Even synthetic spectra based on MU

Marco Milanesi

Spring 2024

Abstract

These are informal notes for my talk in the reading group on computing the stable homotopy groups of spheres. The goal is to discuss the subcategory Syn_E^{ev} of Syn_E and some results that hold in the case E = MU.

Contents

1	Eve	n synthetic spectra	1
2	Synthetic spectra based on MU		
	2.1	Cellularity	3
	2.2	The synthetic dual Steenrod algebra	3

1 Even synthetic spectra

In the construction of synthetic spectra, if we replace the indexing ∞ -category of finite *E*-projective spectra with even projective spectra, we obtain the notion of even synthetic spectra $Syn_E^{ev} = Sh_{\Sigma}^{Sp}(Sp_E^{fpe})$. In view of theorem 1.2 we can think of Syn_E^{ev} as a full subcategory of Syn_E . The main reason to understand this construction is that when E = MU, the ∞ -category of even synthetic spectra is strongly related to the cellular motivic category.

Definition 1. A spectrum P is finite even projective if it is finite and E_*P is finitely generated projective and concentrated in even degrees. We denote the ∞ -category of finite even projective spectra by Sp_E^{fpe} . An Adams-type homology theory is said to be even Adams if E can be written as a filtered colimit $E \simeq \lim E_{\alpha}$ of finite even projective spectra.

From the inclusion $Sp_E^{fpe} \hookrightarrow Sp_E^{fp}$, Sp_E^{fpe} inherits a topology and a symmetric monoidal structure making it an excellent ∞ -site. Explicitly, a map $P \to Q$ of finite even projective spectra is a covering if it is an E_* surjection and the symmetric monoidal structure is given by the tensor product of spectra. **Definition 2.** An even synthetic spectrum X is a spherical sheaf of spectra on the site Sp_E^{fpe} . We denote the ∞ -category of even synthetic spectra by Syn_E^{ev} .

By general facts about sheaves of spectra on excellent ∞ -sites, we obtain that Syn_E^{ev} is a presentable, stable ∞ -category with a symmetric monoidal structure which is cocontinuous in each variable. Furthermore, it admits a right complete t-structure compatible with filtered colimits such that $Sh_{\Sigma}(Ab) \simeq (Syn_E^{ev})^{\heartsuit}$.

We now show that there exists a natural embedding $Syn_E^{ev} \hookrightarrow Syn_E$, for that we need the following lemma.

Lemma 1.1. The inclusion $i: Sp_E^{fpe} \to Sp_E^{fp}$ is a morphism of excellent ∞ -sites with the covering lifting property.

Proof. By construction i is a morphism of excellent ∞ -sites, to show that it has the covering lifting property, pick an E_* -surjection $Q \to P$ where P is finite even projective and Q is finite projective. We have to show that there exists Rfinite even projective with a map $R \to Q$ such that the composition $R \to P$ is E_* -surjective. Consider the Spanier-Whitehed dual of $Q \to P$ and the diagram

Where the vertical map is induced by the unit of E. The dashed arrow making the diagram commutative exists by the universal coefficient theorem, which implies that $E^*DQ \simeq \operatorname{Hom}_{E_*}(E_*DQ, E_*)$ (see [1] III.13). Finally, we can write $E \simeq \lim_{\alpha} E_{\alpha}$ where E_{α} is finite even projective and since DQ is finite, the map $DQ \rightarrow E \otimes DP$ factors through one of the $E_{\alpha} \otimes DP$. Then we can take $R = DE_{\alpha} \otimes P$ with the map into Q the dual of the factorization.

Theorem 1.2. The inclusion $i: Sp_E^{fpe} \hookrightarrow Sp_E^{fp}$ induces a cocontinuous, symmetric monoidal embedding $Syn_E^{ev} \hookrightarrow Syn_E$ whose image is the full subcategory generated under colimits and suspensions by νP , where P is finite even projective.

Proof. By [7] proposition 2.22, there is an induced adjunction $i^* \dashv i_* : Syn_E^{ev} \rightleftharpoons$ Syn_E on the ∞-category of spherical sheaves of spectra, where i_* is given by precomposition and it is cocontinuous. Being i^* the only cocontinuous functor such that $i^*(\Sigma_+^{\infty}y(c)) \simeq \Sigma_+^{\infty}y(i(c))$, by the universal property of Day convolution (see [5] 4.8.1) i^* has a canonical symmetric monoidal structure induced from the one of *i*. Now we prove that $i^* : Syn_E^{ev} \to Syn_E$ is a fully faithful embedding. Since both i_* and i^* are cocontinuous, it's enough to show that the unit $\nu(P) \to i_*i^*\nu(P)$ is an equivalence for any $P \in Sp_E^{fpe}$. Now by definition of synthetic analogue, $\nu(P)$ is the sheafification of the presheaf $F(-, P)_{\geq 0} : Sp_E^{fp} \to Sp$ restricted along *i*. By [7] proposition 4, i_* commutes with sheafification, therefore we can identify also $i_*i^*\nu(P)$ with the sheafification of the presheaf $F(-, P)_{\geq 0} : Sp_E^{fp} \to Sp$.

2 Synthetic spectra based on MU

In this section, we prove some results for synthetic spectra based on MU.

2.1 Cellularity

The goal of this subsection is to show that the ∞ -category $Syn_{\rm MU}$ is generated under colimits by the bigraded spheres $\mathbb{S}^{k,l}$

Lemma 2.1. Any graded projective module over $MU_* \simeq \mathbb{Z}[a_1, a_2, ...]$ -module is free

Proof. See [2], proposition 3.2.

Theorem 2.2. The ∞ -category Syn_{MU} is cellular i.e. it is generated under colimits by the bigraded spheres $\mathbb{S}^{k,l}$

Proof. Let C be the smallest subcategory of $Syn_{\rm MU}$ containing the bigraded spheres and closed under colimits. Since the bigraded spheres are closed under suspension, so is C. Since $Syn_{\rm MU}$ is generated under colimits by suspensions of $\nu(P)$ with $P \in Sp_{\rm MU}^{fp}$, it is enough to show that $\nu(P) \in C$. By lemma 2.1, ${\rm MU}_*P$ is free and finitely generated, then the same is true for the integral homology, in fact, the spectral sequence $Tor_{*,*}^{{\rm MU}*}({\rm MU}_*P, H_*) \Rightarrow H_*P$ collapses to

$$\mathrm{MU}_*P \otimes_{\mathrm{MU}_*} H_* \cong H_*P$$

Moreover, MU_*P and $H_*(P,\mathbb{Z})$ must be of the same rank as MU_* -module and H_* -module respectively. We prove the result by induction on the rank of $H_*(P,\mathbb{Z})$. Let this rank be $k \geq 1$ and assume the result for all $Q \in Sp_{\mathrm{MU}}^{fp}$ with $\mathrm{rk}(H_*(Q,\mathbb{Z})) < k$. Let $H_i(P,\mathbb{Z})$ be the lowest non-zero homology group, by Hurewicz we have $\pi_i P \simeq H_i(P,\mathbb{Z})$, hence there is a map $S^i \to P$ corresponding to the inclusion of a free summand of $H_i(P,\mathbb{Z})$. Consider the cofibre sequence

$$S^i \to P \to P'$$

since the first map is injective in integral homology by construction, we obtain a short exact sequence in integral homology, therefore $H_*(P', \mathbb{Z})$ is free of rank k-1. Because of [2] lemma 3.1, this implies that MU_*P' is also free of the same rank. We deduce that, since $H_*(P,\mathbb{Z}) \to H_*(P',\mathbb{Z})$ is surjective, so is $\mathrm{MU}_*P \to \mathrm{MU}_*P'$ (see [6]). By [7] lemma 4.23, $\nu \mathbb{S}^l \to \nu P \to \nu P'$ is a fibre sequence of synthetic spectra, but now $\nu \mathbb{S}^l \simeq \mathbb{S}^{l,l}$ and $\nu P'$ belongs to C by inductive hypothesis. Because Syn_{MU} is stable, that fibre sequence is also a cofibre sequence, so after a rotation we see that νP can be written as a colimit of $\mathbb{S}^{l,l}$ and $\Sigma \nu P'$.

2.2 The synthetic dual Steenrod algebra

In this section we give an example of calculation in $Syn_{\rm MU}$ by computing the synthetic dual Steenrod algebra.

Definition 3. *let* H *be the Eilemberg-MacLane spectrum* $H\mathbb{Z}/p$ *, we call* νH *the synthetic Eilemberg-MacLane spectrum.*

Observe that H is a commutative ring spectrum and $\nu : Sp_{MU}^{fp} \to Syn_{MU}$ is lax symmetric monoidal, so νH is a commutative algebra in synthetic spectra. As a consequence, $\nu H_{*,*}$ is a bigraded commutative ring and $\nu H_{*,*}X$ is a module over it for any synthetic spectrum X. Since H is an MU-module, by [7] proposition 4.60, $\nu H_{*,*} \simeq \mathbb{F}_p[\tau]$. To compute the dual Steenrod algebra $\nu H_{*,*}\nu H$ we consider the MU-algebra given by BP, the Brown-Peterson spectrum. It is a well known fact that $BP_* \simeq \mathbb{Z}_{(p)}[v_1, v_2, ...]$ and, by [4], the spectrum $BP/(v_0, ..., v_k)$ admits the structure of an MU-algebra such that the quotient maps $BP/(v_0, ..., v_k) \to BP/(v_0, ..., v_{k+1})$ are algebra morphisms. Looking at the homotopy groups, we see that $H \simeq \lim_{\to} BP/(v_0, ..., v_k)$, then since $BP_*BP \simeq BP_*[b_1, b_2, ...]$, it follows that $H_*BP \simeq \mathbb{F}_p[b_1, b_2, ...]$. Consider the cofibre sequence of $BP/(v_0, ..., v_{k-1})$ -modules.

$$\Sigma^{2p^{\kappa}-2}BP/(v_0,...,v_{k-1}) \to BP/(v_0,...,v_k) \to BP/(v_0,...,v_k)$$

where the first map is multiplication by v_k . We obtain a short exact sequence of $H_*BP/(v_0, ..., v_{k-1})$ -modules passing in homology

 $H_*BP/(v_0,...,v_{k-1}) \to H_*BP/(v_0,...,v_k) \to H_*BP/(v_0,...,v_{k-1})[2p^k-1]$

Fix lifts τ_k of the unit of $H_*BP/(v_0, ..., v_{k-1})[2p^k - 1]$, together with b_i they additively generate the Steenrod algebra. For odd p, necessarily $\tau_k^2 = 0$ by commutativity, so we have an induced map $\mathbb{F}_p[b_1, b_2, ...] \otimes E[\tau_0, \tau_1, ...] \to H_*H$. When p = 2 we recall the calculations in [3] which show that we can obtain the relations $\tau_k^2 = b_{k+1}$, so in this case there is an induced map $(\mathbb{F}_2[b_1, b_2, ...] \otimes$ $\mathbb{F}_2[\tau_0, \tau_1, ...])/(\tau_k^2 = b_{k+1}) \to H_*H$. In both cases the maps are injective by dimension count, therefore they are isomorphisms and we have determined the additive structure of H_*H . Now we try to apply similar techniques to the synthetic version of H, so we compute $\nu H_{*,*}\nu H$. Since BP is a direct summand of $\mathrm{MU}_{(p)}$, it is a filtered colimit of projectives, so we are in the hypothesis of [7] proposition 4.24, and we obtain $\nu BP \otimes \nu X \simeq \nu (BP \otimes X)$ for any X. It follows that

$$\nu H_{*,*}\nu BP \simeq \pi_{*,*}\nu (H \otimes BP) \simeq \mathbb{F}_p[b_1, b_2, \ldots][\tau]$$

with $|b_i| = (2p^i - 2, 2p^i - 2)$ and $|\tau| = (0, -1)$, where the last equivalence follows from [7] proposition 4.60.

Lemma 2.3. For any $k \ge 0$, the cofibre sequence of $BP/(v_0, ..., v_{k-1})$ -modules.

$$\Sigma^{2p^{\kappa}-2}BP/(v_0,...,v_{k-1}) \to BP/(v_0,...,v_k) \to BP/(v_0,...,v_k)$$

induce a short exact sequence

$$\nu H_{*,*}\nu BP/(v_0,...,v_{k-1}) \to \nu H_{*,*}\nu BP/(v_0,...,v_k) \to \nu H_{*,*}\nu BP/(v_0,...,v_{k-1})[2p^k-1,2p^k-2]$$

of $\nu H_{*,*}\nu BP/(v_0,...,v_{k-1})$ -modules.

Proof. The starting short exact sequence induces a short exact sequence in BP, and hence MU homology, therefore by [7] proposition 4.24

$$\nu \Sigma^{2p^{\kappa}-2}BP/(...,v_{k-1}) \to \nu BP/(...,v_{k-1}) \to \nu BP/(...,v_k)$$

is a cofibre sequence of synthetic spectra. Taking $\nu H_{*,*}$ we obtain a long exact sequence, we show that this splits in short exact sequences as v_k acts by zero on $\nu H_{*,*}\nu BP/(...,v_k)$. First observe that, since multiplication by v_k induces a map of $\nu H_{*,*}\nu BP/(...,v_{k-1})$ -modules, it is sufficient to show that the unit of $\nu H_{*,*}\nu BP/(...,v_{k-1})$ is sent to zero. this follows from the fact that the unit is in the image of $\nu H_{*,*}\nu BP \simeq H_*BP[\tau] \simeq \mathbb{F}_p[b_1,...][\tau]$ on which v_k acts by zero.

For each k let τ_k be a lift to $\nu H_{2p^k-1,2p^k-2}\nu BP/(...,v_k)$ of the unit of $\nu H_{2p^k-1,2p^k}\nu BP/(...,v_{k-1})$ in the short exact sequence of lemma 2.3. After τ -inversion these τ_k reduce to $\tau^{top} \in H_{2p^k-1}H$ in the topological Steenrod algebra.

Corollary 2.3.1. The synthetic dual Steenrod algebra $\nu H_{*,*}\nu H$ is generated by elements $b_k \in \nu H_{2p^k-2,2p^k-2}$ in the image of $\nu H_{*,*}\nu BP$ with $k \ge 1$, the elements $\tau_l \in \nu H_{2p^l-1,2p^l-2}\nu H$ with $l \ge 0$ and the element $\tau \in \nu H_{0,-1}\nu H$

Proof. We show that $\nu H_{*,*}\nu BP/(...,v_k)$ is generated by the b_i , τ and τ_i for $i \leq k$ and then the result follows since $\nu H_{*,*}\nu H \simeq \lim_{\to} \nu H_{*,*}\nu BP/(...,v_k)$. We work by induction, the base case, follows from $\nu H_{*,*}\nu BP \simeq \mathbb{F}_p[b_1, b_2, ...][\tau]$. For $k \geq 0$, we use the short exact sequence from lemma 2.3 we have the short exact sequence

 $\nu H_{*,*}\nu BP/(v_0,...,v_{k-1}) \rightarrow \nu H_{*,*}\nu BP/(v_0,...,v_k) \rightarrow \nu H_{*,*}\nu BP/(v_0,...,v_{k-1})[2p^k-1,2p^k-2]$

of $\nu H_{*,*}\nu BP/(v_0,...,v_{k-1})$ -modules. Therefore, $\nu H_{*,*}\nu BP/(v_0,...,v_k)$ is an extension of cyclic $\nu H_{*,*}\nu BP/(v_0,...,v_{k-1})$ -modules and the generators of both of these are respectively the unit and τ_k .

Corollary 2.3.2. The element τ acts injectively on the synthetic dual Steenrod algebra $\nu H_{*,*}\nu H$

Proof. Since $\nu H_{*,*}\nu H \simeq \lim_{\to} \nu H_{*,*}\nu BP/(...,v_k)$ and the transition maps in the diagram are injective, it's enough to show that τ acts injectively on every $H_{*,*}\nu BP/(...,v_k)$, but this follows by induction on k using the short exact sequence from lemma 2.3.

We can finally prove the structural theorems for the synthetic dual Steenrod algebra.

Theorem 2.4. Let p be an odd prime and $\nu H_{*,*}\nu H$ the corresponding synthetic dual Steenrod algebra. Then $\nu H_{*,*}\nu H \cong \mathbb{F}_p[b_1,...][\tau] \otimes_{\mathbb{F}_p} E[\tau_0,...]$ as a bigraded algebra. In particular $\nu H_{*,*}\nu H \cong H_*H \otimes_{\mathbb{F}_p} \mathbb{F}_p[\tau]$.

Proof. We have seen that the algebra is generated by the b_i , τ_k and τ and the map $\nu H_{*,*}\nu BP \rightarrow \nu H_{*,*}\nu H$ induces an inclusion $\mathbb{F}_p[b_1,...][\tau]$. Since $|\tau_k| = (2p^k - 1, 2p^k - 2)$ are of odd topological degree, by commutativity we have that $\tau_k^2 = 0$. We deduce that there is an induced map

$$\mathbb{F}_p[b_1, b_2, \dots, \tau] \otimes_{\mathbb{F}_p} E(\tau_0, \tau_1, \dots) \to \nu H_{*,*} \nu H$$

Contemplating the short exact sequence of lemma 2.3, it is easy to see that this map is also an isomorphism of \mathbb{F}_p -vector spaces. Therefore it is an isomorphism of algebras.

Theorem 2.5. Let p = 2 and $\nu H_{*,*}\nu H$ be the corresponding synthetic dual Steenrod algebra. Then there is an isomorphism of bigraded algebras

$$\nu H_{*,*} \nu H \cong (\mathbb{F}_2[b_1, b_2, ..., \tau, \tau_0, \tau_1, ...]) / (\tau_k^2 = \tau^2 b_{k+1})$$

Proof. We can repeat the argument of the previous lemma with the difference that this time we want the relation $\tau_k^2 = \tau^2 b_{k+1}$. After τ -inversion b_{k+1} , τ_k , reduce to the usual elements $b_{k+1}^{top} \in H_*H$. Here the relation $b_{k+1}^{top} = (\tau_k^{top})^2$ is classical, we deduce that b_{k+1} and τ_k coincides after multiplying both sides by sufficiently large powers of τ . Since $|b_{k+1}| = (2p^{k+1} - 2, 2p^{k+1} - 2)$ and $|\tau_k| = (2p^k - 1, 2p^k - 2)$ (with p = 2), the elements $\tau^2 b_{k+1}$ and τ_k^2 are in the same degree, so we must have $\tau^l(\tau^2 b_{k+1} - \tau_k^2) = 0$. However, by corollary 2.3.2, τ acts injectively on $\nu H_{*,*}\nu H$ hence $\tau^2 b_{k+1} = \tau_k^2$.

References

- John Frank Adams. Stable homotopy and generalised homology. University of Chicago press, 1974.
- [2] Pierre E Conner and Larry Smith. On the complex bordism of finite complexes. Publications Mathématiques de l'IHÉS, 37:117–221, 1969.
- [3] A. Jeanneret and S. Wüthrich. On the cohomology of certain quotients of the spectrum *BP*. *Glasg. Math. J.*, 54(1):61–66, 2012. ISSN 0017-0895,1469-509X. doi: 10.1017/S0017089511000334. URL https://doi.org/10.1017/ S0017089511000334.
- [4] Andrey Lazarev. Towers of mu-algebras and the generalized hopkins-miller theorem. Proceedings of the London Mathematical Society, 87(2):498-522, 2003.
- [5] J Lurie. Higher algebra. URL http://www.math.harvard.edu/~lurie/ papers/HA.pdf.
- [6] John W Milnor and John C Moore. On the structure of hopf algebras. Annals of Mathematics, pages 211–264, 1965.

[7] Piotr Pstragowski. Synthetic spectra and the cellular motivic category. *Invent. Math.*, 232(2):553-681, 2023. ISSN 0020-9910,1432-1297. doi: 10.1007/s00222-022-01173-2. URL https://doi.org/10.1007/s00222-022-01173-2.