1256051757.

[Lan73b] Peter S. Landweber. ‘Associated prime ideals and Hopf algebras’. In: Journal of Pure
and Applied Algebra 3.1 (1973), pp. 43–58. issn: 0022-4049. doi: https://doi.
org/10.1016/0022-4049(73)90004-2.

[Lan76] Peter S. Landweber. ‘Homological Properties of Comodules Over MU∗(MU) and

BP∗(BP )’. In: American Journal of Mathematics 98.3 (1976), pp. 591–610. doi:

https://doi.org/10.2307/2373808.

[Laz55] Michel Lazard. ‘Sur les groupes de Lie formels à un paramètre’. In: Bulletin de la
Société Mathématique de France 83 (1955), pp. 251–274. doi: https://doi.org/
10.24033/bsmf.1462.

[Mil60] John Milnor. ‘On the Cobordism Ring Ω∗ and a Complex Analogue, Part I’. In:

American Journal of Mathematics 82.3 (1960), pp. 505–521. doi: https://doi.
org/10.2307/2372970.

[Nov60] Sergei P. Novikov. ‘Some problems in the topology of manifolds connected with

the theory of Thom spaces’. In: Soviet Mathematics. Doklady 1 (1960), pp. 717–719.

36

https://doi.org/https://doi.org/10.1007/BFb0081960
https://doi.org/https://doi.org/10.2307/1970209
https://doi.org/https://doi.org/10.1007/978-3-662-41633-4
https://doi.org/https://doi.org/10.1007/BFb0071092
https://doi.org/https://doi.org/10.1007/BFb0071092
https://doi.org/https://doi.org/10.1002/mana.19921580104
https://doi.org/https://doi.org/10.1002/mana.19921580104
https://doi.org/https://doi.org/10.1007/BFb0074373
https://doi.org/https://doi.org/10.1017/CBO9780511662577
https://doi.org/https://doi.org/10.1017/CBO9780511662577
https://doi.org/https://doi.org/10.1007/978-3-642-62018-8
https://doi.org/https://doi.org/10.1007/978-3-642-62018-8
https://doi.org/https://doi.org/10.1215/ijm/1256051757
https://doi.org/https://doi.org/10.1215/ijm/1256051757
https://doi.org/https://doi.org/10.1016/0022-4049(73)90004-2
https://doi.org/https://doi.org/10.1016/0022-4049(73)90004-2
https://doi.org/https://doi.org/10.2307/2373808
https://doi.org/https://doi.org/10.24033/bsmf.1462
https://doi.org/https://doi.org/10.24033/bsmf.1462
https://doi.org/https://doi.org/10.2307/2372970
https://doi.org/https://doi.org/10.2307/2372970


[Nov62] Sergei P. Novikov. ‘Homotopy properties of Thom complexes’. In: Matematicheskii
Sbornik. Novaya Seriya 57 (1962), pp. 407–442.

[Qui69] Daniel Quillen. ‘On the formal group laws of unoriented and complex cobordism

theory’. In: Bulletin of the American Mathematical Society 75.6 (1969), pp. 1293–

1298. doi: https://doi.org/10.1090/S0002-9904-1969-12401-8.

[Qui71] Daniel Quillen. ‘Elementary proofs of some results of cobordism theory using Steen-

rod operations’. In: Advances in Mathematics 7.1 (1971), pp. 29–56. issn: 0001-8708.

doi: https://doi.org/10.1016/0001-8708(71)90041-7.

[Tho54] René Thom. ‘Quelques propriétés globales des variétés différentiables’. In: Com-
mentarii Mathematici Helvetici 28 (1954), pp. 17–86. doi: https://doi.org/10.
1007/BF025669230.

37

https://doi.org/https://doi.org/10.1090/S0002-9904-1969-12401-8
https://doi.org/https://doi.org/10.1016/0001-8708(71)90041-7
https://doi.org/https://doi.org/10.1007/BF025669230
https://doi.org/https://doi.org/10.1007/BF025669230

	Introduction
	Complex cobordism
	Elementary properties
	Characteristic classes
	A structure theorem
	The complex cobordism ring

	Relations to K-theory
	Basic constructions and cohomology operations
	A cobordism interpretation for K-theory

	The Landweber exact functor theorem
	Landweber flatness
	Applications

	References

