ALVARO GONZALEZ HERNANDEZ

University of Warwick

Local normal forms of non-commutative potentials

Plan for the talk

How can we study a singularity?

Analytically

Birationally
Topologically

Du Val singularity

A surface has a du Val singularity at a point p, if locally it is analytically isomorphic to $f(x, y, z)=0$ where $f \in \mathbb{C}[[x, y, z]]$ is one of the following:

$$
\begin{array}{lrr}
\quad & & \text { Type } \\
x y+z^{n+1} & \text { for } n \geq 1 & A_{n} \\
x^{2}+y^{2} z+z^{m-1} & \text { for } m \geq 4 & D_{m} \\
x^{2}+y^{3}+z^{4} & & E_{6} \\
x^{2}+y^{3}+y z^{3} & & E_{7} \\
x^{2}+y^{3}+z^{5} & & E_{8}
\end{array}
$$

All du Val singularities can be resolved through a finite number of blow-ups and, furthermore, all exceptional curves are rational (-2)-curves.

Their dual intersection diagrams are in correspondence with simply laced Dynkin diagrams:

The topology of a du Val singularity

These du Val singularities are also analytically isomorphic to the quotient of \mathbb{C}^{2} by the action of a finite group:

Singularity type	
$A_{n} \quad(n \geq 1)$	Croup
$D_{m} \quad(m \geq 4)$	Binary dihedral of order $4(m-2)$
E_{6}	Binary tetrahedral
E_{7}	Binary octahedral
E_{8}	Binary icosahedral

What can we do next?

1. Compound du Val singularities

Compound du Val singularities on 3-folds

Compound du Val singularities

A 3-fold has a compound du Val (cDV) singularity at a point p, if locally it is analytically isomorphic to

$$
f(x, y, z)+\operatorname{tg}(x, y, z, t)=0
$$

where $f \in \mathbb{C}[[x, y, z]]$ defines a du Val singularity and $g \in \mathbb{C}[[x, y, z, t]]$ is arbitrary.

Great source:
A lockdown survey on cDV singularities, Michael Wemyss, https://arxiv.org/abs/2103.16990

What happens when we try to analyse cDV singularities?

"There is no good and easy 'list' of cDV singularities, there are uncountably many of them, [...] their representation theory is almost always wild, and their birational geometry is more complicated than that for surfaces. Basically, they are just harder (than du Val singularities)."

Why do we still try, then?

Varieties with cDV singularities are a good testing ground for a very ambitious geometric programme known as the Minimal Model Programme.
$\{$ Gorenstein terminal $\} \subset\{c D V\} \subset\{$ Gorenstein canonical $\}$

The Minimal Model Programme

The Minimal Model Programme

The Minimal Model Programme

The Minimal Model Programme

The Minimal Model Programme

The Minimal Model Programme

The Minimal Model Programme

Minimal Model

The Minimal Model Programme

for 3 -folds

Problems with minimal models of 3-folds

Going up to dimension 3, there are some drawbacks of minimal models:
(1) Minimal models can be singular.
(2) Minimal models are not unique, but rather, they are related through a type of birational surgeries known as flops.

Consider the hypersurface $X \subset \mathbb{C}^{4}$ given by the equation $x y-u v=0$ and suppose that we want to resolve the singularity at the origin. We have the 3 following possibilities:

- Blowing-up the origin.
- Blowing-up the line $y=u=0$.
- Blowing-up the line $x=v=0$.

Atiyah flop

In the previous example, by the change of coordinates $u=z-t, v=z+t$, at zero the local ring is

$$
\mathcal{R}=\frac{\mathbb{C}[[x, y, z, t]]}{x y-z^{2}+t^{2}}
$$

which shows that the singularity is cDV of type $c A_{1}$.

Not all cDV singularities have to be isolated. For instance, consider the variety given by
$x^{3}-y^{3}+z^{2}-x y t=0$.
The singular subscheme of this variety is the line of the t-axis and this is a $c D_{4}$ singularity. A crepant resolution would be given by blowing-up the singular locus. The exceptional locus of the transformation would be 2-dimensional.

(1)
(2)

What happened when we tried to analyse cDV singularities?

"There is no good and easy 'list' of cDV singularities, there are uncountably many of them, [...] their representation theory is almost always wild, and their birational geometry is more complicated than that for surfaces. Basically, they are just harder (than du Val singularities)."

Studying cDV singularities

Consider a crepant partial resolution

$$
f: \mathcal{X} \rightarrow \operatorname{Spec} \mathcal{R}
$$

with

$$
\mathcal{R}=\frac{\mathbb{C}[[x, y, z, t]]}{f+t g}
$$

a cDV singularity.
Over the unique closed point p of $\operatorname{Spec} \mathcal{R}$, consider $C:=f^{-1}(p)$ equipped with its reduced scheme structure, namely $C^{\text {red }}$.

Contraction algebra

From the reduced scheme $C^{\text {red }}$, using non-commutative deformation theory, we can construct

The contraction algebra $A^{c o n}$ is a noncommutative algebra which controls all the birational geometry locally around p, allowing us for instance to tell whether two cDV singularities are non-isomorphic or what are some of their topological invariants.
(1) cDV singularities are a class of singularities on 3-folds that play a relevant role on the Minimal Model Programme.
(2) The minimal models of these singularities are susceptible to birational transformations named flops that can either come as curve-to-point or divisor-to-curve contractions.
(3) These flops are regulated by mysterious non-commutative objects known as contraction algebras.

2. A crash course on non-commutative algebra

In some sense, the theory of contraction algebras resembles the theory of plane curves, but over a non-commutative ring

Commutative side Non-commutative side

$$
\begin{array}{cc}
\mathbb{C}[x, y] & \mathbb{C}\langle x, y\rangle \\
\mathbb{C}[[x, y]] & \mathbb{C}\langle\langle x, y\rangle\rangle \\
f(x, y) \in \mathbb{C}[[x, y]] & f(x, y) \in \mathbb{C}\langle\langle x, y\rangle\rangle
\end{array}
$$

Studying non-commutative potentials

For curves, a very important object is the local algebra given by the quotient by the Jacobian ideal

$$
\frac{\mathbb{C}[[x, y]]}{\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)}
$$

so let's see how to generalise it to the non-commutative case.

Non-commutative derivatives

Let z_{k} denote the symbol in a monomial that is in the k-th position, which can either be x or y.
We define the following \mathbb{C}-linear homomorphisms acting on monomials of degree t by

$$
\begin{aligned}
& \partial_{x}\left(z_{1} z_{2} \cdots z_{t}\right)= \begin{cases}z_{2} \cdots z_{t} & \text { if } z_{1}=x \\
0 & \text { otherwise }\end{cases} \\
& \partial_{y}\left(z_{1} z_{2} \cdots z_{t}\right)= \begin{cases}z_{2} \cdots z_{t} & \text { if } z_{1}=y \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Non-commutative derivatives

We also define

$$
\operatorname{cyc}\left(z_{1} z_{2} \cdots z_{t}\right)=\sum_{j=1}^{t} z_{j} z_{j+1} \cdots z_{t} z_{1} \cdots z_{j-1}
$$

Then, the linear derivatives δ_{x} and δ_{y} of a potential f are defined to be

$$
\begin{aligned}
\delta_{x} f & =\partial_{x}(\operatorname{cyc}(f)) \\
\delta_{y} f & =\partial_{y}(\operatorname{cyc}(f))
\end{aligned}
$$

Generating an ideal from a set of elements

Let \mathfrak{n} be the two-sided maximal ideal of \mathbb{C} formed by power series with zero constant term. For any subset $S \subset \mathbb{C}\langle\langle x, y\rangle\rangle$, its closure is defined to be

$$
\bar{S}=\bigcap_{i=0}^{\infty}\left(S+\mathfrak{n}^{i}\right)
$$

meaning, $\bar{s} \in \bar{S}$ if and only if for all $i \geq 0$, there exists $s_{i} \in S$ such that $\bar{s}-s_{i} \in \mathfrak{n}^{i}$. If $\left(g_{1}, \ldots, g_{n}\right)$ is an ideal, we denote by $\left(\left(g_{1}, \ldots, g_{n}\right)\right)$ its closure .

Now, in analogy to the commutative case, we can define the Jacobi algebra of a potential f to be the quotient

$$
\operatorname{Jac}(f)=\frac{\mathbb{C}\langle\langle x, y\rangle\rangle}{\left(\left(\delta_{x} f, \delta_{y} f\right)\right)}
$$

In the commutative case, the dimension of the corresponding local algebra is the Milnor number, which gives us a measure of the the complexity of a curve at the origin:

$$
\mu(f)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}[[x, y]]}{\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)}
$$

For most examples of $f, \operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f)$ is infinite so we would also be interested in developing a relevant notion of dimension for Jacobi algebras.

Let \mathfrak{J} denote the Jacobson ideal of $\operatorname{Jac}(f)$.

$$
\begin{aligned}
& \operatorname{Jdim}(\operatorname{Jac}(f)):=\inf \{r \in \mathbb{R} \mid \text { for some } c \in \mathbb{R}, \\
& \operatorname{dim} \operatorname{Jac}(f) / \mathfrak{J}^{n} \leq c n^{r} \\
&\text { for every } n \in \mathbb{N}\},
\end{aligned}
$$

This dimension has nice properties such as for instance, that if $\operatorname{Jdim}(\operatorname{Jac}(f)) \leq 1$, either $\operatorname{Jdim}(\operatorname{Jac}(f))=0$ or $\operatorname{Jdim}(\operatorname{Jac}(f))=1$.

Connections with $A^{\text {con }}$

Characterisation of contraction algebras

If $A^{c o n}$ is a contraction algebra associated to a crepant resolution of a cDV singularity $\mathcal{X} \rightarrow$ Spec \mathcal{R}, then, it is the Jacobi algebra of a potential of $\mathbb{C}\langle\langle x, y\rangle\rangle$ with $\operatorname{Jdim}(\operatorname{Jac}(f)) \leq 1$. Furthermore,
1- $\operatorname{Jdim} A^{\text {con }}=0$ if and only if $\mathcal{X} \rightarrow \operatorname{Spec} \mathcal{R}$ is a flop.
2- $\operatorname{Jdim} A^{\text {con }}=1$ if and only if $\mathcal{X} \rightarrow \operatorname{Spec} \mathcal{R}$ is a divisorial contraction to a curve.

The main two theorems of the talk

Theorem 1 (Brown, Wemyss)

The only contraction algebras for Type A and D flops are, up to isomorphism, the Jacobi algebras of the following Type A and D potentials:

$$
\begin{array}{lll}
\hline \text { Name } & \text { Local normal form } & \text { Conditions } \\
\hline A_{n} & x^{2}+y^{n} & n \geq 2 \\
D_{n, m} & x y^{2}+x^{2 n}+x^{2 m-1} & n, m \geq 2, m \leq 2 n-1 \\
D_{n, \infty} & x y^{2}+x^{2 n} & n \geq 2
\end{array}
$$

Theorem 2 (Brown, Wemyss)

The only contraction algebras for Type A and D divisorial contractions are, up to isomorphism, the Jacobi algebras of the following Type A and D potentials:

Name	Local normal form	Conditions
A_{∞}	x^{2}	
$D_{\infty, m}$	$x y^{2}+x^{2 m-1}$	$m \geq 2$
$D_{\infty, \infty}$	$x y^{2}$	

Du Val singularity

A surface has a du Val singularity at a point p, if locally it is analytically isomorphic to $f(x, y, z)=0$ where $f \in \mathbb{C}[[x, y, z]]$ is one of the following:

$$
\begin{array}{lrr}
\quad & f & \text { Type } \\
x y+z^{n+1} & \text { for } n \geq 1 & A_{n} \\
x^{2}+y^{2} z+z^{m-1} & \text { for } m \geq 4 & D_{m} \\
x^{2}+y^{3}+z^{4} & & E_{6} \\
x^{2}+y^{3}+y z^{3} & & E_{7} \\
x^{2}+y^{3}+z^{5} & & E_{8}
\end{array}
$$

Normal forms of du Val singularities in positive characteristic

In characteristic $p=5$.

name	normal form for $f \in k[[x, y, z]]$	
$A_{n}, D_{n}, E_{6}, E_{7}$	classical forms	
E_{8}	E_{8}^{0}	$z^{2}+x^{3}+y^{5}$
	E_{8}^{1}	$z^{2}+x^{3}+y^{5}+x y^{4}$

In characteristic $p=3$.

name	normal form for $f \in k[[x, y, z]]$	
A_{n}, D_{n}	classical forms	
E_{6}	E_{6}^{0}	$z^{2}+x^{3}+y^{4}$
	E_{6}^{1}	$z^{2}+x^{3}+y^{4}+x^{2} y^{2}$
E_{7}	E_{7}^{0}	$z^{2}+x^{3}+x y^{3}$
	E_{7}^{1}	$z^{2}+x^{3}+x y^{3}+x^{2} y^{2}$
E_{8}	E_{8}^{0}	$z^{2}+x^{3}+y^{5}$
	E_{8}^{1}	$z^{2}+x^{3}+y^{5}+x^{2} y^{3}$
	E_{8}^{2}	$z^{2}+x^{3}+y^{5}+x^{2} y^{2}$

In characteristic $p=2$.

name	normal form for $f \in k[[x, y, z]]$		
A_{n}	$z^{n+1}+x y$		
$D_{2 m}$	$D_{2 m}^{0}$	$z^{2}+x^{2} y+x y^{m}$	$m \geq 2$
$D_{2 m+1}$	$D_{2 m}^{r}$	$z^{2}+x^{2} y+x y^{m}+x y^{m-r} z$	$m \geq 2,1 \leq r \leq m-1$
	$D_{2 m+1}^{0}$	$z^{2}+x^{2} y+y^{m} z$	$m \geq 2$
	$D_{2 m+1}^{r}$	$z^{2}+x^{2} y+y^{m} z+x y^{m-r} z$	$m \geq 2,1 \leq r \leq m-1$
E_{6}	E_{6}^{0}	$z^{2}+x^{3}+y^{2} z$	
	E_{6}^{1}	$z^{2}+x^{3}+y^{2} z+x y z$	
E_{7}	E_{7}^{0}	$z^{2}+x^{3}+x y^{3}$	
	E_{7}^{1}	$z^{2}+x^{3}+x y^{3}+x^{2} y z$	
	E_{7}^{2}	$z^{2}+x^{3}+x y^{3}+y^{3} z$	
	E_{7}^{3}	$z^{2}+x^{3}+x y^{3}+x y z$	
E_{8}	E_{8}^{0}	$z^{2}+x^{3}+y^{5}$	
	E_{8}^{1}	$z^{2}+x^{3}+y^{3}+x y^{3} z$	
	E_{8}^{2}	$z^{2}+x^{3}+y^{5}+x y^{2} z$	
	E_{8}^{3}	$z^{2}+x^{3}+y^{5}+y^{3} z$	
	E_{8}^{4}	$z^{2}+x^{3}+y^{5}+x y z$	

How to get a
 classification for all local normal forms of non-commutative potentials in positive characteristic?

Thank you!
 Any questions?

