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Abstract

We reproduce a proof of a fairly weak version of Baker’s theorem on
linear forms in the logarithms of algebraic numbers. We try to motivate the
argument by analogy with a proof that Euler’s number e is transcendental.

1 Introduction

In 1966, Baker proved a landmark result about linear forms in the logarithms
of algebraic numbers, which helped to earn him the Fields Medal in 1970. The
following is a somewhat weak version of that result:

Baker’s Theorem 1 (A. Baker, 1966). Let α1, ..., αn be non-zero algebraic num-
bers for which logα1, ..., logαn, 2πi are linearly independent over Q. Then

β1 logα1 + ...+ βn logαn 6= 0

for any algebraic numbers β1, ..., βn that are not all zero.

This is weak in that, firstly, the theorem remains true if we just suppose that
logα1, ..., logαn are linearly independent over Q, with no reference to 2πi. (Baker
asserted this in his original paper, and published a proof slightly later.) Moreover
one can say, not just that the linear combination is non-zero, but that it is bounded
away from zero in an effective way (as Baker did in his original paper). However,
the theorem as stated admits a slightly more transparent proof.

Baker’s theorem is ubiquitous in (transcendental) number theory, and has been
discussed in many places, but it seems to be a commonly held view that the proof
is rather mysterious and unintuitive. In this note we will attempt to dispel that
view. To that end, we recall the following broad outline of a proof that Euler’s
number e is transcendental:

• Argue by contradiction, supposing that

ane
n + an−1e

n−1 + ...+ a1e+ a0 = 0

for some n ∈ N and ai ∈ Z (with an 6= 0).
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• Because of the properties of the exponential function, there is a large class
of “nice” functions F (i) that approximate ei very well for i = 0, 1, ..., n.
(For example, one can choose F (i) =

∑m
k=0 f

(k)(i) for a suitable high degree
polynomial f , where m is a parameter. Note that F (i) satisfies F ′(i) ≈ F (i)
if f is chosen suitably.)

• For suitable choice of F , we can arrange that

anF (n)+an−1F (n−1)+...+a1F (1)+a0 ≈ ane
n+an−1e

n−1+...+a1e+a0 = 0

is a non-zero rational with fairly small denominator. But it is clearly im-
possible to approximate zero very well by a non-zero rational with small
denominator.

Note that the slightly complicated construction of an approximating function
F replaces e.g. the appeal to the series expansion of ex in the proof that e is
irrational.

At a very high level, the proof that e is transcendental may be described in
the following way: if e were algebraic, it would satisfy a “simple” polynomial
equation (i.e. one of bounded degree and bounded height of coefficients), and this
contradicts the analytic properties of the function ex, because rational numbers are
“fairly well spaced”. We stress here that the key work in the proof is in determining
functional properties of ex.

We will see that, at this rather high level of inspection, the proof of Baker’s
Theorem is precisely analogous to the proof that e is transcendental. Firstly we
suppose, for a contradiction, that

β1 logα1 + ...+ βn logαn = 0

for some algebraic numbers β1, ..., βn that are not all zero. In fact, without loss
of generality (after possibly relabelling the αi, and dividing through by a non-zero
βi) we may suppose that

β1 logα1 + ...+ βn−1 logαn−1 − logαn = 0.

We do not try to (directly) contradict this relation, which in particular is not
a polynomial relation. Instead, going slightly beyond what happens in the proof
that e is transcendental, we will indirectly construct a function φ(z) that vanishes,
together with several of its derivatives, at many integer points z. The putative
expression for logαn as a combination of logα1, ..., logαn−1 is input into this con-
struction, and implies that φ(z) vanishes rather more than might be expected.

Having done this, we analyse the functional properties of φ(z). The so-called
“extrapolation procedure” for doing this involves repeatedly playing off an analytic
result, obtained by complex variable methods, against the fact (roughly— see
§§3− 4) that φ(z) takes algebraic values at integer z and therefore either vanishes
at such z, or is effectively bounded away from zero there. The extrapolation
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method is, perhaps, the most novel ingredient of Baker’s proof, and he wrote
himself that it would “...probably be capable of considerable development for it
applies in principle to many other auxiliary functions...”.

Finally, the extrapolation procedure reveals that φ(z) must actually vanish at
an enormous number of integer points. Because of the construction of φ(z), this
implies a linear dependence over Q between logα1, ..., logαn and 2πi, which is a
contradiction.

We conclude this introduction by recalling that the special case of Baker’s
theorem where n = 2 was proved rather earlier, by Gelfond and by Schneider
independently in 1934. The author has not been able to view Schneider’s argument,
but it certainly seems fair to describe Baker’s method as being a generalisation of
Gelfond’s method. In his book [3], Gelfond describes his argument as using “...the
idea of analytic-arithmetic continuation.” The author believes that to be a fitting
description.

2 Construction of the auxiliary function φ(z)

We now launch into the construction of the auxiliary function φ(z), which we want
to vanish, along with many of its derivatives, at a number of integer points. Our
account from this point on is a hybrid of Baker’s original article [1], and Chapter
2 of his book [2] on this subject, with just a few changes to the exposition. We
have a parameter h ∈ R, which at the end of the proof will be taken to be large
in a way depending on the αi, the βi, and n.

Recall the hypothesis that we wish to contradict, namely that

β1 logα1 + ...+ βn−1 logαn−1 − logαn = 0

for some algebraic numbers β1, ..., βn−1. Exponentiating, this becomes

αβ1

1 ...α
βn−1

n−1 α
−1
n = 1,

but this is not much more helpful, because the purpose of proving the theorem is to
understand how algebraic powers of algebraic numbers behave. On the other hand,
we can say things about integer powers of algebraic numbers, which motivates the
following choice of auxiliary function:

φ(z) :=
L∑

λ1=0

...

L∑
λn=0

p(λ1, ..., λn)αλ1z
1 ...αλnzn , z ∈ C,

where L = [h2−1/(4n)], and the p(λ1, ..., λn) are integers not all of which are zero,
with absolute values at most eh

3
, such that

dm

dzm
φ(z) = 0 ∀ 0 ≤ m ≤ h2, z ∈ {1, 2, ..., h}.
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In a moment we will show that we can find such integers p(λ1, ..., λn), and the
reader should note that the fact that we can do so with L smaller than h2 by a
power of h, which exploits our (to be contradicted) hypothesis about the αi, is
crucial to the subsequent argument.

Actually it is not too hard to find such integers, just a little fiddly. Because of
our (to be contradicted) hypothesis, we can equivalently write

φ(z) :=
L∑

λ1=0

...
L∑

λn=0

p(λ1, ..., λn)e(λ1+λnβ1)z logα1+...+(λn−1+λnβn−1)z logαn−1 ,

and we will be done if we can choose the p(λ1, ..., λn) such that

L∑
λ1=0

...

L∑
λn=0

p(λ1, ..., λn)αλ1z
1 ...αλnzn (λ1 + λnβ1)

m1 ...(λn−1 + λnβn−1)
mn−1

vanishes for all 0 ≤ m1 + ... + mn−1 ≤ h2 and all z ∈ {1, 2, ..., h}. Now if d is an
upper bound for the degrees of the minimal polynomials of α1, ..., αn, β1, ..., βn−1,
and a1 is the leading coefficient in the minimal polynomial of α1, we have for
example that

(a1α1)
j =

d−1∑
s=0

a
(j)
1,sα

s
1 ∀ j ∈ N ∪ {0},

for certain integers a
(j)
1,s. So multiplying through by (a1...an)Lzbm1

1 ...b
mn−1

n−1 , where ai
is the leading coefficient in the minimal polynomial of αi, similarly for bi, we see
we would be done if

d−1∑
s1=0

...
d−1∑
sn=0

d−1∑
t1=0

...
d−1∑

tn−1=0

αs11 ...α
sn
n β

t1
1 ...β

tn−1

n−1

(
m1∑
µ1=0

...

mn−1∑
µn−1=0

L∑
λ1=0

...
L∑

λn=0

p(λ1, ..., λn)·

·(
n∏
i=1

aLz−λizi a
(λiz)
i,si

)(
n−1∏
j=1

(
mj

µj

)
(bjλj)

mj−µjλµjn b
(µj)
j,tj

)

)
vanished for all 0 ≤ m1 + ...+mn−1 ≤ h2 and all z ∈ {1, 2, ..., h}.

But this can be achieved just by choosing the p(λ1, ..., λn) to solve a system of
M ≤ (h2 + 1)n−1hd2n−1 integer linear equations, namely the equations that the in-
ner bracket should equal zero for each choice of m1, ...,mn−1, z, s1, ..., sn, t1, ..., tn−1.
If h is large enough, then we have (L+ 1)n ≥ h2n−1/4 ≥ 2M variables p(λ1, ..., λn),
so we can certainly find a non-trivial solution. Moreover, an easy induction shows
that |a(j)

i,s |, |b
(j)
i,t | ≤ Cj, where C depends on the αi and βi only; and therefore one

has

|
n∏
i=1

aLz−λizi a
(λiz)
i,si
| ≤ KLz ≤ KLh, |

n−1∏
j=1

(
mj

µj

)
(bjλj)

mj−µjλµjn b
(µj)
j,tj
| ≤ (KL)h

2

,

for a suitable constant K depending on the αi, the βi, and on n only. So the
estimates on the size of the p(λ1, ..., λn) can be obtained using the following famous
(but easily proved) result:
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Siegel’s Lemma 1 (C. Siegel, 1929, and others). If N > M > 0 are integers,
then the system of equations

N∑
j=1

ui,jxj = 0, 1 ≤ i ≤M

has a non-trivial solution in integers xj with absolute values at most

1 + (N max
i,j
|ui,j|)M/(N−M).

3 Easy estimates on φ(z)

Having constructed φ(z), we begin to analyse its properties as a function of the
complex variable z. In the first place, we have∣∣∣∣∣logm1 α1... logmn−1 αn−1

L∑
λ1=0

...

L∑
λn=0

p(λ1, ..., λn)αλ1z
1 ...αλnzn (λ1 + λnβ1)

m1 ...(λn−1 + λnβn−1)
mn−1

∣∣∣∣∣
≤ eh

3

(KL)h
2

KL|z|, 0 ≤ m1 + ...+mn−1 ≤ h2,

where K depends only on αi, βi, n, as before. It follows that, for 0 ≤ m ≤ h2 but
for all z ∈ C,

| d
m

dzm
φ(z)| ≤ Kh3+L|z|

for suitable (different) K depending on αi, βi, n only. Note the appearance of L,
which we arranged to be a power of h slightly smaller than h2, in this estimate.

Our other (fairly) easy estimate will encode, in a useful way, the fact that
dm

dzm
φ(z) takes (up to various multipliers involving the logαi) algebraic values when

z is an integer, and that algebraic numbers are fairly well spaced. Thus if 0 ≤
m1 + ...+mn−1 ≤ h2, and z ∈ N, then the number

X := (a1...an)Lzbm1
1 ...b

mn−1

n−1

L∑
λ1=0

...
L∑

λn=0

p(λ1, ..., λn)αλ1z
1 ...αλnzn (λ1+λnβ1)

m1 ...(λn−1+λnβn−1)
mn−1

is an algebraic integer with degree at most d2n−1 (by the Tower Law for field
extensions, and since algebraic integers form a ring). Now arguing in a Liouville-
esque way, either X = 0 or the norm of X is at least 1. But any conjugate of X
has absolute value at most Kh3+Lz, arguing exactly as above, so either X = 0 or
|X| ≥ K−d

2n−2(h3+Lz). This obviously implies that for 0 ≤ m ≤ h2, and any z ∈ N,
we have

dm

dzm
φ(z) =

∑
m1+...+mn−1=m

fm1,...,mn−1(z),

where we have

fm1,...,mn−1(z) = 0 or |fm1,...,mn−1(z)| ≥ K−h
3−Lz

for suitable (different) K depending on αi, βi, n only.
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4 The extrapolation argument

By construction, we know that φ(z) vanishes for z ∈ {1, 2, ..., h}. In this section
we will argue, using the information that we also have about the derivatives of φ,
and the bounds in §3, that actually φ(z) must vanish for z ∈ {1, 2, ..., (L + 1)n}
(or even for a larger set of z values). This will swiftly imply Baker’s Theorem.

We need one key lemma, which is squarely complex-analytic. Rather than
presenting a version that is highly tailored to our situation, it seems more revealing
to state and prove a somewhat general version.

Baker’s Lemma 1. Let f : C→ C be holomorphic, let ε > 0, and let A,B,C, T, U
be large real numbers. Suppose that C � T/(A logA) + UBAε, and that

1. | dm
dzm

f(z)| ≤ eT+U |z| ∀ 0 ≤ m ≤ C, z ∈ C;

2. dm

dzm
f(z) = 0 ∀ 0 ≤ m ≤ C, z ∈ {1, 2, ..., [A]}.

Then | dm
dzm

f(z)| ≤ e−2(T+Uz) for all 0 ≤ m ≤ C/2 and all z ∈ {1, 2, ..., [AB]}.

We will prove this using the elegant argument from Baker’s book [2], which
exploits the maximum-modulus principle. However, we caution that this makes it
appear that the exact vanishing of the derivatives in condition (2) is essential, and
in fact that is not the case. (Indeed, the argument in Baker’s paper [1], proving a
quantitative version of his theorem, does not assume such vanishing.)

Fix any 0 ≤ m ≤ C/2, and let g(z) = dm

dzm
f(z), so we are aiming to show that

|g(z)| ≤ e−2(T+Uz) for z ∈ {1, 2, ..., [AB]}. Because of assumption (2), we see that

g(z)

(z − 1)[C/2](z − 2)[C/2]...(z − [A])[C/2]

is a holomorphic function. Thus, by the maximum modulus principle applied on
a circle about the origin with radius A1+εB, for z ∈ {1, 2, ..., [AB]} we have

|g(z)| ≤ max
|w|=A1+εB

(
|g(w)| |z − 1|[C/2]...|z − [A]|[C/2]

|w − 1|[C/2]...|w − [A]|[C/2]

)
≤ e−(ε/2) logA[A][C/2] max

|w|=A1+εB
|g(w)|.

Using the assumption (1), and that AC � (T/ logA)+UA1+εB, the result follows.

Q.E.D.

This lemma is applied to the functions fm1,...,mn−1 appearing at the end of §3,
where the hypotheses are satisfied with T = h3 logK, U = L logK, B = h1/8n, etc.
(The reader should note that the various estimates we derived for φ in previous
sections were actually derived separately for each function fm1,...,mn−1). Because of
the dichotomy established at the end of §3, the conclusion of the lemma is untenable
unless the derivatives of fm1,...,mn−1 vanish for z on the wide range supplied. Thus,
iteratively applying the lemma O(n2) times, the claim that

φ(z) = 0 ∀ z ∈ {1, 2, ..., (L+ 1)n}

follows.
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5 Conclusion of the proof

Recall that we had

φ(z) =
L∑

λ1=0

...
L∑

λn=0

p(λ1, ..., λn)αλ1z
1 ...αλnzn , z ∈ C,

and we now know that φ(1) = φ(2) = ... = φ((L + 1)n) = 0. This means that the
vector of numbers p(λ1, ..., λn) is a non-trivial element of the kernel of a certain
(L+ 1)n × (L+ 1)n matrix, which must therefore have determinant zero.

But this matrix is clearly a Vandermonde matrix, so the vanishing of its deter-
minant implies that

αλ1
1 ...α

λn
n = α

λ′1
1 ...α

λ′n
n

for some distinct tuples of integers (λ1, ..., λn) and (λ′1, ..., λ
′
n). This contradicts

the assumption that logα1, ..., logαn, 2πi are linearly independent over Q.

Q.E.D.

Again, it is perhaps worth pointing out that there are other ways to end this
proof that are more “robust” than relying on the appearance of a Vandermonde
determinant. In contrast, the extrapolation argument set out in §4 is fundamental
to Baker’s approach.
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