$\Gamma(\mathbf{n}), \Gamma_{1}(\mathbf{n})$ and $\Gamma_{0}(\mathbf{n})$-structures

Alvaro Gonzalez Hernandez

Study group on moduli problems of elliptic curves
October 27, 2023

1 Introduction

The main reference for this talk is the book Arithmetic Moduli of Elliptic Curves [KM85] by Katz and Mazur and, more specifically, chapters 1 and 3.

2 Effective Cartier divisors

2.1 What is an effective Cartier divisors over a scheme?

An intuitive way of describing effective Cartier divisors on an S-scheme, is that they are families of effective divisors parametrised by S that behave in a sensible way. More rigurously,

Definition 2.1. Let S be an arbitrary scheme and let X be an S-scheme (that means there is a proper smooth morphism $\pi: X \rightarrow S$). An effective Cartier divisor D in X / S is a closed subscheme $D \subset X$ such that

- D is flat over S, i.e. the restriction morphism $\left.\pi\right|_{S}: D \rightarrow S$ is flat (intuitively, the fibers of the map are of constant dimension).
- The ideal sheaf $\mathcal{I}(D) \subset \mathcal{O}_{X}$ is an invertible \mathcal{O}_{X}-module i.e. it is a locally free \mathcal{O}_{X}-module of rank 1.

It is important to remark that this notion is "local" on S. Namely, whenever S is an affine scheme $S=\operatorname{Spec}(R)$, we can cover X by affine opens $U_{i}=\operatorname{Spec}\left(A_{i}\right)$ where A_{i} is an R-algebra such that $D \cap U_{i}$ is defined in U_{i} by one equation $f_{i}=0$, where $f_{i} \in A_{i}$ is an element such that

- $A_{i} / f_{i} A_{i}$ is flat over R.
- f_{i} is not a zero divisor in A_{i}.

The ideal sheaf of D fits in an exact sequence

$$
0 \longrightarrow \mathcal{I}(D) \longrightarrow \mathcal{O}_{X} \longrightarrow i_{*} \mathcal{O}_{D} \longrightarrow 0
$$

In every open subset $U_{i}=\operatorname{Spec}\left(A_{i}\right)$, this becomes the exact sequence

$$
0 \longrightarrow A_{i} \xrightarrow{\times f_{i}} A_{i} \longrightarrow A_{i} / f_{i} A_{i} \longrightarrow 0
$$

Given two effective Cartier divisors D and D^{\prime} in X / S, their sum $D+D^{\prime}$ is the effective Cartier divisor in X / S defined locally by the product of the defining equations of D and D^{\prime}. Explicitly, if $S=\operatorname{Spec}(R)$ and if on an affine open $\operatorname{set} \operatorname{Spec}(A)$ of X, D and D^{\prime} are defined respectively by equations $f=0$ and $g=0$, then $D+D^{\prime}$ is defined in that open set by $f g=0$. For all $f, g \in A$, we then have a short exact sequence

$$
0 \longrightarrow A / g A \xrightarrow{\times f} A / f g A \longrightarrow A / f A \longrightarrow 0 .
$$

Remark 2.2. There is another interpretation of effective Cartier divisors as pairs (\mathcal{L}, s) where \mathcal{L} is an invertible \mathcal{O}_{X}-module and $s \in H^{0}(X, \mathcal{L})$ which sits in a short exact sequence of \mathcal{O}_{X}-modules

$$
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{\times s} \mathcal{L} \longrightarrow \mathcal{L} / \mathcal{O}_{X} \longrightarrow 0
$$

with $\mathcal{L} / \mathcal{O}_{X}$ flat over S.

2.2 Examples of effective Cartier divisors

1. Let k be a field and let X be a smooth variety over k. Then, in $X / \operatorname{Spec}(k)$, effective Cartier divisors are precisely in correspondence with effective Weil divisors (closed integral subschemes D of codimension one).
2. Let k be a field and let X be the affine smooth variety

$$
X: x y-z^{2}=0 \subset \mathbb{A}^{3}
$$

Then, the closed subscheme $D \subset X$ defined by

$$
D: x=z=0
$$

is an effective Cartier divisor but not a Weil divisor (though $2 D$ is a Weil divisor) [Har77, Example 6.11.13].
3. Let E be the curve over $\mathbb{A}_{t}^{1} \backslash\{-1,8\}$ defined by

$$
\begin{equation*}
E: z y^{2}=(x-2 z)\left(4 x(x-z)-t z^{2}\right) \subset \mathbb{P}_{x, y, z}^{2} \tag{2.3}
\end{equation*}
$$

Then, $D_{t}=\{[2: 0: 1]\}$ is an effective Cartier divisor. If we interpret E as an elliptic surface, D_{t} would be given by the yellow line in the following plot:

2.3 Effective Cartier divisors in curves

Let C / S be a smooth curve defined over a scheme S, which is a smooth morphism $C \rightarrow S$ of relative dimension one which is separated and of finite presentation. In a similar way as in the first example that has been given, there are nice characterisations for the Cartier divisors of C [KM85, Lemma 1.2.3.]. For instance, any section $s \in C(S)$ defines an effective Cartier divisor [s] in C / S, as we have seen in the last example.

Given a proper effective Cartier divisor D over S (all effective Cartier divisors are proper if we assume the morphism $C \rightarrow S$ is proper, so this is not much to ask), we can always associate a notion of degree to it. The idea is that, locally on $S=\operatorname{Spec}(R)$, the affine ring of D is a locally free R-module of finite rank r, and as this is well-defined (it is constant Zariski locally on S), we can define $\operatorname{deg}(D)$ to be r.

Two nice facts about this notion of degree is that any effective Cartier divisor $[s]$ associated to a section $s \in C(s)$ is proper an has degree 1 and, conversely, every proper effective Cartier divisor of degree 1 is $[s]$ for some section $s \in C(s)$. Furthermore, if we have two proper effective Cartier divisors D_{1} and D_{2} in C / S we have that

$$
\operatorname{deg}\left(D_{1}+D_{2}\right)=\operatorname{deg}\left(D_{1}\right)+\operatorname{deg}\left(D_{2}\right)
$$

$3 \boldsymbol{A}$-structures on elliptic curves

Let E / S be a smooth commutative group-scheme over S of relative dimension one (the example that we must have in mind is when E is an elliptic curve over S) and let A be a finite abelian group.

Definition 3.1. An \boldsymbol{A}-structure on E / S is a homomorphism of abstract groups

$$
\phi: A \longrightarrow E(S)
$$

such that the effective Cartier divisor D defined as

$$
D=\sum_{a \in A}[\phi(a)] \quad \operatorname{deg}(D)=\# A
$$

is a subgroup G of E / S.
We call the subgroup G the \boldsymbol{A}-subgroup generated by ϕ and we call ϕ an \boldsymbol{A}-generator of G.
There is an alternative equivalent definition to A-structures that is sometimes easier to check, which is characterised by the following proposition [KM85, Lemma 1.5.3.].

Proposition 3.2. Let $A, E / S$ and ϕ as before. Then, ϕ is an A-structure on E / S if and only if for every geometric point $\operatorname{Spec}(k) \rightarrow S$ of S, the induced homomorphism

$$
\phi_{k}: A \longrightarrow E(k)
$$

is injective.
Let's now see some examples of A-structures:

3.1 $\quad \Gamma(\mathbf{n})$-structures

Let E / S be an elliptic curve over S, then
Definition 3.3. $A \boldsymbol{\Gamma}(\mathbf{n})$-structure on E / S is a $(\mathbb{Z} / n \mathbb{Z})^{2}$-structure on $E[n] / S$.
Explicitly, this means that the effective Cartier divisor

$$
\sum_{a, b}[\phi(a, b)]
$$

is a subgroup scheme of E.

An example of a $\Gamma[2]$-structure is the elliptic curve over $\operatorname{Spec}\left(\mathbb{Z}_{(2)}\right)$ (the integers localised at the prime 2) defined by the equation

$$
E: z y^{2}=x(x-z)(x+z)
$$

Then, ϕ is given by

$$
\begin{aligned}
\phi:(\mathbb{Z} / 2 \mathbb{Z})^{2} & \longrightarrow E\left[\operatorname{Spec}\left(\mathbb{Z}_{(2)}\right)\right] \\
(0,0) & \longmapsto[0: 1: 0] \\
(0,1) & \longmapsto[1: 0: 1] \\
(1,0) & \longmapsto[-1: 0: 1]
\end{aligned}
$$

and the effective Cartier divisor associated to this structure is

$$
D=[0: 1: 0]+[1: 0: 1]+[-1: 0: 1]+[0: 0: 1]
$$

$3.2 \quad \Gamma_{1}(\mathbf{n})$-structures

Let E / S be an elliptic curve over S, then
Definition 3.4. $A \boldsymbol{\Gamma}_{\mathbf{1}}(\mathbf{n})$-structure on E / S is an $\mathbb{Z} / n \mathbb{Z}$-structure on $E[n] / S$.
Explicitly, this means that the effective Cartier divisor

$$
\sum_{a}^{(\bmod n)}[\phi(a)]
$$

is a subgroup scheme of E.
An example of a $\Gamma_{1}[2]$-structure is the elliptic curve defined by the equation 2.3 if the ground field has characteristic different than 2. Then, ϕ is given by

$$
\begin{aligned}
\phi: \mathbb{Z} / 2 \mathbb{Z} & \longrightarrow E[2]\left(\mathbb{A}^{1} \backslash\{-1,8\}\right) \\
0 & \longmapsto[0: 1: 0] \\
1 & \longmapsto[2: 0: 1]
\end{aligned}
$$

and the effective Cartier divisor associated to this structure is $D=[0: 1: 0]+[2: 0: 1]$.
In a $\Gamma_{1}(n)$-structure, the image of 1 is what is known as a point of order n, so in this case $P=[2: 0: 1]$ is a point of order 2 .

Equivalent, we can describe a $\Gamma_{1}(n)$-structure on E / S as an n-isogeny of elliptic curves over S, $\pi: E \rightarrow E^{\prime}$ together with a generator of $\operatorname{ker}(\pi)$, which is a point

$$
P \in \operatorname{ker}(\pi)(S) \subset E[n](S)
$$

such that the corresponding homomorphism

$$
\begin{aligned}
\varphi: \mathbb{Z} / N \mathbb{Z} & \longrightarrow \operatorname{ker}(\pi) \\
a & \longmapsto a P
\end{aligned}
$$

generates $\operatorname{ker}(\pi)$.
This motivates the following definition:

3.3 Balanced $\Gamma_{1}(\mathbf{n})$-structures

Definition 3.5. A balanced $\Gamma_{\mathbf{1}}(\mathbf{n})$-structure on E / S is a choice of an n-isogeny $\pi: E \rightarrow E^{\prime}$ and two points $P \in E$ and $P^{\prime} \in E^{\prime}$ such that

where $\hat{\pi}$ is the dual isogeny (so that $\hat{\pi} \circ \pi=[n]_{E}$ and $\pi \circ \hat{\pi}=[n]_{E^{\prime}}$), $P \in \operatorname{ker}(\pi)(S)$ is a generator of $\operatorname{ker}(\pi)$ and $P^{\prime} \in \operatorname{ker}(\hat{\pi})(S)$ is a generator of $\operatorname{ker}(\hat{\pi})$.

This is an intermediate structure that is finer than regular $\Gamma_{1}(n)$-structures but without containing as much information as $\Gamma(n)$-structures. Finally, we have the following:

$3.4 \quad \Gamma_{0}(\mathrm{n})$-structures

Let $T \rightarrow S$ a "nice" morphism of schemes and let X / S a scheme over S. Then, $X \times{ }_{S} T$ is a scheme over T that we will denote by X_{T}.

Definition 3.6. $A \boldsymbol{\Gamma}_{\mathbf{0}}(\mathbf{n})$-structure on E / S is an n-isogeny $\pi: E \rightarrow E^{\prime}$ which is cyclic in the sense that locally fppf on $S, \operatorname{ker}(\pi)$ admits a generator. This means that there exists some faithfully flat, locally of finite presentation morphism $T \rightarrow S$ and a point $P \in E_{T}(T)$ of order n on E_{T} / T which generates $\operatorname{ker}(\pi)_{T}$ in E_{T} such that we have an equality of Cartier divisors

$$
\operatorname{ker}(\pi)_{T}=\sum_{a=1}^{n}[a P]
$$

3.5 Factorisation into prime powers

In some sense, when n is a compound number that decomposes as $n=a b$ where a and b are coprime, we can decompose $\Gamma(n)$-structures into $\Gamma(a)$ and $\Gamma(b)$-structures, and the same is true for the other A-structures that we have studied. More precisely, we have the following result $[\mathrm{KM} 85$, Lemma 3.5.1.].

Theorem 3.7. Suppose that $n=a b$ with a and b relatively prime. Then, for any elliptic curve E / S, we have functorial isomorphisms

$$
\begin{aligned}
\Gamma(n)-\operatorname{Str}(E / S) & \longrightarrow \Gamma(a)-\operatorname{Str}(E / S) \times \Gamma(b)-\operatorname{Str}(E / S) \\
\Gamma_{1}(n)-\operatorname{Str}(E / S) & \longrightarrow \Gamma_{1}(a)-\operatorname{Str}(E / S) \times \Gamma_{1}(b)-\operatorname{Str}(E / S) \\
\operatorname{Bal} \Gamma(n)-\operatorname{Str}(E / S) & \longrightarrow \operatorname{Bal} \Gamma(a)-\operatorname{Str}(E / S) \times \operatorname{Bal} \Gamma(b)-\operatorname{Str}(E / S) \\
\Gamma_{0}(n)-\operatorname{Str}(E / S) & \longrightarrow \Gamma_{0}(a)-\operatorname{Str}(E / S) \times \Gamma_{0}(b)-\operatorname{Str}(E / S)
\end{aligned}
$$

In future talks, this functorial correspondence will be further explored when we study the representability of all of these A-structures.

References

[Har77] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springer New York, New York, NY, 1977.
[KM85] Nicholas M. Katz and Barry Mazur. Arithmetic Moduli of Elliptic Curves. Princeton University Press, 121985.

