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1 Introduction

The main sources for this talk are the notes of James S. Milne [Mil08a] and the book of David
Mumford [Mum70] on abelian varieties.

Definition 1.1. Recall that an abelian variety is

• A group variety, i.e. an algebraic variety A over k endowed with regular maps

+ : A×k A −→ A,

inv : A −→ A,

0 : Spec(k) −→ A.

behaving like the addition, the map that sends any element to its inverse and the identity
element 0 of an additive group, respectively, in a way that is consistent with the group
axioms.

• Geometrically connected i.e. it remains connected when we extend scalars to the algebraic
closure.

• Complete i.e. for any variety B, the projection morphism A×B → B is a closed map (i.e.
maps closed sets onto closed sets).

For a point a ∈ A, we can define an isomorphism ta : A → A called the right translation by
a as the composite

A
1×a−−→ A× A

+−−→ A

x 7−→ (x, a) 7−→ x+ a
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2 The rigidity theorem

A surprising fact about abelian varieties is that their group law is commutative. This is a
consequence from the fact that regular maps from complete varieties are in some sense rigid,
as demonstrated by the following theorem:

Theorem 2.1 (Rigidity Theorem). Let α : V × W → U be a regular map and assume that
the variety V is complete and that V × W is geometrically irreducible. If there exist points
u0 ∈ U(k), v0 ∈ V (k) and w0 ∈ W (k) such that

α(V × {w0}) = {u0} = α({v0} ×W )

then,

α(V ×W ) = {u0}.

An intuitive explanation of this statement is that if we are able to find a map α that contracts
a copy of V and a copy of W to the same point {u0}, then, α contracts the whole space into that
same point.

Proof. Since the hypotheses continue to hold after extending scalars from k to k̄, we can assume
k is algebraically closed.

Let U0 be an open affine neighbourhood of u0 and let π2 : V × W → W be the projection
into the second component. Let Z denote the set of second coordinates of points of V × W not
mapping into U0. This is defined as Z := π2(α

−1(U \U0)) and it is closed in W , as V is complete.

A point w ∈ W lies outside of Z if and only if α(V × {w}) ⊂ U0. In particular, w0 lies outside
of Z so W \ Z is non-empty.

It is a fact that whenever we have a regular map from a complete and connected variety into
an affine variety, the image is always a point [Mil08b, Theorem 7.5]. As V × {w} is complete and
connected (it is irreducible) and U0 is affine, α(V × {w}) must be a point whenever w ∈ W \ Z.
In fact,

α(V × {w}) = α(v0, w) = {u0}.

As a consequence, we deduce that α is constant on V × (W \Z). As V × (W \Z) is non-empty
and open in V ×W and V ×W is irreducible, V × (W \Z) is dense in V ×W . As U is separated,
α must agree with the constant map on the whole of V ×W .
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A corollary of this theorem is the following:

Corollary 2.2. Every regular map α : A → B of abelian varieties is the composite of a homomorphism
with a translation.

Proof. Let b = α(0). Then, α = tb ◦ α0 where α0(0) = 0, and the only thing left that we need to
show is that α0 is a homomorphism. Consider the map

φ : A× A −→ B

(a, a′) 7−→ α0(a+ a′)− α0(a)− α0(a
′)

The goal is to show that φ is constantly 0. It is easy to see that φ is a regular map as it is the
difference of the two regular maps (α0 ◦ +) and (+ ◦ (α0 × α0)) in the following commutative
diagram:

A× A A

B ×B B

+

α0×α0 α0

+

As φ(A × 0) = 0 = φ(0 × A), from the previous theorem, we deduce that φ = 0 and α0 is a
homomorphism.

It is an easy exercise to the reader to show the fact that commutative groups are characterised
by the property that the map inv that sends every element to its inverse is a homomorphism. As
inv(0) = 0, from the last corollary we deduce that inv is a homomorphism and therefore,

Corollary 2.3. The group law on an abelian variety is commutative.

Now that we have proven one of the main properties of abelian varieties, we can start working
on setting the foundations to prove another important result, which is the existence of a dual
abelian variety.

3 Invertible sheaves

These definitions can all be found in chapter 13 of Milne’s notes on algebraic geometry [Mil08b].

Suppose we have an affine variety V = Spec(R) and let M be a finitely generated R-module.
Then, there is a unique sheaf of OV -modules M on V such that for all f ∈ R,

Γ(D(f),M) = Rf ⊗R M,

where Rf is the localisation of R at f .

This OV -module M is said to be coherent.
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There is, in fact, a fully faithful functor, from the category of finitely generated R-modules
to the category of coherent OV -module defined by M 7→ M with a quasi-inverse M 7→ Γ(V,M).

Now, consider a (not necessarily affine variety) V . An OV -module M is said to be coherent
if, for every open affine subset U of V , M|U is coherent.

The easiest example of a coherent OV -module is On
V . For that reason, it is interesting to study

the modules that look, at least locally like On
V .

Definition 3.1. An OV -module is said to be locally free of rank n if it is locally isomorphic to
On

V , that is, if every point P ∈ V has an open neighbourhood such that M|U∼= On
V .

It is important to remark that every locally free OV -module of rank n is coherent.

Among this modules, we will mostly work with ones with a particular rank:

Definition 3.2. An invertible sheaf on V is a locally free OV -module L of rank 1.

A nice property of these sheaves is that the tensor product of any two invertible sheaves is again
an invertible sheaf. This allows us to endow the set of isomorphism classes of invertible sheaves
with a product structure given by [L] · [L′] := [L ⊗ L′]. This product structure is associative and
commutative (because tensor products are associative and commutative, up to isomorphism) and
[OV ] is the identity element.

If we define

L∨ := Hom(L,OV )

it is easy to check that if L is invertible, L∨ is also an invertible sheaf. Moreover, there is a
canonical isomorphism

L∨ ⊗ L −→ OV

(f, x) 7−→ f(x)

from which we deduce that [L∨] · [L] = [OV ].

From these remarks, we deduce that the set of isomorphism classes of invertible sheaves on V
form a group known as the Picard group, Pic(V ) of V .

Some people may have already seen another definition of the Picard group of V linked to the
group of divisors of V . We will now see what is the connection between these two definitions in
the case where V is irreducible and smooth.
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3.1 Connection with the group of divisors

Definition 3.3. Let V be an irreducible and smooth variety. For a divisor D on V we can define
the Riemann-Roch space associated to D as the vector space

L(D) = {f ∈ k(V )× | div(f) +D ≥ 0}.

We can then define a sheaf L(D) on V by defining the sections for each open subset U as

Γ(U,L(D)) = {f ∈ k(V )× | div(f) +D ≥ 0 on U} ∪ {0}.

With a bit of work, one can show that L(D) is an invertible sheaf and that the canonical map

L(D)⊗ L(D′) 7−→ L(D +D′)

f ⊗ g 7−→ fg

is an isomorphism. Therefore, there is a homeomorphism

Div(V ) −→ Pic(V )

D 7−→ [L(D)]

which is zero on PDiv(V ), the set of principal divisors of V . In fact, this same map defines an
isomorphism

Div(V )/PDiv(V ) −→ Pic(V )

[D] 7−→ [L(D)]

Defining the inverse of this map, is difficult and the construction is not necessarily explicit, so
whenever we are working with smooth varieties (and this is indeed our case, as abelian varieties
are smooth), it is often easier to work with elements in Pic(V ) in terms of divisors.
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4 Pic0 and the definition of the dual abelian variety

Probably the most famous construction of an abelian variety is the Jacobian variety associated to
a (smooth) curve C, which I will now explain.

Given a divisor D of a smooth variety C, we can associate a quantity known as the degree of
D defined as the sum of the coefficients of the prime divisors of D. It is easy to check that the
degree induces a well-defined group homomorphism

deg : Pic(C) −→ Z
[D] 7−→ deg(D)

whose kernel is

Pic0(C) = {[D] ∈ Pic(V ) | deg(D) = 0}.

The Jacobian of C is defined to be

Jac(C) = Pic0(C).

For an abelian variety A over k we want to be able to replicate this process: to find a well-
defined notion of Pic0(A) in such a way that we can canonically construct another abelian variety
Â such that we have that

Â(k) = Pic0(A).

This is what we will call the dual abelian variety of A, and its construction and properties will
be discussed in later talks.
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