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Abstract

These are informal notes for my talk in the reading group on com-
puting the stable homotopy groups of spheres. The goal is to discuss
the subcategory Synev

E of SynE and some results that hold in the case
E = MU.
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1 Even synthetic spectra

In the construction of synthetic spectra, if we replace the indexing ∞-category
of finite E-projective spectra with even projective spectra, we obtain the notion
of even synthetic spectra Synev

E = ShSp
Σ (SpfpeE ). In view of theorem 1.2 we can

think of Synev
E as a full subcategory of SynE . The main reason to understand

this construction is that when E = MU, the ∞-category of even synthetic
spectra is strongly related to the cellular motivic category.

Definition 1. A spectrum P is finite even projective if it is finite and E∗P is
finitely generated projective and concentrated in even degrees. We denote the
∞-category of finite even projective spectra by SpfpeE . An Adams-type homology
theory is said to be even Adams if E can be written as a filtered colimit E ≃
lim
→

Eα of finite even projective spectra.

From the inclusion SpfpeE ↪−→ SpfpE , SpfpeE inherits a topology and a symmetric
monoidal structure making it an excellent ∞-site. Explicitly, a map P → Q of
finite even projective spectra is a covering if it is an E∗ surjection and the
symmetric monoidal structure is given by the tensor product of spectra.
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Definition 2. An even synthetic spectrum X is a spherical sheaf of spectra on
the site SpfpeE . We denote the ∞-category of even synthetic spectra by Synev

E .

By general facts about sheaves of spectra on excellent∞-sites, we obtain that
Synev

E is a presentable, stable ∞-category with a symmetric monoidal structure
which is cocontinuous in each variable. Furthermore, it admits a right complete
t-structure compatible with filtered colimits such that ShΣ(Ab) ≃ (Synev

E )♡.
We now show that there exists a natural embedding Synev

E ↪−→ SynE , for
that we need the following lemma.

Lemma 1.1. The inclusion i : SpfpeE → SpfpE is a morphism of excellent ∞-
sites with the covering lifting property.

Proof. By construction i is a morphism of excellent ∞-sites, to show that it has
the covering lifting property, pick an E∗-surjection Q → P where P is finite
even projective and Q is finite projective. We have to show that there exists R
finite even projective with a map R → Q such that the composition R → P is
E∗-surjective. Consider the Spanier-Whitehed dual of Q → P and the diagram

DP DQ

E ⊗DP

Where the vertical map is induced by the unit of E. The dashed arrow
making the diagram commutative exists by the universal coefficient theorem,
which implies that E∗DQ ≃ HomE∗(E∗DQ,E∗) (see [1] III.13). Finally, we can
write E ≃ lim

→
Eα where Eα is finite even projective and since DQ is finite, the

map DQ → E ⊗DP factors through one of the Eα ⊗DP . Then we can take
R = DEα ⊗ P with the map into Q the dual of the factorization.

■

Theorem 1.2. The inclusion i : SpfpeE ↪→ SpfpE induces a cocontinuous, sym-
metric monoidal embedding Synev

E ↪→ SynE whose image is the full subcategory
generated under colimits and suspensions by νP , where P is finite even projec-
tive.

Proof. By [7] proposition 2.22, there is an induced adjunction i∗ ⊣ i∗ : Synev
E ⇄

SynE on the ∞-category of spherical sheaves of spectra, where i∗ is given by
precomposition and it is cocontinuous. Being i∗ the only cocontinuous functor
such that i∗(Σ∞

+ y(c)) ≃ Σ∞
+ y(i(c)), by the universal property of Day convo-

lution (see [5] 4.8.1) i∗ has a canonical symmetric monoidal structure induced
from the one of i. Now we prove that i∗ : Synev

E → SynE is a fully faith-
ful embedding. Since both i∗ and i∗ are cocontinuous, it’s enough to show
that the unit ν(P ) → i∗i

∗ν(P ) is an equivalence for any P ∈ SpfpeE . Now
by definition of synthetic analogue, ν(P ) is the sheafification of the presheaf

F (−, P )≥0 : SpfpE → Sp restricted along i. By [7] proposition 4, i∗ commutes
with sheafification, therefore we can identify also i∗i

∗ν(P ) with the sheafification

of the presheaf F (−, P )≥0 : SpfpE → Sp. ■

2



2 Synthetic spectra based on MU

In this section, we prove some results for synthetic spectra based on MU.

2.1 Cellularity

The goal of this subsection is to show that the ∞-category SynMU is generated
under colimits by the bigraded spheres Sk,l

Lemma 2.1. Any graded projective module over MU∗ ≃ Z[a1, a2, ...]-module is
free

Proof. See [2], proposition 3.2. ■

Theorem 2.2. The ∞-category SynMU is cellular i.e. it is generated under
colimits by the bigraded spheres Sk,l

Proof. Let C be the smallest subcategory of SynMU containing the bigraded
spheres and closed under colimits. Since the bigraded spheres are closed under
suspension, so is C. Since SynMU is generated under colimits by suspensions
of ν(P ) with P ∈ SpfpMU, it is enough to show that ν(P ) ∈ C. By lemma
2.1, MU∗P is free and finitely generated, then the same is true for the integral
homology, in fact, the spectral sequence TorMU∗

∗,∗ (MU∗P,H∗) ⇒ H∗P collapses
to

MU∗P ⊗MU∗ H∗ ∼= H∗P

Moreover, MU∗P and H∗(P,Z) must be of the same rank as MU∗-module
and H∗-module respectively. We prove the result by induction on the rank
of H∗(P,Z). Let this rank be k ≥ 1 and assume the result for all Q ∈ SpfpMU

with rk(H∗(Q,Z)) < k. Let Hi(P,Z) be the lowest non-zero homology group, by
Hurewicz we have πiP ≃ Hi(P,Z), hence there is a map Si → P corresponding
to the inclusion of a free summand of Hi(P,Z). Consider the cofibre sequence

Si → P → P ′

since the first map is injective in integral homology by construction, we obtain
a short exact sequence in integral homology, therefore H∗(P

′,Z) is free of rank
k − 1. Because of [2] lemma 3.1, this implies that MU∗P

′ is also free of the
same rank. We deduce that, since H∗(P,Z) → H∗(P

′,Z) is surjective, so is
MU∗P → MU∗P

′ (see [6]). By [7] lemma 4.23, νSl → νP → νP ′ is a fibre
sequence of synthetic spectra, but now νSl ≃ Sl,l and νP ′ belongs to C by
inductive hypothesis. Because SynMU is stable, that fibre sequence is also a
cofibre sequence, so after a rotation we see that νP can be written as a colimit
of Sl,l and ΣνP ′. ■

2.2 The synthetic dual Steenrod algebra

In this section we give an example of calculation in SynMU by computing the
synthetic dual Steenrod algebra.
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Definition 3. let H be the Eilemberg-MacLane spectrum HZ/p, we call νH the
synthetic Eilemberg-MacLane spectrum.

Observe that H is a commutative ring spectrum and ν : SpfpMU → SynMU

is lax symmetric monoidal, so νH is a commutative algebra in synthetic spec-
tra. As a consequence, νH∗,∗ is a bigraded commutative ring and νH∗,∗X is
a module over it for any synthetic spectrum X. Since H is an MU-module,
by [7] proposition 4.60, νH∗,∗ ≃ Fp[τ ]. To compute the dual Steenrod alge-
bra νH∗,∗νH we consider the MU-algebra given by BP , the Brown-Peterson
spectrum. It is a well known fact that BP∗ ≃ Z(p)[v1, v2, ...] and, by [4],
the spectrum BP/(v0, ..., vk) admits the structure of an MU-algebra such that
the quotient maps BP/(v0, ..., vk) → BP/(v0, ..., vk+1) are algebra morphisms.
Looking at the homotopy groups, we see that H ≃ lim

→
BP/(v0, ..., vk), then

since BP∗BP ≃ BP∗[b1, b2, ...], it follows that H∗BP ≃ Fp[b1, b2, ...]. Consider
the cofibre sequence of BP/(v0, ..., vk−1)-modules.

Σ2pk−2BP/(v0, ..., vk−1) → BP/(v0, ..., vk) → BP/(v0, ..., vk)

where the first map is multiplication by vk. We obtain a short exact sequence
of H∗BP/(v0, ..., vk−1)-modules passing in homology

H∗BP/(v0, ..., vk−1) → H∗BP/(v0, ..., vk) → H∗BP/(v0, ..., vk−1)[2p
k − 1]

Fix lifts τk of the unit of H∗BP/(v0, ..., vk−1)[2p
k − 1], together with bi they

additively generate the Steenrod algebra. For odd p, necessarily τ2k = 0 by
commutativity, so we have an induced map Fp[b1, b2, ...]⊗ E[τ0, τ1, ...] → H∗H.
When p = 2 we recall the calculations in [3] which show that we can obtain
the relations τ2k = bk+1, so in this case there is an induced map (F2[b1, b2, ...]⊗
F2[τ0, τ1, ...])/(τ

2
k = bk+1) → H∗H. In both cases the maps are injective by

dimension count, therefore they are isomorphisms and we have determined the
additive structure of H∗H. Now we try to apply similar techniques to the
synthetic version of H, so we compute νH∗,∗νH. Since BP is a direct summand
of MU(p), it is a filtered colimit of projectives, so we are in the hypothesis of [7]
proposition 4.24, and we obtain νBP ⊗ νX ≃ ν(BP ⊗X) for any X. It follows
that

νH∗,∗νBP ≃ π∗,∗ν(H ⊗BP ) ≃ Fp[b1, b2, ...][τ ]

with |bi| = (2pi−2, 2pi−2) and |τ | = (0,−1), where the last equivalence follows
from [7] proposition 4.60.

Lemma 2.3. For any k ≥ 0, the cofibre sequence of BP/(v0, ..., vk−1)-modules.

Σ2pk−2BP/(v0, ..., vk−1) → BP/(v0, ..., vk) → BP/(v0, ..., vk)

induce a short exact sequence

νH∗,∗νBP/(v0, ..., vk−1) → νH∗,∗νBP/(v0, ..., vk) → νH∗,∗νBP/(v0, ..., vk−1)[2p
k−1, 2pk−2]

of νH∗,∗νBP/(v0, ..., vk−1)-modules.
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Proof. The starting short exact sequence induces a short exact sequence in BP ,
and hence MU homology, therefore by [7] proposition 4.24

νΣ2pk−2BP/(..., vk−1) → νBP/(..., vk−1) → νBP/(..., vk)

is a cofibre sequence of synthetic spectra. Taking νH∗,∗ we obtain a long
exact sequence, we show that this splits in short exact sequences as vk acts
by zero on νH∗,∗νBP/(..., vk). First observe that, since multiplication by vk
induces a map of νH∗,∗νBP/(..., vk−1)-modules, it is sufficient to show that the
unit of νH∗,∗νBP/(..., vk−1) is sent to zero. this follows from the fact that the
unit is in the image of νH∗,∗νBP ≃ H∗BP [τ ] ≃ Fp[b1, ...][τ ] on which vk acts
by zero. ■

For each k let τk be a lift to νH2pk−1,2pk−2νBP/(..., vk) of the unit of
νH2pk−1,2pkνBP/(..., vk−1) in the short exact sequence of lemma 2.3. After
τ -inversion these τk reduce to τ top ∈ H2pk−1H in the topological Steenrod al-
gebra.

Corollary 2.3.1. The synthetic dual Steenrod algebra νH∗,∗νH is generated
by elements bk ∈ νH2pk−2,2pk−2 in the image of νH∗,∗νBP with k ≥ 1, the
elements τl ∈ νH2pl−1,2pl−2νH with l ≥ 0 and the element τ ∈ νH0,−1νH

Proof. We show that νH∗,∗νBP/(..., vk) is generated by the bi, τ and τi for
i ≤ k and then the result follows since νH∗,∗νH ≃ lim

→
νH∗,∗νBP/(..., vk). We

work by induction, the base case, follows from νH∗,∗νBP ≃ Fp[b1, b2, ...][τ ]. For
k ≥ 0, we use the short exact sequence from lemma 2.3 we have the short exact
sequence

νH∗,∗νBP/(v0, ..., vk−1) → νH∗,∗νBP/(v0, ..., vk) → νH∗,∗νBP/(v0, ..., vk−1)[2p
k−1, 2pk−2]

of νH∗,∗νBP/(v0, ..., vk−1)-modules. Therefore, νH∗,∗νBP/(v0, ..., vk) is an ex-
tension of cyclic νH∗,∗νBP/(v0, ..., vk−1)-modules and the generators of both of
these are respectively the unit and τk. ■

Corollary 2.3.2. The element τ acts injectively on the synthetic dual Steenrod
algebra νH∗,∗νH

Proof. Since νH∗,∗νH ≃ lim
→

νH∗,∗νBP/(..., vk) and the transition maps in

the diagram are injective, it’s enough to show that τ acts injectively on ev-
ery H∗,∗νBP/(..., vk), but this follows by induction on k using the short exact
sequence from lemma 2.3. ■

We can finally prove the structural theorems for the synthetic dual Steenrod
algebra.

Theorem 2.4. Let p be an odd prime and νH∗,∗νH the corresponding synthetic
dual Steenrod algebra. Then νH∗,∗νH ∼= Fp[b1, ...][τ ]⊗Fp E[τ0, ...] as a bigraded
algebra. In particular νH∗,∗νH ∼= H∗H ⊗Fp

Fp[τ ].
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Proof. We have seen that the algebra is generated by the bi, τk and τ and the
map νH∗,∗νBP → νH∗,∗νH induces an inclusion Fp[b1, ...][τ ]. Since |τk| =
(2pk − 1, 2pk − 2) are of odd topological degree, by commutativity we have that
τ2k = 0. We deduce that there is an induced map

Fp[b1, b2, ..., τ ]⊗Fp
E(τ0, τ1, ...) → νH∗,∗νH

Contemplating the short exact sequence of lemma 2.3, it is easy to see that this
map is also an isomorphism of Fp-vector spaces. Therefore it is an isomorphism
of algebras. ■

Theorem 2.5. Let p = 2 and νH∗,∗νH be the corresponding synthetic dual
Steenrod algebra. Then there is an isomorphism of bigraded algebras

νH∗,∗νH ∼= (F2[b1, b2, ..., τ, τ0, τ1, ...])/(τ
2
k = τ2bk+1)

Proof. We can repeat the argument of the previous lemma with the difference
that this time we want the relation τ2k = τ2bk+1. After τ -inversion bk+1, τk,
reduce to the usual elements btopk+1, τ

top
k ∈ H∗H. Here the relation btopk+1 = (τ topk )2

is classical, we deduce that bk+1 and τk coincides after multiplying both sides
by sufficiently large powers of τ . Since |bk+1| = (2pk+1 − 2, 2pk+1 − 2) and
|τk| = (2pk − 1, 2pk − 2) (with p = 2), the elements τ2bk+1 and τ2k are in the
same degree, so we must have τ l(τ2bk+1− τ2k ) = 0. However, by corollary 2.3.2,
τ acts injectively on νH∗,∗νH hence τ2bk+1 = τ2k . ■
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