Explicit models of Kummer surfaces in characteristic two
Points on a curve defined over a certain field

The Jacobian variety associated to the curve
Points on a curve defined over a certain field

The Jacobian variety associated to the curve

Given a curve, can we compute an explicit model of its Jacobian as a projective variety?
In theory, yes!
In theory, yes!

\[ C^{(g)} = \underbrace{C \times \cdots \times C}_{g} / S_g \]

Jacobian variety
In practice...

Models that work for all curves, but have complicated equations

Models that only work for special classes of curves, but have simpler equations
In this talk

Models that work for all curves, but have complicated equations

Models that only work for special classes of curves, but have simpler equations
Let $C : y^2 + h(x)y = f(x)$ be a hyperelliptic curve of genus $g \geq 1$ where $f(x), h(x) \in k[x]$, $\deg f(x) = 2g + 2$ and $\deg h(x) \leq g + 1$.

The curve has two different points at infinity that I will denote by $\infty_+$ and $\infty_-$. Then,

$$\Theta_+ = C \times \cdots \times C \times \{\infty_+\} \quad \text{and} \quad \Theta_- = C \times \cdots \times C \times \{\infty_-\}$$

define divisors of $C^{(g)}$ and an embedding of the Jacobian into projective space is given by $L(2(\Theta_+ + \Theta_-))$. 
But there is a drawback...

The embedding by $\mathcal{L}(2(\Theta_+ + \Theta_-))$ is given by the intersection of many conics:

<table>
<thead>
<tr>
<th>Genus</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$\ldots$</th>
<th>$g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{P}^n$ in which it embeds</td>
<td>3</td>
<td>15</td>
<td>63</td>
<td>$\ldots$</td>
<td>$4^g - 1$</td>
</tr>
<tr>
<td>Number of conics</td>
<td>2</td>
<td>72</td>
<td>1568</td>
<td>$\ldots$</td>
<td>$2^{g-1}(2^g - 1)^2$</td>
</tr>
</tbody>
</table>
# Kummer varieties

<table>
<thead>
<tr>
<th>Kummer variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $\mathcal{A}$ be an Abelian variety and let $\iota$ be the involution in $\mathcal{A}$ that sends an element to its inverse. Then, the <strong>Kummer variety</strong> associated to $\mathcal{A}$, $\text{Kum}(\mathcal{A})$ is the quotient variety $\mathcal{A}/\iota$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $g &gt; 1$, $\mathcal{A}[2]$ is the set of all fixed points under the action of $\iota$ and these points are singular points of $\text{Kum}(\mathcal{A})$.</td>
</tr>
</tbody>
</table>
Examples of Kummer varieties

Suppose that $k$ is a field of characteristic different than 2.

- If the dimension of $\mathcal{A}$ is 2, $\text{Kum}(\mathcal{A})$ is a surface described by a quartic in $\mathbb{P}^3$ with 16 $(A_1)$ nodal singularities.

- Generally, if the dimension of $\mathcal{A}$ is $g$, $\text{Kum}(\mathcal{A})$ can be found as an intersection in $\mathbb{P}^{2g-1}$.
Why are Kummer varieties relevant?

- Their models are considerably easier.
- They are not Abelian varieties, so they do not have a group law. However, they inherit a pseudo-group law.
- For a hyperelliptic curve $C$, the projective embedding of the Kummer variety associated to the Jacobian of $C$ is given by $\mathcal{L}(\Theta_+ + \Theta_-)$. 
1. The Jacobian variety

We shall work with a general curve $C$ of genus 2, over a ground field $K$ of characteristic not equal to 2, 3 or 5, which may be taken to have hyperelliptic form

$$C : Y^2 = F(X) = f_6 X^6 + f_5 X^5 + f_4 X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0$$  \hspace{1cm} (1)$$

with $f_0, \ldots, f_6$ in $K$, $f_6 \neq 0$, and $\Delta(F) \neq 0$, where $\Delta(F)$ is the discriminant of $F$. In $\mathbb{F}_5$ there is, for example, the curve $Y^2 = X^5 - X$ which is not birationally equivalent to the above form.

1. Canonical form. We shall normally suppose that the characteristic of the ground field is not 2 and consider curves $C$ of genus 2 in the shape

$$C : Y^2 = F(X),$$  \hspace{1cm} (1.1.1)$$

where

$$F(X) = f_0 + f_1 X + \ldots + f_6 X^6 \in k[X].$$  \hspace{1cm} (1.1.2)$$

2. Set-up

Let $k$ be a field of characteristic not equal to two, $k^s$ a separable closure of $k$, and $f = \sum_{i=0}^{6} f_i X^i \in k[X]$ a separable polynomial with $f_6 \neq 0$. Denote by $\Omega$ the set of the six roots of $f$ in $k^s$, so that $k(\Omega)$ is the splitting field of $f$ over $k$ in $k^s$. Let $C$ be the smooth projective
But what is so special about characteristic 2?

In algebraically closed fields of characteristic 2, the 2-torsion of the Jacobian of a curve \( C \) of genus \( g \) is

\[
\mathcal{J}(C)[2] \cong (\mathbb{Z}/2\mathbb{Z})^r
\]

for some \( 0 \leq r \leq g \).
The singularities of Kummer surfaces

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>2-ranked</th>
<th>Not 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of singularities</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Singularity type</td>
<td>Elliptic</td>
<td>$D_8$</td>
</tr>
</tbody>
</table>
For a Kummer surface defined over a field of characteristic different than 2 we know an explicit model of its desingularisation described as the intersection of 3 quadrics in $\mathbb{P}^5$.

But how can we obtain desingularised models of Kummer surfaces in characteristic 2?
For a general genus 2 curve $C : y^2 + h(x)y = f(x)$ defined over a number field whose Jacobian has good reduction at all primes lying above 2, I am working on computing a basis of $L(2(\Theta_+ + \Theta_-))$ which ”behaves well” when reducing modulo 2.

As a byproduct of this computation, models of partial desingularisations of Kummer surfaces in characteristic 2 can be found.
Is it possible to construct explicit models of Kummer surfaces defined over a number field with everywhere good reduction?

Is this possible over quadratic fields?
Thank you!