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1 The Dickman function

The Dickman function, ρ, occurs in number theory in the study of ‘smooth numbers’, that is,
numbers whose largest prime factor is below some threshold. Specifically, we find that for u ∈ [0,∞),

lim
x→∞

1

x
#{1 ≤ n ≤ x : P (n) ≤ x1/u} = ρ(u), (1)

where P (n) denotes the largest prime factor of n. We may may view the Dickman function ρ as
being defined by such a formula, if we assume that this limit exits. We may then try and study the
properties of ρ. Number Theoretic heuristics starting from (1) are rather tenuous; the following is
from Koukoulopoulos [Kou19],

log x
∑
n≤x

P (n)≤x1/u

1 ≈
∑
n≤x

P (n)≤x1/u

log n ≈
∑

p≤x1/u

log p
∑

n≤x/p

P (n)≤x1/u

1

≈
∫ x1/u

1

∑
n≤x/t

P (n)≤x1/u

1 dt =
1

u
log x

∫ u

u−1

1

xv/u

∑
n≤xv/u

P (n)≤x1/u

1 dv ,

leading to the conjecture that uρ(u) =
∫ u

u−1
ρ(x) dx. Furthermore, by (1), it is clear that we should

have ρ(u) = 1 for u ∈ [0, 1]. Due to uniqueness of solutions to initial value problems, these properties
uniquely define a continuous function.

Definition 1.1 (Dickman function). The Dickman function (referred to as ρ throughout) is the
unique continuous function satisfying the differential equation uρ′(u)+ ρ(u− 1) = 0 for u ≥ 1, with
initial conditions ρ(u) = 1 for u ∈ [0, 1].

An undesirable amount of technical manipulations are required for the above heuristic argument
(indeed, a ‘nice’ heuristic doesn’t seem to exist). We may view (1) as probabilistic statement; if you
pick a random integer uniformly between 1 and x, the probability that such an integer will have all
prime factors below x1/u approaches ρ(u) as x goes to infinity. Subsequently, we hope that a more
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probabilistic view can motivate why the Dickman function in Definition 1.1 should also satisfy (1).
We will not prove the relation (1) (such a proof may be found, for example, in [Ram49]), but hope
to inspire a deeper understanding of when the Dickman function ρ occurs.

Much injustice is done to the Dickman function if it is viewed purely as a number theoretic
function. We present the following 3 problems, each of which share the same answer, ρ(u):

1. Pick a random integer, n, uniformly at random between 1 and N . What is the probability
that all prime factors of n are below N1/u (in the limit, as N → ∞)?

2. We begin with a stick of length 1, and countably many people. Person 1 chooses a number U1

uniformly from [0, 1], determining where they snap the stick. They keep the stick of length
U1, and pass to Person 2 the remaining stick of length 1 − U1. Person 2 snaps this stick by
choosing U2 uniformly from [0, 1], independent of U1, and keeps a U2 proportion of the stick
(so their stick will be of length U2(1 − U1)). They then pass the remaining stick to Person
3, and this process continues, so that person n has a stick of length Un(1− Un−1)...(1− U1).
What is the probability that each person has a stick of length shorter than 1/u?

3. (Generalisation of the 100 prisoner problem) There are n prisoners each given a distinct
number from 1 to n. The director of the prison offers them a challenge for their freedom.
In a room of n boxes, the director randomly puts each prisoners number in a different box.
One after the other, each prisoner is allowed to open ⌊n/u⌋ boxes in the room. The prisoners
succeed if (and only if) all prisoners find find their number. Assuming the prisoners use the
best possible strategy, what is their chance at success as n goes to infinity?

This essay hopes to shed light on the connection between these problems. Those who have seen
variants of problem 3 before will know that the optimal solution is connected to the longest cycle of
a random permutation [War+06]: in fact, the question is just asking ‘what is the probability that a
uniformly chosen random permutation from Sn has all cycles of length ≤ n/u’. Therefore, compar-
ing problems 1 and 3 above, one can ask if there is an analogy between integers and permutations;
prime numbers and cycles. Indeed, both integers and permutations have unique factorisation up to
reordering, and the parallels one can draw from this are quite fascinating. So much so, in fact, they
were even subject of a graphic novel called ‘Prime Suspects’ by A. Granville and J. Granville [GG19].

Regarding the Dickman function, there are two interesting distributions that may be derived
from it. The first of which, sometimes called the max-Dickman distribution (for example, in
[MP20]), is derived by noticing that ρ is a decreasing continuous function on [0,∞) with ρ(0) = 1
and ρ(u) → 0 as u → ∞.

Definition 1.2 (max-Dickman Distribution). The max-Dickman Distribution is defined by the
following cumulative distribution function

F (u) =

{
0 if u ≤ 0

ρ(1/u) if u > 0
,

Noting that F (u) = 1 for u ≥ 1.

Studying this distribution will unveil the link between the above 3 problems, but it will not be the
only focus of this essay. There is another, equally interesting distribution relating to the Dickman
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function. This distribution appears in insurance mathematics (perpetuities) [Dev01], algorithms
[HT02], and many other fields (see [Dev01] for more references). First, we note that∫ ∞

0

ρ(u) du = eγ ,

where γ = 0.5772... is the Euler-Mascheroni1 constant. Therefore, we can normalise appropriately
to obtain the following cumulative distribution function:

Definition 1.3 (Dickman Distribution). A random variable X is said to have Dickman distribution
or Dickman density if X has cumulative distribution function

D(x) =

{
0 if x ≤ 0 ,∫ x

0
e−γρ(u) du if x > 0 .

(2)

We will return to this distribution in Section 3.

2 The max-Dickman Distribution and Partitions of Unity

Suppose that we know that the largest cycle length of a permutation σ, denoted L(σ), indeed sat-
isfies 1

n!#{σ ∈ Sn : L(σ) ≤ n/u} → ρ(u) (that is, if you uniformly pick a random permutation from
Sn, the probability that all cycles in its cyclic decomposition are of length ≤ n/u approaches ρ(u)).
Furthermore, suppose that we know (1) is true. In this section, we search for a deeper understand-
ing as to why the Dickman function arises in these situations. The following is motivated by a
blog-post by Tao [Tao], and a fantastic survey paper on the Dickman Distribution by Molchanov
and Panov [MP20].

First, one should notice that if p is a prime factor of m, the condition that p ≤ m1/u, 2 is
equivalent to log p/ logm ≤ 1/u. Along a similar line, if σ = C1...Cr is the cyclic decomposition of
σ, then the condition |Ci| ≤ n/u (where |Ci| denotes the length of cycle i) can instead be written
as |Ci|/n ≤ 1/u. The probabilities of these equations being satisfied for all prime factors of a
random integer / all cycles of a random permutation, converge to the Dickman function, and so we
want to dig deeper into the structures of log p/ logm and |Ci|/n for randomly chosen integers and
permutations.

To begin, we fix m ∈ N, and write its prime factorisation m = p1p2...pr, where these primes are
possibly not distinct. We then have

log p1
logm

+
log p2
logm

+ ... +
log pr
logm

= 1.

Similarly, for fixed σ ∈ Sn with cyclic decomposition σ = C1...Cr, we have

|C1|
n

+
|C2|
n

+ ... +
|Cr|
n

= 1.

1This constant is another quantity commonly found in number theory, γ = limn→∞(
∑

k≤n
1
k
− logn).

2Note that, in (1), if we instead consider m ≤ x such that P (n) ≤ m1/u, then the limit is unchanged.
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Therefore, the multisets (sets that may have elements repeated){ log p1
logm

,
log p2
logm

, ...,
log pr
logm

}
and

{ |C1|
n

,
|C2|
n

, ...,
|Cr|
n

}
, (3)

both form partitions of unity, that is, they are countable multisets of non-negative elements
that sum to 1. This interpretation allows us to directly compare the distributions of primes and
cycle-lengths via (3), as we know that for randomly chosen m ∈ {1, 2, ..., n},

P
({ log p1

logm
≤ 1

u
,
log p2
logm

≤ 1

u
, ...,

log pr
logm

≤ 1

u

})
→ ρ(u) as n → ∞,

and for randomly chosen σ ∈ Sn,

P
({ |C1|

n
≤ 1

u
,
|C2|
n

≤ 1

u
, ...,

|Cr|
n

≤ 1

u

})
→ ρ(u) as n → ∞.

Therefore the largest elements of both objects in (3) have the same distribution. Here, it is nice to
mention the fact (originally proved by Ramanujan [AB18], Sec 8.2) that

ρ(u) = 1 +
∑
k≥1

(−1)k

k!

∫
· · ·

∫
Ik(u)

1

y1 . . . yk
dy1 . . . dyk,

Ik(u) = {y1 > 1/u, . . . , yk > 1/u, y1 + · · ·+ yk < 1},

suggesting that the Dickman function is inherently linked to the size of elements of partitions of
unity. With this in mind, we want to create the most natural random partition of unity. It seems
sensible to try and use uniformly distributed random variables for such a construction.

Let U1,U2, ... be independent random variables with uniform distribution U([0, 1]). We take U1

to be the first element of our partition of unity. Now, the remaining elements should sum to 1−U1,
and so the next element should be no bigger than this. Subsequently, we take the second element to
be U2(1−U1). Now, the remaining elements should sum to 1−U1 −U2(1−U1) = (1−U1)(1−U2).
Therefore, we take the third element to be U3(1 − U1)(1 − U2), and so on, with the n-th element
being Un(1 − Un−1)...(1 − U1). Note that this is identical to the list of stick lengths in the stick
breaking problem mentioned in problem 2 of Section 1. This process gives us a natural partition of
unity

{U1,U2(1− U1), . . . ,Uk(1− U1) . . . (1− Uk−1), . . . }. (4)

We would then hope, according to our discussion, that the probability that the largest element
of this partition is ≤ 1/u also converges to the Dickman function ρ(u). This would suggest that
the largest prime factor of a randomly selected integer and the largest cycle length of a random
permutation behave in a very natural way, analogously to the largest element of (4). Let

M = sup{U1,U2(1− U1), . . . ,Uk(1− U1) . . . (1− Uk−1), . . . }.

Note that, by self-similarity, if U ∼ U([0, 1]) is independent of M, then we can equivalently define
M as being the random variable satisfying

M Law
= max{U , (1− U)M}. (5)
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Now, for u ≥ 1,

ϕ(u) := P(M ≤ 1/u) = P(max{U , (1− U)M} ≤ 1/u)

=

∫ 1

0

P(max{t, (1− t)M} ≤ 1/u) dt

=

∫ 1/u

0

P(M ≤ 1/u(1− t)) dt

=

∫ 1/u

0

ϕ(u(1− t)) dt =
1

u

∫ u

u−1

ϕ(y) dy,

where we have used independence on the second line. Differentiating the first and last terms, we
find that uϕ′(u) + ϕ(u − 1) = 0. Furthermore, if u ∈ (0, 1], the fact that M ≤ 1 implies that
ϕ(u) = 1. This is precisely the definition of the Dickman function given in Definition 1.1, and so
ϕ = ρ, and M has max-Dickman distribution according to Definition 1.2, as suspected.

We have found that the largest element of the partition of unity in (4) has max-Dickman distri-
bution. This distribution is in fact a specific case of a Poisson-Dirichlet process/distribution, which
takes the shape of a maximum over infinitely many beta-distributed random variables. Donnelly
and Grimmett [DG93] showed directly that the distribution of prime factors of an integer (note
that this is not just the largest prime factor) should converge in distribution to a Poisson Dirichlet
distribution.

We finish the section by giving some (not entirely rigorous) motivation as to why the distri-
bution of the largest cycle of a random permutation should have the same distribution as M. A
full explaination can be found in [MP20]. Let us first consider the value distribution of |C1| for a
uniformly chosen random permutation σ = C1...Cr from Sn, where C1, ..., Cr are ordered so that
C1 includes the number 1, C2 includes the smallest number not in C1 and so on. If |C1| = 1, then 1
is fixed by Sn. We must have (n− 1)! of these permutations, since we are just counting the number
of permutations of {2, 3, ..., n}. Therefore, P(|C1| = 1) = 1/n. Now if |C1| = 2, then we have n− 1
possible elements that 1 is mapped to. Furthermore, we count all permutations of the remaining
n − 2 numbers. This gives P(|C1| = 2) = (n − 1)(n − 2)!/n! = 1/n. Continuing, we find that in
general P(|C1| = r) = 1/n for r ∈ {1, 2, ..., n}.

We now consider the other cycles. Suppose that we know |C1| = m < n. Then for r ≤ n −m,
we can use identical calculations to above to find that P(|C2| = r

∣∣ |C1| = m) = 1
n−m , as C2 can be

viewed as being a cycle from a random permutation of n−m objects. This extends more generally
to

P
(
|Ck| = r

∣∣∣ |C1| = m1, |C2| = m2, ..., |Ck−1| = mk−1

)
=

1

n−m1 −m2 − ...−mk−1
,

for any m1 + ...+mk−1 < n. Now, for a ∈ {1, 2, ..., n},

P
( |C1|

n
=

a

n

)
=

1

n
⇒ |C1|

n

d−→ U1,

where U1 ∼ U([0, 1]). Then for b ∈ {1, 2, ..., n− a}, we have

P
( |C2|

n
=

b

n

∣∣∣ |C1|
n

=
a

n

)
=

1

n− a
⇒ |C2|

n

d−→ U2(1− U1),
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where U2 ∼ U([0, 1]) is independent of U1. The intuition here is that, once we know |C1|/n, the
distribution of |C2|/n is uniform, and |C2|/n cannot be any larger than 1− |C1|/n. This continues
and we find that{ |C1|

n
,
|C2|
n

, ...,
|Cn|
n

}
d−→ {U1,U2(1− U1), . . . ,Uk(1− U1) . . . (1− Uk−1), . . . }

Therefore, the largest cycle will have distribution according the the max-Dickman distribution, as
we hoped!

Remark 2.1. Interestingly, the max-Dickman distribution also makes an appearance when looking
at the maximal edge length of random graphs in (0, 1]2 (Section 3.1 of [MP20]). Hopefully, this is
no longer very surprising!

3 The max-Dickman Distribution and the Dickman Distri-
bution

In this section, we motivate why one may also be interested in the Dickman distribution (Definition
1.3). We will expose a link between the max-Dickman distribution and the Dickman distribution
that arises when studying the largest cycle of permutations using an alternate method to those
in the previous section. This will be taken from Arratia, Barbour and Tavaré [ABT03], mostly
without proof. In this method, we instead look at cycle counts. For a uniformly randomly chosen

permutation σ ∈ Sn, we let C
(n)
i denote the random variable equal to the number of cycles of length

i of σ. We must then have C
(n)
1 + 2C

(n)
2 + · · ·+ nC

(n)
n = n. It is shown in Theorem 1.3 of [ABT03]

that
(C

(n)
1 , C

(n)
2 , ..., C(n)

n )
d−→ (Z1, ..., Zn), (6)

where (Zj)j≥1 are independent Poisson random variables with Zj ∼ Pois(1/j). This convergence

is in the sense that each C
(n)
j

d−→ Zj as n → ∞, and each component behaves independently in the
limit. The proof is quite long due to some technical combinatorics.

Once (6) is established, we may analyse the distribution of cycle lengths using Poisson random

variables. One thing we have to do here is condition on the fact that C
(n)
1 +2C

(n)
2 + · · ·+nC

(n)
2 = n.

Therefore, with Tj = Z1 + 2Z2 + ...+ jZj , it can be shown (Lemma 5.3 of [ABT03]) that

P(L(σ) ≤ n/u) = P(C(n)
⌈n/u⌉+1 = 0, ..., C(n)

n = 0)

= P(Z⌈n/u⌉ = 0, ..., Zn = 0|Tn = n)

=
( n∏

i=⌈n/u⌉

P(Zi = 0)
)P(T⌈n/u⌉ = n)

P(Tn = n)

= exp
( n∑

i=⌈n/u⌉

1

i

)P(T⌈n/u⌉ = n)

P(Tn = n)
. (7)

We have seen in the previous section that the left hand side converges to ρ(1/u). But it happens
that Tn/n actually converges to the Dickman Distribution according to Definition 1.3! This is fairly

6



straightforward to show. The Laplace Transform of Tn/n is

E[e−sTn/n] =

n∏
i=1

E[e−sZi/n] =

n∏
i=1

∞∑
m=0

(1/i)me−1/i

m!
e−sm/n

=

n∏
i=1

e−1/i
∞∑

m=0

(e−s/n

i

)m 1

m!
= exp

( n∑
i=1

e−si/n − 1

i

)
.

As noted in Theorem 4.8 of [ABT03], this sum inside the exponential can be written as∫ 1

0

e−sx − 1

x
dµn(x),

where µn is the probability measure that puts mass 1/n at i/n for i ∈ {1, 2, 3, ..., n}. This measure
converges weakly to Leb on [0, 1], hence we find that as n → ∞, we have

E[e−sTn/n] → exp
(∫ 1

0

e−sx − 1

x

)
.

We later see (in (10), when θ = 1 there) that this is the Laplace transform of the Dickman Dis-
tribution. When it exists, the Laplace transform (which is just the moment generating function)
uniquely defines a distribution in the same way that the characteristic function does, and so we
have found that Tn/n does indeed converge in distribution to the Dickman distribution.

Using this, it can be shown (using a technique called size biasing, Theorem 4.13 of [ABT03])

that the right hand side of (7) is related to uP(1/u − 1 ≤ Tn/n ≤ 1/u) → ue−γ
∫ 1/u

1/u−1
ρ(x) dx =

e−γρ(1/u). It should not be a surprise that the max-Dickman distribution and the Dickman dis-
tribution are linked in such a way. The first of these has cumulative distribution relating to the
Dickman function, the latter has density relating the the Dickman function. However, the Dickman
function is, by definition, inherently tied to its derivative. Therefore one would expect that random
variables with max-Dickman distribution and Dickman density should certainly be related, since
density is just the derivative of the cumulative distribution.

4 Infinite Divisibility of Dickman Distribution

In this section we show that the Dickman distribution (Definition 1.3) is infinitely divisible, whilst
also proving some nice relations to other interesting distributions. As in Section 2, we follow the
work of Molchanov and Panov [MP20], utilising the Laplace transform to compare distributions.
First we will show that if D is the random variable defined by

D = U1 + U1U2 + U1U2U3 + · . (8)

For (Ui)i≥1 independent with Ui ∼ U([0, 1]), then D has Dickman distribution. Similarly to (5), we
certainly have

D Law
= U(1 +D),

where U ∼ U([0, 1]) is independent of D. A variation on (8) will then give a very neat proof that
the Dickman distribution is infinitely divisible.
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Proposition 4.1. D as defined above has Dickman distribution according to Definition 1.3, as-
suming D has density fD that is differentiable.

Proof. We know that D Law
= U(1 +D), so that for x > 0 we have cumulative distribution function

FD(x) = P(D ≤ x) = P(U(1 +D) ≤ x) = P(D ≤ x/U − 1)

=

∫ 1

0

P(D ≤ x/t− 1) dt = x

∫ 1/x

0

FD(1/y − 1) dy.

Differentiation both sides with respect to x, we find that

fD(x) =

∫ 1/x

0

FD(1/y − 1) dy − 1

x
FD(x− 1),

and so, using the first result to say that this integral is equal to FD(x)/x, we have

xfD(x) = FD(x)− FD(x− 1).

Finally, differentiating again with respect to x, we find that

xf ′
D(x) + fD(x− 1) = 0.

Therefore, by Definition 1.1, fD must be some scalar multiple of the Dickman function ρ. To be a
valid distribution function, we must have the appropriate normalisation fD(u) = e−γρ(u) for u > 0.
Furthermore, by (8), FD(x) = 0 for x ≤ 0. Subsequently, D has Dickman distribution according to
Definition 1.3.

Now, we define

Dθ = U1/θ
1 + U1/θ

1 U1/θ
2 + U1/θ

1 U1/θ
2 U1/θ

3 + ... . (9)

By analysing the Laplace transform of Dθ, we will prove that D as defined in (8) is infinitely
divisible. We again have the relation Dθ = U1/θ(1 +Dθ). Therefore the Laplace transform of Dθ is

Lθ(s) := E[e−sDθ ] = E[e−sU1/θ(1+Dθ)]

= θ

∫ 1

0

∫
R
e−st(1+x) dDθ(x) t

θ−1 dt

= θ

∫ 1

0

e−sttθ−1
(∫

R
e−stxdDθ(x)

)
dt

= θ

∫ 1

0

e−sttθ−1Lθ(st) dt

=
θ

sθ

∫ s

0

e−yyθ−1Lθ(y) dy.

Multiplying both sides by sθ and differentiating, we find that Lθ satisfies the following differential
equation:

sθL′
θ(s) + θsθ−1Lθ(s) = θe−ssθ−1Lθ(s)

⇒ sL′
θ(s) + θLθ(s) = θe−sLθ(s).
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The unique solution of this equation with Lθ(0) = 1 (which is clearly implied by the definition of
Lθ) is

Lθ(s) = exp
(
θ

∫ 1

0

e−sx − 1

x

)
. (10)

For n ∈ N, if we take D(1)
1/n,D

(2)
1/n, ...,D

(n)
1/n independent copies of D1/n, then by (10) we have that

the Laplace transform of their sum is

E[e−s(D(1)

1/n
+D(2)

1/n
+...+D(n)

1/n
)
] = L1/n(s)

n =
(
exp

( 1

n

∫ 1

0

e−sx − 1

x

))n

= L1(s).

As discussed, the Laplace transform uniquely defines a distribution, so noting that D1 = D, we find
that for any n ∈ N,

D = D(1)
1/n +D(2)

1/n + ...+D(n)
1/n,

for i.i.d (D(i)
1/n)

n
i=1 defined by (9). This proves that the Dickman distribution is infinitely divisible.

5 Stein’s method for the Dickman Distribution

It is stated in Arras et al. [Arr+16] that a random variable Z has Dickman density according to
Definition 1.3 if and only if for all bounded functions f we have

E[Zf(Z)] = E[f(Z + U)],

where U ∼ U([0, 1]) is independent of Z. This is, ofcourse, another outcome of the differential
equation that characterises the Dickman function. Indeed, suppose that Z has Dickman distribution
according to Definition 1.3, then for any bounded function f , we have

E[f(Z + U)] =

∫ 1

0

∫ ∞

0

f(x+ u)e−γ dx du =

∫ 1

0

∫ ∞

0

f(t)e−γρ(t− u) dt du

=

∫ ∞

0

f(t)

∫ min{1,t}

0

e−γρ(t− u) du dt

=

∫ 1

0

f(t)

∫ t

0

e−γρ(t− u) du dt+

∫ ∞

1

f(t)

∫ 1

0

e−γρ(t− u) du dt

=

∫ 1

0

f(t)

∫ t

0

e−γρ(u) du dt+

∫ ∞

1

f(t)

∫ t

t−1

e−γρ(u) du dt

=

∫ ∞

0

tf(t)e−γρ(t) dt = E[Zf(Z)],

as required. To obtain the last line we have used the fact that ρ(t) = 1 for t ∈ [0, 1] in the first in-

tegral, and the fact that
∫ t

t−1
ρ(u) du = tρ(t) in the second integral. We note that f being bounded

allows the use of Fubini.

Taking f(ξ) = eitξ allows us to calculate the characteristic function of the Dickman distribu-
tion. Denoting D(x) as the cumulative distribution function of a random variable with Dickman
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distribution, we have

φ′
Z(t) =

d

dt
E[eitZ ] = E[iZeitZ ]

= iE[eit(Z+U)] = i

∫ ∞

0

eitx
∫ 1

0

eitu du dD(x)

= i

∫ ∞

0

eitx
( 1

it
(eit − 1)

)
dD(x) =

eit − 1

t
φZ(t).

Therefore, the logarithmic derivative of φZ(t) is (e
it − 1)/t, and so an explicit form for the charac-

teristic function is

φZ(t) = exp
(∫ t

0

eix − 1

x
dx

)
= exp

(∫ 1

0

eitx − 1

x
dx

)
. (11)

Analysing this characteristic function may lead one to another proof of the infinite divisibility of
the Dickman distribution! The above technique also gives an alternate method of computing the
Laplace transform of the Dickman distribution, as oppose to our method used to arrive at (10).

6 Closing Remark

It seems that the defining properties of the Dickman function (recall Definition 1.1) give rise to
distributions that have a kind of ‘self-similarity’ property, in that the differential equation defining
the Dickman function gives relations between the properties of these distributions. This kind of
self-similarity may, at least heuristically, be made explicit for each distribution in (5) and (8). It is
this property of the Dickman function that makes it unavoidable in probability.
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