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These notes are a creative adaptation (by which I mean, they are borderline plagiarism) of the
second section of the book 3264 and All That [EH16] by David Eisenbud and Joe Harris.

1 Introduction and recap

One of the main goals of this study group is to study the machinery used to solve combinatorial
problems involving the intersections of varieties in projective space. As we have seen in previous
talks, the main object that describes the intersection theory inside of a variety X is the Chow
ring of X, whose definition I will recall.

1.1 Defining the Chow ring

Definition 1.1. Let X be an integral separated scheme of finite type over an algebraically closed
field of characteristic 0 and let Z(X) be the group of cycles of X, namely, the free abelian group
generated by the set of subvarieties of X. Then, the Chow group of X, CH(X) is the group of
cycles of X modulo rational equivalence.

There is some subtleties about this definition of rational equivalence, but, informally, the
idea is that two cycles are rationally equivalent if there is a rationally parametrised family of cycles
interpolating between them.
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We would like to endow the Chow group of X with a product structure in which the product of
two classes [A] and [B] in CH(X) corresponded to the class of their intersection [A ∩ B]. There
are, however, some problems that we encounter when trying to define this product.
The main one is that there is a natural grading in the Chow group

CH(X) =

dim(X)⊕
i=0

CHi(X)

coming from the fact that we can grade the cycles in X according to its codimension, and we
would ideally want our Chow ring to be a graded ring with respect to it. However, it is not true
that the intersection of two irreducible subvarieties A and B of codimensions a and b is always a
subvariety of codimension a+ b.

There is a situation when this is true, which is when the varieties A and B are generically
transverse, meaning that they meet transversely at a general point of each component C of A∩B.
By meeting transversely at a point p, what I mean is that A,B and X are smooth at p and

codim(TpA ∩ TpB) = codim(TpA) + codim(TpB).

Here is where it is useful that in Chow groups cycles are defined up to rational equivalence, as it
turns out, when X is a smooth quasi-projective variety, given any two classes α, β ∈ CH(X), we
can always find two cycles A,B ∈ Z(X) such that [A] = α and [B] = β, and the class [A ∩ B] is
independent of the choice of A and B. This is what is known as the moving lemma.

Now, let X again be a smooth quasi-projective variety. For every two classes α, β ∈ CH(X),
with α = [A] and β = [B], we can define their product in CH(X)

α · β = [A][B] = [A ∩B]

and this makes CH(X) an commutative ring, graded by codimension called the Chow ring.

1.2 Affine stratifications of a variety

We have seen in previous talks that we have partial knowledge of the Chow groups of varieties
that admit a decomposition known as an affine stratification, so let’s recall this concept.

Definition 1.2. A scheme X is said to have an affine stratification if there exist a finite
collection of irreducible, locally closed subschemes Ui satisfying:

1. X is a disjoint union of the Ui.

2. If Ūi meets Uj, then Ūi contains Uj.

3. Every Ui is isomorphic to Ak for some k.
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The closures of these strata, Ūi are called the closed strata. We then have the following
theorem due to Totaro [Tot14]:

Theorem 1.3. The classes of the strata in an affine stratification of a scheme X form a basis of
CH(X).

2 A few examples of Chow rings

We have seen in the past some examples of Chow groups of varieties, and it is not difficult to see
how the intersection product gives these groups a ring structure.

Proposition 2.1. The Chow ring of An is

CH(An) ∼= Z · [An].

Proof. Mayo proved in their talk that scalar multiplication could be used to set a rational equivalence
between any affine variety not containing the origin and the empty set, showing that the Chow
group of An was Z, with the fundamental class [An] as a generator. This proposition therefore
follows from the fact that [An][An] = [An].

Let’s now do a slightly harder example

Proposition 2.2. The Chow ring of Pn is

CH(Pn) ∼= Z[ζ]/(ζn+1),

where ζ ∈ CH1(Pn) is the equivalence class of a hyperplane. More generally, the class of a variety
of codimension k and degree d is dζk.

Proof. Consider the flag of subspaces

{p} ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn.

Tommaso proved in his talk that as a group, CH(Pn) ∼= Zn+1, using the affine stratification whose
open sets are Ui = Pi \Pi−1. Furthermore, CHk(Pn) ∼= Z, where the generator in each graded piece
was an (n− k)-plane (a linear subvariety of codimension k).

Now, from basic linear algebra, we now that the intersection of k hyperplanes H in general
position, is an (n− k)-plane L, and so,

[L] = ζk,

with ζ = [H]. Finally, let’s recall that the definition of degree of a variety X of dimension k is
precisely that it intersects a general k-plane transversely in d points, from which we deduce that
[X]ζn−k = dζn. Since deg(ζn) = 1, we conclude that [X] = dζk.
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2.1 Some consequences of the structure of the Chow ring of Pn

There are a few nice consequences from this:

Corollary 2.3. A morphism from Pn to a quasi-projective variety of dimension strictly less than
n is constant.

Corollary 2.4. If X ⊂ Pn is a variety of dimension m and degree d, then,

CHk(Pn \X) ∼=

{
Z/dZ if k = m

Z if m < k ≤ n

In particular, m and d are determined by the isomorphism class.

Proof. We have seen before that for all k ≥ m, there exist a short exact sequence (of rings)

CHk(X) −→ CHk(Pn) −→ CHk(Pn \X) −→ 0

The first equality comes from the fact CHm(X) ∼= Z asX is irreducible of dimensionm, CHm(Pn) ∼=
Z, as explained before, and the image of [X] in CHm(Pn) is dζn−m. The second equality is a
consequence of CHk(X) = 0 whenever k > m.

These two results help convey an idea about closed projective varieties: up to rational equivalence,
most of their geometry is determined by their dimension and their degree.

This behaviour is really different to other geometric invariants which are not preserved under
rational equivalence, such as the arithmetic genus. There is an interesting discussion of this
phenomenon in Eisenbud and Harris book. In particular, the example they propose are the
following two non-reduced curves in P3:

C1 = V((x, y)2) C2 = V(x, y3)

Both of them are rationally equivalent to 3 times the class of a line, but C1 has arithmetic genus
0 whereas C2 has arithmetic genus 1.

Another classical result that can be deduced from the structure of the Chow ring of Pn is
Bézout’s theorem:

Corollary 2.5 (Bézout’s theorem). If X1, . . . , Xk ∈ Pn are subvarieties of codimensions c1, . . . , ck
with

∑k
i=1 ci ≤ n and the Xi intersect generically transversely, then

deg(X1 ∩ · · · ∩Xk) =
k∏

i=1

Xi

In particular, two subvarieties X, Y ∈ Pn having complementary dimension and intersecting
transversely will intersect in exactly deg(X) · deg(Y ) points.
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This theorem can be generalised to the case where the subvarieties X1, . . . , Xk are Cohen-
Macaulay1 and do not intersect generically transversely, but rather, dimensionally transversely,
meaning that for every irreducible component Z of Xi ∩Xj,

codim(Xi) + codim(Xj) = codim(Z)

2.2 The Chow ring of products of projective spaces

Finally the last example of Chow ring that I will present is the following:

Proposition 2.6. The Chow ring of Pr × Ps is

CH(Pr × Ps) ∼= Z[α, β]/(αr+1, βs+1).

where α, β ∈ CH1(Pr × Ps) denote the pullbacks via the projection maps of the hyperplane classes
on Pr and Ps respectively. Moreover, the class of they hypersurface defined by a bihomogeneous
form of bidegree (d, e) on Pr × Ps is dα + eβ.

Proof. The idea is very similar to the proof for the Chow ring of projective space, which consists
in finding an affine stratification of Pr × Ps. The way we do this is to consider two flags

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λr−1 ⊂ Λr = Pr

Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γs−1 ⊂ Γs = Ps

where dim(Λi) = dim(Γi) = i. Take the closed strata to be

Ξa,b = Λr−a × Γs−b ⊂ Pr × Ps,

and the open strata

Ξ̃a,b = Ξa,b \ (Ξa−1,b ∪ Ξa,b−1) ∼= Aa+b.

Then, from theorem 1.3, we deduce that the Chow group of Pr × Ps is generated by the classes
[Ξa,b] ∈ CHa+b(Pr × Ps). Since Ξa,b is the transverse intersection of a hyperplanes in Pr and b
hyperplanes in Ps, we have that [Ξa,b] = αaβb and, in particular, αr+1 = βs+1 = 0. Therefore,
CH(Pr × Ps) is a homomorphic image of Z[α, β]/(αr+1, βs+1).

1A locally Noetherian scheme X is Cohen–Macaulay if at each point x ∈ X the local ring OX,x is
Cohen–Macaulay.
The definition of Cohen-Macauly ring is, in my opinion, not very illustrative, so I suggest having in mind that
varieties that are Cohen-Macaulay are: complete intersections, all 0-dimensional varieties, all 1-dimensional reduced
varieties and all 2-dimensional normal varieties. Examples of varieties that are not Cohen-Macaulay are, for instance,
the union of a line and a point in it, or in general, any union of two varieties of different dimensions.
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The last thing that we need to check is that the elements αaβb are all independent over Z for
0 ≤ a ≤ r and 0 ≤ b ≤ s. To see that, consider the pairing:

φ : CHa+b(Pr × Ps)× CHr+s−a−b(Pr × Ps) −→ Z
([X], [Y ]) 7−→ deg([X][Y ])

It is easy to see that

φ(αaβb, αmβn) =

{
1 if a+m = r and b+ n = s

0 otherwise

as the first case happens when the intersection is transverse and consist on one point, and in the
second the intersection is empty. This easily shows that the αaβb are independent. Finally, if
f(x0, . . . , xr, y0, . . . , ys) is a bihomogeneous polynomial of bidegree (d, e), it is easy to check that
f/(xd

0y
e
0) is a rational function, and therefore the variety X = V(f) satisfies that [X] = dα+eβ.

3 Computing the degrees of varieties

The degree of a variety of dimension n is the number of intersection points with a n general
hypersurfaces. Therefore, it should not come as a surprise to anybody that this notion of degree
will be very relevant when studying problems in enumerative geometry such as the following, which
we will soon answer:

Let S ⊂ P3 be a smooth cubic surface and L ⊂ P3 a general line. How many planes containing
L are tangent to S?

The key strategy to solve this problem is to translate this problem into computing the degree
of a variety. In order to compute this degree, we can follow the following strategy:

1. Identify our variety as the image of a ”nice map” (birational and finite, for instance) f :
X → Y .

2. The degree of the image of f will be the number of points of its intersection with n general
hyperplanes H in Y , and what we will do is to pull-back these intersection, to relate it to an
easier computation in X.
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Let us see one example of this technique:

3.1 Degree of the dual of a hypersurface

Given a smooth hypersurface X ⊂ Pn of degree d, we can consider its dual variety, meaning the
set of points X∗ ⊂ (Pn)∗ parametrising hypersurfaces that are tangent to X.

In principle, it is not obvious why this set X∗ would even be a variety, but one can easily check
that it is the image ofX under theGauss map that sends a point p ∈ X to its tangent hyperplane.

In coordinates, if X is the zero locus of the homogeneous polynomial f(x0, . . . , xn), then GX is
given by

GX : Pn −→ (Pn)∗

p 7−→
[ ∂f

∂x0

(p) : · · · : ∂f

∂xn

(p)
]

This is well defined since X is smooth so the partials have no common zeroes. If d = 1, GX is
constant and X∗ is a point, but if d > 1 GX is finite2 and birational onto its image (this is not easy
to see).

We will use this to study the degree of the dual hypersurface.

Proposition 3.1. If X ⊂ Pn is a smooth hypersurface of degree d > 1, then the dual of X is a
hypersurface of degree d(d− 1)n−1.

Proof. The degree of the dual variety X∗ ⊂ (Pn)∗ is the number of points of intersection of X∗

and n− 1 general hyperplanes Hi ⊂ (Pn)∗. Since the map GX : X → X∗ ⊂ (Pn)∗ is birational, this
is the same as the number of points of intersection of the preimages G−1

X (Hi).

But also, since GX is given by the partial derivatives of the defining equation F of X, the
preimages of these hyperplanes are the intersections of X with the hypersurfaces Zi ⊂ Pn of degree
d− 1 in Pn given by general linear combinations of these partial derivatives. As the partials of F
have no common zeros, Bertini’s theorem tells us that the hypersurfaces given by n − 1 general
linear combinations will intersect transversely with X. By Bézout’s theorem the number of these
points of intersection is the product of the degrees of the hypersurfaces, that is, d(d− 1)n−1.

2A finite morphism between two affine varietiesX,Y is a dense regular map which induces isomorphic inclusion
k[Y ] ↪→ k[X] between their coordinate rings, such that k[X] is integral over k[Y ]. The condition extends to quasi-
projective varieties by taking covers of affine open sets.
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For example, suppose that X is a smooth cubic curve in P2. By the above formula, the degree
of X∗ is 6. Since a general line in P2∗ corresponds to the set of lines through a general point p ∈ P2,
there will be exactly six lines in P2 through p tangent to X.

Let’s give the answer to our question, then:

Let S ⊂ P3 be a smooth cubic surface and L ⊂ P3 a general line. How many planes containing
L are tangent to S?

Since the planes containing the line L form a general line in the dual projective space P3∗, the
number of such planes tangent to a smooth cubic surface S ⊂ P3 is 3 · 22 = 12.
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