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Abstract

This thesis presents a mathematical analysis of the incompressible convective
Brinkman–Forchheimer equations in three-dimensional space,

∂tu− µ∆u+ (u · ∇)u+ αu+ β |u|r−1 u+∇p = f, div u = 0,

where α, β ≥ 0, and r ≥ 1. These equations describe the motion of a fluid in a
saturated porous medium. They can be seen also as the incompressible Navier–
Stokes equations with the additional linear and nonlinear terms αu and β |u|r−1 u.
For simplicity, we neglect the linear term throughout the thesis, but all the results
presented in this thesis hold also for general α > 0. In the thesis we study the
influence of the nonlinear term on the existence of weak and strong solutions of the
CBF equations and some of their properties.

In particular, we establish that all weak solutions of the ‘critical’ problem
(r = 3) verify the Energy Equality

1

2
‖u(T )‖2 + µ

∫ T

0
‖∇u(t)‖2 dt+ β

∫ T

0
‖u(t)‖r+1

Lr+1 ds =
1

2
‖u(0)‖2 ,

both on the torus T3 and on bounded domains Ω ⊂ R3 with smooth boundary.
From this fact, we infer the existence of a strong global attractor in the phase space
H ↪→ L2 using theory of evolutionary systems developed by Cheskidov [2009].

Moreover, we prove the existence of global-in-time strong solutions on the
torus T3, for two cases: r > 3, and r = 3 provided that the product of viscosity (µ)
and porosity (β) coefficients is not too small, 4µβ ≥ 1. We also establish that strong
solutions are unique in the larger class of weak solutions (‘weak-strong uniqueness’).
Additionally, we provide a ‘robustness of regularity’ condition for strong solutions
of the convective Brinkman–Forchheimer equations when r ∈ [1, 3].

We also give two general methods of simultaneous approximation in Lebesgue
and Sobolev spaces using semigroup theory and finite-dimensional eigenspaces of
operators. Furthermore, we provide a simple proof of known characterisation of the
domains of the fractional powers of the Laplace and Stokes operators, using the
theory of real interpolation spaces. This characterisation is needed to apply our
approximation method in the proof of the energy equality on bounded domains.

v



Chapter 1

Introduction

1.1 Motivation of the model

The three-dimensional incompressible Navier–Stokes equations (NSE) constitute a

fundamental model of fluid dynamics. They are given by the system of partial

differential equations

∂tu− µ∆u+ (u · ∇)u+∇p = f, div u = 0,

where u(x, t) = (u1, u2, u3) is an unknown velocity vector field and the scalar func-

tion p(x, t) is an unknown pressure. The function f(x, t) = (f1, f2, f3) represents

given external forces acting on the fluid (e.g. gravitational forces) and the constant

µ > 0 denotes the viscosity of the fluid. We assumed here that the fluid is homoge-

nous with constant density equal to 1. These equations are supplemented by an

initial condition u(x, 0) = u0 and appropriate boundary conditions u|∂Ω for a con-

sidered spatial domain Ω ⊂ R3 occupied by the fluid. The importance of this model

in physics and mathematics is well illustrated by the fact that the global regularity

of its solutions constitutes one of the seven Millennium Prize Problems stated by the

Clay Mathematics Institute in May 2000 (for an exact statement of the ‘regularity

problem’ see Fefferman [2006]). The problem described there has remained open

since the time of the pioneering works of Leray [1934] and Hopf [1951].

In this thesis we consider the Navier–Stokes equations with the additional

nonlinear term β |u|r−1 u for r ≥ 1 introduced in the momentum equation

∂tu− µ∆u+ (u · ∇)u+ β |u|r−1 u+∇p = f, div u = 0, (1.1)

where β is some positive constant. This term is usually called the absorption term.
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A similar nonlinearity was studied before in the context of different initial and

boundary value problems not necessarily in the area of fluid mechanics. The influ-

ence of such a term on the qualitative properties of solutions was studied, among

others, by Benilan et al. [1975], Dı́az and Herrero [1981] and Bernis [1986]. They

studied in particular solutions with compact support, with finite speed of propaga-

tion or solutions which become extinct in a finite time.

In the settings described above, the introduction of the absorption term

is purely of mathematical nature. This term behaves like a sink inside the do-

main occupied by the fluid which causes additional dissipation of energy and slows

down the fluid flow. There are possible physical justifications for introducing the

absorption term in the momentum equation as part of the external force field

h(u) = f − β |u|r−1 u (see de Oliveira [2010] for references). There is also a precise

theory of the absorption of forced plane infinitesimal waves according to the Navier–

Stokes equations by Truesdell [1953]. The influence of the damping term was studied

extensively over the years for various other models in mathematical physics, like the

Schrödinger equation (see e.g. Carles and Gallo [2011]), the wave equation (see e.g.

Zhou [2005]) or the Euler equation (see e.g. Pan and Zhao [2009]).

One can look at the equations (1.1) from another point of view, more

grounded in applications, which comes from the theory of flows in a porous medium.

Most mathematical models of porous media are based on Darcy’s law so “Darcy’s

equation has become the model of choice for the study of the flow of fluids through

porous solids due to the pressure gradients, so much that it has now been elevated to

the status of a law in physics” (Rajagopal [2007]). Darcy’s empirical flow model as-

sumes a linear relationship between the flow rate and the pressure drop in a porous

medium

u = −k
µ
∇p,

where u is the Darcy velocity, k is the permeability of the porous medium, and µ

is the dynamic viscosity of the fluid (see Darcy [1856]). Deviations from this sce-

nario are called non-Darcy flows. Compared to the Navier–Stokes equations, this

law neglects the acceleration and inertial, and viscous forces. Nature, however, can

deviate from Darcy’s law, for instance when one deals with high velocity, molecular

and ionic effects or in the presence of some non-Newtonian effects in the fluid. In

these situations, more adequate models are needed. One such model is the Forch-

heimer equation which states that the relationship between the flow rate and the

pressure gradient is nonlinear at sufficiently high velocities and that this nonlinear-

ity increases with flow rate (see Forchheimer [1901, 1930]). The Darcy–Forchheimer
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law states that

∇p = −µ
k
u− γρ |u|u,

where γ > 0 is the so-called Forchheimer coefficient, u stands for the Forchheimer

velocity, and ρ is the density. The Forchheimer law can be seen as a nonlinear

approximation of Darcy’s law accounting for the increased pressure drop. See also

Giorgi [1997] for the derivation of the Forchheimer law via matched asymptotic

expansions. A numerical study supporting the quadratic correction to Darcy’s law

is given in Firdaouss et al. [1997], for example.

It is natural to generalise the Darcy–Forchheimer law to take into account

not only quadratic nonlinearity; indeed, the cubic nonlinearity seems to be the most

interesting one mathematically, as we will see later on. Such a generalisation, which

also takes into account viscous forces (see Brinkman [1947, 1949]) and acceleration,

is called the Brinkman–Forchheimer equations (BF)

∂tu− µ∆u+ αu+ β |u|r−1 u+∇p = f, div u = 0. (1.2)

This model describes the motion of incompressible fluid flows in a saturated porous

medium. The constant µ stands for the positive Brinkman coefficient (effective vis-

cosity). The positive constants α and β follow from the Darcy–Forchheimer law and

denote respectively the Darcy (permeability of porous medium) and Forchheimer

(proportional to the porosity of the material) coefficients. The BF equations have

been used in connection with some real world phenomena, e.g. in the theory of

non-Newtonian fluids (see e.g. Shenoy [1994]) or in tidal dynamics (see e.g. Gordeev

[1973]; Likhtarnikov [1981]).

By adding to the BF model the inertial term coming from the Navier–

Stokes equations [(u · ∇)u, which is called in fluid dynamics the convective or

(more generally) advective term] we obtain the incompressible convective Brinkman–

Forchheimer equations (CBF)

∂tu− µ∆u+ (u · ∇)u+ αu+ β |u|r−1 u+∇p = f, div u = 0, (1.3)

where u is the average fluid velocity. This model was originally derived in its classical

configuration (r = 2) in the framework of thermal dispersion in a porous medium

using the method of volume averaging of the velocity and temperature deviations in

the pores (see e.g. Hsu and Cheng [1990]). Its applicability is believed to be limited

to flows when the velocities are sufficiently high and the porosities are not too small,

i.e. when the Darcy law for a porous medium no longer applies. For a discussion of
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the formulation and limitations of this system see Vafai and Tien [1987] and Nield

[1991, 1994, 2000]. The continuum mechanics approach to transport in a saturated

porous medium is discussed in Salama and Van Geel [2008a,b]. An extensive study

of different models of porous media is collected in the monograph by Nield and

Bejan [2017] (5th edition).

Another generalisation of the Darcy–Forchheimer law (additionally taking

into account pumping given by similar nonlinearity to the absorption term but with

a negative sign) is discussed in Markowich et al. [2016], where an algorithm for

continuous data assimilation for the 3D Brinkman–Forchheimer–extended Darcy

model for porous media is discussed. The limitations of that extended model are

discussed in Vafai and Kim [1995].

In this thesis we adopt the naming convention based on the porous medium

approach discussed above. However, in our considerations of the CBF equations the

linear term αu poses no additional mathematical difficulties. Therefore, to make our

arguments more concise, we disregard this term from our analysis [taking α = 0 in

(1.3) and effectively considering the equations (1.1), while still calling them the CBF

equations]. All the results presented in this thesis hold also for the CBF equations

with α > 0, and we trust that an interested reader can easily reintroduce the linear

term αu.

1.2 Summary of known results

There are numerous mathematical results concerning the BF model (1.2). Most of

them consider different values and ranges of parameters µ, α, β and the exponent r.

The continuous dependence on the Brinkman and Forchheimer coefficients and the

convergence as µ→ 0 of the solutions of the BF equations to the solutions of

∂tu+ αu+ β |u|r−1 u+∇p = f, div u = 0, (1.4)

were studied in Payne and Straughan [1999], Çelebi et al. [2006], Liu and Lin [2007],

Louaked et al. [2015] and in the monograph by Straughan [2008]. The long-time

behaviour of solutions and the existence of global attractors for the BF equations

has been studied in Uğurlu [2008], Wang and Lin [2008], Song and Hou [2012],

You et al. [2012], Song [2013] and Zhang et al. [2016] (all with r = 3), and in

Ouyang and Yang [2009] (with r ∈ (2, 7/3]) [the nonlinearity in all these papers

reads: au+ b |u|u+ c |u|r−1 u; a, b, c > 0]. The existence of a global regular, unique

solution and of the global attractor for a version of the BF model (1.2) with fast

growing nonlinearities (polynomial growth of order r ≥ 1) was proved in Kalantarov
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and Zelik [2012]. Most of the results above are given on bounded domains Ω ⊂ R3

with zero Dirichlet boundary conditions.

There is also an abundance of mathematical results concerning the CBF

equations (1.3). Continuous dependence in H1 (standard Sobolev space defined

later on) on the Forchheimer coefficient was established by Çelebi et al. [2005] for

weak solutions on bounded domains with 2 < r ≤ 3. Kalantarov and Zelik [2012]

also extended their results for the BF equations on bounded domains to the con-

vective case with r > 3: existence of global strong solutions, uniqueness of weak

solutions (also for r = 3 and µ = 1, β large enough) and existence of a global

attractor in H2. Their argument relies on the maximal regularity estimate for the

corresponding semi-linear stationary Stokes problem proved using some modification

of the nonlinear localisation technique developed in Kalantarov and Zelik [2009]; the

nonlinear localisation technique is not necessary if r ≤ 5 when the standard maxi-

mal regularity for the linear Stokes equation can be used, or in the periodic domain

where there are no boundary terms coming from integration by parts (see the proof

for this case in Section 4.3).

In Cai and Jiu [2008] it was shown that the CBF equations on the whole space

R3 possess global weak solutions for r ≥ 1, global strong solutions for any r ≥ 7/2

and that the strong solutions are unique for 7/2 ≤ r ≤ 5. Some improvements of

these results were given in Zhang et al. [2011] - existence of global-in-time strong

solutions for r > 3 and their uniqueness for 3 < r ≤ 5. Global existence of strong

solutions in R3 for r ≥ 3 and µ, β = 1 was obtained in Zhou [2012] (note that this

is much weaker than our results in Sections 4.3 and 4.4, where we show the same

in the periodic case if r > 3, µ, β > 0 and r = 3, 4µβ ≥ 1, respectively). Two local

regularity criteria for 1 ≤ r < 3 in terms of Bochner spaces (defined later on) were

given there as well: if

u ∈ Lt(0, T ;Ls(R3)) with
3

s
+

2

t
≤ 1, 3 < s <∞,

or

∇u ∈ Lt(0, T ;Ls(R3)) with
3

s
+

2

t
≤ 2, 3/2 < s <∞,

then the local strong solution u remains smooth (in space) on the time interval

(0, T ). The first of these conditions is the same as the famous ‘Serrin condition’

given by Serrin [1962, 1963] for the 3D incompressible Navier–Stokes equations. An

improvement of the second of the above regularity criteria for the CBF equations was

obtained by Wang and Zhou [2015] assuming that two of the velocity components

belong to the weak Lebesgue spaces [∇ui ∈ Lt(0, T ;Ls,∞(R3)) for s > 3/2 and
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t = 2s/(2s− 3)].

Long-time behaviour of solutions for the CBF equations has also been stud-

ied. Existence of global and uniform attractors inH1 andH2 was established in Song

and Hou [2011, 2015] respectively, for 7/2 ≤ r ≤ 5 and for bounded domains Ω ⊂ R3

with smooth boundary. The existence of the trajectory attractor for r ∈ (1, 3] on

bounded domains was studied in Zhao et al. [2014], as well as its convergence as

β → 0 to the trajectory attractor of the Navier–Stokes system. Power-law decay

in time of the L2-norm of weak solutions on the whole space R3 was shown in Cai

and Lei [2010] via a classical Fourier splitting method (as in Schonbek [1985, 1986]

for the NSE), for r > 7/3. The authors gave also a lower bound for the decay

rate for r ≥ 3. Jia et al. [2011] showed different L2-decay rates for r ≥ 10/3 via a

self-contained analysis technique based on the auxiliary decay estimates and a rig-

orous analysis of the heat semigroup e∆t. This was further extended by Jiang and

Zhu [2012] to r ≥ 3 using a method established in Zhou [2007]. The upper bound

was optimised and an algebraic lower bound for the L2-decay rate was obtained by

Jiang [2012] (an error in the estimates for the lower bound in Cai and Lei [2010] was

corrected there) [it is worth mentioning that due to the damping term, the optimal

L2-decay rate is slower for the CBF equations than for the NSE]. These ideas were

developed further by Liu and Gao [2017] who proved the L2-decay of weak solutions

for r > 2. They also showed the asymptotic stability of strong solutions to the

system for r > 3 with any β > 0 and β ≥ 1/2 when r = 3.

Long-time properties of solutions were also examined (on bounded domains)

by Antontsev and de Oliveira [2010] for the equations (1.1) and by de Oliveira [2010]

for a modified version of the Navier–Stokes equations with generalised diffusion

−div (|∇u|q−2∇u− u⊗ u) for q > 1

[q = 2 corresponds to the Navier–Stokes case]. In the former paper it was shown that

the absorption term, in the absence of body forces (f ≡ 0), causes weak solutions of

(1.1) to become extinct in a finite time if 0 < r < 1 and decay exponentially in time

if r = 1. Provided that the force field vanishes at some time instant and 0 < r < 1,

then the weak solutions also vanish at the same time instant. Additionally, for

non-zero body forces decaying at a power-law rate, the solutions decay at analogous

power-law rates if r > 1. For a general non-zero body force, the solutions exhibit

exponential decay in time if r > 0. We note that for the NSE the best results that

are known in this direction are only in terms of decay in space and time of power-law

type (see Antontsev and de Oliveira [2010] for references). In de Oliveira [2010] the
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extinction in finite time was proved for the CBF model with generalised diffusion.

Existence of global-in-time weak solutions in spatial dimensions n ≥ 2 was given by

de Oliveira [2013]. The very technical proof given there is based on the theory of

monotone operators, the Lipschitz truncation method (see e.g. Diening et al. [2010])

and the pressure decomposition method discussed by Wolf [2007].

A model similar to the CBF modification of the Navier–Stokes equations,

called the tamed NSE, was discussed by Röckner and Zhang [2009]. Instead of the

absorption term the authors considered a term gn(|u|2)u, where gn was a smooth

function that satisfied

gn(r) ≡ 0 if r ∈ [0, n] and gn(r) =
r − n− 1/2

µ
if r ≥ n+ 1.

From the definition of gn, it is clear that any bounded strong solution of the NSE

satisfies these equations for large enough n. The authors established existence (on

the whole space) of a unique, smooth, classical solution for all time starting from

smooth initial data. They also showed that the solutions un of the tamed NSE

converge weakly (as n → ∞) to a ‘suitable weak solution’ of the NSE, where the

notion of suitable weak solutions is that used in the partial regularity results for

the NSE (see Scheffer [1977] and Caffarelli et al. [1982]). Thus, the tamed NSE

can be viewed as an approximation scheme for the NSE. On the other hand, an

approximation of the CBF equations was considered by Zhao and You [2012]; the

authors studied convergence of solutions of a family of perturbed compressible CBF

problems to the solution of the incompressible CBF equations on a bounded domain.

In this thesis we contribute some new results (listed in Section 1.3) to the

list (which is quite long already but probably not exhaustive) given above. We

consider the 3D incompressible convective Brinkman–Forchheimer equations either

on a smooth bounded domain Ω ⊂ R3 or on the torus T3.

Throughout the thesis we will call the exponent r = 3 ‘critical’ (not to be

confused with the usual notion of critical spaces in which the norm of a solution is

invariant under scaling). There are two reasons why we want to call it this way.

One being the fact that it lies exactly at the border of exponents for which global

regularity of strong solutions is known. The second reason, perhaps more interesting

than the first one, is that the critical homogenous CBF equations

∂tu− µ∆u+ (u · ∇)u+ β |u|2 u+∇p = 0, div u = 0,

are invariant under the same parabolic rescaling as the Navier–Stokes equations.

This follows from the following simple proposition.
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Proposition 1.1. Let Ω be the whole space Rn (or the torus T3). Let uλ be the

usual parabolic rescaling of the velocity field u:

uλ(x, t) := λu(λx, λ2t) for λ > 0,

and let pλ be the usual rescaling of the pressure function p:

pλ(x, t) := λ2p(λx, λ2t) for λ > 0.

If u and p solve the homogenous CBF equations

∂tu− µ∆u+ (u · ∇)u+ β |u|r−1 u+∇p = 0, div u = 0,

then the rescaled functions uλ, pλ satisfy

∂tuλ − µ∆uλ + (uλ · ∇)uλ +∇pλ + λ3−rβ |uλ|r−1 uλ = 0, div uλ = 0.

When r = 3 in the above, we obtain the homogenous CBF equations for the

rescaled functions uλ, pλ.

1.3 Outline of the thesis

In Chapter 2 we introduce some function spaces and notation used throughout the

thesis. Chapter 3 discusses existence and properties of weak solutions of the incom-

pressible convective Brinkman–Forchheimer equations with r ≥ 1. In particular we

establish that the Energy Equality on the torus T3 is satisfied by all weak solutions

in the critical case r = 3. As a consequence we obtain L2-continuity of all weak

solutions, and we show existence of a strong global attractor using the theory of

evolutionary systems developed by Cheskidov [2009] for dynamical systems without

uniqueness.

Existence and properties of strong solutions of the CBF equations are con-

sidered in Chapter 4. In particular, we establish global-in-time existence on the

torus T3, for r > 3 and in the critical case r = 3, provided that the product of the

coefficients is not too small, 4µβ ≥ 1. We also prove uniqueness of strong solutions

in the larger class of weak solutions (so-called ‘weak-strong uniqueness’). In Chapter

5 we prove a ‘robustness of regularity’ result, which essentially provides stability of

strong solutions in terms of initial data and the forcing function.

In Chapter 6 we introduce real interpolation spaces via the K-method and

briefly discuss some of their properties which we need later on. We use these spaces in
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Chapter 7 to characterise the domains of fractional powers of the Dirichlet Laplacian

and the Stokes operators on bounded domains.

Afterwards, we develop two general simultaneous approximation methods in

Lebesgue and Sobolev spaces (Chapter 8). We apply these methods to both the

Laplace and Stokes operators. The first scheme (a simpler one) uses the semigroup

generated by the operator. However, this method is not sufficient for our application

in the next chapter. But, we can apply the second approximation scheme, based

on finite-dimensional eigenspaces of the Stokes operator, to prove that the Energy

Equality holds also for all weak solutions of the critical CBF equations (r = 3) on

bounded domains with smooth boundary. This is done in Chapter 9.

In conclusion, we discuss some open problems and possible future work in

Chapter 10.

9



Chapter 2

Preliminaries

We consider the three-dimensional, incompressible convective Brinkman–

Forchheimer equations (1.1) with the initial condition

u(x, 0) = u(0) = u0(x) on Ω,

where the initial velocity u0 is divergence-free and has finite kinetic energy (it belongs

to the spaceH ⊂ L2(Ω), which we will define below). The domain of interest is either

the three-dimensional torus Ω = T3 = [0, 2π]3 with periodic boundary conditions

u(x+ 2πei, t) = u(x, t) ∀ x ∈ R3, ∀ t > 0, i = 1, 2, 3

(where ei stand for standard unit vectors forming a basis of the Euclidean space

R3), or an open, bounded domain Ω ⊂ R3 with smooth boundary and zero Dirichlet

boundary condition

u(x, t) = 0 on ∂Ω, ∀ t ≥ 0.

Remark 2.1. In the analysis of the NSE in the periodic case, it is often convenient

to assume a zero mean-value constraint for the functions (i.e.
∫
u(x, t) dx = 0).

However, we cannot do this for the CBF equations (1.1) because the absorption

term |u|r−1 u does not preserve this property. Therefore, we cannot use the usual

Poincaré inequality ‖u‖L2 ≤ c ‖∇u‖L2, and we have to control the full H1-norm

instead.

In what follows, we will often assume for simplicity that the coefficients µ, β

are equal to 1 but both of these coefficients can be taken as arbitrary positive

constants (note that in the critical case r = 3, µ = β = 1 implies regularity, see

Section 4.4). They affect only the value of the generic constant c > 0, which appears

in our estimates and whose value can differ from line to line.
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2.1 Function spaces

In this section we introduce the basic function spaces and some additional notation

used in the thesis.

We recall the standard Lebesgue spaces of vector-valued functions on some

arbitrary domain Ω ⊆ R3

Lp(Ω) :=
{
u = (u1, u2, u3) : Ω→ R3 : ‖u‖Lp <∞

}
,

with the norm

‖u‖pLp :=

∫
Ω
|u|p dx <∞ for 1 ≤ p <∞

and

‖u‖L∞ := ess sup
x∈Ω

|u(x)| .

We denote the norm for the Hilbert space L2 by ‖·‖ and the scalar product in this

space by 〈u, v〉 =
∫

Ω uv dx. We will also use 〈·, ·〉 for other dual pairings. We note

that on bounded domains and on the torus T3 we have nesting of the Lp spaces:

Lp ↪→ Lq for p > q, where ‘↪→’ denotes a continuous embedding.

We also recall L2-based Sobolev spaces Hk(Ω) = W k, 2(Ω) ↪→ L2(Ω) for

k ∈ N, consisting of functions whose distributional derivatives up to order k belong

to L2. We define these spaces on an open, bounded domain Ω ⊂ R3 with smooth

boundary. For every k ∈ N, the space Hk(Ω), with the scalar product

〈u, v〉Hk(Ω) :=
∑
|α|≤k

(∫
Ω
DαuDαv dx

)
,

is a Hilbert space, and the norm in this space is given by

‖u‖2Hk(Ω) := 〈u, u〉Hk(Ω) =
∑
|α|≤kT

∫
Ω
|Dαu|2 dx.

In the periodic case, we can define the Sobolev spaces Hs(T3) for s ≥ 0 by

the Fourier expansion

Hs(T3) :=

u ∈ L2(T3) : u(x) =
∑
k∈Z3

ûke
ik·x, ûk = û−k, ‖u‖Hs(T3) <∞

 ,

where
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‖u‖2Hs(T3) :=
∣∣T3
∣∣ ∑
k∈Z3

(1 + |k|2s) |ûk|2

[and ûk :=
∣∣T3
∣∣−1 ∫

T3 u(x)e−ik·x dx for u ∈ L1(T3)].

In this thesis we use the standard notation for the vector-valued function

spaces which often appear in the theory of fluid dynamics. For an arbitrary domain

Ω ⊆ Rn we define:

C∞0 (Ω) := {ϕ ∈ C∞(Ω) : suppϕ ⊂⊂ Ω} , [‘ ⊂⊂ ’ denotes a compact subset]

Dσ(Ω) := {ϕ ∈ C∞0 (Ω) : divϕ = 0} ,

Lqσ(Ω) := closure of Dσ(Ω) in the Lebesgue space Lq(Ω),

V s(Ω) := closure of Dσ(Ω) in the Sobolev space Hs(Ω) for s > 0.

The space of divergence-free test functions in the space-time domain is denoted by

Dσ(ΩT ) := {ϕ ∈ C∞0 (ΩT ) : divϕ(·, t) = 0} ,

where ΩT := Ω× [0, T ) for T > 0.

In the periodic case (Ω = T3) we define the divergence-free L2-based spaces

by the Fourier expansion. If u is given by u(x) = ûke
ik·x then a simple computation

shows that div u(x) = i(k · ûk)eik·x. This leads to the following definitions:

L2
σ(T3) :=

{
u ∈ L2(T3) : k · ûk = 0 for all k ∈ Z3

}
,

V s(T3) :=
{
u ∈ Hs(T3) : k · ûk = 0 for all k ∈ Z3

}
for s > 0.

If Ω ⊆ R3 is an open, bounded domain with smooth boundary or the torus

Ω = T3, we denote the Hilbert space L2
σ(Ω) by H = H(Ω), and V 1(Ω) by V = V (Ω).

[Note that V (Ω) = H1
0 (Ω) ∩H(Ω), where the space H1

0 (Ω) is the subset of H1(Ω)

that consists of functions vanishing on the boundary (in the sense of trace), and

V (T3) = H1(T3) ∩ H(T3).] We use the L2 inner product on H and H1 inner

product on V . We denote the dual space to a given space X by X ′, i.e. the dual

space to V is denoted by V ′.

We also recall the well-known Helmholtz–Weyl decomposition of L2(T3) and

L2(Ω). Every function u = (u1, u2, u3) from L2(T3)1 can be decomposed into

1Note that we use throughout the thesis the X notation instead of X3 for the spaces of vector-
valued functions; it should not cause any confusion since we only consider three-dimensional vector
fields.
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u = v +∇φ,

where v ∈ H (divergence-free) and the scalar function φ ∈ H1. We can express this

decomposition as

L2(T3) = H ⊕G,

where G is the orthogonal complement of H (G ⊥ H), which consists of gradients

of scalar functions from H1. A similar decomposition holds also for the general Lp

spaces when p ∈ (1,∞) (see Fujiwara and Morimoto [1977]).

We will use function spaces with values in a Banach space (X, ‖·‖X). In

particular, we will use the space C([0, T ] ;X) consisting of continuous functions

u : [0, T ]→ X with the norm

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖X <∞.

We also recall the Bochner spaces Lp(0, T ;X). These consist of strongly measurable2

functions u : [0, T ]→ X satisfying

‖u‖Lp(0,T ;X) :=

(∫ T

0
‖u(t)‖pX dt

)1/p

<∞, for 1 ≤ p <∞,

and for p =∞
‖u‖L∞(0,T ;X) := ess sup

0≤t≤T
‖u(t)‖X <∞.

For more details on Bochner spaces see Evans [2010], for example.

2.2 Properties of the absorption term |u|r−1 u

For notational convenience we will denote the terms connected with the additional

nonlinearity in the convective Brinkman–Forchheimer equations by Cr. In order to

make the following pairing finite∣∣∣〈|u|r−1 u, u
〉∣∣∣ <∞

we define for r > 0 and for all functions u, v ∈ Lr+1
σ

Cr(u, v) := P
(
|u|r−1 v

)
,

2A function u : [0, T ] → X is strongly measurable if it is the limit of a sequence of simple
functions that converge in the norm of X for a.e. t ∈ [0, T ].
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where P : Lp → Lpσ is the ‘Leray projection’ in Lp (see e.g. Fujiwara and Morimoto

[1977] for details); additionally we define

Cr(u) := Cr(u, u).

We have the following crucial properties of the nonlinearity Cr.

Lemma 2.2. For every r ≥ 1 and for all functions u, v ∈ Lr+1
σ

〈Cr(u)− Cr(v), u− v〉 =
〈
|u|r−1 u− |v|r−1 v, u− v

〉
≥ c ‖u− v‖r+1

r+1 , (2.1)

where c is a positive constant depending only on r, and 〈·, ·〉 is the inner product in

L2..

It immediately follows from (2.1) that for r ≥ 1 the nonlinearity Cr is mono-

tone in the sense that

〈Cr(u)− Cr(v), u− v〉 ≥ 0 (2.2)

for all u, v ∈ Lr+1
σ . One can show (2.2) independently even for r > 0 by direct

computation and using only Young’s inequality.

Lemma 2.2 is a consequence of properties of vectors |u|r−1 u in Rn (n ≥ 1).

The proof of the lower bound (2.1) is taken from DiBenedetto [1993] with some

minor changes.

Proof. For all u, v ∈ Rn we observe that

(
|u|r−1 u− |v|r−1 v

)
=

∫ 1

0

d

ds

(
|su+ (1− s)v|r−1 (su+ (1− s)v)

)
ds

and hence(
|u|r−1 u− |v|r−1 v

)
· w =

∫ 1

0
|su+ (1− s)v|r−1 |w|2 ds

+ (r − 1)

∫ 1

0
|su+ (1− s)v|r−3 ([su+ (1− s)v] · w)2 ds,

where w := u− v. Therefore for r ≥ 1, we obtain

(
|u|r−1 u− |v|r−1 v

)
· w ≥ |w|2

∫ 1

0
|su+ (1− s)v|r−1 ds.

If |u| ≥ |v − u| we have

|su+ (1− s)v| ≥ ||u| − (1− s) |w|| ≥ s |w| ,
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and we can conclude that
(
|u|r−1 u− |v|r−1 v

)
· w ≥ 1

r |w|
r+1.

On the other hand, if |u| < |v − u|, we have

|w|2
∫ 1

0
|su+ (1− s)v|r−1 ds ≥ |w|2

∫ 1

0

(|su+ (1− s)v|2)(r+1)/2

(2− s)2 |w|2
ds

≥ 1

4

(∫ 1

0
|su+ (1− s)v|2 ds

)(r+1)/2

=
1

4 · 3(r+1)/2

(
|u|2 + u · v + |v|2

)(r+1)/2

≥ c |w|r+1 .

Finally, we observe an equality for u, v ∈ Lr+1
σ

〈Cr(u)− Cr(v), w〉 =
〈
P
(
|u|r−1 u− |v|r−1 v

)
, w
〉

=
〈
|u|r−1 u− |v|r−1 v, w

〉
=

∫ (
|u|r−1 u− |v|r−1 v

)
· w dx,

which ends the proof of the lemma due to monotonicity of the integral and the above

vector estimates.

In what follows we will also need to bound the difference

|u|r−1 u− |v|r−1 v (2.3)

in terms of only u and w, where w := u− v.

Lemma 2.3. Let u, v ∈ Rn. Then for r ≥ 1∣∣∣|u|r−1 u− |v|r−1 v
∣∣∣ ≤ (2r−2r)

(
|u|r−1 |w|+ |w|r

)
.

Proof. First, we consider the following function of one real variable ϕ : [0, 1]→ Rn

ϕ(λ) := |u− λw|r−1 (u− λw),

for λ ∈ [0, 1]. It is easy to see that

ϕ(1)− ϕ(0) = −
(
|u|r−1 u− |v|r−1 v

)
.

We can easily compute the derivative of ϕ

15



ϕ′(λ) = −r |u− λw|r−1w.

By the Mean Value Theorem we can estimate the difference (2.3)∣∣∣|u|r−1 u− |v|r−1 v
∣∣∣ = |ϕ(1)− ϕ(0)| ≤ max

λ∈[0,1]

∣∣ϕ′(λ)
∣∣

= max
λ∈[0,1]

∣∣∣−r |u− λw|r−1w
∣∣∣ ≤ r |w| max

λ∈[0,1]
|u− λw|r−1

≤ r |w| (|u|+ |w|)r−1 ≤ r |w|
[
2r−2

(
|u|r−1 + |w|r−1

)]
≤ (2r−2r)

(
|u|r−1 |w|+ |w|r

)
.

We used here the simple fact that

(a+ b)r ≤ 2r−1 (ar + br) for r ≥ 0, a, b ≥ 0.

It comes from observing that the function

f(x) :=
(1 + x)r

1 + xr
, x ≥ 0,

attains its maximum at x = 1; so f(x) ≤ f(1) = 2r−1.

We will also make use of the following lemma, whose proof consists of in-

tegration by parts and differentiation of the absolute value function (see Robinson

and Sadowski [2014] for the proof in the periodic case or Beirão da Veiga [1987] on

the whole space).

Lemma 2.4. For every r ≥ 1, if u ∈ H2(Ω), where Ω is either the whole space R3

or the three-dimensional torus T3, then∫
Ω
−∆u · |u|r−1 udx ≥

∫
Ω
|∇u|2 |u|r−1 dx.

Explicitly, the left-hand side of the above equals (integrating by parts)∫
Ω
−∆u · |u|r−1 udx =

∫
Ω
|∇u|2 |u|r−1 dx+

(r − 1)

4

∫
Ω
|u|r−3

∣∣∣∇|u|2∣∣∣2 dx.

In particular, by Lemma 2.4, we can write for the absorption term |u|r−1 u with

r ≥ 1 ∫
Ω
|∇u|2 |u|r−1 dx ≤

〈
−∆u, |u|r−1 u

〉
≤ r

∫
Ω
|∇u|2 |u|r−1 dx. (2.4)
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The upper bound in (2.4) follows from the fact that∣∣∣∇|u|2∣∣∣2 ≤ 4 |u|2 |∇u|2 .

We recall that the operators P and ∆ commute on the domains T3 and R3 but

not necessarily on an open, bounded domain Ω ⊂ R3 (see e.g. Robinson et al. [2016]

for examples). Therefore, in the periodic case, we can replace
〈
−∆u, |u|r−1 u

〉
in (2.4) with 〈Au, Cr(u)〉, provided that u is a divergence-free function, where

A := −P∆ is the familiar Stokes operator (see Constantin and Foias [1988], for

example). Indeed, for u ∈ D(A) = V ∩H2 we have

〈Au, Cr(u)〉 =
〈
−P∆u, P

(
|u|r−1 u

)〉
=
〈
−P∆u, |u|r−1 u

〉
=
〈
−∆Pu, |u|r−1 u

〉
=
〈
−∆u, |u|r−1 u

〉
.

We will also need another lemma from the same paper (Robinson and Sad-

owski [2014]).

Lemma 2.5. Take 2 ≤ p < 3. Then there exists a constant cp > 0 such that, for

every u ∈W 1, p(R3) we have u ∈ L3(r+1)(R3) and

‖u‖r+1
L3(r+1)(R3)

≤ cp
∫
R3

|∇u|2 |u|r−1 dx, (2.5)

where r + 1 = p/(3 − p). The same is true if Ω is a bounded (perhaps periodic)

domain and u ∈W 1, p(Ω) with
∫

Ω udx = 0 or u|∂Ω = 0.

Note that the embedding W 1, p ↪→ L3(r+1) is standard. However, the norm

on the right-hand side of (2.5) is not the W 1, p norm. Nevertheless, it is finite for

u ∈ W 1, p. We point out that in order to prove the bound (2.5), it is actually not

necessary that u ∈W 1, p(Ω). It follows from the proof of Lemma 2.5 that whenever

the function u belongs to a space in which the space C∞0 (Ω) is dense, and whenever

Ir(u) :=

∫
Ω
|∇u|2 |u|r−1 dx <∞ for r ≥ 1,

then we can repeat the argument in the proof of Lemma 2.5 and show that

u ∈ L3(r+1)(Ω) [for Ω as in Lemma 2.5].

In our application of Lemma 2.5 (see Theorem 4.4) the function u is a strong

solution of the CBF equations. In particular, it belongs to the space H1 in which

C∞0 is dense. However, on a bounded domain without a zero mean-value assumption

(which is the case for solutions of the CBF equations on the torus, see Remark 2.1),
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the bound (2.5) does not hold, and we have to replace it with

‖u‖r+1
L3(r+1)(Ω)

≤ c
∫

Ω
|∇u|2 |u|r−1 dx+ c ‖u‖r+1

Lr+1(Ω) .

The Lr+1 norm on the right-hand side is finite for every strong solution of the CBF

equations. Therefore, we can use the bound (2.5) to obtain additional regularity

u ∈ L3(r+1) for a strong solution u.

[Boundedness of the quantity Ir(u) defined above implies as well that the

function u ∈ W 1, 1(Ω) belongs also to the certain type of Besov space, namely to

the Nikol’skĭı space3 N 2/(r+1), r+1. In particular, we have

|u|r+1
N 2/(r+1), r+1(Ω)

≤ c Ir(u), (2.6)

where c > 0 is a constant depending only on r and Ω (see Lemma 2.1 in Málek et al.

[2006] for the details) and the left-hand side is the seminorm of u in N 2/(r+1), r+1.

For p ∈ [1,∞) and s = m + σ, where m ≥ 0 is an integer and σ ∈ (0, 1), the

Nikol’skĭı spaces N s, p are the subspaces of the Lp functions for which the following

norm (this is the norm in the Besov space Bs, p
∞ )

‖u‖pN s, p(Ω) := ‖u‖pWm, p(Ω) + |u|pN s, p(Ω)

:= ‖u‖pWm, p(Ω) +
∑
|α|=m

sup
0<|h|<δ

∫
Ω

|∂αu(x+ h)− ∂αu(x)|p

|h|σp
dx

is finite. Here δ > 0 is an arbitrary fixed number. For any ε ∈ (0, 1) we have the

embeddings (see Nikol′skĭı [1975])

N s, p ↪→W s−ε, p ↪→ N s−ε, p,

where the fractional Sobolev spaces W s, p are defined as the Besov spaces Bs, p
p (see

e.g. Simon [1990]).

Note that due to lack of a zero mean-value assumption for the velocity field

u (see Remark 2.1) we cannot use in our applications the highest order derivative

seminorm as an equivalent norm in each of the above spaces. However, in our case

u ∈ Lr+1 because of the regularity (3.5) of weak solutions of the CBF equations,

which, together with (2.6), implies that u ∈ N 2/(r+1), r+1. For a general function

u (not necessarily a weak solution) on bounded domains, the required regularity

3Nikol’skĭı spaces are a particular case of the Besov spaces when one of the exponents is fixed:
N s, p = Bs, p∞ . See Simon [1990] for more information about these spaces.
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follows from Lemma 2.5, since then we have L3(r+1) ↪→ Lr+1.]

Applying the tools described above we will show in Theorem 4.4 that strong

solutions of the convective Brinkman–Forchheimer equations with r > 3 possess

additional regularity compared to the corresponding solutions of the Navier–Stokes

equations.

In the proof of main result of Chapter 5 (Theorem 5.2) it will be crucial to

control the L6-norm of the gradient of a function u by the L2-norm of Au.

Lemma 2.6. Let u ∈ D(A) on the torus T3. Then there exists a constant c > 0

independent of u such that

‖∇u‖L6(T3) ≤ c ‖Au‖ .

Proof. First, we apply the Sobolev embedding H1 ↪→ L6

‖∇u‖L6 ≤ c ‖∇u‖H1 = c
(
‖∇u‖2 +

∥∥D2u
∥∥2
)1/2

.

We can, either by direct computation or by the Poincaré inequality (noting that ∇u
has zero mean-value for a periodic function u), verify that

‖∇u‖ ≤ c
∥∥D2u

∥∥ .
Therefore, we have the desired bound

‖∇u‖2L6 ≤ c
∥∥D2u

∥∥2
= c

3∑
m,n=1

∑
k∈Z3

k2
mk

2
n |ûk|

2 = c
∑
k∈Z3

|k|4 |ûk|2 = c ‖Au‖2 .
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Chapter 3

Weak solutions

In this chapter we first establish the global existence of weak solutions (Section 3.3)

of the CBF equations with r ≥ 1 (we assume for simplicity f ≡ 0) on a smooth

bounded domain Ω ⊂ R3

{
∂tu− µ∆u+ (u · ∇)u+∇p+ β |u|r−1 u = 0,

divu = 0,
in Ω (3.1)

with zero Dirichlet boundary condition (which is often called in the literature the

‘no-slip’ boundary condition)

u = 0 on ∂Ω,

and initial condition

u(x, 0) = u0 ∈ H.

This result also holds on the torus T3 (with the same proof).

The main result of this chapter states that all weak solutions of the critical

CBF equations (r = 3) on the torus (we prove an analogous result on bounded

domains in Chapter 9){
∂tu− µ∆u+ (u · ∇)u+∇p+ β |u|2 u = 0,

divu = 0,
(3.2)

verify the energy equality (see Section 3.4)

1

2
‖u(T )‖2 + µ

∫ T

0
‖∇u(t)‖2 dt+ β

∫ T

0
‖u(t)‖r+1

Lr+1 dt =
1

2
‖u(0)‖2 ,
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for every T ≥ 0. As a consequence, weak solutions are continuous functions into

L2. Using this fact and the theory of evolutionary systems developed by Cheskidov

[2009], we establish existence of a strong global attractor for that case. These two

results appeared in Hajduk and Robinson [2017].

3.1 Energy inequality

We will now show an inequality for the solutions of the CBF equations which is

analogous to the energy inequality for the Navier–Stokes equations. We treat this

as an introduction of and motivation for the definition of weak solutions of this

model.

Assuming that u is a smooth, divergence-free function, multiplying both sides

of the unforced equation (3.1) by u and then integrating over Ω, we obtain

〈∂tu, u〉+ µ 〈−∆u, u〉+ 〈(u · ∇)u, u〉+ 〈∇p, u〉+ β
〈
|u|r−1 u, u

〉
= 0.

After integration by parts, we have

1

2

d

dt
‖u‖2 + µ ‖∇u(s)‖2 + β ‖u‖r+1

Lr+1 = 0.

The convective term disappears because of the property

〈(u · ∇)v, w〉 = −〈(u · ∇)w, v〉 for u, v, w ∈ V.

The pressure term disappears due to the Helmholtz–Weyl decomposition mentioned

earlier. Integrating now over the time interval [0, t] for t ∈ [0, T ), we have

1

2
‖u(t)‖2 + µ

∫ t

0
‖∇u(s)‖2 ds+ β

∫ t

0
‖u(s)‖r+1

Lr+1 ds =
1

2
‖u(0)‖2 .

Using Galerkin approximations (which we will see in some detail in Section

3.3), we can justify the above computations and write the first energy inequality for

the CBF equations, in the form

1

2
sup
t∈[0,T ]

‖u(t)‖2 + µ

∫ T

0
‖∇u(t)‖2 dt+ β

∫ T

0
‖u(t)‖r+1

Lr+1 dt ≤ 1

2
‖u(0)‖2 . (3.3)

Hence, we expect that for u0 ∈ H, a solution u of the equation (3.1) will

have the regularity
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u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ Lr+1(0, T ;Lr+1).

From interpolation between the first two spaces, we know that such a function

u is actually in the space

u ∈ L10/3
(

0, T ;L10/3
)
.

We can see this using Hölder’s inequality with exponents 3/2, 3 and Sobolev’s em-

bedding H1 ↪→ L6

∫
Ω
|u|10/3 dx =

∫
Ω
|u|4/3 |u|2 dx ≤

(∫
Ω
|u|2 dx

)2/3(∫
Ω
|u|6 dx

)1/3

≤ c ‖u‖4/3 ‖u‖2H1 .

Now, integrating over the time interval [0, T ], we obtain∫ T

0

(∫
Ω
|u|10/3 dx

)
dt ≤ c

∫ T

0
‖u(t)‖4/3 ‖u(t)‖2H1 dt

≤ c
(

sup
0<t<T

‖u(t)‖4/3
)(∫ T

0
‖u(t)‖2H1 dt

)
<∞.

So, for the absorption exponent r in (3.1) in the range (0, 7/3]1, we have no

extra information about regularity of u because then

L10/3 ⊂ Lr+1.

On the other hand, for r > 7/3, we have more information about the regu-

larity of the function u, since now

Lr+1 ⊂ L10/3.

We also know (see Kalantarov and Zelik [2012] for the proof on bounded

domains; we will show in Section 4.3 a simple proof in the periodic case) that for

r > 3 there exists a global strong solution of the convective Brinkman–Forchheimer

equations.

So the range of the parameter r for which we can expect to obtain additional

regularity of weak solutions is

r ∈ (7/3, 3] .

1Note, that the ‘slightly’ singular case u/|u|r, for r ∈ (0, 1), is also included here.
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3.2 Weak formulation

In this section, we will present the weak formulation of the unforced problem (3.1).

As for the NSE, we take a test function ϕ ∈ Dσ(ΩT ). Multiplying both sides

of (3.1) by the function ϕ, and integrating over the space-time domain ΩT , we obtain

−
∫ T

0
〈u, ∂tϕ〉 dt+ µ

∫ T

0
〈∇u, ∇ϕ〉 dt+

∫ T

0
〈(u · ∇)u, ϕ〉 dt

+ β

∫ T

0

〈
|u|r−1 u, ϕ

〉
dt = 〈u0, ϕ(0)〉 . (3.4)

From (3.4) and from the energy inequality (3.3), we have the following defini-

tion of a weak solution for the convective Brinkman–Forchheimer equations without

external forces.

Definition 3.1. We will say that the function u is a weak solution on the time in-

terval [0, T ) of the convective Brinkman–Forchheimer equations (3.1) with the initial

condition u0 ∈ H, if

u ∈ L∞(0, T ;H) ∩ Lr+1(0, T ;Lr+1
σ ) ∩ L2(0, T ;V ) (3.5)

and

−
∫ t

0
〈u(s), ∂tϕ(s)〉 ds+ µ

∫ t

0
〈∇u(s), ∇ϕ(s)〉 ds+

∫ t

0
〈(u(s) · ∇)u(s), ϕ(s)〉 ds

+ β

∫ t

0

〈
|u(s)|r−1 u(s), ϕ(s)

〉
ds = −〈u(t), ϕ(t)〉+ 〈u0, ϕ(0)〉 , (3.6)

for almost every 0 < t < T and all test functions ϕ ∈ Dσ(ΩT ).

A function u is called a global weak solution if it is a weak solution for all

T > 0.

Taking the difference of (3.6) with t = t1 and t = t0, we see that every weak

solution u satisfies an equivalent weak formulation

−
∫ t1

t0

〈u(s), ∂tϕ(s)〉 ds+ µ

∫ t1

t0

〈∇u(s), ∇ϕ(s)〉 ds+

∫ t1

t0

〈(u(s) · ∇)u(s), ϕ(s)〉 ds

+ β

∫ t1

t0

〈
|u(s)|r−1 u(s), ϕ(s)

〉
ds = −〈u(t1), ϕ(t1)〉+ 〈u(t0), ϕ(t0)〉 , (3.7)

for all test functions ϕ ∈ Dσ(ΩT ), almost all initial times t0 ∈ [0, T ), including zero,

and almost every t1 ∈ (t0, T ).
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In the setting of the weak formulation (3.7), we have an important class of

weak solutions satisfying the energy inequality (3.3).

Definition 3.2. A Leray–Hopf weak solution of the convective Brinkman–

Forchheimer equations (3.1) with the initial condition u0 ∈ H is a weak solution

satisfying the following strong energy inequality:

‖u(t1)‖2 + 2µ

∫ t1

t0

‖∇u(s)‖2 ds+ 2β

∫ t1

t0

‖u(s)‖r+1
Lr+1(Ω) ds ≤ ‖u(t0)‖2 , (3.8)

for almost every t0 ∈ [0, T ), including zero, and every t1 ∈ (t0, T ).

It is known that for every u0 ∈ H there exists at least one global Leray–Hopf

weak solution of (3.1). For the proof of the existence of global Leray–Hopf weak

solutions see Antontsev and de Oliveira [2010] (see also Section 3.3 for a sketch of

that proof).

Note that Definition 3.1 is silent about the pressure field p. It is well-known

that to every weak solution of the NSE we can always associate a corresponding

pressure field (see Theorem 2.1 in Galdi [2000]). The same can be shown in a

similar way for the CBF equations (but see Chapter 10 for some pressure-related

issues).

We note also that the regularity condition (3.5) in Definition 3.1 is not suf-

ficient to explain how a weak solution u satisfies the initial condition u(0) = u0.

However, it follows from (3.7) that every weak solution u is L2-weakly continuous

in time (see Lemma 3.4), which allows us to impose the initial condition.

Furthermore, since a weak solution is strictly an equivalence class of functions

equal almost everywhere, any such solution can be modified on a set of zero Lebesgue

measure without changing it in any essential way. In fact, due to the regularity of

the time derivative ∂tu (see Lemma 3.7 in Robinson et al. [2016] for the NSE case;

a similar proof works for the CBF equations), one can modify a weak solution u

on a set of measure zero in such a way that (3.6) is satisfied for all t > 0. We will

assume from now on that every weak solution we consider has been modified on a

set of zero Lebesgue measure so that (3.6) and (3.7) are satisfied for all t > 0 and

all t1 ≥ t0 ≥ 0, respectively (cf. also Lemmas 2.1 and 2.2 in Galdi [2000]).

There is a more convenient definition of weak solutions (one of many), in

which the test functions depend only on the spatial variables2.

We consider functions of the form ψh(x, s) := ϕ(x)θh(s), where ϕ ∈ Dσ(Ω),

and θh(s) is a function from the space C∞0 ([0, T )), that equals one for s ∈ [0, t]

2A full derivation of this definition can be found for example in Galdi [2000] or Robinson et al.
[2016].
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and zero for s ≥ t + h, for a fixed t ∈ [0, T ). Then we see that ψh ∈ Dσ(ΩT )

and ψh(x, s) = ϕ(x) for s ∈ [0, t]. Using ψh(x, s) as the test functions in (3.6) we

obtain at once the following lemma (see Lemma 2.2 in Galdi [2000] for the details;

cf. Lemma 3.6 in Robinson et al. [2016]).

Lemma 3.3. If u is a weak solution of the convective Brinkman–Forchheimer equa-

tions (3.1) then

µ

∫ t1

t0

〈∇u(s), ∇ϕ〉 ds+

∫ t1

t0

〈(u(s) · ∇)u(s), ϕ〉 ds+ β

∫ t1

t0

〈
|u(s)|r−1 u(s), ϕ

〉
ds

= −〈u(t1), ϕ〉+ 〈u(t0), ϕ〉 , (3.9)

for all ϕ ∈ Dσ(Ω), for every t0 ≥ 0 and t1 ≥ t0.

It turns out that the converse of Lemma 3.3 is also true (see Exercise 3.4 in

Robinson et al. [2016] for the proof in the Navier–Stokes case). Namely, if u has the

regularity of a weak solution (3.5) and satisfies (3.9), then u is a weak solution of

the CBF equations (in the sense of Definition 3.1). Therefore, (3.7) and (3.9) are

equivalent definitions of weak solutions of the CBF equations.

The next result tells us the way in which a weak solution of the CBF equations

attains the initial condition.

Lemma 3.4. Every weak solution u of the convective Brinkman–Forchheimer equa-

tions is L2-weakly continuous with respect to time, i.e.

lim
t→t0
〈u(t), v〉 = 〈u(t0), v〉 ,

for every v ∈ L2 and for every t0 ∈ [0, T ).

Using the formulation of weak solutions for the CBF equations given in

Lemma 3.3 (with test functions depending only on the space variables), we can

prove L2-weak continuity with respect to time. The proof is essentially the same as

for the Navier–Stokes equations (cf. Theorem 3.8 in Robinson et al. [2016]).

Proof. We take v ∈ L2(Ω). Using the Helmholtz–Weyl decomposition v can be

written as v = h + ∇g, where h ∈ H and ∇g ∈ G. By orthogonality of u(t) ∈ H
and ∇g we obtain

〈u(t), v〉 = 〈u(t), h+∇g〉 = 〈u(t), h〉 .

Therefore, we only need to prove that
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lim
t→t0
〈u(t), h〉 = 〈u(t0), h〉 for all h ∈ H.

Since Dσ is dense in H we can assume that h ∈ Dσ(Ω). For every fixed t0 ∈ [0, T ),

taking the weak formulation from Lemma 3.3 with t1 = t for the time instant

0 ≤ t0 ≤ t < T , we can write for such h

〈u(t), h〉 − 〈u(t0), h〉 =− µ
∫ t

t0

〈∇u(s), ∇h〉 ds−
∫ t

t0

〈(u(s) · ∇)u(s), h〉 ds

− β
∫ t

t0

〈
|u(s)|r−1 u(s), h

〉
ds.

The functions h and ∇h are bounded and

u ∈ L2(0, T ;V ) ∩ Lr+1(0, T ;Lr+1
σ ) ∩ L∞(0, T ;H).

Therefore, the right-hand side of the above equality is integrable. Hence, it con-

verges to zero as t → t+0 . We can follow a similar reasoning for t < t0 and obtain

convergence from the left as t→ t−0 , and hence the convergence as t→ t0.

From Lemma 3.4 it follows that every weak solution of the convective

Brinkman–Forchheimer equations satisfy the initial condition in the sense that

u(t) ⇀ u0, as t→ 0+.

3.2.1 Alternative space of test functions

It is often more convenient to replace the space of test functions Dσ in the weak

formulation (3.6) with a different, possibly less restrictive space or a space with

different properties. We define here the space D̃σ consisting of finite combinations

of eigenfunctions of the Stokes operator. Both on a bounded domain in R3 with a

smooth boundary and for the torus T3, we define

D̃σ(ΩT ) :=

{
ϕ : ϕ =

N∑
k=1

αk(t)ak(x), αk ∈ C1
0 ([0, T )), T > 0, ak ∈ N , N ∈ N

}
,

where N is the orthonormal basis in H (and orthogonal basis in V ) consisting of

eigenfunctions of the Stokes operator (see Theorem 2.24 in Robinson et al. [2016]

for the proof of existence of the set N ), that is Aak = λkak for all k ∈ N, with the

eigenfunctions λk ordered so that
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0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · , and λk →∞ as k →∞

(this follows from the fact that A is positive, symmetric, self-adjoint operator with

compact inverse, see e.g. Temam [1977] or Constantin and Foias [1988] for more

details).

The functions in the space D̃σ are less regular in time than those in Dσ, and

they usually do not have compact support in the space domain Ω. However, they

have the advantage that their dependence on space and time variables is separated,

and that they are directly connected with the Stokes operator.

In Chapter 8 (Section 8.1.3) we will construct a sequence ϕn of approximating

functions from the space D̃σ, with some additional properties. We will then use this

sequence in Chapter 9 to prove the energy equality for weak solutions of the critical

CBF equations (3.2) on bounded domains (Theorem 9.1). It will be crucial in the

proof of this result that the functions ϕn can actually be used as test functions in

the weak formulation (3.6). This follows from the following lemma (cf. Lemma 3.11

in Robinson et al. [2016] or Lemma 2.3 in Galdi [2000]).

Lemma 3.5. Let Ω be a smooth bounded domain in R3 or the torus T3, and let

r ∈ (0, 5]. If u ∈ L∞(0, T ;H) ∩ Lr+1(0, T ;Lr+1
σ ) ∩ L2(0, T ;V ) for all T > 0, then

the following two statements are equivalent:

(i) u satisfies (3.6) for all ϕ ∈ Dσ(Ω∞),

(ii) u satisfies (3.6) for all ϕ ∈ D̃σ(Ω∞).

Proof. We note that the function u in the assumption is defined on [0, T ) for every

T > 0, so globally in time. The space D̃σ(Ω∞) = Dσ(Ω× [0,∞)) is given by{
ϕ : ϕ =

N∑
k=1

αk(t)ak(x), αk ∈ C1
0 ([0,∞)), ak ∈ N , N ∈ N

}
;

the time part of the functions in D̃σ(Ω∞) have compact support in [0,∞), so

in fact have compact support in some [0, T ), T < ∞. In particular, we have

D̃σ(Ω∞) =
⋃
T>0 D̃σ(ΩT ). Similarly, the test functions Dσ(Ω∞) have compact sup-

port (in time) in [0,∞), so any element in Dσ(Ω∞) is an element of Dσ(ΩT ) for some

T < ∞. Therefore, the weak form (3.6) is well-defined in both cases considered in

the lemma.
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(i) ⇒ (ii). It is clear that it suffices to show that the equality (3.6) holds for

every fixed time t > 0 and every ϕ ∈ D̃σ given by

ϕ(x, s) = α(s)a(x),

where a ∈ N and α ∈ C1
0 ([0,∞)).

First, we notice that we can find a sequence of smooth functions

αn ∈ C∞([0,∞)) with compact support in [0, t+ 1) such that

αn → α in C1([0, t]).

Since functions from Dσ(Ω) are dense in V we can also find a sequence of functions

ϕn ∈ Dσ(Ω) such that

ϕn → a in H1(Ω).

From the above we also have that

ϕn → a in Lp(Ω), for p ∈ [1, 6].

Then for each n the function ψn given by

ψn(x, s) := αn(s)ϕn(x)

is an element of Dσ(Ω∞), so from the assumption (i) we know that (3.6),

−
∫ t

0
〈u, ∂tψn〉 ds+ µ

∫ t

0
〈∇u, ∇ψn〉 ds+

∫ t

0
〈(u · ∇)u, ψn〉 ds

+ β

∫ t

0

〈
|u|r−1 u, ψn

〉
ds = −〈u(t), ψn(t)〉+ 〈u0, ψn(0)〉 , (3.10)

is satisfied for every n. Furthermore,

ψn → ϕ in C([0, t];V ), (3.11)

∂tψn → ∂tϕ in L2(0, t;L2), and (3.12)

ψn → ϕ in Lr+1(0, t;Lr+1), for r ∈ [0, 5], (3.13)

as n → ∞. Now we pass to the limit as n → ∞ in (3.10). Using (3.11) and (3.12)

we obtain convergence in the linear terms.

To pass to the limit in the convective term it is enough to notice that, due

to the Sobolev embedding, we have
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ψn → ϕ in C([0, t];L6), and consequently ψn → ϕ in L4(0, t;L6).

We note that u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) implies that (u · ∇)u ∈ L4/3(0, T ;L6/5)

(see Theorem 3.4 in Robinson et al. [2016]). Hence, we obtain∣∣∣∣∫ t

0
〈(u(s) · ∇)u(s), (ψn(s)− ϕ(s))〉 ds

∣∣∣∣ ≤ ‖(u · ∇)u‖L4/3(0,t;L6/5) ‖ψn − ϕ‖L4(0,t;L6) ,

which tends to 0 as n → ∞. Thanks to (3.13) we can pass to the limit in

the absorption term as well. Indeed, using Hölder’s inequality with exponents

(r + 1)′ = (r + 1)/r and r + 1 (for r > 0), we have∣∣∣∣∫ t

0

〈
|u(s)|r−1 u(s), (ψn(s)− ϕ(s))

〉
ds

∣∣∣∣ ≤ ‖u‖rLr+1(0,t;Lr+1) ‖ψn − ϕ‖Lr+1(0,t;Lr+1) ,

which tends to 0 as n→∞.

(ii) ⇒ (i). Let ϕ ∈ Dσ(Ω∞). Then ϕ(s) ∈ V ∩Hk for all k = 1, 2, 3, . . . and

every s > 0, so we can express ϕ(s) in terms of the Stokes eigenfunctions:

ϕ(x, s) =
∞∑
k=1

ck(s)ak(x).

Define ψn(x, s) :=
∑n

k=1 ck(s)ak(x). Note that the coefficients ck ∈ C1
0 ([0,∞)) since

they are given by the inner product of ϕ with ak

ck(s) = 〈ϕ(s), ak〉 .

Then ψn ∈ D̃σ(Ω∞) and

ψn → ϕ in C([0, t];V ).

Indeed, we have (note that clearly ϕ(s) ∈ D(A) = V ∩H2)

sup
0≤s≤t

‖ϕ(s)− ψn(s)‖2V = sup
0≤s≤t

∥∥∥∥∥
∞∑

k=n+1

ck(s)ak(x)

∥∥∥∥∥
2

H1

≤ sup
0≤s≤t

∞∑
k=n+1

(1 + λk)c
2
k(s)

≤ sup
0≤s≤t

∞∑
k=n+1

2λkc
2
k(s) ≤ 2 sup

0≤s≤t

∞∑
k=n+1

λ2
kc

2
k(s)

λn

≤ 2 sup
0≤s≤t

∞∑
k=1

λ2
kc

2
k(s)

λn
=

2

λn
sup

0≤s≤t
‖Aϕ(s)‖2
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≤ c

λn
sup

0≤s≤t
‖ϕ(s)‖2H2 → 0 as n→∞;

we used here the facts that λk ≥ λn for k > n and λn ≥ 1 for n big enough3. It

follows that

ψn → ϕ in Lr+1(0, t;Lr+1), for r ≤ 5.

Furthermore,

∂tψn → ∂tϕ in L2(0, t;L2),

so we can follow the reasoning in the proof of implication ‘(i) ⇒ (ii)’, which was

based on the convergence (3.11)-(3.13).

3.3 Existence of weak solutions

In this section we give a short sketch of the proof of existence of global-in-time weak

solutions of the CBF equations with r ≥ 1. This result is proved using a standard

Galerkin approximation method. It appears in the literature in different settings e.g.

in Antontsev and de Oliveira [2010]; de Oliveira [2013] or Markowich et al. [2016],

usually in greater generality than our case. The proof of this result follows closely

an analogous result for the NSE which can be found in many places (see e.g. Lions

[1969]; Temam [1977]; Galdi [2000]; Robinson et al. [2016]). The only issue lies in

establishing an a priori estimate for the time derivative of the approximate solution.

This issue comes, of course, from the introduction of the absorption term. There

is a nice observation connecting the time derivative and the absorption term given

in Antontsev and de Oliveira [2010] and this is the main reason why we include a

proof of this theorem in our considerations. Additionally, in Chapter 4 we often

use formal calculations, which can be made rigorous using Galerkin approximations

along similar lines as presented here. The domain considered here is a smooth,

bounded domain Ω ⊂ R3 with Dirichlet boundary conditions u|∂Ω = 0 (in the sense

of trace) or the three-dimensional torus T3.

Theorem 3.6 (Existence of weak solutions for CBF). Let Ω be a smooth bounded

domain in R3 or the torus T3. For every function u0 ∈ H there exists at least one

weak solution of the three-dimensional convective Brinkman–Forchheimer equations

with r ≥ 1. This solution is weakly continuous in L2 with respect to time and

additionally satisfies the energy inequality

3Note that on the torus T3 = [0, 2π]3 the first eigenvalue λ1 is known to be greater than 1.
However, we cannot assume the same for an arbitrary bounded domain Ω ⊂ R3.
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1

2
‖u(t)‖2 + µ

∫ t

0
‖∇u(s)‖2 ds+ β

∫ t

0
‖u(s)‖r+1

Lr+1 ds ≤ 1

2
‖u0‖2 , (3.14)

for all t ∈ [0, T ]. Consequently, u(t)→ u0 strongly in L2 as t→ 0+.

It turns out that the weak solution constructed in Theorem 3.6 satisfies

the strong energy inequality (3.8). This result was proved for the Navier–Stokes

equations by Ladyzhenskaya [1969] (see also Theorem 4.6 in Robinson et al. [2016]).

A similar proof works for the CBF equations as well.

From the above we can infer how the initial condition u0 is attained by all

Leray–Hopf weak solutions (solutions satisfying the strong energy inequality (3.8),

in particular, the solution constructed in Theorem 3.6).

Corollary 3.7. Every Leray–Hopf weak solution u of the CBF equations is right

continuous in L2

‖u(t)− u(t0)‖ → 0 as t→ t+0 ,

at times t0 for which (3.8) holds.

In particular, u satisfies the energy inequality (3.14) and converges strongly

in L2 to the initial condition u0

‖u(t)− u(0)‖ → 0 as t→ 0+.

The right-convergence in L2 follows from the fact that

‖u(t)‖ → ‖u(t0)‖ as t→ t+0 ,

which is easy to justify by the means of the strong energy inequality (3.8) (see Corol-

lary 4.8 in Robinson et al. [2016] for the details). Convergence of norms and weak

continuity (see Lemma 3.4) in the Hilbert space L2 imply the strong convergence.

As we already know, all weak solutions of the convective Brinkman–

Forchheimer equations are weakly continuous with respect to time. However, to

date, it is not known (as is the case for the Navier–Stokes equations) whether all

weak solutions of the CBF equations with the absorption exponent r ∈ [1, 3) satisfy

the energy inequality or not. Strong convergence to the initial condition follows

from a weak continuity and the energy inequality (3.14), when the latter is satisfied.

So, it is also not known whether all weak solutions converge strongly in L2 to the

initial condition. The uniqueness of weak solutions is also an open problem.

However, as we will see in Section 3.4, all weak solutions for the critical case

31



r = 3 on the torus (and on bounded domains; see Chapter 9) verify the energy

equality and hence are continuous into L2. In turn, this guarantees existence of a

strong global attractor in the phase space H via theory of ‘evolutionary systems’

developed by Cheskidov [2009] (see Section 3.5).

Now, we present a sketch of the proof of Theorem 3.6. The argument works

both for smooth bounded domains in R3 and for the torus T3.

Sketch of the proof. We now define the notion of Galerkin approximations for the

convective Brinkman–Forchheimer equations.

Let {aj}∞j=1 be an orthonormal basis in H made of eigenfunctions of the

Stokes operator4 A. Since the domain of the Stokes operator (see Chapter 7 for

more details on the domains of operators) is given by

D(A) = V ∩H2 ↪→ H,

the set {aj} is also an orthogonal basis in D(A). The choice of the base space

D(A) ↪→ H2 is a key idea, allowing us to handle the absorption term |u|r−1 u for all

exponents r ≥ 1. Since in 3D space we have H2 ↪→ Lp for every p ≥ 1, this choice

gives us control over all the Lp norms of the approximate solution.

We call the function

un(x, t) :=
n∑
j=1

cnj (t)aj(x) (3.15)

the n-th Galerkin approximation of the solution of the CBF equations, if it satisfies

the following system of equations ∀ j = 1, . . . , n

d

dt
〈un(t), aj〉 =− µ 〈∇un(t), ∇aj〉 − 〈(un(t) · ∇)un(t), aj〉

− β
〈
|un(t)|r−1 un(t), aj

〉
, (3.16)

with the initial condition

un(x, 0) = Pnu0 :=

n∑
j=1

〈u0, aj〉 aj .

The operators Pn : L2 → H, given by Pnu :=
∑n

j=1 〈u, aj〉 aj , are the orthogonal

projections onto the n-dimensional subspaces Vn spanned by the first n eigenfunc-

tions of the Stokes operator.

4Recall the set N from Section 3.2.1.
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For each n, (3.16) gives the system of ordinary differential equations for cnj (t)

with initial conditions

cnj (0) = 〈u0, aj〉 .

From the classical theory of ODEs (see Hartman [1973]), since the right-hand side

of (3.16) is continuous and locally Lipschitz, these equations have unique solutions

cnj of class C1 for some time interval [0, Tn].

Proceeding as in Section 3.1 (taking smooth functions un as test functions),

we can easily derive the energy estimates for the Galerkin approximations [alterna-

tively, we can multiply (3.16) by cnj , add these equations over j from 1 to n and

integrate in time from 0 to Tn]

sup
t∈[0,Tn]

‖un(t)‖2 + 2µ

∫ Tn

0
‖∇un(t)‖ dt+ 2β

∫ Tn

0
‖un(t)‖r+1

Lr+1 dt

≤ ‖un(0)‖2 ≤ ‖u0‖2 <∞. (3.17)

From (3.17) and standard results for ordinary differential equations, it follows that

we can take Tn = T for all n and for every T > 0. Moreover, we obtain from (3.17)

that

un remains bounded in L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ Lr+1(0, T ;Lr+1
σ ). (3.18)

We note that ∥∥∥|un|r−1 un

∥∥∥(r+1)′

L(r+1)′
= ‖un‖r+1

Lr+1 ,

where (r + 1)′ = (r + 1)/r. This yields that

|un|r−1 un remains bounded in L(r+1)′(0, T ;L(r+1)′).

Using the orthogonal projection Pn : H → Vn and noting that PnP = Pn, we

obtain from (3.16) that

∂tun = µPn(∆un)− Pn((un · ∇)un)− βPn(|un|r−1 un). (3.19)

Using (3.17) and the special choice of the basis of Vn, we deduce, arguing as in Lions

[1969, Chapter 1, Paragraph 6.4.3], that the sequences Pn(∆un) and Pn((un ·∇)un)

are bounded in L2(0, T ;D(A)′), where D(A)′ = D(A−1). Moreover, we recall that

D(A) ↪→ Lr+1 (for every r ≥ 1) and we observe that Pn are uniformly bounded in

D(A), but not in Lr+1. Therefore, we have for ϕ ∈ D(A)
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∣∣∣〈Pn(|u|r−1 u), ϕ
〉∣∣∣ =

∣∣∣〈|u|r−1 u, Pnϕ
〉∣∣∣ ≤ ‖u‖rLr+1 ‖Pnϕ‖Lr+1

≤ c ‖u‖rLr+1 ‖Pnϕ‖D(A) ≤ c ‖u‖
r
Lr+1 ‖ϕ‖D(A) <∞. (3.20)

Then, from (3.19) and (3.20), we have that

∂tun remains bounded in L2(0, T ;D(A)′) + L(r+1)′(0, T ;D(A)′). (3.21)

Noting that L2(0, T ) ↪→ L(r+1)′(0, T ) for every r > 0, we have from (3.21) that

∂tun remains bounded in L(r+1)′(0, T ;D(A)′). (3.22)

From (3.18) and (3.22), there exist functions u and v, and a subsequence of

(un) (which we relabel), such that

un → u weakly-* in L∞(0, T ;H), (3.23)

un → u weakly in L2(0, T ;V ), (3.24)

un → u weakly in Lr+1(0, T ;Lr+1
σ ), (3.25)

|un|r−1 un → v weakly in L(r+1)′(0, T ;L(r+1)′), (3.26)

∂tun → ∂tu weakly in L(r+1)′(0, T ;D(A)′), (3.27)

as n→∞.

We recall that D(A) ↪→ V ↪→ H ∼= H ′ ↪→ V ′ ↪→ D(A)′, with compact

embeddings on the first two inclusions. This, together with (3.24) and (3.27) allows

us to use the Aubin–Lions compactness lemma5 (see Lions [1969, Theorem I-5.1)])

to get that

un → u strongly in L2(0, T ;H) as n→∞. (3.28)

Now, we multiply (3.16) by ϕ ∈ C1([0, T ]), with ϕ(T ) = 0, and then we

integrate these equations from 0 to T . We get

−
∫ T

0
〈un(t), aj〉ϕ′(t) dt+ µ

∫ T

0
〈∇un(t), ∇aj〉ϕ(t) dt

+

∫ T

0
〈(un(t) · ∇)un(t), aj〉ϕ(t) dt+ β

∫ T

0

〈
|un(t)|r−1 un(t), aj

〉
ϕ(t) dt

5Note that this implies that we can prove existence of weak solutions for the CBF equations
with any r > 0, since (r + 1)′ = 1 + 1/r > 1.
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= 〈un(0), aj〉ϕ(0). (3.29)

Passing to the limit in the linear terms is standard and follows from the weak

convergence (3.24). Weak convergence (3.24) and strong convergence (3.28) allows

us to pass to the limit in the convective term. For the convergence in the absorption

term, we notice that by taking a new subsequence, we may assume that un → u a.e.

in ΩT . This implies that

|un|r−1 un → |u|r−1 u a.e. in ΩT . (3.30)

Using Lemma 1.3 in Lions [1969], it follows from (3.26) and (3.30) that v = |u|r−1 u.

Showing that the limit function u satisfies the weak formulation and energy inequal-

ity is standard.

3.4 Energy equality in the periodic case for the critical

exponent r = 3

We consider here the unforced CBF equations on the torus T3, with the critical

value of the absorption exponent r = 3

∂tu− µ∆u+ (u · ∇)u+∇p+ β |u|2 u = 0, div u = 0. (3.31)

We want to recall that for the Navier–Stokes equations (β = 0) it is well-

known that for every u0 ∈ H there exists at least one global Leray–Hopf weak

solution that satisfies the strong energy inequality:

‖u(t1)‖2 + 2µ

∫ t1

t0

‖∇u(s)‖2 ds ≤ ‖u(t0)‖2 . (3.32)

This can be found in many places, e.g. in Galdi [2000] or in Robinson et al. [2016].

However, it is not known if all weak solutions have to verify (3.32). The problem

of proving equality in (3.32) for weak solutions is also open; there are only partial

results in this direction. The first criterion guaranteeing the energy equality was

identified by Prodi [1959] and Lions [1960] to be

u ∈ L4(0, T ;L4(Ω)). (3.33)

Then, a few years later Serrin [1963] proved energy equality under the assumption
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u ∈ Lt(0, T ;Ls(Ω)), where
3

s
+

2

t
= 1 and s ∈ [3,∞], (3.34)

which is stronger than (3.33). Actually, for s = 4, it furnishes u ∈ L8(0, T ;L4) which

implies (3.33). The result of Lions is a particular case of that stated in Shinbrot

[1974], where the assumption (3.33) is replaced by:

u ∈ Lt(0, T ;Ls(Ω)), where
2

s
+

2

t
≤ 1 and s ≥ 4. (3.35)

This result extends the condition for energy conservation to a wide range of ex-

ponents. Many years later Kukavica [2006] proved energy conservation under the

condition on the pressure being locally square integrable

p ∈ L2
loc(R3 × [0, T )).

See also a recent review on the energy equality results for the Navier–Stokes equa-

tions in Berselli and Chiodaroli [2019].

We now make the observation that by definition weak solutions of the critical

CBF equations (3.31) satisfy the condition (3.33) [see regularity condition (3.5) in

Definition 3.1]. This suggests that the energy equality holds for all weak solutions

of this problem, and we prove this in the following theorem.

Theorem 3.8. Every weak solution of the critical CBF equations (3.31) on the

torus T3, with the initial condition u0 ∈ H satisfies the energy equality:

‖u(t1)‖2 + 2µ

∫ t1

t0

‖∇u(s)‖2 ds+ 2β

∫ t1

t0

‖u(s)‖4L4(T3) ds = ‖u(t0)‖2 (3.36)

for all 0 ≤ t0 < t1 < T . Hence, all weak solutions are continuous functions into

the phase space L2, i.e. u ∈ C([0, T ] ;H).

To the best of our knowledge, the validity of the energy equality is not to

date verified for the convective Brinkman–Forchheimer equations (3.1) for the range

of exponent values r ∈ [1, 3). For larger values of the exponent r > 3, it was already

shown that the CBF equations enjoy the existence of global-in-time strong solutions

(see proof for bounded domains in Kalantarov and Zelik [2012] and Section 4.3 for

the periodic case) and hence the energy equality is satisfied. Theorem 3.8 extends

the energy equality to the critical case r = 3.

This proof is reminiscent of that for the conditional NSE result (due to Lions

[1960]6), where the energy equality was proved to hold for weak solutions belonging

6See also Theorem 4.1 in Galdi [2000] for a more modern approach.
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to the Bochner space L4(0, T ;L4(Ω)). In our case we have to argue more carefully

to handle the additional nonlinear term.

The result of Theorem 3.8 was stated without a proof in Antontsev and

de Oliveira [2010] for the Navier–Stokes equations modified by an absorption term.

A similar result was given in Cheskidov et al. [2010], where the energy equality was

proved to hold for weak solutions of the NSE in the functional space

L3(0, T ;D(A5/12)).

Here D(A5/12) is the domain of the fractional power of the Stokes operator

A = −P∆, where P : L2 → H is the Leray projection (for references see Constantin

and Foias [1988], Robinson et al. [2016] or Temam [1995]). This space corresponds

to the fractional Sobolev space H5/6. The main difference in our work is that we

cannot use the usual truncations of the Fourier series as an approximating sequence,

since we have regularity of solutions in a Lebesgue space rather than in a Sobolev

space. Therefore, we use more carefully truncated Fourier series to obtain our result.

We adapt the proof given in Galdi [2000], where a specific mollification in time is

used.

The main idea of the proof is to use a weak solution as a test function. We

cannot do this directly since u is not sufficiently regular in space or time. Therefore,

we regularise in time the finite-dimensional approximations of a weak solution and

pass to the limit with both the regularisation and spatial approximation parameters.

To this end we recall here some standard facts of the theory of mollification.

Let η(t) be an even, non-negative, smooth function with compact support

contained in the interval (−1, 1), such that∫ ∞
−∞

η(s) ds = 1.

We denote by ηh a family of mollifiers connected with the function η, i.e.

ηh(s) := h−1η(s/h) for h > 0.

In particular, we have ∫ h

0
ηh(s) ds =

1

2
. (3.37)

For any function v ∈ Lq(0, T ;X), where X is a Banach space and q ∈ [1,∞), we

denote its mollification in time by vh
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vh(s) := (v ∗ ηh)(s) =

∫ T

0
v(τ)ηh(s− τ) dτ for h ∈ (0, T ).

We have the following properties of this mollification (see Lemma 2.5 in Galdi

[2000]).

Lemma 3.9. Let w ∈ Lq(0, T ;X), 1 ≤ q < ∞, for some Banach space X. Then

wh ∈ Ck([0, T );X) for all k ≥ 0. Moreover,

lim
h→0

∥∥∥wh − w∥∥∥
Lq(0,T ;X)

= 0.

Finally, if {wn}∞n=1 converges to w in Lq(0, T ;X), then

lim
n→∞

∥∥∥whn − wh∥∥∥
Lq(0,T ;X)

= 0.

Since our domain is the three-dimensional torus, we can approximate func-

tions in Lp spaces using carefully truncated Fourier expansions. The natural trun-

cation of the Fourier series

S̃n(u) :=
∑
|k|≤n

ûneik·x,

behaves well in the L2-based spaces:∥∥∥S̃n(u)− u
∥∥∥
X
→ 0 and

∥∥∥S̃n(u)
∥∥∥
X
≤ ‖u‖X

for X = L2(T3) or Hs(T3). However, the same does not hold in Lp(T3) for p 6= 2.

There is no constant cp such that∥∥∥S̃n(u)
∥∥∥
Lp
≤ cp ‖u‖Lp for every u ∈ Lp(T3).

This follows from the result of Fefferman [1971] concerning the ball multiplier for the

Fourier transform (see also Section 1.5 in Robinson et al. [2016] for a brief discussion

of this result).

In the periodic setting (and on the whole space Rd) we can overcome this

problem by considering truncations over ‘cubes’ (|kj | ≤ n) rather than ‘balls’

(|k| ≤ n) of the Fourier modes. If we define

Sn(u) :=
∑
k∈Qn

ûke
ik·x,
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where Qn := [−n, n]3 ∩Z3, then it follows from good behaviour of the truncation in

one-dimensional space that

‖Sn(u)− u‖Lp → 0 and ‖Sn(u)‖Lp ≤ cp ‖u‖Lp

(see e.g. Muscalu and Schlag [2013] for more details). We state this more precisely in

the following theorem (see Theorem 1.6 in Robinson et al. [2016] for more details).

Theorem 3.10. Let Qn := [−n, n]3 ∩ Z3. For every w ∈ L1(T3) and every n ∈ N
define

Sn(w) :=
∑
k∈Qn

ŵke
ik·x, (3.38)

where the Fourier coefficients ŵk are given by

ŵk :=
1

|T3|

∫
T3

w(x)e−ik·x dx.

Then for every 1 < p <∞ there is a constant cp, independent of n, such that

‖Sn(w)‖Lp(T3) ≤ cp ‖w‖Lp(T3) for all w ∈ Lp(T3)

and

‖Sn(w)− w‖Lp(T3) → 0 as n→∞.

Now we can prove the following density result which will be used in the proof

of Theorem 3.8.

Lemma 3.11. Dσ(T3 × [0, T )) is dense in L4(0, T ;L4
σ(T3)) ∩ L2(0, T ;V ).

We note that in the periodic case the lack of boundaries would allow us to

use a mollification in space to prove Lemma 3.11. While this method is simpler than

the truncations of the Fourier series which we use, we prefer to use the truncations

Sn, because this method is more in line with what we will be doing later on in

Chapters 8 and 9. We also think that the convergence of Sn in the Lebesgue spaces

is interesting in its own right and not so widely known.

Proof. Let w ∈ L4(0, T ;L4
σ(T3)) ∩ L2(0, T ;V ) and define

whn(x, t) := Sn(wh(x, t)) =
∑
k∈Qn

ŵhk(t)eik·x for h ∈ (0, T ),

where Sn is the same as in (3.38). Clearly, whn ∈ Dσ(T3 × [0, T )). By Theorem 3.10
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we have

lim
n→∞

∥∥∥whn(t)− wh(t)
∥∥∥4

L4(T3)
= 0 (3.39)

and

lim
n→∞

∥∥∥whn(t)− wh(t)
∥∥∥2

V
= lim

n→∞

∥∥∥whn(t)− wh(t)
∥∥∥2

+ lim
n→∞

∥∥∥∇whn(t)−∇wh(t)
∥∥∥2

= 0 (3.40)

for all t ∈ [0, T ). By Lemma 3.9, for a given ε > 0, we can choose h > 0 so small

that ∫ T

0

∥∥∥wh(t)− w(t)
∥∥∥4

L4(T3)
dt < ε and

∫ T

0

∥∥∥wh(t)− w(t)
∥∥∥2

V
dt < ε. (3.41)

On the other hand, from (3.39), (3.40), and the Lebesgue Dominated Convergence

Theorem, we have that for all fixed h ∈ (0, T )

lim
n→∞

∫ T

0

∥∥∥whn(t)− wh(t)
∥∥∥4

L4(T3)
dt = 0, and lim

n→∞

∫ T

0

∥∥∥whn(t)− wh(t)
∥∥∥2

V
dt = 0,

(3.42)

since, respectively,
∥∥whn(t)

∥∥
L4(T3)

≤ c
∥∥wh(t)

∥∥
L4(T3)

, and
∥∥whn(t)

∥∥
V
≤ c

∥∥wh(t)
∥∥
V

for

all n ∈ N and t ∈ [0, T ), and

wh ∈ L4(0, T ;L4
σ(T3)) ∩ L2(0, T ;V ).

Thus, the lemma follows from the relations (3.41), (3.42) and the triangle inequality.

Now, we are in a position to prove Theorem 3.8.

Proof. Let {un}∞n=1 ⊂ Dσ(T3 × [0, T )) be a sequence converging to a weak solution

u in L4(0, T ;L4
σ(T3)) and in L2(0, T ;V ), see Lemma 3.11. For every fixed time

instant t1 ∈ (0, T ), we choose in the weak formulation (3.6) (with t = t1) a sequence

of test functions

ϕhn(x, s) :=
(
un(x, ·)χ[0,t1](·)

)h
(s) =

(
unχ[0,t1] ∗ ηh

)
(x, s)

=

∫ T

0
un(x, τ)χ[0,t1](τ)ηh(s− τ) dτ =

∫ t1

0
un(x, τ)ηh(s− τ) dτ ,

for (x, s) ∈ T3 × [0, T ), with the parameter h satisfying the following conditions:
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0 < h < T − t1 and h < t1.

We obtain a sequence of equations

−
∫ t1

0

〈
u(s), ∂t(unχ[0,t1])

h(s)
〉

ds+ µ

∫ t1

0

〈
∇u(s), ∇(unχ[0,t1])

h(s)
〉

ds

+

∫ t1

0

〈
(u(s) · ∇)u(s), (unχ[0,t1])

h(s)
〉

ds+ β

∫ t1

0

〈
|u(s)|2 u(s), (unχ[0,t1])

h(s)
〉

ds

= −
〈
u(t1), (unχ[0,t1])

h(t1)
〉

+
〈
u(0), (unχ[0,t1])

h(0)
〉
. (3.43)

Note that our choice of h ensures that ϕhn(x, T ) = 0. Additionally, observe

that the functions ϕhn are divergence-free, since divϕhn = (divϕn)h = 0, so indeed

ϕhn ∈ Dσ(T3 × [0, T )).

We want to pass to the limit in (3.43) as n→∞. To this end, using Hölder’s

inequality and Lemma 3.9, we observe the following estimates for the nonlinear

terms:∣∣∣∣∫ t1

0

〈
(u(s) · ∇)u(s), (unχ[0,t1])

h(s)
〉

ds−
∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])

h(s)
〉

ds

∣∣∣∣
≤
∫ t1

0
‖u(s)‖L4(T3) ‖∇u(s)‖

∥∥∥(unχ[0,t1])
h(s)− (uχ[0,t1])

h(s)
∥∥∥
L4(T3)

ds

≤ ‖u‖L4(0,T ;L4
σ(T3)) ‖u‖L2(0,T ;V )

∥∥∥(unχ[0,t1])
h − (uχ[0,t1])

h
∥∥∥
L4(0,T ;L4

σ(T3))
→ 0 (3.44)

as n→∞, and∣∣∣∣∫ t1

0

〈
|u(s)|2 u(s), (unχ[0,t1])

h(s)
〉

ds−
∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])

h(s)
〉

ds

∣∣∣∣
≤
∫ t1

0
‖u(s)‖3L4(T3)

∥∥∥(unχ[0,t1])
h(s)− (uχ[0,t1])

h(s)
∥∥∥
L4(T3)

ds

≤ ‖u‖3L4(0,T ;L4
σ(T3))

∥∥∥(unχ[0,t1])
h − (uχ[0,t1])

h
∥∥∥
L4(0,T ;L4

σ(T3))
→ 0 (3.45)

as n → ∞. Estimating the linear terms in a standard way and using (3.44), (3.45)

we can pass in the weak formulation (3.43) to the limit as n→∞. We arrive at the

identity

−
∫ t1

0

〈
u(s), ∂t(uχ[0,t1])

h(s)
〉

ds+ µ

∫ t1

0

〈
∇u(s), ∇(uχ[0,t1])

h(s)
〉

ds

+

∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])

h(s)
〉

ds+ β

∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])

h(s)
〉

ds
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= −
〈
u(t1), (uχ[0,t1])

h(t1)
〉

+
〈
u(0), (uχ[0,t1])

h(0)
〉
.

Since the function ηh is even in (−h, h), we have η̇h(r) = −η̇h(−r) and so

−
∫ t1

0

〈
u(s), ∂t(uχ[0,t1])

h(s)
〉

ds = −
∫ t1

0

(∫ t1

0
η̇h(s− τ) 〈u(s), u(τ)〉 dτ

)
ds

η̇ is odd =

∫ t1

0

(∫ t1

0
η̇h(τ − s) 〈u(s), u(τ)〉 dτ

)
ds

symmetry of the scalar product =

∫ t1

0

(∫ t1

0
η̇h(τ − s) 〈u(τ), u(s)〉 dτ

)
ds

changing order of integration =

∫ t1

0

(∫ t1

0
η̇h(τ − s) 〈u(τ), u(s)〉 ds

)
dτ

swapping s and τ =

∫ t1

0

(∫ t1

0
η̇h(s− τ) 〈u(s), u(τ)〉 dτ

)
ds = 0.

Next, by repeating the arguments in (3.44), (3.45) with (uχ[0,t1])
h in place

of (unχ[0,t1])
h and uχ[0,t1] in place of (uχ[0,t1])

h, we obtain

lim
h→0

∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])

h(s)
〉

ds =

∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])(s)

〉
ds

=

∫ t1

0
〈(u(s) · ∇)u(s), u(s)〉 ds = 0,

lim
h→0

∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])

h(s)
〉

ds =

∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])(s)

〉
ds

=

∫ t1

0
‖u(s)‖4L4(T3) ds,

lim
h→0

∫ t1

0

〈
∇u(s), ∇(uχ[0,t1])

h(s)
〉

ds =

∫ t1

0

〈
∇u(s), ∇(uχ[0,t1])(s)

〉
ds

=

∫ t1

0
‖∇u(s)‖2 ds,

which give us

µ

∫ t1

0
‖∇u(s)‖2 ds+ β

∫ t1

0
‖u(s)‖4L4(T3) ds = − lim

h→0

〈
u(t1), (uχ[0,t1])

h(t1)
〉

+ lim
h→0

〈
u(0), (uχ[0,t1])

h(0)
〉
.

Finally, from the fact that u is L2-weakly continuous in time and from (3.37), we

have
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〈
u(t1), (uχ[0,t1])

h(t1)
〉

=

∫ T

0
ηh(s)χ[0,t1](t1 − s) 〈u(t1), u(t1 − s)〉 ds

=

∫ t1

0
ηh(s) 〈u(t1), u(t1 − s)〉 ds =

∫ h

0
ηh(s) 〈u(t1), u(t1 − s)〉 ds

=
1

2
‖u(t1)‖2 +

∫ h

0
ηh(s) 〈u(t1), u(t1 − s)− u(t1)〉 ds→ 1

2
‖u(t1)‖2

as h→ 0. In the same manner we show that〈
u(0), (uχ[0,t1])

h(0)
〉
→ 1

2
‖u(0)‖2 as h→ 0.

Finally, we obtain the identity

1

2
‖u(t1)‖2 + µ

∫ t1

0
‖∇u(s)‖2 ds+ β

∫ t1

0
‖u(s)‖4L4(T3) ds =

1

2
‖u(0)‖2 (3.46)

for all t1 ∈ (0, T ). The energy equality (3.36) follows by replacing t1 with t0 in (3.46)

and taking the difference of the two expressions.

Now we will prove the last part of the theorem, namely that all weak solutions

of the critical CBF equations (3.31) are continuous into L2 with respect to time, i.e.

‖u(t)− u(t0)‖ → 0 as t→ t0, (3.47)

for all t0 ∈ [0, T ).

First, we recall (see Lemma 3.4) that all weak solutions of (3.31) are

L2-weakly continuous with respect to time

u(t) ⇀ u(t0) as t→ t0, (3.48)

for all t0 ∈ [0, T ).

Now, let u be a weak solution of (3.31) and take t1 = t in the energy equality

(3.36). We have

∣∣∣‖u(t)‖2 − ‖u(t0)‖2
∣∣∣ ≤ 2µ

∣∣∣∣∫ t0

t
‖∇u(s)‖2 ds

∣∣∣∣+ 2β

∣∣∣∣∫ t0

t
‖u(s)‖4L4(T3) ds

∣∣∣∣→ 0,

when t→ t0, because the terms under the integral signs are obviously integrable for

the weak solution u. Therefore, it follows from the first part of Theorem 3.8 that

for all weak solutions of (3.31) we have
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u(t) ⇀ u(t0) and ‖u(t)‖ → ‖u(t0)‖ as t→ t0.

The result (3.47) follows, since in a Hilbert space weak convergence and convergence

of norms imply strong convergence.

3.5 Strong global attractor

For a number of basic evolution equations of mathematical physics (including the

Navier–Stokes equations) it has been shown that the long-time behaviour of their

solutions can be characterised by the ‘global attractor’ of the equation. Of particu-

lar interest are those equations for which the solution of the corresponding Cauchy

problem is not unique or the uniqueness is not proved (equations without unique-

ness). To construct global attractors for equations without uniqueness the theory

of the trajectory (or multi-valued) attractors has been developed. An overview of

the theory for autonomous systems can be found in Sell and You [2002], and in

Chepyzhov and Vishik [2002] for the non-autonomous case. A survey on trajectory

attractors is also contained in Chapter 6 of Miranville and Zelik [2008].

There are several abstract frameworks for studying infinite-dimensional dy-

namical systems without uniqueness. One method (see Sell [1973]) is to recover

uniqueness of solutions by working in a space of semitrajectories u : [0,∞) → X

and defining a corresponding semiflow T (·) by T (t)u := ut, for t ≥ 0, where

ut(s) := u(t + s). An example of the use of this method is the proof by Sell [1996]

of the existence of a global attractor for the 3D incompressible Navier–Stokes equa-

tions (see further results on a trajectory attractor for the 3D NSE in Chepyzhov and

Vishik [2002], Sell and You [2002]). Caraballo et al. [2003] compared two canonical

methods in this theory by Melnik and Valero [1998] (see also Mel′nik [1997]) and

Ball [2000]. The first approach, used by Babin and Vishik [1985], and which goes all

the way back to the work by Barbašin [1948], is to consider a set-valued trajectory

t 7→ T (t)u0 in which T (t)u0 consists of all possible points reached at time t by solu-

tions with initial data u0 (a trajectory is a function of time with values in the set of

all subsets of a phase space). Ball’s approach considers the generalised semiflow G,

where a trajectory is a function of time with values in the phase space, and there

may be more than one trajectory with a given initial data.

In Ball [2000] it was shown for the three-dimensional incompressible Navier–

Stokes equations that strong L2-continuity leads to the existence of a global attractor

in the phase space H. We have proved in the previous section that all weak solutions

of the convective Brinkman–Frorchheimer equations with critical exponent r = 3
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satisfy the energy equality. As a consequence, we obtained unconditional continuity

of all weak solutions into L2. Therefore, we expect to extend the result of Ball to the

CBF equations. However, due to technical difficulties we were not able to apply his

method of generalised semiflows to our problem. In particular, we were not able to

prove Proposition 7.3 in Ball [2000] for weak solutions of the critical CBF equations.

Proposition 7.3 is crucial in showing that all L2-continuous weak solutions (so all

weak solutions in our case) form a generalised semiflow GCBF on H, and that this

semiflow is pointwise dissipative and asymptotically compact (so a global attractor

in H exists for GCBF , see Theorem 3.3 in Ball [2000]).

Strong trajectory attractors constructed via the energy equality are consid-

ered also in Vishik et al. [2010] (for a general dissipative reaction-diffusion system)

and Chepyzhov et al. [2011] (for the 2D damped Euler equations), for example. The

situation in those papers is very similar to the one considered in this thesis and the

method presented there should work in our case. However, we did not pursue this

approach, and we cannot say with certainty that it can be applied to the critical

convective Brinkman–Forchheimer equations. Instead, we make use of the theory of

evolutionary systems due to Cheskidov [2009], to show existence of a strong global

attractor for (3.31). The evolutionary system E considered in this chapter is closer

to Ball’s approach than to that of Melnik and Valero.

We want to point out that there are some issues with the application of

Cheskidov’s ‘evolutionary systems’ to the Navier–Stokes equations. These problems

are connected with the so-called exceptional set (the set of measure zero consisting

of the times for which the energy inequality does not hold). For instance, if we

remove the initial point t = t0 from the exceptional set in the definition of Leray–

Hopf weak solutions (as we did in (3.8) with the initial time t0 = 0), we lose the

translation invariance for the set of trajectories. On the other hand, if we allow

the initial time to be in the exceptional set then we lose a dissipative estimate and

absorbing ball for Leray–Hopf weak solutions of the NSE. Fortunately, in our case

the energy equality (3.36) holds and all these problems disappear.

3.5.1 Evolutionary systems

First, we introduce some notation from Cheskidov [2009]. Let (X, ds(·, ·)) be a

metric space endowed with a metric ds, which will be referred to as a strong metric.

Let dw(·, ·) be another metric on X satisfying the following conditions:

1. X is dw-compact.

2. If ds(un, vn)→ 0 as n→∞ for some un, vn ∈ X, then dw(un, vn)→ 0 as n→∞.
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Due to the property 2, dw(·, ·) will be reffered to as a weak metric on X. Note that

any ds-compact set is dw-compact and any weakly closed set is strongly closed.

Let C([a, b];Xτ ), where τ ∈ {s, w}, be the space of dτ -continuous X-valued

functions on [a, b] endowed with the metric

dC([a,b];Xτ )(u, v) := sup
t∈[a,b]

{dτ (u(t), v(t))} .

Let also C([a,∞);Xτ ) be the space of dτ -continuous X-valued functions on [a,∞)

endowed with the metric

dC([a,∞);Xτ )(u, v) :=
∑
T∈N

1

2T
sup {dτ (u(t), v(t)) : a ≤ t ≤ a+ T}

1 + sup {dτ (u(t), v(t)) : a ≤ t ≤ a+ T}
.

To define an evolutionary system, first let

T := {I : I = [T,∞) ⊂ R for T ∈ R, or I = (−∞,∞)} ,

and for each I ⊂ T , let F(I) denote the set of all X-valued functions on I.

Definition 3.12. A map E that associates to each I ∈ T a subset E(I) ⊂ F(I) will

be called an evolutionary system if the following conditions are satisfied:

1. E([0,∞)) 6= ∅.

2. E(I + s) = {u(·) : u(· − s) ∈ E(I)} for all s ∈ R.

3. {u(·)|I2 : u(·) ∈ E(I1)} ⊂ E(I2) for all pairs I1, I2 ∈ T , such that I2 ⊂ I1.

4. E((−∞,∞)) =
{
u(·) : u(·)|[T,∞) ∈ E([T,∞)) for all T ∈ R

}
.

We will refer to E(I) as the set of all trajectories on the time interval I. Tra-

jectories in E((−∞,∞)) will be called complete. To relate the notion of evolutionary

systems with the classical notion of semiflows, let P (X) be the set of all subsets of

X. For every t ≥ 0, define a map R(t) : P (X)→ P (X), such that

R(t)A := {u(t) : u ∈ A, u ∈ E([0,∞))} for A ⊂ X.

Note that the assumptions on E imply that R(t) enjoys the following property:

R(t+ s)A ⊂ R(t)R(s)A, A ⊂ X, t, s ≥ 0.

One can check that a semiflow defines an evolutionary system (see details in Cheski-

dov [2009]).
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Furthermore, we will consider evolutionary systems E satisfying the following

assumptions:

(A) (Weak compactness) E([0,∞)) is a compact set in C([0,∞);Xw).

(B) (Energy inequality) Assume that X is a bounded set in some uniformly convex

Banach space X with the norm denoted by ‖·‖X , such that

ds(x, y) = ‖x− y‖X for x, y ∈ X.

Assume also that for any ε > 0, there exists δ > 0, such that for every trajectory

u ∈ E([0,∞)) and t > 0,

‖u(t)‖X ≤ ‖u(t0)‖X + ε,

for almost every t0 ∈ (t− δ, t).

(C) (Strong convergence a.e.) Let u, un ∈ E([0,∞)) be such that un → u in

C([0, T ];Xw) for some T > 0. Then un(t)→ u(t) strongly for a.e. t ∈ [0, T ].

Consider an arbitrary evolutionary system E . For a set A ⊂ X and r > 0,

denote an open ball by

Bτ (A, r) := {u ∈ X : dτ (u,A) < r} ,

where

dτ (u,A) := inf
x∈A
{dτ (u, x)} .

We say that a set A ⊂ X uniformly attracts a set B ⊂ X in the dτ -metric if

for any ε > 0 there exists t0, such that

R(t)B ⊂ Bτ (A, ε), ∀ t ≥ t0.

Based on the above we define an attracting set.

Definition 3.13. A set A ⊂ X is a dτ -attracting set if it uniformly attracts X in

the dτ -metric.

Using the above definitions we can now define a global attractor in our set-

ting.

Definition 3.14. A set Aτ ⊂ X is a dτ -global attractor if Aτ is a minimal dτ -closed,

dτ -attracting set.
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Note that since X may not be strongly compact, the intersection of two

strongly closed, strongly attracting sets may not be strongly attracting. Neverthe-

less, if Aτ exists then it is unique (see Theorem 3.6 in Cheskidov [2009]).

The following result (Theorem 3.9 in Cheskidov [2009]) motivates studying

evolutionary systems in the context of existence of global attractors. It recovers a

similar result from Cheskidov and Foias [2006].

Theorem 3.15. Every evolutionary system possesses a weak global attractor Aw.

Moreover, if a strong global attractor As exists, then As
w

= Aw (note that As
w

denotes the closure of the set As in the topology generated by dw).

We now introduce an important notion of asymptotic compactness (for in-

stance, Ball’s generalised semiflows possess a global attractor if and only if they are

pointwise dissipative and asymptotically compact; see Theorem 3.3 in Ball [2000]).

Definition 3.16. The evolutionary system E is asymptotically compact if for any

sequence tn → ∞ as n → ∞, and any xn ∈ R(tn)X, the sequence {xn}∞n=1 is

relatively strongly compact (it has a strongly convergent subsequence {yn} ⊂ {xn}).

The following theorem generalises corresponding results for Ball’s generalised

semiflows and for classical semiflows (see Hale et al. [1972]; Hale [1988]; Ladyzhen-

skaya [1991]).

Theorem 3.17. If an evolutionary system E is asymptotically compact, then Aw is

a strong global attractor As, compact in the strong topology.

The next result gives sufficient conditions for E to be asymptotically compact

and hence (in the light of Theorem 3.17), for the existence of a strong global attractor

for E .

Theorem 3.18. Let E be an evolutionary system satisfying the properties (A), (B),

and (C). If every complete trajectory is strongly continuous, i.e. if

E((−∞,∞)) ⊂ C((−∞,∞);Xs),

then E is asymptotically compact.

3.5.2 Application to the critical CBF equations on the torus

In Cheskidov [2009] it was shown that all Leray–Hopf weak solutions of the space-

periodic (with zero mean-value assumption
∫
T3 u = 0) 3D NSE form an evolutionary
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system E satisfying conditions (A), (B), and (C). Note that these solutions are de-

fined differently than our Leray–Hopf weak solutions of the CBF equations. Namely,

they allow the initial time to be in the exceptional set, whereas our definition ex-

cludes the initial time from the exceptional set (cf. Theorem 8.2 in Cheskidov [2009]

and Definition 3.2). We will show in this section that all weak solutions of the

critical CBF equations form an evolutionary system E satisfying (A), (B), and (C)

as well (the difference in definitions of Leray–Hopf weak solutions is not important

here, since in our case the energy equality holds for all weak solutions). We begin

by setting our problem into the framework of evolutionary systems.

We define the strong and weak distances by

ds(u, v) := ‖u− v‖ , dw(u, v) :=
∑
k∈Z3

1

2|k|
|ûk − v̂k|

1 + |ûk − v̂k|
, u, v ∈ H,

where ûk and v̂k are the Fourier coefficients of u and v respectively, and H is the

divergence-free subspace of L2 (as defined in Chapter 2).

Definition 3.19. A ball Bτ (0, R) ⊂ H is called a dτ -absorbing ball if for any

bounded set A ⊂ H, there exists t0, such that

R(t)A ⊂ Bτ (0, R) ∀ t ≥ t0.

For the 3D NSE it is well-known that there exists a strongly absorbing ball

(for the proof see e.g. Proposition 13.1 in Constantin and Foias [1988] or Chapter

II, Appendix B in Foias et al. [2001]). The same can be proved in a similar way for

the critical CBF equations

∂tu− µ∆u+ (u · ∇)u+∇p+ β |u|2 u = f, div u = 0, (3.49)

with the forcing function f ∈ L2(T3) independent of time.

Proposition 3.20. The critical CBF equations (3.49) possess a ds-absorbing ball

Bs(0, R) ⊂ H, where R is any number greater or equal than
(
2 ‖f‖

∣∣T3
∣∣ /β)1/3.

Below we give a proof of this result. Note that in the Navier–Stokes case

one can use the Poincaré inequality to obtain the desired bound. We cannot do

this in our case since a weak solution u of the CBF equations does not have zero

mean-value7. We can circumvent this issue by employing the absorption term.

7The Poincaré inequality can be used to obtain the existence of an absorbing ball for the critical
CBF equations on bounded domains Ω ⊂ R3. Since we prove in Chapter 9 that the energy equality
holds also in that case, it follows that the strong global attractor exists there as well.
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Proof. We use the energy equality (with the forcing function f independent of time)

1

2
‖u(t)‖2 + µ

∫ t

t0

‖∇u(s)‖2 ds+ β

∫ t

t0

‖u(s)‖4L4(T3) ds

=
1

2
‖u(t0)‖2 +

∫ t

t0

〈f, u(s)〉 ds.

Since

‖u‖2 ≤ ‖u‖2L4

∣∣T3
∣∣1/2 , which implies that ‖u‖4L4 ≥

‖u‖4

|T3|
,

we obtain

1

2
‖u(t)‖2 ≤ 1

2
‖u(t0)‖2 +

∫ t

t0

{
〈f, u(s)〉 − β ‖u‖

4

|T3|

}
ds

≤ 1

2
‖u(t0)‖2 +

∫ t

t0

‖u(s)‖
{
‖f‖ − β ‖u‖

3

|T3|

}
ds.

Suppose that ‖u(s)‖3 ≥ 3
2‖f‖|T

3|/β for all t0 ≤ s ≤ t; then for all s in this

range

‖u(s)‖
(
‖f‖ − β ‖u(s)‖3

|T3|

)
≤ −1

2
‖f‖

(
3

2
‖f‖|T3|/β

)1/3

=: − c
2
‖f‖4/3,

and so

‖u(t)‖2 ≤ ‖u(t0)‖2 − c(t− t0)‖f‖4/3. (3.50)

We now show that the set
{
u ∈ H : ‖u‖3 ≤ 2%

}
, where % := ‖f‖|T3|/β, is

absorbing. First we show that once ‖u(t0)‖3 ≤ 2% for some t0 ≥ 0 then ‖u(t)‖3 ≤ 2%

for all t ≥ t0. Suppose for a contradiction that ‖u(t0)‖3 ≤ 2% and ‖u(t1)‖3 > 2% for

some t1 > t0. Set

t′0 := inf
{
t ∈ [t0, t1] : ‖u(s)‖3 ≥ 2% for all s ∈ [t, t1]

}
.

Since s 7→ ‖u(s)‖ is continuous8 it follows that ‖u(t′0)‖3 = 2% and ‖u(s)‖3 ≥ 2% for

all s ∈ [t′0, t1] so, using (3.50),

‖u(t1)‖2 ≤ ‖u(t′0)‖2 − c(t1 − t′0)‖f‖4/3 <
∥∥u(t′0)

∥∥2
= (2%)2/3 ,

a contradiction.

8Recall that the L2-continuity follows from the energy equality, see Theorem 3.8 in Section 3.4.
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Now suppose that ‖u(0)‖3 > 2% and set

T := sup
{
t ≥ 0 : ‖u(s)‖3 ≥ 3

2% for every s ∈ [0, t]
}
.

Since s 7→ ‖u(s)‖ is continuous it follows that either T = ∞ or T < ∞. Since

‖u(s)‖3 ≥ 3
2% for all s ∈ [0, T ] it follows from (3.50) that

‖u(t)‖2 ≤ ‖u(0)‖2 − ct‖f‖4/3 for every t ∈ [0, T ],

and so we must have

T ≤ ‖u0‖2

c‖f‖4/3
with ‖u(T )‖3 = 3

2%.

Consequently, the proposition is proved with R := (2%)1/3, i.e. we have

‖u(t)‖ ≤ R for every t ≥ T (‖u0‖) :=
‖u0‖2

c ‖f‖4/3

as required.

The first part of the proof of the Proposition 3.20 shows that once a weak

solution u is in the ball Bs(0, R) ⊂ H then it stays in it for all time. The second

part shows that if u is not initially in the ball Bs(0, R) then it enters it eventually.

Now we let X be a closed absorbing ball for the critical CBF equations (3.49),

X := {u ∈ H : ‖u‖ ≤ R} ,

which is also weakly compact. Then for any bounded set A ⊂ H there exists9 a

time t0, such that

u(t) ∈ X for all t ≥ t0,

for every weak solution u(t) with the initial condition u(0) = u0 ∈ A.

We have shown that all weak solutions of the critical CBF equations on the

torus T3 satisfy the energy equality. Therefore, we can consider an evolutionary

system for which a family of trajectories consists of all weak solutions (instead of

all Leray–Hopf weak solutions as in Cheskidov [2009]) of the critical convective

Brinkman–Forchheimer equations in X. More precisely, we define

9This is not true for Leray–Hopf weak solutions of the Navier–Stokes equations as defined in
Cheskidov [2009]; see the discussion at the beginning of Section 3.5.
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E([T,∞)) := {u(·) : u(·) is a weak solution on [T,∞) and u(t) ∈ X ∀ t ∈ [T,∞)},

for T ∈ R, and

E(I∞) := {u(·) : u(·) is a weak solution on I∞ and u(t) ∈ X ∀ t ∈ I∞},

where I∞ := (−∞,∞).

Clearly, the properties 1–4 of an evolutionary system E hold. Therefore, thanks

to Theorem 3.15, the weak global attractor Aw exists for this evolutionary system.

Additionally, we can prove the following theorem.

Theorem 3.21. The weak global attractor Aw for the evolutionary system E of

the critical CBF equations is a strong global attractor As, compact in the strong

topology.

Proof. Since every complete trajectory of the evolutionary system E for the critical

CBF equations is strongly continuous, due to Theorem 3.17 and Theorem 3.18, it

is enough to prove that E satisfies the assumptions (A), (B), and (C).

First note that E([0,∞)) ⊂ C([0,∞);Hw) by the definition of weak solutions,

see (3.48). Now take any sequence un ∈ E([0,∞)) for n = 1, 2, . . . . Thanks to clas-

sical estimates for Leray–Hopf weak solutions of the NSE (Lemma 8.5 in Cheskidov

[2009], for more details see Constantin and Foias [1988], for example), which apply

also to the CBF equations, there exists a subsequence, still denoted by un, that con-

verges to some u1 ∈ E([0,∞)) in C([0, 1];Hw) as n→∞. Passing to a subsequence

and dropping a subindex once more, we obtain that un → u2 in C([0, 2];Hw) as

n→∞ for some u2 ∈ E([0,∞)). Note that u1(t) = u2(t) on [0, 1]. Continuing this

diagonalisation procedure, we obtain a subsequence
{
unj
}
⊂ {un} that converges

to some u ∈ E([0,∞)) in C([0,∞);Hw) as nj →∞. Therefore, (A) holds.

The energy inequality (B) follows immediately from the energy equality

(3.36) [cf. the proof of Lemma 8.6 in Cheskidov [2009] in the Navier–Stokes case].

Let now un, u ∈ E([0, T ]) be such that un → u in C([0,∞);Hw) as n → ∞,

for some T > 0. Classical estimates for the NSE (see e.g. Constantin and Foias

[1988] or Robinson et al. [2016]), which hold as well for the CBF equations, imply

that the sequence {∂tun} is bounded in L4/3(0, T ;V ′), where V ′ is the dual space of

V = H1∩H. Since the sequence {un} is bounded in L2(0, T ;V ), by the Aubin–Lions

Lemma, there exists a subsequence
{
unj
}
⊂ {un}, such that

∫ T

0

∥∥unj (t)− u(t)
∥∥2

dt→ 0 as nj →∞.
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In particular,
∥∥unj (t)∥∥→ ‖u(t)‖ as nj →∞ for a.e. t ∈ [0, T ], i.e. (C) holds.

Finally, we note that all the other results from Cheskidov [2009] apply to

the critical three-dimensional convective Brinkman–Forchheimer equations (3.49) as

well. For instance, the trajectory attractor U exists for the critical CBF equations,

and uniformly attracts E([0,∞)) in Cloc((0,∞);H).
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Chapter 4

Strong solutions

In this chapter we consider strong solutions of the convective Brinkman–Forchheimer

equations on the torus T3. The main result of this chapter is the existence of

global-in-time strong solutions. We prove two results of this kind depending on the

absorption exponent r. We have global regular solutions either for r > 3, or for

r = 3 provided that 4µβ ≥ 1, i.e. the product of the viscosity and porosity is not

too small. As we mentioned in Chapter 1, there is no similar result available for

the Navier–Stokes equations. In fact, whether such solutions for the NSE exist (or

not), is the content of one of the seven Clay Millennium Prize Problems. The CBF

equations are better in this regard, at least when the absorption is strong enough.

These two results formed part of Hajduk and Robinson [2017]. Another important

result, which we establish in this chapter, is the uniqueness of strong solutions in

the class of weak solutions. This is of course a stronger result than just uniqueness

of strong solutions, and can be found in Hajduk et al. [2019].

In this chapter we will show only formal calculations, which can be made

rigorous by the use of a standard Galerkin approximation argument as in Chapter

3, see also Constantin and Foias [1988], Temam [1995], or Galdi [2000], for examples.

We now give a short motivation for the definition of a strong solution based

on the energy method. Formal calculations for the unforced Brinkman–Forchheimer

equations (3.1) give (apply the Leray projection P to the equation, multiply it by

Au and integrate over the spatial domain)

〈∂tu, Au〉+ µ 〈Au, Au〉+ 〈B(u), Au〉+ β 〈Cr(u), Au〉 = 0,

where B(u, v) := P(u · ∇)v and B(u) := B(u, u) for u, v ∈ V . Therefore, after an

integration by parts, we obtain
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1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 + 〈B(u), Au〉+ β 〈Cr(u), Au〉 = 0.

Integration over the time interval [0, T ] gives

1

2

(
‖∇u(T )‖2 − ‖∇u(0)‖2

)
+ µ

∫ T

0
‖Au(t)‖2 dt+

∫ T

0
〈B(u), Au〉 dt

+ β

∫ T

0
〈Cr(u), Au〉 dt = 0.

Hence, we get the second energy inequality for the CBF equations

1

2
sup
t∈[0,T ]

‖∇u(t)‖2 + µ

∫ T

0
‖Au(t)‖2 dt+

∫ T

0
〈B(u), Au〉 dt

+ β

∫ T

0
〈Cr(u), Au〉 dt ≤ 1

2
‖∇u(0)‖2 .

Then, for an initial condition u0 ∈ V , it follows that the norms

‖u‖L∞(0,T ;H1) and ‖u‖L2(0,T ;H2)

are bounded.

We now define strong solutions for the convective Brinkman–Forchheimer

equations, based on the above considerations.

Definition 4.1 (Strong solution for CBF). We say that a vector field u is a strong

solution for the convective Brinkman–Forchheimer equations (3.1) corresponding to

an initial condition u0 ∈ V , if it is a weak solution and additionally it possesses

higher regularity, i.e.

u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2).

4.1 Local existence of strong solutions

In this section we will prove the local-in-time existence of strong solutions for the

unforced convective Brinkman–Forchheimer equations

∂tu− µ∆u+ (u · ∇)u+∇p+ β |u|r−1 u = 0, div u = 0. (4.1)

Applying the Leray projection P to the equations (4.1) we obtain their functional

form
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∂tu+ µAu+B(u) + βCr(u) = 0. (4.2)

Theorem 4.2. For every initial condition u0 ∈ V (T3) there exists a time T > 0

such that a Leray–Hopf weak solution u starting from u0 is a strong solution of

the convective Brinkman–Forchheimer equations (4.1) on the time interval [0, T ].

Additionally u satisfies the bound∫ T

0

(∫
T3

|∇u(t)|2 |u(t)|r−1 dx

)
dt <∞. (4.3)

It follows that u belongs to the spaces

Lr+1(0, T ;L3(r+1)
σ (T3)) and Lr+1(0, T ;N 2/(r+1), r+1(T3)), (4.4)

where N 2/(r+1), r+1 is the Nikol’skĭı space (as defined in Section 2.2).

Proof. Let u be a global Leray–Hopf weak solution of (4.1) starting from u0 ∈ V .

Multiplying formally (4.2) by Au and integrating over the domain T3, we obtain

1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 + β 〈Cr(u), Au〉 ≤ |〈B(u), Au〉| . (4.5)

First, we estimate the convective term 〈B(u), Au〉 using the Hölder, Sobolev

and Young inequalities and also Lemma 2.6

|〈B(u), Au〉| ≤
∫
T3

|u| |∇u| |Au| dx ≤ ‖u‖L6 ‖∇u‖L3 ‖Au‖L2

≤ c ‖u‖H1 ‖∇u‖1/2L2 ‖∇u‖
1/2
L6 ‖Au‖

≤ c ‖u‖3/2
H1 ‖Au‖3/2 ≤ c ‖u‖6H1 +

µ

2
‖Au‖2 , (4.6)

where the constant c depends on µ.

We recall that on the torus the operators −∆ and P commute, so, using

Lemma 2.4, we have the inequality (2.4)

〈Cr(u), Au〉 =
〈
|u|r−1 u, −∆u

〉
≥
∫
T3

|∇u|2 |u|r−1 dx ≥ 0 for r ≥ 1.

Using this fact and also the estimate (4.6) we obtain from (4.5) a differential

inequality

1

2

d

dt
‖∇u‖2 +

µ

2
‖Au‖2 + β

∫
T3

|∇u|2 |u|r−1 dx ≤ c ‖u‖6H1 .
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Noting that u satisfies also (multiplying (4.2) by u; see Chapter 3)

1

2

d

dt
‖u‖2 + µ ‖∇u‖2 + β ‖u‖r+1

Lr+1 ≤ 0, (4.7)

we have (adding the above inequalities and dropping some terms on the left-hand

side)
1

2

d

dt
‖u‖2H1 +

µ

2
‖Au‖2 + β

∫
T3

|∇u|2 |u|r−1 dx ≤ c ‖u‖6H1 .

By setting X(t) := ‖u(t)‖2H1 , we rewrite the above in the form

X ′ + µ ‖Au‖2 + 2β

∫
T3

|∇u|2 |u|r−1 dx ≤ cX3, (4.8)

from which we obtain the differential problem{
X ′ ≤ cX3,

X(0) = ‖u0‖2H1 .
(4.9)

We would obtain the same differential inequality by following the above procedure

for the Navier–Stokes equations (details for the NSE case can be found for example

in Robinson et al. [2016]). We can conclude that X is no greater than the solution

of (4.9) turned into a differential equation instead of a differential inequality. The

solution of this ODE blows up in finite time T̃ = [2cX(0)2]−1. Therefore, for

0 ≤ t ≤ T̃/2

‖u(t)‖2H1 = X(t) ≤
‖u0‖2H1√

1− 2c ‖u0‖4H1 t
≤ c ‖u0‖2H1 .

Using this bound and integrating (4.8) over the time interval [0, t] we obtain

‖u(t)‖2H1 + µ

∫ t

0
‖Au(s)‖2 ds + 2β

∫ t

0

(∫
T3

|∇u(s)|2 |u(s)|r−1 dx

)
ds <∞.

Hence, we can conclude the proof with T :=
(

4c ‖u0‖4H1

)−1
.

Since we have
∫ T

0

(∫
T3 |∇u(s)|2 |u(s)|r−1 dx

)
ds < ∞, it follows from the

discussion in Section 2.2 [see the bound (2.6)] that u(s) belongs to the Nikol’skĭı

space N 2/(r+1), r+1(T3) for a.e. s ∈ [0, T ]; the fact that u ∈ Lr+1(0, T ;L
3(r+1)
σ (T3))

follows from Lemma 2.5.

Theorem 4.2 tells us that the time of existence of strong solutions of the
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unforced CBF equations (4.1) can be bounded below in terms of the initial condition

T & ‖u0‖−4
H1 .

We recall that we have the same situation for strong solutions of the Navier–Stokes

equations. However, for the CBF equations we get the additional bound (4.3). This

bound furnishes additional regularity for strong solutions (4.4).

4.2 Global existence for small initial data

In this section we show another result analogous to the classical theorem for the

Navier–Stokes equations. Namely, we prove global existence of strong solutions to

the CBF equations, subject to small initial data.

Theorem 4.3 (Global existence for small initial data). There exists a constant

c > 0, such that, if

‖u0‖H1 ≤ cµ,

then a strong solution of the convective Brinkman–Forchheimer equations (4.1) with

r ≥ 1, starting from the initial condition u0 ∈ V (T3), exists for all times t ≥ 0.

Again, we present here only the sketch of the proof, which can be made

rigorous by a standard approximation argument.

Proof. Taking the inner product of (4.2) with Au, we get

1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 + 〈B(u), Au〉+ β 〈Cr(u), Au〉 = 0. (4.10)

From Lemma 2.4

〈Cr(u), Au〉 ≥ 0 for r ≥ 1,

so we can drop this term on the left-hand side of (4.10).

Furthermore, we recall the estimate (4.6)

|〈B(u), Au〉| ≤ c ‖∇u‖3/2 ‖Au‖3/2 .

Joining these two facts, we obtain from (4.10)

1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 ≤ c ‖∇u‖3/2 ‖Au‖3/2 = c ‖∇u‖ ‖∇u‖1/2 ‖Au‖3/2 . (4.11)

We observe that ‖∇u‖ ≤ c ‖Au‖. Applying this on the right-hand side of

(4.11), we obtain
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1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 ≤ c ‖∇u‖ ‖Au‖2 .

Now, we can move the L2-norm of Au from the left to the right-hand side and get

d

dt
‖∇u‖2 ≤ 2 ‖Au‖2 (c ‖∇u‖ − µ) . (4.12)

Provided that we start from sufficiently small initial data

‖∇u0‖ ≤
µ

c
,

we obtain from (4.12) that
d

dt
‖∇u‖2 ≤ 0,

which means that the L2-norm of ∇u is a non-increasing function of time. Hence,

it is bounded for all times t ≥ 0 and our strong solution u does not blow up (i.e. it

is global in time).

4.3 Global existence for r > 3

Now we will provide a simple proof of the global-in-time existence of strong solutions

for the convective Brinkman–Forchheimer equations in the case r > 3. This result

was given in Kalantarov and Zelik [2012] for a broader class of nonlinearities on

bounded domains Ω ⊂ R3 and for more regular initial conditions u0 ∈ H2(Ω),

where the proof was based on a nonlinear localisation technique.

Theorem 4.4. For every initial condition u0 ∈ V (T3) and for every exponent r > 3,

there exists a global-in-time strong solution of the CBF equations (4.1) on the torus

T3. Moreover, this solution belongs to the spaces in (4.4)

Lr+1(0, T ;L3(r+1)
σ (T3)) and Lr+1(0, T ;N 2/(r+1), r+1(T3)),

for all T > 0, where N 2/(r+1), r+1 is the Nikol’skĭı space (see Section 2.2).

We present here only formal calculations which can be justified rigorously

via a Galerkin approximation argument.

Proof. Taking the inner product of (4.2) with Au, we obtain

1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 + β 〈Cr(u), Au〉+ 〈(u · ∇)u, Au〉 = 0.
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Using Lemma 2.4 we note that

〈Cr(u), Au〉 =
〈
|u|r−1 u, −∆u

〉
≥
∫
T3

|u|r−1 |∇u|2 dx.

This gives us

1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 + β

∫
T3

|u|r−1 |∇u|2 dx ≤
∫
T3

|u| |∇u| |Au|dx

≤ 1

2

(
1

µ

∫
T3

|u|2 |∇u|2 dx+ µ

∫
T3

|Au|2 dx

)
and hence

d

dt
‖∇u‖2 + µ ‖Au‖2 + 2β

∫
T3

|u|r−1 |∇u|2 dx ≤ 1

µ

∫
T3

|u|2 |∇u|2 dx. (4.13)

Now we observe the following estimate for r > 3:∫
T3

|u|2 |∇u|2 dx =

∫
T3

(
|u|2 |∇u|4/(r−1)

)(
|∇u|2(r−3)/(r−1)

)
dx

≤
(∫

T3

|u|r−1 |∇u|2 dx

)2/(r−1)(∫
T3

|∇u|2 dx

)(r−3)/(r−1)

≤ βµ
(∫

T3

|u|r−1 |∇u|2 dx

)
+ c(β, µ, r)

(∫
T3

|∇u|2 dx

)
. (4.14)

In the above we used Hölder’s and Young’s inequalities with the same exponents

(r− 1)/2 and (r− 1)/(r− 3). The value of the constant c(β, µ, r) can be computed

explicitly

c(β, µ, r) =

(
2

βµ(r − 1)

)2/(r−3)(r − 3

r − 1

)
.

Plugging the estimate (4.14) into (4.13) gives

d

dt
‖∇u‖2 + µ ‖Au‖2 + β

∫
T3

|u|r−1 |∇u|2 dx ≤ c(β, µ, r)

µ
‖∇u‖2 . (4.15)

In particular, we have

d

dt
‖∇u‖2 ≤ c(β, µ, r)

µ
‖∇u‖2 .

An application of Gronwall’s Lemma yields that ‖∇u‖2 stays bounded on arbitrarily

large time intervals [0, T ]. We observe that u also satisfies [as in (4.7)]
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d

dt
‖u‖2 + µ ‖∇u‖2 + β ‖u‖r+1

Lr+1 ≤ 0.

Combining this with (4.15) we get

d

dt
‖u‖2H1 + µ

(
‖∇u‖2 + ‖Au‖2

)
+ β

(∫
T3

|u|r−1 |∇u|2 dx+ ‖u‖r+1
Lr+1

)
≤ c(β, µ, r)

µ
‖∇u‖2 <∞. (4.16)

It follows in particular, that u ∈ L∞(0, T ;H1). Then one infers from (4.15) that∫ T
0 ‖Au‖

2 < ∞. Therefore, u is indeed a strong solution on the time interval [0, T ]

for all T > 0.

Additional regularity (4.4) for the function u follows now from the inequality

(4.16), Lemma 2.5, and the estimate (2.6).

4.4 Global existence for coefficients satisfying 4µβ ≥ 1

In this section, we consider the critical case of the convective Brinkman–Forchheimer

equations (r = 3)

∂tu− µ∆u+ (u · ∇)u+ β |u|2 u+∇p = 0, div u = 0. (4.17)

We prove global-in-time existence of strong solutions of (4.17) for all initial condi-

tions u0 ∈ V , when the product µβ is not too small. From the point of view of

physics this is not a surprising result. It means that when both the viscosity of a

fluid and the porosity of a porous medium are large enough, then the corresponding

flow stays bounded and regular. What is more interesting is the fact that when

the viscosity is small, one can still obtain a regular solution by taking the porosity

sufficiently large, and vice versa.

Theorem 4.5. For every initial condition u0 ∈ V , there exists a global-in-time

strong solution of the critical (r = 3) CBF equations (4.17) provided that 4µβ ≥ 1.

We mentioned in Chapter 1 that Zhou [2012] proved global existence of strong

solutions in R3 for r ≥ 3 and µ, β = 1. This result clearly satisfies our condition,

since 4µβ = 4.

Proof. Applying the Leray projection to (4.17) and taking its inner product with

Au, we obtain
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1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 + β 〈C3(u), Au〉 ≤ |〈B(u), Au〉| .

Applying Lemma 2.4, we have

1

2

d

dt
‖∇u‖2 + µ ‖Au‖2 + β

∫
T3

|∇u|2 |u|2 dx ≤
∫
T3

|u| |∇u| |Au|dx. (4.18)

We want to estimate the right-hand side in such a way to absorb it with the terms

on the left-hand side. Using the Cauchy–Schwarz and Young inequalities we obtain∫
T3

|u| |∇u| |Au|dx ≤
(∫

T3

|∇u|2 |u|2 dx

)1/2(∫
T3

|Au|2 dx

)1/2

≤ θ

2

∫
T3

|∇u|2 |u|2 dx+
1

2θ

∫
T3

|Au|2 dx,

for some positive number θ > 0. We use this estimate in the inequality (4.18) and

then move all the terms to the left-hand side to get

1

2

d

dt
‖∇u‖2 +

(
µ− 1

2θ

)
‖Au‖2 +

(
β − θ

2

)∫
T3

|∇u|2 |u|2 dx ≤ 0.

From the above we see that the norm ‖∇u(t)‖2 is not increasing in time, provided

that

µ− 1

2θ
≥ 0 and β − θ

2
≥ 0 ⇐⇒ µβ ≥ 1

4
.

Hence, there is no blow-up and the strong solution originating from the initial con-

dition u0 ∈ V exists for all times t > 0.

We note that the above argument works only for the critical exponent r = 3.

For other values of r ∈ [1, 3) we are not able to balance the exponents in the correct

way to absorb the convective term on the left-hand side of (4.18).

4.5 Weak-strong uniqueness

In this section we prove uniqueness of strong solutions of the convective Brinkman–

Forchheimer equations for incompressible fluids

∂tu− µ∆u+ (u · ∇)u+ β |u|r−1 u+∇p = 0, div u = 0, (4.19)
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where r ∈ [1, 3] and the domain is the torus T3. By uniqueness, we mean here

uniqueness of strong solutions in the larger class of weak solutions satisfying the

energy inequality, which is often called ‘weak-strong uniqueness’. Classical unique-

ness of strong solutions follows from that result, since every strong solution is by

definition a ‘more regular’ weak solution.

To achieve our goal we need to establish some properties of strong solutions

of the CBF equations. We follow here proofs of analogous results for the 3D NSE

equations, which can be found in many places, e.g. in Galdi [2000] or Robinson et al.

[2016].

4.5.1 Properties of strong solutions

First, we show that due to Definition 4.1 all the terms in the CBF equations are

well-defined L2 functions in the space-time domain.

Lemma 4.6. Let u be a strong solution of the convective Brinkman–Forchheimer

equations with r ∈ [1, 3]. Then

∂tu, ∆u, (u · ∇)u and |u|r−1 u

are all elements of L2(0, T ;L2).

Proof. We only need to consider the absorption term since the other terms can be

dealt with in a similar way as in the analogous result for the Navier–Stokes equations

(see Lemma 6.2 in Robinson et al. [2016] for the details). We show that |u|r−1 u

is square integrable in the space-time domain [equivalently that u ∈ L2r(0, T ;L2r)]

using the nesting of Lp(T3) spaces and the Sobolev embedding∫ T

0

∥∥∥|u(t)|r−1 u(t)
∥∥∥2

dt ≤
∫ T

0
‖u(t)‖2rL2r dt ≤ c

∫ T

0
‖u(t)‖2rH1 dt

≤ c ‖u‖2rL∞(0,T ;H1) <∞, (4.20)

for every r ∈ [1, 3].

Note that we can extend Lemma 4.6 up to r = 5. Indeed, by interpolation

(r ≥ 3) and Agmon’s inequality in 3D we have

‖u‖2rL2r ≤ ‖u‖6L6 ‖u‖2r−6
L∞ ≤ ‖u‖6L6 ‖u‖r−3

H1 ‖u‖r−3
H2 ≤ c ‖u‖r+3

H1 ‖u‖r−3
H2

and therefore we obtain
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∫ T

0
‖u(t)‖2rL2r dt ≤ c ‖u‖r+3

L∞(0,T ;H1)

(∫ T

0
‖u(t)‖2H2 dt

)(r−3)/2

,

which is bounded for any strong solution u. We used Hölder’s inequality with

exponents 2/(r− 3) and 2/(5− r) in the last inequality. Using this estimate we will

in fact be able to prove weak-strong uniqueness for the CBF equations on the 3D

torus for any r ∈ [1, 5].

The next result states that for almost all times the Leray projection of the

unforced CBF equations (4.19) is equal to zero.

Lemma 4.7. Let u be a strong solution of the convective Brinkman–Forchheimer

equations with r ∈ [1, 3]. Then∫ T

0

〈
∂tu− µ∆u+ (u · ∇)u+ β |u|r−1 u, w

〉
dt = 0 (4.21)

for all w ∈ L2(0, T ;H).

Again, the proof follows the same lines as in the Navier–Stokes case (see

Lemma 6.3 in Robinson et al. [2016], for example). We omit it here completely

since, due to Lemma 4.6, there are no additional problems caused by the absorption

term |u|r−1 u.

The last property which we will need to prove the main result of this section

states that a strong solution of the CBF equations (actually any function with the

same regularity as a strong solution) can be used as a test function in the weak

formulation (3.6).

Lemma 4.8. Suppose that v is a weak solution of the convective Brinkman–

Forchheimer equations with r ∈ [1, 3]. If u has the regularity of a strong solution of

the CBF equations, that is

u ∈ L2(0, T ;H2 ∩ V ) ∩ Lr+1(0, T ;Lr+1
σ ), ∂tu ∈ L2(0, T ;L2),

then for all times t ∈ [0, T ]

−
∫ t

0
〈v, ∂tu〉ds+ µ

∫ t

0
〈∇v, ∇u〉ds+

∫ t

0
〈(v · ∇)v, u〉 ds

+ β

∫ t

0

〈
|v|r−1 v, u

〉
ds = 〈v(0), u(0)〉 − 〈v(t), u(t)〉 .
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In the proof of Lemma 4.8 we need to approximate the function u simul-

taneously in the Sobolev space H2 and in the Lebesgue space Lr+1. We need an

approximation which not only converges in those spaces but which is also uniformly

bounded in both of them. We use the truncation of the Fourier series over ‘cubes’

Sn(u) =
∑
k∈Qn

ûke
ik·x,

which was defined in Section 3.4. This kind of approximation was used to show

that all weak solutions of the CBF equations with the critical absorption exponent

(r = 3) satisfy the energy equality in the periodic domain (Theorem 3.8). It follows

from Theorem 3.10 that Sn behaves well in the required spaces:

‖Sn(u)− u‖X → 0 and ‖Sn(u)‖X ≤ ‖u‖X

for X = Hs(T3) or Lp(T3) for p ∈ (1,∞). Approximations with similar properties

on bounded domains will be discussed in Chapter 8.

We can now go to the proof of Lemma 4.8.

Proof. For each t ∈ [0, T ] we take

un(x, t) := Sn(u) =
∑
|kj |≤n

ûk(t)e
ik·x.

From the preceding discussion we know that the sequence un converges in L2-based

spaces and also in Lr+1(T3) with

‖un(t)‖Lr+1 ≤ c ‖u(t)‖Lr+1

for a.e. t ∈ [0, T ], which is the key ingredient in adapting the proof from the Navier–

Stokes case (see e.g. Lemma 6.6 in Robinson et al. [2016]). Mollifying un in time (see

Section 3.4 for details of a similar argument) we obtain a sequence of test functions

such that

un → u in L2(0, T ;H2), (4.22)

∂tun → ∂tu in L2(0, T ;L2), (4.23)

un → u in Lr+1(0, T ;Lr+1), (4.24)

as n → ∞. We note that u ∈ L2(0, T ;H2) and ∂tu ∈ L2(0, T ;L2) implies that

u ∈ C([0, T ];H1) (see e.g. Proposition 1.35 in Robinson et al. [2016]) and hence we
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also have

un → u in C([0, T ];H1). (4.25)

Since v is a weak solution of the CBF equations, we have

−
∫ t

0
〈v, ∂tun〉 ds+ µ

∫ t

0
〈∇v, ∇un〉 ds+

∫ t

0
〈(v · ∇)v, un〉 ds

+ β

∫ t

0

〈
|v|r−1 v, un

〉
ds = 〈v(0), un(0)〉 − 〈v(t), un(t)〉 (4.26)

for all t ∈ [0, T ]. To prove the lemma it is sufficient to pass to the limit in (4.26).

Passing to the limit in the Navier–Stokes terms is standard and follows from

(4.22), (4.23) and (4.25). Therefore, we can focus on the Brinkman–Frorchheimer

nonlinearity; we note that by standard estimates and (4.24) we have∣∣∣∣∫ t

0

〈
|v|r−1 v, u− un

〉
ds

∣∣∣∣ ≤ ∫ t

0

∫
T3

|v|r |u− un|ds ≤
∫ t

0
‖v‖rLr+1 ‖u− un‖Lr+1 ds

≤ ‖v‖rLr+1(0,T ;Lr+1) ‖u− un‖Lr+1(0,T ;Lr+1) → 0

as n→∞, which ends the proof.

4.5.2 Main result

Finally, we can prove the main result of this section; we show that strong solu-

tions are unique in the class of weak solutions satisfying the Energy Inequality (all

Leray–Hopf weak solutions, not necessarily constructed via Galerkin approxima-

tion method). In the critical case, when r = 3 (cubic nonlinearity |u|2 u), since all

weak solutions satisfy the Energy Equality (as shown in Section 3.4 for the periodic

case; see also Chapter 9 for the proof on bounded domains), this means that strong

solutions are unique in the class of all weak solutions.

Theorem 4.9 (Weak-strong uniqueness). Suppose that u is a strong solution of

the convective Brinkman–Forchheimer equations with r ∈ [1, 3] on the time interval

[0, T ], and that v is any weak solution on [0, T ] arising from the same initial condition

v0 = u0 ∈ V , that satisfies the Energy Inequality

1

2
‖v(t)‖2 + µ

∫ t

0
‖∇v(s)‖2 ds+ β

∫ t

0
‖v(s)‖r+1

Lr+1 ds ≤ 1

2
‖v(0)‖2

for all t ∈ [0, T ]. Then u ≡ v on [0, T ].

Proof. From Lemma 4.7 and Lemma 4.8 we have for all t ∈ [0, T ]
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∫ t

0
〈∂tu, v〉ds+ µ

∫ t

0
〈∇u, ∇v〉 ds+

∫ t

0
〈(u · ∇)u, v〉 ds

+ β

∫ t

0

〈
|u|r−1 u, v

〉
ds = 0,

−
∫ t

0
〈v, ∂tu〉ds+ µ

∫ t

0
〈∇v, ∇u〉 ds+

∫ t

0
〈(v · ∇)v, u〉ds+ β

∫ t

0

〈
|v|r−1 v, u

〉
ds

= 〈v(0), u(0)〉 − 〈v(t), u(t)〉 .

We add the above equations and obtain

2µ

∫ t

0
〈∇u, ∇v〉 ds+

∫ t

0
〈(u · ∇)u, v〉 ds+

∫ t

0
〈(v · ∇)v, u〉ds

+β

∫ t

0

〈
|u|r−1 u, v

〉
ds+ β

∫ t

0

〈
|v|r−1 v, u

〉
ds = ‖u(0)‖2 − 〈v(t), u(t)〉 . (4.27)

Our goal now is to obtain an integral inequality for the difference of the

solutions w := v − u. To this end, we will use the following standard identity

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2 〈a, b〉

and substitutions to deal with the linear terms. We get

2 〈∇u, ∇v〉 = ‖∇u‖2 + ‖∇v‖2 − ‖∇w‖2 ,

〈v(t), u(t)〉 =
1

2
‖u(t)‖2 +

1

2
‖v(t)‖2 − 1

2
‖w(t)‖2 .

We use the relation v = w + u, and by standard properties of the convective term

we obtain

〈(u · ∇)u, v〉+ 〈(v · ∇)v, u〉 = 〈(w · ∇)w, u〉 .

To deal with the absorption terms we use two different substitutions〈
|u|r−1 u, v

〉
+
〈
|v|r−1 v, u

〉
=
〈
|u|r−1 u, w + u

〉
+
〈
|v|r−1 v, v − w

〉
= ‖u‖r+1

Lr+1 + ‖v‖r+1
Lr+1 −

〈
|u|r−1 u− |v|r−1 v, u− v

〉
.

Hence, we have from (4.27) the following
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− µ
∫ t

0
‖∇w‖2 ds+ µ

∫ t

0
‖∇u‖2 ds+ µ

∫ t

0
‖∇v‖2 ds+

∫ t

0
〈(w · ∇)w, u〉 ds

+ β

∫ t

0
‖u‖r+1

Lr+1 ds+ β

∫ t

0
‖v‖r+1

Lr+1 ds− β
∫ t

0

〈
|u|r−1 u− |v|r−1 v, u− v

〉
ds

=
1

2
‖u(0)‖2 +

1

2
‖v(0)‖2 +

1

2
‖w(t)‖2 − 1

2
‖u(t)‖2 − 1

2
‖v(t)‖2 .

After rearranging the terms in the above, we obtain the following equation for

the difference w

1

2
‖w(t)‖2 + µ

∫ t

0
‖∇w‖2 ds+ I1 = I2 + I3 +

∫ t

0
〈(w · ∇)w, u〉 ds, (4.28)

where

I1 := β

∫ t

0

〈
|u(s)|r−1 u(s)− |v(s)|r−1 v(s), u(s)− v(s)

〉
ds ≥ 0,

I2 :=
1

2
‖u(t)‖2 + µ

∫ t

0
‖∇u(s)‖2 ds+ β

∫ t

0
‖u(s)‖r+1

Lr+1 ds− 1

2
‖u(0)‖2 = 0,

I3 :=
1

2
‖v(t)‖2 + µ

∫ t

0
‖∇v(s)‖2 ds+ β

∫ t

0
‖v(s)‖r+1

Lr+1 ds− 1

2
‖v(0)‖2 ≤ 0.

We employed here the Energy Equality for the strong solution1 u and the Energy

Inequality for the weak solution v, and also the monotonicity of the absorption term

(see Lemma 2.2).

Therefore, we have from (4.28)

1

2
‖w(t)‖2 + µ

∫ t

0
‖∇w(s)‖2 ds ≤

∫ t

0
〈(w(s) · ∇)w(s), u(s)〉 ds,

which we can estimate in the following way

1

2
‖w(t)‖2 + µ

∫ t

0
‖∇w‖2 ds ≤

∣∣∣∣∫ t

0
〈(w · ∇)w, u〉ds

∣∣∣∣ ≤ ∫ t

0
‖u‖L∞ ‖w‖ ‖∇w‖ ds

≤ 1

2µ

∫ t

0
‖u‖2L∞ ‖w‖

2 ds+
µ

2

∫ t

0
‖∇w‖2 ds

≤ c
∫ t

0
‖u‖2H2 ‖w‖2 ds+

µ

2

∫ t

0
‖∇w‖2 ds;

we used the 3D embedding H2 ↪→ L∞ in the last line. Then we have

1The fact that strong solutions satisfy the Energy Equality is a simple consequence of Lemma
4.7.
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‖w(t)‖2 + µ

∫ t

0
‖∇w(s)‖2 ds ≤ c

∫ t

0
‖u(s)‖2H2 ‖w(s)‖2 ds

and, after dropping the time integral on the left-hand side we obtain

‖w(t)‖2 ≤ c
∫ t

0
‖u(s)‖2H2 ‖w(s)‖2 ds.

Since u is the strong solution∫ t

0
‖u(s)‖2H2 ds <∞ for all t ∈ [0, T ] ,

and so an application of the integral version of the Gronwall Lemma yields that

w(t) = 0 for all t ∈ [0, T ].

As a straightforward corollary of Theorem 4.9 we can deduce a weaker result:

uniqueness of strong solutions in the class of strong solutions.

Corollary 4.10. Let u and v be two strong solutions of the convective Brinkman–

Forchheimer equations (4.19) with r ≥ 0 on the time interval [0, T ], starting from

the same initial condition u0 ∈ V . Then u ≡ v for all times t ≤ T .

This result follows from Theorem 4.9 only for the absorption exponents in

the range r ∈ [1, 3]; because strong solutions are by definition weak solutions with

additional regularity, and they satisfy the energy equality, it suffices to apply The-

orem 4.9 to the strong solutions u and v. However, one can prove Corollary 4.10

independently for all exponents r > 0, following the proof for the analogous result

for the Navier–Stokes equations; the only additional difficulty is in dealing with an

extra nonlinear term Cr(u). In this particular case we are able to eliminate the

additional nonlinearity from the proof due to its properties. We provide a short

sketch of this fact below.

Sketch of the proof. We set w := u− v. Then, of course w(0) = 0. We subtract the

weak formulations of the CBF equations for the functions u and v and obtain an

equation for the difference (µ, β = 1)

−
∫ t

0
〈w, ∂tϕ〉ds+

∫ t

0
〈∇w, ∇ϕ〉 ds+

∫ t

0
〈B(u)−B(v), ϕ〉 ds

+

∫ t

0
〈Cr(u)− Cr(v), ϕ〉ds = −〈w(t), ϕ(t)〉 .
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Using Lemma 4.8, taking as a test function ϕ := w, we get

1

2
‖w(t)‖2 +

∫ t

0
‖∇w‖2 ds+

∫ t

0
〈Cr(u)− Cr(v), w〉 ds

≤
∣∣∣∣∫ t

0
〈B(u)−B(v), w〉 ds

∣∣∣∣ . (4.29)

First, we deal with the nonlinearities connected with the operators Cr. We

can simply drop this term on the left-hand side of (4.29), since, by monotonicity

(Lemma 2.2), we have

〈Cr(u)− Cr(v), w〉 =
〈
|u|r−1 u− |v|r−1 v, u− v

〉
≥ 0 for r ≥ 0.

Therefore, we can proceed as in the Navier–Stokes case to finish the proof.
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Chapter 5

Robustness of regularity

In this chapter we deal with the so-called ‘robustness of regularity ’ result for the so-

lutions of the convective Brinkman–Forchheimer equations on the torus T3

∂tu− µ∆u+ (u · ∇)u+ β |u|r−1 u+∇p = 0, div u = 0, (5.1)

with the absorption exponent r ∈ [1, 3]. It generalises the result obtained in Dashti

and Robinson [2008] for the Navier–Stokes equations (see also Chernyshenko et al.

[2007]). This result formed a significant part of Hajduk et al. [2019]. The local exis-

tence of strong solutions and some properties of strong solutions proved in Chapter

4 can be seen as prerequisites for this result.

We take u0, v0 ∈ V and fix T > 0. Let u be a strong solution of the CBF

equations on the time interval [0, T ] with external forces f and initial condition u0.

Similarly, let v be a strong solution of the CBF equations on [0, T ′] for some T ′ < T ,

with external forces g and initial condition v0. We will show that there is an explicit

condition, depending only on initial data and on the function u, which allows us to

extend the function v to a strong solution on the time interval [0, T ].

We consider the following system of equations (µ, β = 1){
∂tu+Au+B(u) + Cr(u) = f, u(x, 0) = u0,

∂tv +Av +B(v) + Cr(v) = g, v(x, 0) = v0.

We denote the difference of solutions by w := u−v. Subtracting the above equations

we obtain the equation for w

∂tw +Aw +B(u)−B(v) + Cr(u)− Cr(v) = f − g, (5.2)

with the initial condition
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w(x, 0) = u0 − v0.

In the proof of the robustness of regularity for the above equations, the

following simple ODE lemma will be extremely useful. It will allow us to estimate

the time of existence for solutions of certain differential inequalities in terms of

coefficients of a corresponding differential equation.

Lemma 5.1. Let T > 0, a > 0 and n ∈ N (n > 1). Let δ(t) be a nonnegative,

continuous function on the interval [0, T ]. Let also y be a nonnegative function,

satisfying the following differential inequality
d

dt
y ≤ ayn + δ(t),

y(0) = y0 ≥ 0.

We define the quantity

η := y0 +

∫ T

0
δ(t) dt.

If the following condition is satisfied

η <
1

[(n− 1)aT ]1/(n−1)
,

then

1. y(t) stays bounded on the interval [0, T ], and

2. y(t)→ 0, as η → 0, uniformly on [0, T ].

For the proof of Lemma 5.1 see e.g. Constantin [1986], Dashti and Robinson

[2008] or Robinson et al. [2016].

5.1 A priori estimates

Taking into account that u is a strong solution on the time interval [0, T ] and that

we want to say the same about v, we need to change the form of equation (5.2) to

eliminate the unknown function v. From the definition v = u − w, so due to the

bilinearity of the form B we have the identity

B(u)−B(v) = B(u)−B(u− w) = B(u, u)−B(u− w, u− w)
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= B(u, u)−B(u, u)−B(w,w) +B(u,w) +B(w, u)

= B(u,w) +B(w, u)−B(w,w).

Multiplying now both sides of (5.2) by Aw (we assume here that the function

w has sufficient regularity to justify these operations; in our argument in Section

5.2 u and v will be strong solutions on a common time interval, which will allow us

to use these estimates) and integrating over the spatial domain, we get

〈∂tw, Aw〉+ 〈Aw, Aw〉+ 〈B(u)−B(v), Aw〉+ 〈Cr(u)− Cr(v), Aw〉

= 〈f − g, Aw〉 .

After integration by parts, we obtain

1

2

d

dt
‖∇w‖2 + ‖Aw‖2 ≤ |〈f − g, Aw〉|+ |〈B(u,w) +B(w, u)−B(w,w), Aw〉|

+ |〈Cr(u)− Cr(v), Aw〉| . (5.3)

We will now estimate all the terms on the right-hand side of the inequality

(5.3). Using standard estimates for the bilinear form B (cf. Constantin and Foias

[1988] or Dashti and Robinson [2008]) and Lemma 2.6, we can estimate all the terms

coming from the Navier–Stokes equations (see also Chapter 9.1 in Robinson et al.

[2016]).

We have

|〈f − g, Aw〉| ≤ 〈|f − g|, |Aw|〉 ≤ ‖f − g‖ ‖Aw‖

≤ c ‖f − g‖2 +
1

16
‖Aw‖2 , (5.4)

|〈B(u,w), Aw〉| ≤ 〈|u| |∇w|, |Aw|〉 ≤ ‖u‖L6 ‖∇w‖L3 ‖Aw‖

≤ c ‖u‖H1 ‖∇w‖1/2 ‖∇w‖1/2L6 ‖Aw‖

≤ c ‖u‖H1 ‖w‖1/2H1 ‖Aw‖3/2

≤ c ‖u‖4H1 ‖w‖2H1 +
1

16
‖Aw‖2 , (5.5)

|〈B(w, u), Aw〉| ≤ 〈|w| |∇u|, |Aw|〉 ≤ ‖w‖L6 ‖∇u‖L3 ‖Aw‖

≤ c ‖w‖H1 ‖∇u‖1/2 ‖∇u‖1/2L6 ‖Aw‖

≤ c ‖w‖H1 ‖∇u‖1/2 ‖Au‖1/2 ‖Aw‖
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≤ c ‖w‖2H1 ‖∇u‖ ‖Au‖+
1

16
‖Aw‖2 , (5.6)

|〈−B(w,w), Aw〉| ≤ 〈|w| |∇w|, |Aw|〉 ≤ ‖w‖L6 ‖∇w‖L3 ‖Aw‖

≤ c ‖w‖H1 ‖∇w‖1/2 ‖∇w‖1/2L6 ‖Aw‖

≤ c ‖w‖3/2
H1 ‖Aw‖3/2

≤ c ‖w‖6H1 +
1

16
‖Aw‖2 . (5.7)

Summing (5.4)-(5.7) we get

|〈f − g, Aw〉|+ |〈B(u,w) +B(w, u)−B(w,w), Aw〉| ≤ c ‖f − g‖2

+ c
(
‖u‖4H1 + ‖∇u‖ ‖Au‖

)
‖w‖2H1 + c ‖w‖6H1 +

1

4
‖Aw‖2 . (5.8)

We obtain the full H1-norm of the difference w on the right-hand side of (5.8)

and there is only the L2-norm of the gradient of w on the left-hand side of (5.3). To

circumvent that problem we can consider the energy equality for the difference

1

2

d

dt
‖w‖2 + ‖∇w‖2 + 〈B(u)−B(v), w〉+ 〈Cr(u)− Cr(v), w〉 = 〈f − g, w〉.

We note again that 〈Cr(u)− Cr(v), w〉 ≥ 0 and substituting v = u − w we

get

〈B(u)−B(v), w〉 = 〈B(u, u)−B(u− w, u− w), w〉 = 〈B(u, u), w〉 − 〈B(u, u), w〉

+ 〈B(u,w), w〉+ 〈B(w, u), w〉 − 〈B(w,w), w〉

= 〈B(w, u), w〉 .

We used here the fact that 〈(u · ∇)v, w〉 = −〈(u · ∇)w, v〉 for u ∈ V and v, w ∈ H1.

Therefore, we obtain from the energy equality

1

2

d

dt
‖w‖2 + ‖∇w‖2 ≤ |〈f − g, w〉|+ |〈B(w, u), w〉| .

Estimating the nonlinear term gives

|〈B(w, u), w〉| ≤ 〈|w| |∇u|, |w|〉 ≤ ‖w‖2L4 ‖∇u‖ ≤ ‖w‖1/2 ‖w‖3/2L6 ‖∇u‖

≤ c ‖w‖2H1 ‖∇u‖ ,

from which we conclude
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1

2

d

dt
‖w‖2 + ‖∇w‖2 ≤ c ‖f − g‖2 + c ‖w‖2H1 (‖∇u‖+ 1) . (5.9)

To estimate the additional nonlinear terms in (5.3) connected with the op-

erator Cr we use Lemma 2.3

|Cr(u)− Cr(v)| ≤
(
2r−2r

) (
|u|r−1 |w|+ |w|r

)
for r ≥ 1,

which gives

|〈Cr(u)− Cr(v), Aw〉| ≤
(
2r−2r

) [〈
|u|r−1 |w|, |Aw|

〉
+ 〈|w|r, |Aw|〉

]
. (5.10)

We can estimate the first term in (5.10) using Hölder’s inequality with three

exponents 6/(r − 1), 6/(4− r), 2 and Sobolev’s embedding H1 ↪→ L6

〈
|u|r−1 |w|, |Aw|

〉
≤ ‖u‖r−1

L6 ‖w‖L6/(4−r) ‖Aw‖

≤ c ‖u‖r−1
H1 ‖w‖H1 ‖Aw‖

≤ c ‖u‖2(r−1)
H1 ‖w‖2H1 +

1

8
‖Aw‖2 . (5.11)

Using the same bound for L2r-norm as in (4.20) we estimate the second term

on the right-hand side of (5.10)

〈|w|r, |Aw|〉 ≤ ‖w‖rL2r ‖Aw‖ ≤ c ‖w‖2rL2r +
1

8
‖Aw‖2

≤ c ‖w‖2rH1 +
1

8
‖Aw‖2 . (5.12)

Combining the inequalities (5.11) and (5.12) yields

|〈Cr(u)− Cr(v), Aw〉| ≤ c ‖u‖2(r−1)
H1 ‖w‖2H1 + c ‖w‖2rH1 +

1

4
‖Aw‖2 . (5.13)

We substitute (5.8) and (5.13) in (5.3) and obtain

d

dt
‖∇w‖2 + ‖Aw‖2 ≤ c0 ‖f − g‖2 + c1

(
‖u‖4H1 + ‖∇u‖ ‖Au‖+ ‖u‖2(r−1)

H1

)
‖w‖2H1

+ cr ‖w‖2rH1 + c3 ‖w‖6H1 . (5.14)

Finally, we add together (5.9) and (5.14)
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d

dt
‖w‖2H1 + 2 ‖∇w‖2 + ‖Aw‖2 ≤ c0 ‖f − g‖2 + cr ‖w‖2rH1 + c3 ‖w‖6H1

+ c1

(
‖u‖4H1 + ‖∇u‖ ‖Au‖+ ‖u‖2(r−1)

H1 + ‖∇u‖+ 1
)
‖w‖2H1 . (5.15)

This final estimate will be used in the proof of the ‘robustness of regularity’ result

(Theorem 5.2) in the next section.

5.2 Robustness of regularity

We will now prove the following theorem for the convective Brinkman–Forchheimer

equations with r ∈ [1, 3] on the periodic domain T3.

Theorem 5.2. Assume that f, g ∈ L2(0, T ;H) and u0, v0 ∈ V . Furthermore, let

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2) be the strong solution of the convective Brinkman–

Forchheimer equations (5.1) on the time interval [0, T ], with external forces f and

initial condition u0. If

‖u0 − v0‖2H1 + c0

∫ T

0
‖f(t)− g(t)‖2 dt < R(u), (5.16)

where

R(u) := c
exp (−c2T )√

T
exp

(
−c1

∫ T

0

(
‖u‖4H1 + ‖∇u‖ ‖Au‖+ ‖u‖2(r−1)

H1 + ‖∇u‖
)

dt

)
,

for some positive constants c0, c1, c2, c, then the function v solving the CBF equations

(5.1), with external forces g and initial condition v0, is also a strong solution on the

time interval [0, T ] and have the same regularity as the function u.

The proof of the above theorem is similar to the proof of the analogous result

for the Navier–Stokes equations (see Dashti and Robinson [2008] for the details).

Proof. Local existence of strong solutions for the CBF equations (Theorem 4.2)

implies that there is T̃ > 0 such that v ∈ L∞(0, T ′;V ) ∩ L2(0, T ′;H2) for every

T ′ < T̃ . We denote by T̃ the maximal time of existence of the strong solution v, i.e.

lim sup
t→T̃−

‖∇v(t)‖ =∞.

This implies that ‖∇w(t)‖ also blows up at t = T̃ , where w := u − v. We assume

that T̃ ≤ T , where T is the time of existence of the strong solution u, and obtain a

76



contradiction.

The difference w = u− v satisfies

∂tw +Aw +B(u,w) +B(w, u)−B(w,w) + Cr(u)− Cr(v) = f − g, (5.17)

on the time interval (0, T̃ ), with the initial condition w(x, 0) = u0 − v0. We know

that ∂tv ∈ L2(0, T ′;H) for every T ′ < T̃ . Furthermore, we have T̃ ≤ T , so obviously

also ∂tu ∈ L2(0, T ′;H) for every T ′ < T̃ . Then, taking the inner product of (5.17)

with Aw in L2 and using our a priori estimate (5.15), we obtain

d

dt
‖w‖2H1 + ‖Aw‖2 ≤ c0 ‖f − g‖2 + cr ‖w‖2rH1 + c3 ‖w‖6H1

+ c1 ‖w‖2H1

(
‖u‖4H1 + ‖∇u‖ ‖Au‖+ ‖u‖2(r−1)

H1 + ‖∇u‖+ 1
)

(5.18)

for appropriate values of the constants ci, i ∈ {0, 1, r, 3}.
We define the quantities

• X(t) := ‖w(t)‖2H1 ,

• δ(t) := c0 ‖f(t)− g(t)‖2,

• γ̃(t) := c1

(
‖u(t)‖4H1 + ‖∇u(t)‖ ‖Au(t)‖+ ‖u(t)‖2(r−1)

H1 + ‖∇u(t)‖+ 1
)

.

Inequality (5.18) gives (omitting ‖Aw‖2 on the left-hand side)

X ′ ≤ c3X
3 + crX

r + γ̃(t)X + δ(t).

Using the inequality (valid for X ≥ 0)

Xp ≤ X3 +X for p ∈ [1, 3]

and changing the constant c3, we get

X ′ ≤ c3X
3 + γ(t)X + δ(t), (5.19)

where γ(t) := γ̃(t) + cr.

We now take

Y (t) := exp

(
−
∫ t

0
γ(s) ds

)
X(t)

and multiply both sides of (5.19) by exp
(
−
∫ t

0 γ(s) ds
)
≤ 1. This way we obtain
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Y ′ ≤ c3 exp

(
−
∫ t

0
γ(s) ds

)
X3 + δ(t) exp

(
−
∫ t

0
γ(s) ds

)
≤ c3

[
exp

(
2

∫ t

0
γ(s) ds

)]
Y 3 + δ(t)

≤ c3

[
exp

(
2

∫ T

0
γ(s) ds

)]
︸ ︷︷ ︸

=:K

Y 3 + δ(t).

Hence, we have the differential inequality [valid on the time interval (0, T̃ )]

Y ′ ≤ KY 3 + δ(t),

with the initial condition

Y (0) = ‖u0 − v0‖2H1 .

Therefore, by Lemma 5.1 with n = 3, the function Y (t) is uniformly bounded

on the time interval [0, T ′] for every T ′ < T̃ ≤ T , provided that

Y (0) +

∫ T ′

0
δ(t) dt <

1

(2KT ′)1/2
,

which clearly holds (since T ′ < T ) if we have

Y (0) +

∫ T

0
δ(t) dt <

1

(2KT )1/2
.

Substituting all our original variables in the above condition, we obtain

‖u0 − v0‖2H1 + c0

∫ T

0
‖f(t)− g(t)‖2 dt

<
exp (−crT )√

2c3T
exp

(
−c1

∫ T

0

(
‖u‖4H1 + ‖∇u‖ ‖Au‖+ ‖u‖2(r−1)

H1 + ‖∇u‖+ 1
)

dt

)
,

which is (up to a change of constants) the robustness condition (5.16). If this

condition is satisfied, it follows that the function X(t) = ‖w(t)‖2H1 is uniformly

bounded on the time interval [0, T̃ )

X(t) = Y (t) exp

(∫ t

0
γ(s) ds

)
≤ Y (t) exp

(∫ T

0
γ(s) ds

)
≤ C(T ) <∞.

Hence, we finally get that ‖w(t)‖H1 ≤ C(T ) for all t < T̃ , and consequently
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‖v(t)‖H1 ≤ C(T ) for t ∈ [0, T̃ ) as well. It follows that

lim sup
t→T̃−

‖∇v(t)‖ ≤ C(T ) <∞,

which contradicts the maximality of the time T̃ . Therefore, we have T̃ > T and

the function v does not blow up at any time T̃ ≤ T . Hence, v belongs to the space

L∞(0, T ;V ).

Now, directly from the inequality (5.18), it follows that the function v belongs

also to the space L2(0, T ;H2)
(

since
∫ T

0 ‖Aw‖
2 =

∫ T
0

∥∥D2w
∥∥2
<∞

)
, which proves

that it is a strong solution on the time interval [0, T ], completing the proof of

Theorem 5.2.

It is worth mentioning that the robustness of regularity result proved in this

chapter could also be obtained via the Implicit Function Theorem. Indeed, let us

consider the map

F : W 1, 2
0, σ ((0, T )× Ω)→ (W 1, 2

σ (Ω), L2
σ((0, T )× Ω))

defined by

F (u) := (u|t=0, ∂tu− µAu+B(u) + βCr(u)− Pf) ,

where W 1, 2
0, σ ((0, T )×Ω) is a parabolic space of divergence-free functions from L2 such

that first derivative in time and all second derivatives in space belong to L2. To

apply the IFT one has to check that this map is C1-smooth. Then, if ū is a strong

solution, the condition ‘F ′(ū) is invertible’ is equivalent to the unique solvability of

the linear problem

∂tv − µ∆v + (v · ∇)ū+ (ū · ∇)v + βr |ū|r−1 v = h(t), div v = 0, v|t=0 = v0.

Since the solution ū is regular enough, this can be shown using energy estimates

very similar to the analysis presented above. Thus, the Implicit Function Theorem

will give the existence of strong solutions in the neighbourhood of ū.
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Chapter 6

Real interpolation spaces

We will use real interpolation spaces based on Hilbert spaces in the next two chap-

ters, and in this chapter we recall some basic theory of real interpolation spaces,

generated via the ‘K-method’. More theory and applications can be found in the

extensive literature in the subject: Lions and Peetre [1964], Bergh and Löfström

[1976], Triebel [1978] or Lions and Magenes [1972]. We follow mostly the nice ex-

positions in Lunardi [2009] and Adams and Fournier [2003].

Let X,Y ↪→ X be two Banach spaces embedded in a common topological

Hausdorff vector space X . Then X ∩ Y and X + Y are themselves Banach spaces

with respect to the norms

‖u‖X∩Y := max {‖u‖X , ‖u‖Y } ,

‖u‖X+Y := inf {‖u0‖X + ‖u1‖Y : u = u0 + u1, u0 ∈ X,u1 ∈ Y } ,
(6.1)

and X ∩ Y ↪→ X,Y ↪→ X + Y .

Definition 6.1. A Banach space X is an intermediate space between X and Y if

there exist the embeddings

X ∩ Y ↪→ X ↪→ X + Y.

For fixed t > 0 the following functionals define norms on X ∩ Y and X + Y

respectively, equivalent to those defined above in (6.1)

J(t, u) := max {‖u‖X , t ‖u‖X} ,

K(t, u) := inf {‖u0‖X + t ‖u1‖Y : u = u0 + u1, u0 ∈ X,u1 ∈ Y } .

The functional J form the basis for the ‘J-method’ of real interpolation which is
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slightly more involved than the K-method (but these two methods are equivalent),

and we will not consider it further.

Evidently K(1, u) = ‖u‖X+Y , and K(t, u) is a continuous and monotonically

increasing function of t on the interval (0,∞). Moreover, we have

min {1, t} ‖u‖X+Y ≤ K(t, u) ≤ max {1, t} ‖u‖X+Y .

6.1 The K-method

Using the K functional we define the space (X,Y )θ,q;K .

Definition 6.2. If 0 ≤ θ ≤ 1 and 1 ≤ q ≤ ∞ we denote by (X,Y )θ,q;K the space of

all u ∈ X + Y such that the function t−θK(t, u) belongs to Lq∗ := Lq(0,∞; dt/t).

The next theorem states that (X,Y )θ,q;K is in fact an intermediate space

between X and Y .

Theorem 6.3 (The K-method). If either 1 ≤ q <∞ and 0 < θ < 1 or q =∞ and

0 ≤ θ ≤ 1, then the space (X,Y )θ,q;K is a nontrivial Banach space with the norm

given by

‖u‖θ,q;K :=


(∫∞

0 t−θq−1K(t, u)q dt
)1/q

if 1 ≤ q <∞,

ess sup0<t<∞
{
t−θK(t, u)

}
if q =∞.

Furthermore,

‖u‖X+Y ≤
‖u‖θ,q;K

‖t−θ min {1, t}‖Lq∗
≤ ‖u‖X∩Y ;

in particular

X ∩ Y ↪→ (X,Y )θ,q;K ↪→ X + Y

and (X,Y )θ,q;K is an intermediate space between X and Y .

Otherwise, if 1 ≤ q <∞ and θ ∈ {0, 1}, then (X,Y )θ,q;K = {0}.

We also have trivially that

X ↪→ (X,Y )0,∞;K and Y ↪→ (X,Y )1,∞;K .

There is the following nesting property for these spaces. If 0 < θ < 1 and

1 ≤ p ≤ q ≤ ∞, then

(X,Y )θ,p;K ↪→ (X,Y )θ,q;K .

We define a class of intermediate spaces between X and Y .
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Definition 6.4 (Classes of intermediate spaces). We say that X belongs to the class

K(θ,X, Y ) if for all u ∈ X

K(t, u) ≤ C1t
θ ‖u‖X ,

where C1 is a positive constant.

We have the following characterisation of the class K.

Lemma 6.5. Let 0 ≤ θ ≤ 1 and let X be an intermediate space between X and Y .

Then X ∈ K(θ,X, Y ) if and only if X ↪→ (X,Y )θ,∞,K .

Now we construct intermediate spaces between two intermediate spaces.

Theorem 6.6 (The Reiteration Theorem). Let 0 ≤ θ0 < θ1 ≤ 1 and let Xθ0 and

Xθ1 be intermediate spaces between X and Y . For 0 ≤ λ ≤ 1, let

θ := (1− λ)θ0 + λθ1.

If Xθi ∈ K(θi, X, Y ) for i = 0, 1, and if either 0 < λ < 1 and 1 ≤ q < ∞ or

0 ≤ λ ≤ 1 and q =∞, then

(Xθ0 , Xθ1)λ,q;K ↪→ (X,Y )θ,q;K .

6.2 Interpolation spaces

Let P = {X0, X1} and Q = {Y0, Y1} be two interpolation pairs of Banach spaces,

and let T be a bounded linear operator from X0 +X1 to Y0 +Y1 having the property

that T is bounded from Xi into Yi, with norm at most Mi, for i = 0, 1; that is,

‖Tui‖Yi ≤Mi ‖ui‖Xi for all ui ∈ Xi, i = 0, 1.

Now we define the notion of an interpolation space.

Definition 6.7 (Interpolation spaces). If X and Y are intermediate spaces for P

and Q, respectively, we call X and Y interpolation spaces of type θ for P and Q,

where 0 ≤ θ ≤ 1, if every linear operator T as defined above maps X into Y with

norm M satisfying

M ≤ CM1−θ
0 M θ

1 , (6.2)

where the constant C ≥ 1 is independent of T .
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Definition 6.8. We say that the interpolation spaces X and Y of type θ, are exact

if the inequality (6.2) holds with C = 1.

If Xi = Yi, for i = 0, 1, X = Y and T := Id, the identity operator on X0+X1,

then C = 1 for all 0 ≤ θ ≤ 1, so no smaller C is possible in (6.2).

The following theorem establishes that K-intermediate spaces defined above

(Theorem 6.3) are actually interpolation spaces in the sense of Definition 6.7.

Theorem 6.9 (An Exact Interpolation Theorem). Let P = {X0, X1} and

Q = {Y0, Y1} be two interpolation pairs. If either 0 < θ < 1 and 1 ≤ q < ∞ or

0 ≤ θ ≤ 1 and q = ∞, then the intermediate spaces (X0, X1)θ,q;K and (Y0, Y1)θ,q;K

are exact interpolation spaces of type θ for P and Q.

There are many interesting applications of real interpolation spaces. We will

use them to identify the domains of fractional powers of the Laplace and Stokes

operators in the next chapter. Then, we will apply the interpolation theory in the

context of the Lorentz spaces to obtain some properties of the Stokes operator,

required for our approximation schemes in Chapter 8. One can give an alternative

construction of the standard Lorentz spaces, using real interpolation (see Theorem

7.26 in Adams and Fournier [2003]).

Theorem 6.10. Let Ω ⊂ Rn be a nonempty open set. If u ∈ L1(Ω) + L∞(Ω), and

if 1 < p <∞, 1 ≤ q ≤ ∞, and θ = p′ = 1− 1/p, then

Lp, q(Ω) = (L1(Ω), L∞(Ω))θ,q;K ,

with equality of norms:

‖u‖Lp,q(Ω) = ‖u‖θ,q;K .

Corollary 6.11. If 1 ≤ p1 < p < p2 ≤ ∞ and 1
p = 1−θ

p1
+ θ
p2

, then by the Reiteration

Theorem 6.6, up to equivalence of norms, we have

Lp, q(Ω) = (Lp1(Ω), Lp2(Ω))θ,p;K .

83



Chapter 7

Domains of the fractional

powers of operators

In this chapter we characterise explicitly the fractional power spaces (i.e. the do-

mains of fractional powers of some linear operator) of the Dirichlet Laplacian on a

sufficiently smooth bounded domain Ω, and do the same for the Stokes operator.

As we restrict to L2-based spaces our arguments are largely elementary.

First we show that when dealing with self-adjoint compact-inverse operators

on a Hilbert space these fractional power spaces are (real) interpolation spaces; this

allows us to give relatively simple arguments to identify the concrete examples of

fractional power spaces that will be of interest later. While most of the results of

this chapter are not new, we present them in what we hope is a relatively simple and

accessible way. One key tool is a simple but powerful observation (Lemma 7.3) that

gives sufficient conditions for interpolation to ‘preserve intersections’, i.e. conditions

such that

(X ∩ Z, Y ∩ Z)θ = (X,Y )θ ∩ Z,

a result that does not hold in general (in our applications Z will enforce certain

‘side conditions’). We combine these results to give two approximation theorems in

Chapter 8, and then use the more involved weighted-truncation method to prove

the validity of the energy equality for weak solutions of the critical (r = 3) CBF

equations on bounded domains in Chapter 9.

Results of this chapter are not new, but straightforward proofs are hard to

find in the literature. The characterisation of the domains of the Dirichlet Laplacian

can be found in the papers by Grisvard [1967], Fujiwara [1967], and Seeley [1972].

Note that Fujiwara’s statement is not correct for θ = 3/4, and that Seeley also

gives the corresponding characterisation for the operators in Lp-based spaces. For
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the Stokes operator A := −P∆, Giga [1985] and Fujita and Morimoto [1970] both

showed that D(A) = D(A) ∩ Hσ, where A was the Dirichlet Laplacian and Hσ

the divergence-free subspace of L2; the former in the greater generality of Lp-based

spaces. We use a key idea from the proof of Fujita & Morimoto in our argument

in Section 7.3.3. The content of this and the next two chapters can be found in

Fefferman et al. [2019].

7.1 Abstract setting

In this and in the next chapter we suppose that H is a separable Hilbert space, with

inner product 〈·, ·〉 and norm ‖ · ‖, and that A is a positive, self-adjoint operator

on H with compact inverse. In this case A has a complete set of orthonormal

eigenfunctions {wn} with corresponding eigenvalues λn > 0, which we order so that

λn+1 ≥ λn.

Recall that for any α ≥ 0 we can define D(Aα) as the subspace of H, where

D(Aα) :=

u =

∞∑
j=1

ûjwj :

∞∑
j=1

λ2α
j |ûj |2 <∞

 . (7.1)

For α < 0 we can take this space to be the dual of D(A−α); the expression in (7.1)

can then be understood as an element in the completion of the space of finite sums

with respect to the D(Aα) norm defined below in (7.2). For all α ∈ R the space

D(Aα) is a Hilbert space with inner product

〈u, v〉D(Aα) :=

∞∑
j=1

λ2α
j ûj v̂j

and corresponding norm

‖u‖2D(Aα) :=
∞∑
j=1

λ2α
j |ûj |2 (7.2)

[note that D(A0) coincides with H]. We can define Aα : D(Aα)→ H as the mapping

∞∑
j=1

ûjwj 7→
∞∑
j=1

λαj ûjwj ,

and then ‖u‖D(Aα) = ‖Aαu‖. Note that Aα also makes sense as a mapping from

D(Aβ)→ D(Aβ−α) for any β ∈ R, and that for β ≥ α ≥ 0 we have
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D(Aβ) = {u ∈ D(Aβ−α) : Aβ−αu ∈ D(Aα)}. (7.3)

We can define a semigroup e−θA : H → H by setting

e−θAu :=
∞∑
j=1

e−θλj 〈u,wj〉wj , θ ≥ 0; (7.4)

this extends naturally to D(Aα) for any α > 0, and for α < 0 we can interpret

〈u,wj〉 via the natural pairing between D(Aα) and D(A−α) [or, alternatively, as ûj

in the definition (7.1)]. Then for all u ∈ D(Aα) we have

‖e−θAu‖D(Aβ) ≤

Cβ−αθ−(β−α)‖u‖D(Aα) β ≥ α,

e−λ1θλβ−α1 ‖u‖D(Aα) β < α,
(7.5)

where we can take Cγ = supλ≥0 λ
γe−λ (the exact form of the constant is unimpor-

tant, but note that Cγ <∞ for every γ ≥ 0), and∥∥∥e−θAu− u
∥∥∥
D(Aα)

→ 0 as θ → 0+. (7.6)

In particular, (7.6) means that e−θA is a strongly continuous semigroup on D(Aα)

for every α ∈ R.

7.2 Domains of fractional powers

We first present a very quick treatment of the fractional powers of unbounded self-

adjoint compact-inverse operators on a Hilbert space; in this case it is easy to show

that the fractional power spaces are given as real interpolation spaces (cf. Chapter

1 of Lions and Magenes [1972], from which we quote a number of results in what

follows).

7.2.1 Real interpolation for Hilbert spaces

We recall the method of ‘real interpolation’, due to Lions & Peetre (Lions [1959];

Lions and Peetre [1964]) as adopted by Lions & Magenes; their θ-intermediate space

corresponds to the (θ, 2;K) interpolation space in the more general theory covered

in the previous chapter.

As in Chapter 6 we suppose that X and Y are Banach spaces, both continu-

ously embedded in some Hausdorff topological vector space X . For any u ∈ X + Y
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we define

K(t, u) := inf
x,y : x+y=u,
x∈X, y∈Y

(
‖x‖2X + t2‖y‖2Y

)1/2
; (7.7)

we follow Lions and Magenes [1972] in choosing this particular form for K. We

define

(X,Y )θ :=
{
u ∈ X + Y : t−θK(t, u) ∈ L2(0,∞; dt/t)

}
; (7.8)

this is a Banach space with norm

‖u‖θ :=
∥∥∥t−θK(t, u)

∥∥∥
L2(0,∞;dt/t)

.

[Since a2 +t2b2 ≤ (a+tb)2 ≤ 2(a2 +t2b2) this is equivalent to the standard definition

of the space (X,Y )θ,2;K as given in Section 6.1. The definition we adopt here

(following Lions & Magenes) is more suited to the Hilbert space case.]

7.2.2 Fractional power spaces via real interpolation

We now give a simple proof that the fractional power spaces of A are given by real

interpolation spaces when A is a positive, unbounded self-adjoint operator with a

compact inverse (cf. Theorem I.15.1 in Lions and Magenes [1972]).

Lemma 7.1. Suppose that A is a positive, unbounded self-adjoint operator with a

compact inverse and domain D(A) in a Hilbert space H (as in Section 7.1). Then

(H,D(A))θ = D(Aθ), 0 < θ < 1. (7.9)

[A similar result holds for general positive self-adjoint operators on Hilbert spaces.

One can obtain (7.9) using complex interpolation provided that the imaginary pow-

ers of A are bounded, which they are in this case (Seeley [1971a]); since real and

complex interpolation spaces coincide for Hilbert spaces (see Chapter 1 in Triebel

[1978]), (7.9) then holds using real interpolation in this more general setting; for

a related discussion see Chapter I, Section 2.9 in Amann [1995]. See also Seeley

[1971b, 1972].]

Proof. For u =
∑∞

j=1 ûjwj , where {wj} are the eigenfunctions and (λj) eigenvalues

of the operator A (as in Section 7.1), we have

K(t, u) = inf
(yj)

 ∞∑
j=1

|ûj − yj |2 + t2λ2
j |yj |

2

1/2

.

87



A simple minimisation over (yj) shows that

K(t, u) =

 ∞∑
j=1

t2λ2
j |ûj |

2

1 + t2λ2
j

1/2

.

Indeed, if we define a function f(y) := (û− y)2 + t2λ2y2, then

f ′(y) = −2(û− y) + 2t2λ2y, and f ′(y) = 0 ⇐⇒ y =
û

1 + t2λ2
.

So, it follows that f attains its minimal value f(y0) = t2λ2û2

1+t2λ2
at y0 := û

1+t2λ2
.

Now observe that∫ ∞
0

t−2θK(t, u)2 dt

t
=

∫ ∞
0

∞∑
j=1

(t2λ2
j )

1−θ

1 + t2λ2
j

λ2θ
j |ûj |

2 dt

t

=
∞∑
j=1

∫ ∞
0

(t2λ2
j )

1−θ

1 + t2λ2
j

λ2θ
j |ûj |

2 dt

t

=
∞∑
j=1

λ2θ
j |ûj |

2
∫ ∞

0

s1−2θ

1 + s2
ds

= I(θ)

∞∑
j=1

λ2θ
j |ûj |

2 = I(θ)‖Aθu‖2 = I(θ)‖u‖2D(Aθ),

where

I(θ) =

∫ ∞
0

s1−2θ

1 + s2
ds <∞

for 0 < θ < 1. (In fact the integral can be evaluated explicitly using contour

integration to give I(θ) = π
2

1
sin(πθ) .) It follows that u ∈ (H,D(A))θ if and only if

u ∈ D(Aθ).

The following particular cases of the Reiteration Theorem 6.6 (see also The-

orem 1.6.1 in Lions and Magenes [1972]) are simple corollaries of the above result.

Corollary 7.2. In the same setting as that of Lemma 7.1

(H,D(A1/2))θ = D(Aθ/2) and (D(A1/2), D(A))θ = D(A(1+θ)/2).

Proof. For the first equality we apply Lemma 7.1 with A replaced by A1/2; for the

second we apply Lemma 7.1 with A replaced by A1/2 and the ‘base space’ H replaced

by D(A1/2), and note that
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D
(
A(1+θ)/2

)
=
{
u ∈ H : A1/2u ∈ D(Aθ/2)

}
.

To obtain fractional powers of operators with boundary conditions, or other

constraints (e.g. the divergence-free constraint associated with the Stokes operator)

the following simple result will be useful: it provides one way to circumvent the fact

that interpolation does not respect intersections, i.e. in general

(X ∩ Z, Y ∩ Z)θ 6= (X,Y )θ ∩ Z.

(A related result can be found as Proposition A.2 in Rodŕıguez-Bernal [2017].)

Lemma 7.3. Let (H, ‖ · ‖H) and (D, ‖ · ‖D) be Hilbert spaces, with H0 a Hilbert

subspace of H (i.e. with the same norm) and D ⊂ H with continuous inclusion.

Suppose that there exists a bounded linear map T : H → H0 such that T |H0 is the

identity and T |D : D → D ∩H0 is also bounded, in the sense that

‖Tf‖D ≤ C‖f‖D for some C > 0.

Then for every 0 < θ < 1

(H0, D ∩H0)θ = (H,D)θ ∩H0,

with norm equivalent to that in (H,D)θ.

Proof. Since H0 ↪→ H and D ∩H0 ↪→ D, it follows from the definition (7.8) of the

interpolation spaces that

(H0, D ∩H0)θ ↪→ (H,D)θ ∩H0,

with

‖u‖θ ≤ C‖u‖0,θ,

where ‖ · ‖0,θ denotes the norm in (H0, D∩H0)θ (and ‖ · ‖θ is the norm in (H,D)θ).

Now suppose that u ∈ (H,D)θ∩H0; then for each t > 0 we can find f(t) ∈ H
and g(t) ∈ D such that we can write

u = f(t) + g(t) with ‖f(t)‖2H + t2‖g(t)‖2D ≤ 2K(t, u);

then ∫ ∞
0

t−2θ−1
(
‖f(t)‖2H + t2‖g(t)‖2D

)
dt ≤ 2‖u‖2θ.
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Now since u ∈ H0 and T |H0 = Id we also have

u = Tu = Tf(t) + Tg(t),

with Tf(t) ∈ H0 and Tg(t) ∈ D ∩H0, so that

‖u‖20,θ ≤
∫ ∞

0
t−2θ−1

(
‖Tf(t)‖2H + t2‖Tg(t)‖2D

)
dt

≤ C2

∫ ∞
0

t−2θ−1
(
‖f(t)‖2H + t2‖g(t)‖2D

)
dt ≤ 2C2‖u‖2θ

i.e. ‖u‖0,θ ≤ C ′‖u‖θ, from which the conclusion follows.

7.3 Identifying fractional power spaces

In this section we will prove the following theorem, which combines the results of

Lemma 7.5, Corollaries 7.6 and 7.8, and Lemma 7.10.

Theorem 7.4. When A is the negative Dirichlet Laplacian on Ω ⊂ Rd, d ≥ 2, we

have

D(Aθ) =



H2θ(Ω), 0 < θ < 1/4,

H
1/2
00 (Ω), θ = 1/4,

H2θ
0 (Ω), 1/4 < θ ≤ 1/2,

H2θ(Ω) ∩H1
0 (Ω), 1/2 < θ ≤ 1,

where H
1/2
00 (Ω) consists of all u ∈ H1/2(Ω) such that∫

Ω
ρ(x)−1|u(x)|2 dx <∞,

with ρ(x) any C∞ function comparable to dist(x, ∂Ω). If A is the Stokes operator

on Ω with Dirichlet boundary conditions then the domains of the fractional powers

of A are as above, except that all spaces are intersected with

Hσ := completion of {φ ∈ [C∞0 (Ω)]d : ∇ · φ = 0} in the norm of L2(Ω).

We first recall how fractional Sobolev spaces are defined using interpolation,

and some of their properties. It is then relatively straightforward to give explicit

characterisations of the fractional power spaces of the Dirichlet Laplacian and the

Stokes operator.
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7.3.1 Sobolev spaces and interpolation spaces

For non-integer s the space Hs(Ω) is defined by setting

Hkθ(Ω) := (L2(Ω), Hk(Ω))θ, 0 < θ < 1,

for any integer k (equation (I.9.1) in Lions and Magenes [1972]); this definition is

independent of k and is consistent with the standard definition whenever kθ is an

integer, so we have

(Hs1(Ω), Hs2(Ω))θ = H(1−θ)s1+θs2(Ω), s1 < s2, 0 < θ < 1, (7.10)

see Theorem I.9.6 in Lions and Magenes [1972]. Defined in this way Hs(Ω) is the

set of restrictions to Ω of functions in Hs(Rn) (Theorem I.9.1 in Lions and Magenes

[1972]).

For all s ≥ 0 we define

Hs
0(Ω) := completion of C∞0 (Ω) in Hs(Ω);

for 0 ≤ s ≤ 1/2 we have Hs
0(Ω) = Hs(Ω) (Theorem I.11.1 in Lions and Magenes

[1972]).

7.3.2 Fractional power spaces of Dirichlet Laplacian

We now consider the case when A = −∆ is the negative Dirichlet Laplacian on a

bounded domain Ω; to avoid technicalities we assume that ∂Ω is smooth. From stan-

dard regularity results for weak solutions, see Theorem 8.12 in Gilbarg and Trudinger

[2001] or Section 6.3 in Evans [2010], for example, we know that

D(A) = H2(Ω) ∩ H1
0 (Ω). The following result is well-known, but we provide a

proof (after the discussion following Proposition 4.5 in Constantin and Foias [1988])

for the sake of completeness.

Lemma 7.5. If A is the negative Dirichlet Laplacian on Ω then

D(A1/2) = H1
0 (Ω).

Proof. We have

〈Au, v〉 = 〈 −∆u, v〉 = 〈∇u,∇v〉, (7.11)

whenever u ∈ D(A) and v ∈ H1
0 (Ω), see the proof of Proposition 4.2 in Constantin

and Foias [1988] (their proof is given for the Stokes operator, but it works equally
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well in the case of the Laplacian).

If we let {wj} and (λj) be the eigenfunctions and corresponding eigenvalues

of the operator A, then {wj} form a basis for L2(Ω) (so also for H1
0 (Ω)) and since

λ
−1/2
j wj ∈ D(A) ⊂ H1

0 we can use (7.11) to write

δjk = 〈λ−1/2
j wj , λ

−1/2
k wk〉D(A1/2) = 〈A(λ

−1/2
j wj), λ

−1/2
k wj〉

= 〈∇(λ
−1/2
j wj),∇(λ

−1/2
k wk)〉.

It follows that D(A1/2) is a closed subspace of H1
0 . [Recall from (7.1) that D(A1/2) is

defined as the collection of certain convergent eigenfunction expansions; the above

equality shows that if this expansion converges in the D(A1/2)-norm then it also

converges in the norm of H1
0 .]

If v ∈ H1
0 with 〈v, u〉H1

0
= 0 for all u ∈ D(A1/2) then for every j

0 = 〈∇v,∇wj〉 = 〈v,Awj〉 = λj〈v, wj〉

and so v = 0, which shows that D(A1/2) = H1
0 .

We can now appeal to results from Lions and Magenes [1972] to deal with

the range 0 < θ < 1/2.

Corollary 7.6. If A is the negative Dirichlet Laplacian on Ω then

D(Aθ) =


H2θ(Ω) 0 < θ < 1/4,

H
1/2
00 (Ω) θ = 1/4,

H2θ
0 (Ω) 1/4 < θ < 1/2,

where H
1/2
00 (Ω) consists of all u ∈ H1/2(Ω) such that∫

Ω
ρ(x)−1|u(x)|2 dx <∞,

with ρ(x) any C∞ function comparable to dist(x, ∂Ω).

Proof. We note that

D(Aθ/2) = (H,D(A1/2))θ = (L2, H1
0 )θ,

and then the expressions on the right-hand side follow immediately from Theorem

I.11.7 in Lions and Magenes [1972].
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Note that the result above is relatively elementary for θ 6= 1/4. Indeed,

since wj ∈ D(Ar) is a countable sequence whose linear span is dense in D(As),

D(Ar) is always dense in D(As) for 0 ≤ s < r ≤ 1; since Corollary 7.2 shows that

D(A1/2) = H1
0 (Ω), it follows that H1

0 (Ω) is dense in D(Aθ) for θ < 1/2, and so,

since ‖u‖H2θ ≤ Cθ‖u‖D(Aθ),

D(Aθ) = {completion of H1
0 (Ω) in the norm of D(Aθ)}

⊆ {completion of H1
0 (Ω) in the norm of H2θ(Ω)}

= {completion of C∞0 (Ω) in the norm of H2θ(Ω)} = H2θ
0 (Ω).

To show the equivalence of the H2θ and D(Aθ) norms (and hence equality

of D(Aθ) and H2θ
0 ) note that functions in L2, Hs for 0 < s < 1/2, and Hs

0 for

1/2 < s ≤ 1 can be extended by zero to functions in Hs(Rn) without increasing

their norms (Theorem I.11.4 in Lions and Magenes [1972]); an argument following

that of Example 1.1.8 in Lunardi [2009] then shows that the norms in D(Aθ) and

in H2θ are equivalent provided that θ 6= 1/4.

Since functions in H1/2(Ω) = H
1/2
0 (Ω) cannot be extended by zero to func-

tions in H1/2(Rn) (Theorem I.11.4 in Lions and Magenes [1972]) the case of θ = 1/4

is significantly more involved.

To deal with the range 1/2 < θ < 1 we will use the intersection lemma

(Lemma 7.3) and the following simple result.

Lemma 7.7. Let u ∈ Hs(Ω) with s = 1 or s = 2, and let w ∈ H1
0 (Ω) solve

〈∇w,∇φ〉 = 〈∇u,∇φ〉 for all φ ∈ H1
0 (Ω). (7.12)

Then u 7→ w is a bounded linear map from Hs(Ω) into Hs(Ω) ∩H1
0 (Ω) and w = u

whenever u ∈ H1
0 (Ω).

Proof. The Riesz Representation Theorem guarantees that (7.12) has a unique so-

lution w ∈ H1
0 (Ω) for every u ∈ H1(Ω). That w = u when u ∈ H1

0 (Ω) is then

immediate, and the choice φ = w guarantees that ‖∇w‖L2 ≤ ‖∇u‖L2 . To deal with

the s = 2 case, simply note that (7.12) is the weak form of the equation

−∆w = −∆u, w|∂Ω = 0,

and standard regularity results for this elliptic problem (see e.g. Section 6.3 in Evans

[2010]) guarantee that ‖w‖H2 ≤ C‖∆u‖L2 ≤ C‖u‖H2 .

We can now characterise D(Aθ) for 1/2 < θ < 1.
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Corollary 7.8. If A is the negative Dirichlet Laplacian on Ω then

D(Aθ) = H2θ(Ω) ∩H1
0 (Ω) for 1/2 < θ < 1.

Proof. Corollary 7.2 guarantees that

D(Aθ) = (D(A1/2), D(A))2θ−1 = (H1
0 , H

2 ∩H1
0 )2θ−1.

Choosing H = H1(Ω), H0 = H1
0 (Ω), and D = H2(Ω) in Lemma 7.3, we can let T

be the map u 7→ w defined in Lemma 7.7 to deduce that

(H1
0 , H

2 ∩H1
0 )2θ−1 = (H1, H2)2θ−1 ∩H1

0 = H2θ ∩H1
0 ,

using (7.10).

To guarantee that our approximating functions in the next chapter are smooth

we will also need to consider D(Aθ) for θ > 1; here an inclusion will be sufficient.

Corollary 7.9. If A is the negative Dirichlet Laplacian on Ω then for θ ≥ 1

D(Aθ) ↪→ H2θ ∩H1
0 , with ‖u‖H2θ ≤ CD(Aθ)→H2θ‖Aθu‖

for every u ∈ D(Aθ).

Proof. First we note that D(Aθ) ⊆ D(A) = H2(Ω) ∩ H1
0 (Ω) for every θ ≥ 1; in

particular D(Aθ) ↪→ H1
0 (Ω), so we need only show that

D(Aθ) ↪→ H2θ(Ω), with ‖u‖H2θ ≤ CD(Aθ)→H2θ‖Aθu‖ (7.13)

for every u ∈ D(Aθ). Theorem 7.4 shows that this holds for all 0 < θ ≤ 1.

We now use (7.3) and induction. Suppose that (7.13) holds for all 0 < θ ≤ k
for some k ∈ N; then for α = k + r with 0 < r ≤ 1 we have

D(Aα) = D(Ak+r) = {u : Au ∈ D(Ak−1+r)} = {u : −∆u ∈ D(Ak−1+r)},

noting that since u ∈ D(Aα) and α ≥ 1 we have u ∈ D(A), which guarantees that

Au = −∆u.

It follows that any u ∈ D(Aα) solves the Dirichlet problem

−∆u = f, u|∂Ω = 0, (7.14)

for some f ∈ D(Ak−1+r) ↪→ H2(k−1+r)(Ω) using our inductive hypothesis. Elliptic
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regularity results for (7.14) (see Theorem II.5.4 in Lions and Magenes [1972], for

example) now guarantee that u ∈ H2(k+r)(Ω) with

‖u‖H2(k+r) ≤ c‖f‖H2(k−1+r) = c‖∆u‖H2(k−1+r) = c‖Au‖H2(k−1+r) ≤ c‖Ak+ru‖,

thanks to our inductive hypothesis.

7.3.3 Fractional power spaces of the Stokes operator

Recall the ‘Leray projection’ P defined in Chapter 2, i.e. the orthogonal projection

in L2(Ω) onto

Hσ(Ω) := completion of {φ ∈ C∞0 (Ω) : ∇ · φ = 0} in the norm of L2(Ω).

Since P is an orthogonal projection we have the symmetry property

〈Pu, v〉 = 〈u,Pv〉 for every u, v ∈ L2(Ω). (7.15)

We recall also the Stokes operator (note that we used different notation for

the Stokes operator in the previous chapters) A on Ω defined as A := PA, where A

is the negative Dirichlet Laplacian, and has domain

D(A) = H2(Ω) ∩H1
0 (Ω) ∩Hσ(Ω) = D(A) ∩Hσ(Ω),

see Theorem 3.11 in Constantin and Foias [1988]. It is a positive, unbounded

self-adjoint operator with compact inverse (see Chapter 4 in Constantin and Foias

[1988]), so still falls within the general framework we have considered above.

Now we show that D(Aθ) = D(Aθ)∩Hσ. We can do this using the ‘intersec-

tion lemma’ (Lemma 7.3) via an appropriate choice of the mapping T : our choice

is inspired by the proof of this equality due to Fujita and Morimoto [1970], who use

the trace-based formulation of interpolation spaces.

Lemma 7.10. For every 0 < θ < 1 we have D(Aθ) = D(Aθ)∩Hσ with ‖Aθu‖ and

‖Aθu‖ equivalent norms on D(Aθ); in particular, the inclusion D(Aθ) ⊂ D(Aθ) is

continuous.

Proof. First observe that Lemma 7.1 gives

D(Aθ) = (Hσ, D(A) ∩Hσ)θ.

In order to apply the intersection result of Lemma 7.3 we consider the oper-
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ator T̃ : D(A)→ D(A) defined by setting

T̃ := A−1PA.

As an operator from D(A) into D(A) this is bounded, due to elliptic regularity

results for the Stokes operator (‖A−1g‖H2 ≤ C‖g‖L2 for g ∈ Hσ, see Theorem 3.11

in Constantin and Foias [1988], for example): for any f ∈ D(A) we have

‖T̃ f‖D(A) ≤ C‖T̃ f‖H2(Ω) ≤ C‖PAf‖L2(Ω) ≤ C‖Af‖L2(Ω) = C‖f‖D(A).

We now extend T̃ to an operator T : L2 → Hσ: if we take ψ ∈ Hσ and

φ ∈ D(A) then, since both A and A are self-adjoint and P is symmetric (7.15),

|〈ψ, T̃φ〉| = |〈ψ,A−1PAφ〉| = |〈A−1ψ,PAφ〉| = |〈A−1ψ,Aφ〉| = |〈AA−1ψ, φ〉|

≤ ‖A−1ψ‖H2‖φ‖L2 ≤ C‖ψ‖L2‖φ‖L2 ,

which shows that

‖T̃ φ‖Hσ ≤ C‖φ‖L2 .

Since T̃ is linear and D(A) is dense in L2 it follows that we can extend T̃ uniquely

to an operator T : L2(Ω)→ Hσ as claimed.

Note that T is the identity on Hσ: this can be seen by expanding u ∈ Hσ in

terms of the eigenfunctions of A.

We now obtain the result by applying Lemma 7.3 choosing H = L2(Ω),

H0 = Hσ, D = D(A), and letting T : L2 → Hσ be the operator we have just

constructed.

Embedding of the fractional power spaces of the Stokes operator via

interpolation

Using the theory of real interpolation spaces (see Chapter 6) we can prove a property

of D(Aθ) which will be of interest in the next chapter.

Lemma 7.11. Let A be the Stokes operator on Ω ⊂ R3 with sufficiently smooth

boundary and let 0 < θ < 1. Then there exists r = r(θ) > 2 such that

D(Aθ) ↪→ Lr(Ω).

Proof. Recall the representation for the domains of the fractional powers of the

Stokes operator from the previous section
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D(Aθ) = (H,D(A))θ,2;K .

Taking T := Id and noting that H ↪→ L2(Ω) and D(A) ↪→ L∞(Ω), by the Exact

Interpolation Theorem 6.9, we have

D(Aθ) = (H,D(A))θ,2;K ↪→ (L2(Ω), L∞(Ω))θ,2;K .

Using Corollary 6.11, we obtain

(L2(Ω), L∞(Ω))θ,2;K = Lr(θ), 2(Ω),

where 2 < r(θ) = 2
1−θ <∞. Therefore, via monotonicity of the Lorentz spaces

D(Aθ) ↪→ Lr(θ), 2(Ω) ↪→ Lr(θ), r(θ)(Ω) = Lr(θ)(Ω),

as required.
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Chapter 8

Simultaneous approximation in

Sobolev and Lebesgue

spaces

In this chapter we describe a method that allows one to use truncated (but weighted)

eigenfunction expansions in order to obtain smooth approximations of functions de-

fined on bounded domains in a way that behaves well with respect to both Lebesgue

spaces and L2-based Sobolev spaces, and that also respects the ‘side conditions’

that often occur in boundary value problems (e.g. Dirichlet boundary data or a

divergence-free condition).

We have already mentioned in Section 3.4 that if u ∈ L2(Td) with

u =
∑
k∈Zd

ûke
ik·x, (8.1)

and we set

un :=
∑

k∈Zd : |k|≤n

ûke
ik·x,

where |k| is the Euclidean length of k, then this truncation behaves well in L2-based

spaces:

‖un − u‖X → 0 and ‖un‖X ≤ ‖u‖X

for X = L2(Td) or Hs(Td).
However, the same is not true in Lp(Td) for p 6= 2 if d 6= 1: there is no

constant C such that
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‖un‖Lp ≤ C‖u‖Lp for every u ∈ Lp(T3).

This follows from the result of Fefferman [1971] concerning the ball multiplier for the

Fourier transform; standard ‘transference’ results (see Grafakos [2014] for example)

then yield the result for Fourier series. There are similar problems when using

eigenfunction expansions in bounded domains, see Babenko [1973].

In the periodic setting these problems can be overcome by considering the

truncation over ‘cubes’ rather than ‘spheres’ of Fourier modes. If for u as in (8.1)

we define

u[n] :=
∑
|kj |≤n

ûke
ik·x, where k = (k1, . . . , kd),

then it follows from good properties of the truncation in 1D and the product struc-

ture of the Fourier expansion that

‖u[n] − u‖Lp → 0 and ‖u[n]‖Lp ≤ Cp‖u‖Lp , u ∈ Lp(Td)

(see Muscalu and Schlag [2013], for example). We have already used this approach

in Section 3.4 to prove that all weak solutions of the ‘critical’ (r = 3) convective

Brinkman–Forchheimer equations

∂tu− µ∆u+ (u · ∇)u+ β|u|2u+∇p = 0, ∇ · u = 0 (8.2)

on the torus T3 satisfy the energy equality.

There is no known corresponding ‘good’ selection of eigenfunctions in bounded

domains that will produce truncations that are bounded in Lp. To circumvent this

we suggest two possible approximation schemes in this chapter: for one scheme

we use the linear semigroup arising from an appropriate differential operator (the

Laplacian or Stokes operator); for the second we combine this with a truncated

eigenfunction expansion.

We discuss these methods in the abstract setting of fractional power spaces

in Section 8.1. Since we have already identified these fractional power spaces explic-

itly for the Dirichlet Laplacian and Stokes operators in the previous chapter, these

abstract results can be made more concrete to provide the properties of operators

required for our approximation schemes.

We emphasise here that we require the more refined result of Proposition 8.2

(approximation in finite-dimensional eigenspaces) in our application to the critical

CBF equations. The ‘approximation by semigroup’ method from Lemma 8.1 is
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not sufficient since our approximating functions do not have compact supports and

therefore cannot be used as test functions in the standard weak formulation (3.6)

of the equations. We circumvent this problem using the ‘eigenspace approximation’

and Lemma 3.5. We also think that the eigenspace approximation is interesting

in its own right, and likely to prove useful in Galerkin-based methods in bounded

domains.

8.1 Approximation in fractional power spaces

We want to investigate simultaneous approximation in fractional power spaces and a

second space L, which in our applications will be one of the spaces Lp(Ω) [potentially

with side conditions when treating divergence-free vector-valued functions].

8.1.1 Assumptions on the space L

Let the operator A and the space H be as in the previous chapter (see Section 7.1).

Now suppose that we have a Banach space L such that

(L-i) For some γ > 0 either

D(Aγ) ↪→ L ↪→ H (8.3)

or

H ↪→ L ↪→ D(A−γ), (8.4)

and

(L-ii) e−θA is a uniformly bounded operator on L for θ ≥ 0, i.e. there exists a

constant CL > 0 such that∥∥∥e−θAu
∥∥∥
L
≤ CL ‖u‖L for θ ≥ 0, (8.5)

and e−θA is a strongly continuous semigroup on L, i.e. for each u ∈ L∥∥∥e−θAu− u
∥∥∥
L
→ 0 as θ → 0+. (8.6)

We assume that the inclusions in (L-i) are continuous (so, for example,

L ↪→ H means that we also have ‖u‖ ≤ CL→H‖u‖L for some constant CL→H).

Note that the embedding L ↪→ H from (8.3) ensures that the definition of

the semigroup in (7.4) makes sense for u ∈ L, while if instead we have (8.4) then we

can use the natural definition of e−θA on D(A−γ) to interpret e−θAu for u ∈ L.
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8.1.2 Approximation using the semigroup

Using the semigroup e−θA we can easily approximate any u ∈ D(Aα)∩L in a ‘good

way’ in both D(Aα) and L. The following lemma simply combines the facts above

to make this more explicit.

Lemma 8.1. Suppose that (L-i) and (L-ii) hold. If u ∈ D(Aα)∩L for some α ∈ R
and uθ := e−θAu then

(i) uθ ∈ D(Aβ) for every β ∈ R when θ > 0;

(ii) ‖uθ‖D(Aα) ≤ ‖u‖D(Aα) for all θ > 0;

(iii) ‖uθ‖L ≤ CL‖u‖L for all θ > 0; and

(iv) uθ → u in L and in D(Aα) as θ → 0+.

Note that if u ∈ L and (L-i) holds then we can always find a value of α ∈ R
so that u ∈ D(Aα) ∩ L: if we have (8.3) then u ∈ L ∩ H (since L ↪→ H), while if

(8.4) holds then u ∈ L means that u ∈ D(A−γ). If we want to apply the lemma as

stated assuming explicitly only that u ∈ D(Aα) then to ensure that we also have

u ∈ L we need to have α ≥ γ under (8.3) or α ≥ 0 under (8.4). Nevertheless, we

always have (i), (ii), and (iv) for u ∈ D(Aα) for any α ∈ R.

Proof. Parts (i) and (ii) both follow from (7.5), (iii) is (8.5), and (iv) combines (7.6)

and (8.6).

Use of a semigroup like this can provide a natural way to produce a smooth

approximation that is well tailored to the particular problem under consideration;

see Robinson and Sadowski [2014] for one example in the context of the Navier–

Stokes equations (a straightforward proof of local well-posedness in L2(R3)∩L3(R3)).

8.1.3 Approximation using eigenspaces

We now want to obtain a similar approximation result, but for a set of approx-

imations that lie in the finite-dimensional space spanned by eigenfunctions of an

operator A satisfying the conditions above. This is the key abstract result of this

chapter; as with Lemma 8.1 its use in applications relies on the explicit identification

of the fractional power spaces of certain common operators that we obtained in Sec-

tion 7.3. Thanks to Lemma 3.5 we will be able to use this approximation method

in Chapter 9 for an application to the critical convective Brinkman–Forchheimer

equations.
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Proposition 8.2. Suppose that (L-i) and (L-ii) hold. For θ > 0 set

Πθu :=
∑

λn<θ−2

e−θλn 〈u, wn〉wn.

Then

(i) the range of Πθ is the linear span of a finite number of eigenfunctions of A,

so in particular Πθu ∈ D(Aα) for every α ∈ R, and

(ii) if X = L or D(Aα) for any α ∈ R, then

(a) Πθ is a bounded operator on X, uniformly for θ > 0, and

(b) for any u ∈ X we have Πθu→ u in X as θ → 0+.

Proof. Property (i) is immediate from the definition of Πθ.

For (ii) we start with an auxiliary estimate for u ∈ D(Aβ), β ≤ α. If

u =
∞∑
n=1

〈u, wn〉wn

then for every θ > 0 we have∥∥∥Πθu− e−θAu
∥∥∥2

D(Aα)
=

∑
λn≥θ−2

λ2α
n e−2λnθ |〈u, wn〉|2

≤
∑

λn≥θ−2

λ2α
n e−2λn

1/2

|〈u, wn〉|2

≤
∑

λn≥θ−2

λ2(α−β)
n e−2λn

1/2

λ2β
n |〈u, wn〉|

2

≤

(
sup
λ≥θ−2

λ2(α−β)e−2λ1/2

)
‖u‖2D(Aβ) .

If for each κ ∈ R we set

Φ(θ, κ) := sup
λ≥θ−2

λκe−λ
1/2

then we have∥∥∥Πθu− e−θAu
∥∥∥
D(Aα)

≤ Φ(θ, α− β) ‖u‖D(Aβ) for β ≤ α. (8.7)

Since
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Φ(θ, κ) =

θ−2κe−1/θ κ < 0 or κ ≥ 0, θ ≤ (2κ)−1,

(2κ)2κe−2κ κ ≥ 0, θ > (2κ)−1,

we have Φ(θ, κ) ≤Mκ for every θ > 0 and

Φ(θ, κ)→ 0 as θ → 0+ for every κ ≥ 0. (8.8)

It is immediate that Πθ is bounded on D(Aα) given that Πθ only decreases

the modulus of the Fourier coefficients (e−θλn ≤ 1):

‖Πθu‖D(Aα) ≤ ‖u‖D(Aα) .

The convergence ‖Πθu− u‖D(Aα) → 0 as θ → 0+, follows from (8.7) and (8.8) with

β = α and the fact that e−θAu→ u in D(Aα) as θ → 0+; we have

‖Πθu− u‖D(Aα) ≤
∥∥∥Πθu− e−θAu

∥∥∥
D(Aα)

+
∥∥∥e−θAu− u

∥∥∥
D(Aα)

→ 0

as θ → 0+.

Now suppose that u ∈ L and (8.3) holds. Then we have u ∈ H with

‖u‖ ≤ CL→H‖u‖L, and there is a γ > 0 such that D(Aγ) ↪→ L with

‖u‖L ≤ CD(Aγ)→L‖u‖D(Aγ).

Then we have

‖Πθu‖L =
∥∥∥(Πθu− e−θAu) + e−θAu

∥∥∥
L

≤ CD(Aγ)→L

∥∥∥Πθu− e−θAu
∥∥∥
D(Aγ)

+
∥∥∥e−θAu

∥∥∥
L

≤ CD(Aγ)→LΦ(θ, γ) ‖u‖+ CL ‖u‖L
≤
[
CD(Aγ)→LCL→HΦ(θ, γ) + CL

]
‖u‖L,

using (8.5) and (8.7) with (α, β) = (γ, 0). It follows (since Φ(θ, γ) ≤Mγ independent

of θ) that

‖Πθu‖L ≤ KL ‖u‖L ,

so Πθ : L → L is bounded for all θ > 0. Convergence of Πθu to u as θ → 0+ follows

similarly, since
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‖Πθu− u‖L ≤
∥∥∥Πθu− e−θAu

∥∥∥
L

+
∥∥∥e−θAu− u

∥∥∥
L

≤ CD(Aγ)→L

∥∥∥Πθu− e−θAu
∥∥∥
D(Aγ)

+
∥∥∥e−θAu− u

∥∥∥
L

≤ CD(Aγ)→LΦ(θ, γ) ‖u‖+
∥∥∥e−θAu− u

∥∥∥
L

and both terms tend to zero as θ → 0+.

If, instead of (8.3), (8.4) holds then we have H ↪→ L ↪→ D(A−γ) and

‖f‖D(A−γ) ≤ CL→D(A−γ) ‖f‖L for any f ∈ L. Then using (8.7) with (α, β) = (0,−γ)

we obtain

‖Πθu‖L =
∥∥∥(Πθu− e−θAu) + e−θAu

∥∥∥
L

≤ CH→L
∥∥∥Πθu− e−θAu

∥∥∥+
∥∥∥e−θAu

∥∥∥
L

≤ CH→LΦ(θ, γ) ‖u‖D(A−γ) + CL ‖u‖L
≤
[
CH→LCL→D(A−γ)Φ(θ, γ) + CL

]
‖u‖L =: KL ‖u‖L ,

and for the convergence we have

‖Πθu− u‖L ≤
∥∥∥Πθu− e−θAu

∥∥∥
L

+
∥∥∥e−θAu− u

∥∥∥
L

≤ CH→L
∥∥∥Πθu− e−θAu

∥∥∥+
∥∥∥e−θAu− u

∥∥∥
L

≤ CH→LΦ(θ, γ) ‖u‖D(A−γ) +
∥∥∥e−θAu− u

∥∥∥
L

≤ CH→LCL→D(A−γ)Φ(θ, γ) ‖u‖L +
∥∥∥e−θAu− u

∥∥∥
L
→ 0

as θ → 0+.

8.2 Approximation respecting Dirichlet boundary data

We can now combine the abstract approximation results from Section 8.1 with

the characterisation of fractional power spaces from the previous chapter to give

some more explicit approximation results. In all that follows we let Ω be a smooth

bounded domain in Rd, and by ‘smooth function on Ω’ we mean that a function is

an element of C∞(Ω).

In the abstract setting of Section 8.1 we take H = L2(Ω), we let A = −∆,

where ∆ is the Laplacian on Ω with Dirichlet boundary conditions, and we take

L = Lp(Ω) for some p ∈ (1,∞) with p 6= 2.
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We need to check the assumptions (L-i) and (L-ii) from Section 8.1.1 on the

relationship between the spaces L and D(Aα).

(L-i) If we take L = Lp(Ω) with p ∈ (2,∞) then since we are on a bounded domain,

we have

L = Lp(Ω) ↪→ L2(Ω)

and we can choose γ ≥ d(p− 2)/(4p) so that

D(Aγ) ↪→ H2γ(Ω) ↪→ Lp(Ω) = L.

In this case (8.3) holds. If L = Lq(Ω) for some 1 < q < 2 we have

L2(Ω) ↪→ Lq(Ω), and since Lq(Ω) is the dual space of some Lp(Ω) with p > 2

we have

L = Lq ' (Lp)′ ↪→ D(Aγ)′ = D(A−γ),

where γ ≥ d(2− q)/(4q).

(L-ii) That e−θA is bounded on Lp(Ω) for each 1 < p <∞ follows from the analysis

in Section 7.3 of Pazy [1983], as does the fact that e−θA is a strongly continuous

semigroup on Lp(Ω).

Our first approximation result uses the semigroup arising from the Dirichlet

Laplacian, and is a corollary of Lemma 8.1.

Theorem 8.3. If u ∈ L2(Ω) then, for every θ > 0, uθ := e−θAu is smooth and zero

on ∂Ω. If in addition u ∈ X then

‖uθ‖X ≤ CX‖u‖X , and ‖uθ − u‖X → 0 as θ → 0+,

where we can take X to be Hs(Ω) for 0 < s < 1/2, H
1/2
00 (Ω), Hs

0(Ω) for 1/2 < s ≤ 1,

Hs(Ω) ∩H1
0 (Ω) for 1 < s ≤ 2, or Lp(Ω) for any p ∈ (1,∞).

Proof. By part (i) of Lemma 8.1 we have uθ ∈ D(Ar) for every r ≥ 0. In particular

uθ ∈ D(A) = H2 ∩H1
0 , so uθ is zero on ∂Ω. Since D(Ar) ↪→ H2r(Ω) (Corollary 7.9)

it also follows that uθ ∈ C∞(Ω).

The boundedness in Sobolev spaces follows from part (ii) of Lemma 8.1 using

the characterisation of D(Aα) in Theorem 7.4, and the convergence in Sobolev spaces

from part (iv) with X = D(Aα). The boundedness and convergence in Lp follows

from parts (iii) and (iv) of the same lemma.

Proposition 8.2 yields a corresponding result on approximation that combines

the semigroup with a truncated eigenfunction expansion.
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Theorem 8.4. Let {wj} denote the L2-orthonormal eigenfunctions of the Dirichlet

Laplacian on Ω with corresponding eigenvalues (λj), ordered so that λj+1 ≥ λj. For

any u ∈ L2(Ω) set

uθ := Πθu =
∑

λn<θ−2

e−θλn〈u,wn〉wn. (8.9)

Then uθ has all the properties given in Theorem 8.3, and lies in the linear span of

a finite number of eigenfunctions of A for every θ > 0.

8.3 Approximation respecting Dirichlet boundary con-

ditions and zero divergence

To deal with functions that have zero divergence we take A to be the Stokes operator

A, and set H = L2
σ(Ω) and L = Lpσ(Ω) for some p ∈ (1,∞), p 6= 2, where

Lpσ(Ω) = completion of {φ ∈ [C∞0 (Ω)]d : ∇ · φ = 0} in the Lp(Ω)-norm.

Property (L-i) from Section 8.1.1 is checked as before, using the facts that (Lpσ)′ ' Lqσ
when (p, q) are conjugate (see Theorem 2 part (2) in Fujiwara and Morimoto [1977])

and that we have a continuous inclusion D(Aγ) ↪→ D(Aγ) from Lemma 7.10, where

A is the Dirichlet Laplacian. The properties in (L-ii) for the semigroup e−At on

Lpσ(Ω) can be found in Miyakawa [1981] (Theorem 2.1) or Giga [1981].

Theorem 8.5. Assume that Ω ⊂ Rd with d ≤ 4. Take u ∈ L2(Ω) and for every

θ > 0 let

uθ := e−θAu or uθ := Πθu,

where Πθ is defined as in (8.9), but now {wj} are the eigenfunctions of A. Then uθ

is smooth, zero on ∂Ω, and divergence free. If in addition u ∈ X then

‖uθ‖X ≤ CX‖u‖X , and ‖uθ − u‖X → 0 as θ → 0+,

where we can take X to be Hs(Ω) ∩ L2
σ(Ω) for 0 < s < 1/2, H

1/2
00 (Ω) ∩ L2

σ(Ω),

Hs
0(Ω) ∩ L2

σ(Ω) for 1/2 < s ≤ 1, Hs(Ω) ∩H1
0 (Ω) ∩ L2

σ(Ω) for 1 < s ≤ 2, or Lpσ(Ω)

for any p ∈ (1,∞).

As before, this result follows by combining Lemma 8.1, Proposition 8.2, and

the identification of the fractional power spaces of the Stokes operator in Theorem

7.4. The restriction to d ≤ 4 is to ensure that D(A) ⊂ H2 ⊂ Lp for every p ∈ (1,∞).

Without restriction on the dimension we then have to restrict to 1 < p ≤ 2d/(d−4).
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Chapter 9

Energy equality on bounded

domains

In this chapter we apply the eigenspace approximation result of Theorem 8.5 to prove

energy conservation for the 3D ‘critical’ (r = 3) convective Brinkman–Forchheimer

equations on smooth bounded domains Ω ⊂ R3

∂tu− µ∆u+ (u · ∇)u+∇p+ β|u|2u = 0, u|∂Ω = 0, ∇ · u = 0. (9.1)

We do not give full details of the argument that guarantees the validity of

the energy equality for weak solutions of (9.1), since it follows that in Section 3.4

extremely closely. Instead, we give a sketch of the proof, showing how Theorem

8.5 allows the argument to be extended to the critical CBF equations on bounded

domains.

9.1 Proof of the energy equality

In this section we sketch a proof of the following theorem.

Theorem 9.1. Every weak solution of (9.1) with initial condition u0 ∈ H satisfies

the energy equality:

‖u(t1)‖2 + 2µ

∫ t1

t0

‖∇u(s)‖2 ds+ 2β

∫ t1

t0

‖u(s)‖4L4(Ω) ds = ‖u(t0)‖2 (9.2)

for all 0 ≤ t0 < t1 < T . Hence, all weak solutions are continuous functions into

the phase space L2, i.e. u ∈ C([0, T ] ;H).

Note that to prove this result we require the more refined result of Proposition
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8.2, which enable an approximation that uses only finite-dimensional eigenspaces of

the Stokes operator. This approximation is not compactly-supported but Lemma

3.5 allows us to use it as a test function in the weak formulation (3.6). The ‘approx-

imation by semigroup’ result of Lemma 8.1 is not sufficient since we do not have a

version of Lemma 3.5 for this kind of approximations.

Proof. (Sketch) We only sketch the proof, which follows that from Section 3.4, which

in turn is based on the argument presented in Galdi [2000].

We approximate u(t) for each t ∈ [0, T ] in such a way that

(i) un(t) ∈ D̃σ(Ω),

(ii) un(t)→ u(t) in H1
0 (Ω) with ‖un(t)‖H1 ≤ C‖u(t)‖H1 ,

(iii) un(t)→ u(t) in L4(Ω) with ‖un(t)‖L4 ≤ C‖u(t)‖L4 , and

(iv) un(t) is divergence free and zero on ∂Ω,

with (ii)–(iv) holding for almost every t ∈ [0, T ]. In (i) we want un(t) to be in a

finite-dimensional space spanned by the first n eigenfunctions of the Stokes operator;

D̃σ(Ω) is defined similarly as D̃σ(ΩT ) in Section 3.2.1

D̃σ(Ω) :=

{
ϕ : ϕ =

N∑
k=1

αkak(x), αk ∈ R, ak ∈ N , N ∈ N

}
.

We can obtain such an approximation using Theorem 8.5 by setting

un(t) := Π1/nu(t) =
∑
λj<n2

e−λj/n 〈u(t), wj〉wj

for each t ∈ [0, T ] (wj and λj are the eigenfunctions and eigenvalues of the Stokes

operator on Ω, as in Section 7.1).

In the proof we will need the fact that

‖un − u‖L4(0,T ;L4) → 0 as n→∞, (9.3)

which follows from (iii): since u ∈ L4(0, T ;L4) and ‖un(t)− u(t)‖L4 → 0 for almost

every t ∈ [0, T ] we can obtain (9.3) by an application of the Dominated Convergence

Theorem (with dominating function (1 + C)‖u(t)‖L4). A similar argument (using

(ii)) shows that

‖un − u‖L2(0,T ;H1) → 0 as n→∞. (9.4)
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To prove the energy equality for some time t1 > 0 we set

uhn(t) :=

∫ t1

0
ηh(t− τ)un(τ) dτ, (9.5)

where ηh is an even mollifier. Since uhn ∈ D̃σ(ΩT ) we can use it as a test function in

(3.6) (with t = t1) thanks to Lemma 3.5:

−
∫ t1

0
〈u(s), ∂tu

h
n(s)〉ds+ µ

∫ t1

0
〈∇u(s),∇uhn(s)〉ds+

∫ t1

0
〈(u(s) · ∇)u(s), uhn(s)〉 ds

+ β

∫ t1

0
〈|u(s)|2u(s), uhn(s)〉 ds = −〈u(t1), uhn(t1)〉+ 〈u(0), uhn(0)〉.

We first take the limit as n→∞. The limits in the linear terms are relatively

straightforward. In the Navier–Stokes nonlinearity we can use∣∣∣∣∫ t1

0
〈(u(s) · ∇)uhn(s), u(s)〉 ds−

∫ t1

0
〈(u(s) · ∇)uh(s), u(s)〉ds

∣∣∣∣
≤
∫ t1

0
‖u(s)‖2L4‖∇uhn(s)−∇uh(s)‖ds ≤ ‖u‖2L4(0,T ;L4) ‖u

h
n − uh‖L2(0,T ;H1

0 ).

In the Brinkman–Forchheimer term |u|2u we have∣∣∣∣∫ t1

0
〈 |u(s)|2 u(s), uhn(s)〉 ds−

∫ t1

0

〈
|u(s)|2 u(s), uh(s)

〉
ds

∣∣∣∣
≤
∫ t1

0
‖u(s)‖3L4 ‖uhn(s)− uh(s)‖L4 ds ≤ ‖u‖3L4(0,T ;L4) ‖u

h
n − uh‖L4(0,T ;L4).

By our choice of uh we have∫ t1

0
〈u(s), ∂tu

h(s)〉 ds =

∫ t1

0

∫ t1

0
η̇h(t− s)〈u(t), u(s)〉dt ds = 0

and so

µ

∫ t1

0
〈∇u(s),∇uh(s)〉ds+

∫ t1

0
〈(u(s) · ∇)u(s), uh(s)〉 ds

+ β

∫ t1

0
〈|u(s)|2u(s), uh(s)〉 ds = −〈u(t1), uh(t1)〉+ 〈u(0), uh(0)〉.

Next we let h → 0, for which the argument is similar; we use the facts that the

mollifier ηh integrates to 1/2 on the positive real axis and that u is weakly continuous

into L2 (see Lemma 3.4) to show that the right-hand side in the above tends to
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−1

2
‖u(t1)‖2 +

1

2
‖u(0)‖2.

Then we obtain the energy equality (9.2) proceeding as in Section 3.4.

The continuity of u into L2 now follows by combining the weak continuity

into L2 and the continuity of t 7→ ‖u(t)‖, which is a consequence of the energy

equality.

It is worth mentioning that we can now easily obtain the existence of the

strong global attractor in the phase space H for the critical convective Brinkman–

Forchheimer equations on a smooth bounded domain Ω ⊂ R3. Indeed, since we just

proved that the energy equality holds also on bounded domains, we can repeat the

argument used in the periodic case via Cheskidov’s evolutionary systems (as in Sec-

tion 3.5). Note that on bounded domains u(t) ∈ H1
0 (Ω), so we can use the Poincaré

inequality ‖u‖L2(Ω) ≤ λ
−1
1 ‖∇u‖L2(Ω) to prove the existence of the absorbing set (cf.

Proposition 3.20 in Section 3.5 for the periodic case) in a similar way as it is done

for the Navier–Stokes equations (see e.g. Proposition 13.1 in Constantin and Foias

[1988]).
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Chapter 10

Conclusions and open problems

As we have seen, the convective Brinkman–Forchheimer equations constitute math-

ematically interesting modification of the famous Navier–Stokes model. In a thesis

we studied the influence of the absorption term |u|r−1 u on the properties of solutions

of this model. When r > 0 is large enough, this term guarantees the existence of

global strong solutions. For the ‘critical’ case r = 3 we get some conditional results

on the existence of global regular solutions. When it comes to weak solutions, in

the critical case the energy equality holds for all weak solutions. The case r ∈ [1, 3)

is still open in that regard. Uniqueness of weak solutions is also open for r ∈ [1, 3].

In the light of the recent result of nonuniqueness for ‘distributional’ weak solutions

of the NSE (see Buckmaster and Vicol [2019]), it may be worth checking if a similar

method would work for the critical CBF equations. However, the main problem for

this model seems to be obtaining or disproving the existence of global-in-time regu-

lar solutions for the case r = 3. We conjecture that this case mimics the behaviour

of the Navier–Stokes equations, i.e. if there is a blow-up in a finite time for the NSE,

then also the critical CBF equations exhibit a blow-up in a finite time, and if regular

solutions for the NSE exist for all times then the same should hold for the critical

CBF equations.

Going back to Theorem 5.2, it is natural to ask what kind of condition, if any,

is required if we consider ‘robustness of regularity’ with respect to the absorption

exponent r. To focus our attention on the dependence on the exponents let us take

u0 ≡ v0 ∈ V and f ≡ g ∈ L2(0, T ;H), in such a way that u is a strong solution

on the time interval [0, T ] of the CBF equations with initial condition u0 and the

absorption exponent s ≥ 1 (if s > 3 we know that it is in fact a global-in-time strong

solution) and let v be a weak solution of the CBF equations with initial condition

v0 and the absorption exponent r ∈ [1, 3] (r < s). We know that v is also a strong
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solution on some time interval [0, T̃ ]. We want to find a condition for exponents

r and s depending only on the function u which ensures that v remains a strong

solution at least on the time interval [0, T ].

The only new obstacle in the problem described above lies in estimating the

difference Cs(u)− Cr(v). We observe that∣∣∣|u|s−1 u− |v|r−1 v
∣∣∣ ≤ ∣∣∣|u|s−1 u− |u|r−1 u

∣∣∣+
∣∣∣|u|r−1 u− |v|r−1 v

∣∣∣
≤ |u|r

∣∣|u|s−r − 1
∣∣+
∣∣∣|u|r−1 u− |v|r−1 v

∣∣∣ . (10.1)

We have already seen how to deal with the second term on the right-hand side of

(10.1) [see (5.10) and the following lines]. Therefore, using similar arguments to

those in the proof of Theorem 5.2 we can obtain a robustness condition for the

absorption exponents

c0

∫ T

0

(∫
T3

|u|2r
∣∣|u|s−r − 1

∣∣2 dx

)1/2

dt < R(u, r), (10.2)

where R(u, r) is equal to the constant R(u) defined in Theorem 5.2; this constant

is finite because u is the strong solution of the CBF equations with the absorption

exponent s and s > r. On the other hand, the term on the left-hand side of (10.2)

tends to 0 as s− r → 0+ (provided that the integral is bounded). Fixing r = 3 and

letting s → r+ we can see from the condition (10.2) how close we have to get with

s to the critical case r = 3 in order to ensure that the weak solution v is actually a

strong solution on the time interval [0, T ].

In the works of Chernyshenko et al. [2007] or Dashti and Robinson [2008]

the robustness of regularity for the Navier–Stokes equations is used to construct a

numerical algorithm which can verify in a finite time regularity of a given strong

solution. The second ingredient required in that construction is convergence of the

Galerkin approximations to the strong solution. As we showed in Chapter 5, robust-

ness of regularity can be extended to the convective Brinkman–Forchheimer equa-

tions with the absorption exponent r ∈ [1, 3]. Using similar methods as presented

there to deal with the additional nonlinearity |u|r−1 u, it should be possible to prove

also for the CBF equations that the Galerkin approximations of a strong solution

converge strongly to that solution in appropriate function spaces. Consequently,

it should be possible to construct a similar algorithm for numerical verification of

regularity for these equations as well.

Returning to the issues discussed in Chapter 8, recall that while the ‘spheri-

cal’ truncation of a Fourier expansion
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un :=
∑
|k|≤n

ûke
ik·x

does not behave well in terms of boundedness/convergence in Lp spaces, the ‘cubic’

truncation

u[n] :=
∑
|kj |≤n

ûke
ik·x, k = (k1, . . . , kd),

does. One can expect (cf. Babenko [1973]) that there are similar problems in using

a straightforward truncation of an expansion in terms of an orthonormal family of

eigenfunctions:

Pλu :=
∑
λn≤λ

〈u,wn〉wn,

(where Awn = λnwn). It is natural to ask if there is a ‘good’ choice of eigenfunctions

such that the truncations

Pnu :=
∑
w∈En

〈u,w〉w,

where En is some collection of eigenfunctions, is well-behaved with respect to the

Lp spaces. To our knowledge this is entirely open.

10.1 Partial regularity

In famous result Caffarelli et al. [1982] proved that the set of singular points for

the Navier–Stakes equations cannot be too large (in terms of the box-counting and

Hausdorff dimensions). A preliminary calculation suggests that the dimension of the

set of singular times for the critical convective Brinkman–Forchheimer equations

(note that the critical case r = 3 has the same scaling as the NSE) can be even

smaller due to additional regularity of solution u ∈ L4(0, T ;L4). More precisely,

it seems that the box-counting dimension of the singular set for the critical CBF

inequality may be no larger than 1 which is better than 5/3 obtained in Caffarelli

et al. [1982] for the Navier–Stokes inequality. Below we give a short sketch of this

calculation neglecting the pressure.

At singular points (a, s) for the Navier–Stokes Inequality (see Caffarelli et al.

[1982] for more details) we have either∫
Qr(a,s)

|u|3 ≥ ε0r
2 or

∫
Qr(a,s)

|p|3/2 ≥ ε0r
2, (10.3)

where Qr is the parabolic cylinder
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Qr(a, s) :=
{

(x, t) : |x− a| < r, s− r2 < t < s
}
.

Interpolating we have∫
Qr

|u|3 ≤
(∫

Qr

|u|4
)3/4(∫

Qr

1

)1/4

. r5/4

(∫
Qr

|u|4
)3/4

,

and hence

r−5/3
(
ε0r

2
)4/3 ≤ r−5/3

(∫
Qr

|u|3
)4/3

.
∫
Qr

|u|4.

Therefore at singular points for the critical CBF inequality we obtain∫
Qr

|u|4 & rε0
4/3.

Now suppose that d = dB(S ∩K) > 1, where S denotes the set of space-time

singularities, K any compact subset of ΩT , and take 1 < δ < d. Then there exists a

sequence εj → 0, so that for each j there is a maximal collection {zjn} of at least ε−δj
points in S∩K that are 2εj-separated. For each j it follows that the εj-balls centred

at the points zjn are disjoint, and from (10.3) - assuming that the lower bound on

the u integral holds for the majority of points - we have (Q̃r is the centred cylinder

Q̃r(a, s) := {(x, t) : |x− a| < r, |s− t| < r2/2})

∫
ΩT

|u|4 ≥
∑
j

(∫
Q̃εj

|u|4
)

& εjεj
−δ = εj

1−δ →∞

as εj → 0, which contradicts the fact that
∫

ΩT
|u|4 <∞.

However, the partial regularity argument involves the pressure, which in our

case has the additional component q that comes from the absorption term

−∆q = ∂i(|u|2ui) = 2uiuj∂iuj .

So we need more work to verify if the iteration scheme and the regularity criterion

used in Caffarelli et al. [1982] can be adapted to the critical convective Brinkman–

Forchheimer equations.
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J. Bergh and J Löfström. Interpolation spaces. An introduction. Springer-Verlag,

Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No.

223.

F. Bernis. Finite speed of propagation and asymptotic rates for some nonlinear

higher order parabolic equations with absorption. Proc. Roy. Soc. Edinburgh

Sect. A, 104(1-2):1–19, 1986.

L. C. Berselli and E. Chiodaroli. On the energy equality for the 3D Navier–Stokes

equations. Preprint, 2019. URL https://arxiv.org/abs/1807.02667v3.

H.C. Brinkman. On the permeability of media consisting of closely packed porous

particles. Appl. Sci. Res., A1:81–86, 1947.

H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a

dense swarm of particles. Appl. Sci. Res., A1:27, 1949.

T. Buckmaster and V. Vicol. Nonuniqueness of weak solutions to the Navier–Stokes

equation. Ann. of Math. (2), 189(1):101–144, 2019.

L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions

of the Navier–Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.

X. Cai and Q. Jiu. Weak and strong solutions for the incompressible Navier–Stokes

equations with damping. J. Math. Anal. Appl., 343(2):799–809, 2008.

X. Cai and L. Lei. L2 decay of the incompressible Navier–Stokes equations with

damping. Acta Math. Sci. Ser. B (Engl. Ed.), 30(4):1235–1248, 2010.
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Y. Giga. Analyticity of the semigroup generated by the Stokes operator in Lr spaces.

Math. Z., 178(3):297–329, 1981.

Y. Giga. Domains of fractional powers of the Stokes operator in Lr spaces. Arch.

Rational Mech. Anal., 89(3):251–265, 1985.

D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second

order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the

1998 edition.

T. Giorgi. Derivation of the Forchheimer law via matched asymptotic expansions.

Transport in Porous Media, (29):191–206, 1997.

R. G. Gordeev. The existence of a periodic solution in a certain problem of tidal

dynamics. In Problems of mathematical analysis, No. 4: Integral and differential

operators. Differential equations (Russian), pages 3–9, 142–143. Izdat. Leningrad.

Univ., Leningrad, 1973.

L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathe-

matics. Springer, New York, third edition, 2014.
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E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichun-

gen. Math. Nachr., 4:213–231, 1951.

C. Hsu and P. Cheng. Thermal dispersion in a porous medium. Int. J. Heat Mass

Transfer, 33:1587–1597, 1990.

Y. Jia, X. Zhang, and B.-Q. Dong. The asymptotic behavior of solutions to three-

dimensional Navier–Stokes equations with nonlinear damping. Nonlinear Anal.

Real World Appl., 12(3):1736–1747, 2011.

Z. Jiang. Asymptotic behavior of strong solutions to the 3D Navier–Stokes equations

with a nonlinear damping term. Nonlinear Anal., 75(13):5002–5009, 2012.

Z. Jiang and M. Zhu. The large time behavior of solutions to 3D Navier–Stokes

equations with nonlinear damping. Math. Methods Appl. Sci., 35(1):97–102, 2012.

V. Kalantarov and S. Zelik. Finite-dimensional attractors for the quasi-linear

strongly-damped wave equation. J. Differential Equations, 247(4):1120–1155,

2009.

V. Kalantarov and S. Zelik. Smooth attractors for the Brinkman–Forchheimer equa-

tions with fast growing nonlinearities. Commun. Pure Appl. Anal., 11(5):2037–

2054, 2012.

I. Kukavica. Role of the pressure for validity of the energy equality for solutions

of the Navier–Stokes equation. J. Dynam. Differential Equations, 18(2):461–482,

2006.

O. Ladyzhenskaya. Attractors for semigroups and evolution equations. Lezioni

Lincee. [Lincei Lectures]. Cambridge University Press, Cambridge, 1991.

O. A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow. Sec-

ond English edition, revised and enlarged. Translated from the Russian by Richard

A. Silverman and John Chu. Mathematics and its Applications, Vol. 2. Gordon

and Breach, Science Publishers, New York-London-Paris, 1969.

J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math.,

63(1):193–248, 1934.

A. L. Likhtarnikov. Existence and stability of bounded and periodic solutions in

a nonlinear problem of tidal dynamics. In The direct method in the theory of

stability and its applications (Irkutsk, 1979), pages 83–91, 276. “Nauka” Sibirsk.

Otdel., Novosibirsk, 1981.

120
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A. Rodŕıguez-Bernal. The heat equation with general periodic boundary conditions.

Potential Anal., 46(2):295–321, 2017.

A. Salama and P. J. Van Geel. Flow and solute transport in saturated porous media:

1. the continuum hypothesis. J. Porous Media, 11(4):403–413, 2008a.

A. Salama and P. J. Van Geel. Flow and solute transport in saturated porous media:

2. violating the continuum hypothesis. J. Porous Media, 11(5):421–441, 2008b.

V. Scheffer. Hausdorff measure and the Navier–Stokes equations. Comm. Math.

Phys., 55(2):97–112, 1977.

M. E. Schonbek. L2 decay for weak solutions of the Navier–Stokes equations. Arch.

Rational Mech. Anal., 88(3):209–222, 1985.

M. E. Schonbek. Large time behaviour of solutions to the Navier–Stokes equations.

Comm. Partial Differential Equations, 11(7):733–763, 1986.

R. Seeley. Norms and domains of the complex powers ABz. Amer. J. Math., 93:

299–309, 1971a.

123



R. Seeley. Fractional powers of boundary problems. In Actes du Congrès Interna-

tional des Mathématiciens (Nice, 1970), Tome 2, pages 795–801. Gauthier-Villars,

Paris, 1971b.

R. Seeley. Interpolation in Lp with boundary conditions. Studia Math., 44:47–60,

1972. Collection of articles honoring the completion by Antoni Zygmund of 50

years of scientific activity, I.

G. R. Sell. Differential equations without uniqueness and classical topological dy-

namics. J. Differential Equations, 14:42–56, 1973.

G. R. Sell. Global attractors for the three-dimensional Navier–Stokes equations. J.

Dynam. Differential Equations, 8(1):1–33, 1996.

G. R. Sell and Y. You. Dynamics of evolutionary equations, volume 143 of Applied

Mathematical Sciences. Springer-Verlag, New York, 2002.

J. Serrin. On the interior regularity of weak solutions of the Navier–Stokes equations.

Arch. Rational Mech. Anal., 9:187–195, 1962.

J. Serrin. The initial value problem for the Navier–Stokes equations. In Nonlinear

Problems (Proc. Sympos., Madison, Wis., 1962), pages 69–98. Univ. of Wisconsin

Press, Madison, Wis., 1963.

A.V. Shenoy. Non-Newtonian fluid heat transfer in porous media. Advances in Heat

Transfer, (24):101–190, 1994.

M. Shinbrot. The energy equation for the Navier–Stokes system. SIAM J. Math.

Anal., 5:948–954, 1974.
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