
QUASILINEAR SPDES VIA ROUGH PATHS

FELIX OTTO AND HENDRIK WEBER

Abstract. We are interested in (uniformly) parabolic PDEs with
a nonlinear dependance of the leading-order coefficients, driven by
a rough right hand side. For simplicity, we consider a space-time
periodic setting with a single spatial variable:

∂2u− P (a(u)∂21u− σ(u)f) = 0

where P is the projection on mean-zero functions, and f is a dis-
tribution and only controlled in the low regularity norm of Cα−2

for α > 2
3 on the parabolic Hölder scale. The example we have in

mind is a random forcing f and our assumptions allow, for exam-
ple, for an f which is white in the time variable x2 and only mildly
coloured in the space variable x1; any spatial covariance operator
(1 + |∂1|)−λ1 with λ1 >

1
3 is admissible.

On the deterministic side we obtain a Cα-estimate for u, as-
suming that we control products of the form v∂21v and vf with
v solving the constant-coefficient equation ∂2v − a0∂21v = f . As
a consequence, we obtain existence, uniqueness and stability with
respect to (f, vf, v∂21v) of small space-time periodic solutions for
small data. We then demonstrate how the required products can
be bounded in the case of a random forcing f using stochastic
arguments.

For this we extend the treatment of the singular product σ(u)f
via a space-time version of Gubinelli’s notion of controlled rough
paths to the product a(u)∂21u, which has the same degree of singu-
larity but is more nonlinear since the solution u appears in both fac-
tors. The PDE ingredient mimics the (kernel-free) Krylov-Safanov
approach to ordinary Schauder theory.

1. Introduction

We are interested in the parabolic PDE

(1) ∂2u− P (a(u)∂2
1u− σ(u)f) = 0

for a rough driver f . The coefficients a, σ are assumed to be regular
and uniformly elliptic, see (20) below for precise assumptions, and P
is the projection on mean-zero functions. For the right hand side f we
only assume control on the low regularity norm of Cα−2 in the para-
bolic Hölder scale for α ∈ (2

3
, 1) (see (19) for a precise statement). The

optimal control on u one could aim to obtain under these assumption
is in the Cα norm but in this regularity class there is no classical func-
tional analytic definition of the singular products a(u)∂2

1u and σ(u)f .
In this article we assume that we have an “off-line” interpretation for
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several products such as v∂2
2v, vf (see (111)), where v solves the con-

stant coefficient equation ∂2v− a0∂
2
1v = f and show that these bounds

allow to control u. We are ultimately interested in a stochastic forcing
f and in this case the required control of products can be obtained
using explicit moment calculations to capture stochastic cancelations.

Our method is similar in spirit to Lyons’ rough path theory [14, 13, 15].
This theory is based on the observation that the analysis of stochastic
integrals ∫ t

0

u(s)dv(s)(2)

for irregular v, such as Brownian motion or even lower regularity sto-
chastic processes, can be conducted efficiently by splitting it into a
stochastic and a deterministic step. In the stochastic step the integral
(2) is defined for a single well-chosen function ū, e.g. v itself. In the
case where v = ū is a (multidimensional) Brownian motion there is a
one-parameter family of canonical definitions for these integrals, with
the Itô and the Stratonovich notions being the most prominent ones.
Information on this single integral suffices to give a subordinate sense
to integrals for a whole class of functions u with similar small-scale
behaviour. This line of thought is expressed precisely in Gubinelli’s
notion of a controlled path [4, Definition 1]. There, a function u in the
usual Hölder space Cα, α ∈ (1

3
, 1

2
), is said to be controlled by ū ∈ Cα

if there exists a third function σ ∈ Cα such that for all s, t ∈ R
(3) |u(t)− u(s)− σ(s)(ū(t)− ū(s))| . |t− s|2α.
Loosely speaking, this means that the increments u(t) − u(s) of the
function u can be approximated by those of ū , provided the latter are
locally modulated by the amplitudes σ. In [4, Theorem 1] it is then
shown that this assumption, together with a bound of the form∣∣∣ ∫ t

s

ū(r)dv(r)− ū(s)(v(t)− v(s))
∣∣∣ . |t− s|2α,(4)

suffices to define the integral
∫
u(r)dv(r) and to obtain the bound∣∣∣ ∫ t

s

u(r)dv(r)− u(s)(v(t)− v(s))− σ(s)

∫ t

s

(ū(r)− ū(s))dv(r)
∣∣∣

. |t− s|3α.(5)

The construction of the integrals (4) for the specific function ū can be
accomplished under a less restrictive set of assumptions than required
for the classical Itô theory. In many applications this construction can
be carried out using Gaussian calculus without making reference to an
underlying martingale structure. The construction makes very little
use of the linear order of time and lends itself well to extensions to
higher dimensional index sets.
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This last point was the starting point for Hairer’s work on singular
stochastic PDE – the observation that the variable t in the rough path
theory could represent “space” rather than “time” was the key insight
that allowed to define stochastic PDEs with non-linearities of Burg-
ers type [6] and the KPZ equation [7]. The notion of controlled path
was also the starting point for his definition of regularity structures [8]
which permits to treat semilinear stochastic PDE with an extremely
irregular right hand side, possibly involving a renormalisation proce-
dure. Parallel to that, Gubinelli, Imkeller and Perkowski put forward
a notion of paracontrolled rough paths [5], a Fourier-analytic variant
of (3) which has also been used to treat singular stochastic PDE.

In this article we propose yet another higher-dimensional generalisa-
tion of the notion of controlled path, see Definition 1 below, and use it
to provide a solution and stability theory for (1). This definition is an
immediate generalisation of Gubinelli’s definition (3) and also closely
related to Hairer’s notion [8, Definition 3.1] of a modelled distribution
in a certain regularity structure. However, the definition comes with a
twist because the quasilinear nature of (1) forces us to allow the reali-
sation of the model, v(·, a0) in our notation, to depend on a parameter
a0, which ultimately corresponds to the variable diffusion coefficient
a(u). In our theory the “off-line products” vf and v∂2

1v play the role
of the “off-line integral”

∫
ūdv above and the regularity assumption (4)

is translated into a control on the commutators

[v, (·)T ]�{∂2
1v, f} := v({∂2

1v, f})T − (v �{∂2
1v, f})T ,

where (·)T denotes the convolution with a smooth kernel at scale T (see
(17) and the discussion that follows it) and where we use the notation
� to indicate that products are not classically defined and that their
interpretations have to be specified. Furthermore, here and below we
use the abbreviated notation [v, (·)T ] � {∂2

1v, f} when we speak about
[v, (·)T ] � ∂2

1v and [v, (·)T ] � f simultaneously. Based on these assump-
tions we derive bounds in the spirit of (5) on the singular products
a(u) � ∂2

1u and σ(u) � f (see Lemma 2 and 4) which can also be seen
as a (simpler) variant of Hairer’s Reconstruction Theorem [8, Theorem
3.10]. We want to point out that our method completely avoids the
use of wavelet analysis which features prominently in Hairer’s proof
of the Reconstruction Theorem. On the PDE side, in Lemma 5, we
obtain an optimal regularity result on solution u of (1) based on a
control of the commutators [a, (·)T ] � ∂2

1u and [σ, (·)T ] � f . This result
is similar in spirit to Hairer’s Integration Theorem [8, Theorem 5.12].
Our proof mimics the Krylov-Safanov approach to Schauder theory [12]
and therefore does not make reference to a parabolic heat kernel. The
main deterministic results, Proposition 1 and Theorem 2 combine these
ingredients to obtain existence and uniqueness results for the linear ver-
sion of (1) (i.e. a and σ do not depend on u, Proposition 1) and for
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(1) under a small data assumption (Theorem 2). We want to point out
that the deterministic analysis does not depend on the assumption of
a 1+1 dimensional space and would go through completely unchanged
if ∂2 − a(u)∂1 were replaced by a uniformly parabolic operator over
Rn × R.

On the stochastic side, we consider a class of stationary Gaussian dis-
tributions f of class Cα−2. This class includes, for example, the case
where f is “white” in the time-like variable x2 and has covariance op-
erator (1 + |∂1|)−λ1 for λ1 >

1
3

in the x1 variable, or the case where
the noise is constant in the time-like variable x2 and has covariance
operator (1 + |∂1|)−λ1 for λ1 > −5

3
for the x1 variable (see the end of

Section 3 for a more detailed discussion of admissible f). For such f we
construct the generalized products v �∂2

1v and v �f as limits of renor-
malized smooth approximations: More precisely, let ψ′ be an arbitrary
Schwartz function with

∫
ψ′ = 1 and set ψε(x1, x2) = 1

ε
3
4
ψ1( x1

ε
1
4
, x2

ε
1
2

).

Then we set fε = f ∗ ψ′ε, let vε solve ∂2vε − a0∂
2
1vε = fε and construct

v �f and v �∂2
1v as

v(·, a0)�f := lim
ε→0

(
vε(·, a0)fε −

〈
vε(·, a0)fε

〉)
,

v(·, a0)�∂2
1v(·, a′0) := lim

ε→0

(
vε(·, a0)∂2

1vε(·, a′0)

−
〈
vε(·, a0)∂2

1vε(·, a′0)
〉)
,(6)

see Proposition 2 below. In many of the examples we consider, the
expectations of the regularized products c(1)(ε, a0) = 〈vε(·, a0)fε

〉
and

c(2)(ε, a0, a
′
0) = 〈vε(·, a0)∂2

1vε(·, a′0)〉 diverge as ε goes to zero (the precise
form of these constants is given in Lemma 7). The renormalization
procedure can be avoided if f satisfies the additional stronger regularity
assumption (144) which holds, for example, if f is “white” in x1 and
“trace-class” in x2.

Finally, the construction of these renormalized products and the deter-
ministic well-posedness theory can be combined to the following main
theorem:

Theorem 1. Let the coefficients a, σ satisfy the regularity assumptions
(20).
Let f be a centered, one-periodic, stationary Gaussian random distri-
bution satisfying the regularity assumption (129) and let fε = f ∗ψ′ε be
as described above. Denote by v(·, a0) (resp. vε(·, a0)) the one-periodic
mean-free solutions of (∂2 − a0∂

2
1)v = Pf (resp. (∂2 − a0∂

2
1)vε = Pfε).
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(i) The renormalized commutators [v, (·)T ]�f and [v, (·)T ]�∂2
1v defined

via the limits (6) exist and satisfy the bounds〈(
sup
T≤1

(T
1
4 )2−α′‖fT‖

)p〉 1
p
. 1,(7) 〈(

sup
T≤1

sup
a0∈[λ,1]

(T
1
4 )2−2α′‖[v(·, a0), (·)T ]�f‖

)p〉 1
p
. 1,(8)

〈(
sup
T≤1

sup
a0∈[λ,1]

sup
a′0∈[λ,1]

(T
1
4 )2−2α′‖[v(·, a0), (·)T ]�∂2

1v(·, a′0)‖
)p〉 1

p
. 1,(9)

as well as analogous bounds if v is replaced by its derivatives with respect
to a0, a

′
0. The convergences of the renormalized products take place

almost surely and in every stochastic Lp space with respect to the norm
supλ<a0≤1 supλ<a′0≤1 ‖ · ‖Cα−2. Here ‖f‖ = supx∈R2 |f(x)| denotes the

supremum norm and a norm for Cα−2 is defined in (19) below.

(ii) There exists a random constant η > 0 satisfying

〈η−p〉
1
p . 1(10)

for all p <∞, such that ηf as well as the commutators η2[v(·, a0), (·)T ]�
{f, ∂2

1v} derived from ηf satisfy the smallness Assumptions (110) and
(111). Therefore, there exists a unique mean-free function u with the
properties

u is modelled after v according to a(u) and σ(u)

in the sense of Definition 1,(11)

∂2u− P (a(u)�∂2
1u+ σ(u)�ηf) = 0 distributionally,(12)

under the smallness condition

[u]α � 1.(13)

(iii) Let η > 0 be as in part (ii). The regularised noise terms ηfε as
well as the corresponding renormalized commutators

η2[vε(·, a0), (·)T ]fε(·, a′0)− η2c(1)(ε, a0)

η2[vε(·, a0), (·)T ]∂2
1vε(·, a′0)− η2c(2)(ε, a0, a

′
0)

almost surely satisfy the smallness assumptions (110) and (111) uni-
formly in ε. Denote by uε the unique solutions of (11) – (114) with
ηf replaced by ηfε. Then these uε converge to u almost surely with
respect to the Cα norm. Furthermore, uε is a classical solution to the
renormalized PDE

∂2uε − P (a(u)∂2
1uε − a′(uε)σ(uε)

2c(2)(·, a(uε), a(uε))

+σ(uε)fε − σ′(uε)σ(uε)c
(1)(·, a(uε))) = 0.(14)
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(iv) If f satisfies the additional assumption (144), then the above state-
ments hold true without renormalization, i.e. setting c(1) = c(2) = 0.

Proof of Theorem 1.
The bound (7) is proved as (130) in Lemma 6, and the bounds (8) and
(9) as well as the convergence almost surely and in every stochastic Lp

space are proved in Proposition 2. For (ii) we set

η−1 � sup
a0,a′0∈[λ,1]

sup
ε∈[0,1]

sup
T≤1

(T
1
4 )2−2α

‖{1, ∂

∂a′0
,
∂2

∂a′0
2}{1,

∂

∂a0

,
∂2

∂a2
0

}[vε, (·)T ]�
{
fε, ∂

2
1vε
}
‖,

then ηfε, η
2[vε, (·)T ]fε etc. satisfy the smallness condition (110) and

(111) uniformly in ε. The bound (10) is a consequence of Proposition 2
and the conclusion of (ii) is contained in part (i) of Theorem 2. For part
(iii), we have already seen that ηfε , η2[vε, (·)T ]fε etc. satisfy the small-
ness assumptions (110) and (111) uniformly in ε, and the convergence
of the uε to u follows from a combination of Lemma 6, Proposition 2
and Theorem 2 (ii). The form of (14) follows from Corollary 3. Fi-
nally, part (iv) follows in the same way only replacing Proposition 2 by
Corollary 5.

We finally mention that one week before posting this second version
of our result, the article [2] was posted on the arXiv. In this article
Furlan and Gubinelli study the equation

∂tu− a(u)∆u = ξ,

where u = u(t, x) for x taking values in the two-dimensional torus,
and ξ = ξ(x) is a white noise over the two-dimensional torus, which is
constant in the time variable t. This noise term ξ is of class C−1− and
therefore essentially behaves like our term f . They also define a notion
of solution and prove short time existence and uniqueness of solutions
for the initial value problem, as well as convergence for renormalized
approximations similar to (14). Similar to the approach we present
here, they locally approximate the solutions u by a family of solutions to
constant coefficient problems. Their approach then deviates from ours
and they implement their theory in the framework of paracontrolled
distributions.

2. Deterministic analysis

2.1. Setup. Metric. The parabolic operator ∂2 − a0∂
2
1 and its map-

ping properties on the scale of Hölder spaces (i.e. Schauder theory)
imposes its intrinsic (Carnot-Carathéodory) metric, which is given by

d(x, y) = |x1 − y1|+
√
|x2 − y2|,(15)
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see for instance [12, Section 8.5]. The Hölder semi norm [·]α is defined
based on (15):

[u]α := sup
x 6=y

|u(x)− u(y)|
dα(x, y)

.(16)

Convolution. In order to define negative norms of distributions in
the intrinsic way, it is convenient to have a family {(·)T}T>0 of mol-
lification operators (·)T consistent with the relative scaling (x1, x2) =
(`x̂1, `

2x̂2) of the two variables dictated by (15). It will turn out to be
extremely convenient to have in addition the semi-group property

(·)T (·)t = (·)T+t.(17)

All is achieved by convolution with the semi-group exp(−T (∂4
1 − ∂2

2))
of the elliptic operator ∂4

1 − ∂2
2 , which is the simplest positive operator

displaying the same relative scaling between the variables as ∂2 − ∂2
1

and being symmetric in x2 next to x1. We note that the corresponding
convolution kernel ψT is easily characterized by its Fourier transform
ψ̂T (k) = exp(−T (k4

1 +k2
2)); since the latter is a Schwartz function, also

ψT is a Schwartz function. The only two (minor) inconveniences are

that 1) the x1-scale is played by T
1
4 (in line with (15) the x2-scale is

played by T
1
2 ) since we have ψT (x1, x2) = 1

T
3
4
ψ1( x1

T
1
4
, x2

T
1
2

) and that 2) ψ1

(and thus ψT ) does not have a sign. The only properties of the kernel
we need are moments of derivatives:∫

dy|∂k1ψT (x− y)|dα(x, y) . (T
1
4 )−k+α and∫

dy|∂k2ψT (x− y)|dα(x, y) . (T
1
4 )−2k+α

(18)

for all orders of derivative k = 0, 1, · · · and moment exponents α ≥ 0,
as well as the fact that

∫
ψ(x)x1dx = 0. Estimates (18) follow imme-

diately from the scaling and the fact that ψ1 is a Schwartz function.
In Lemma 11 we show however, that our main regularity assumption
(19) on f as well as the bounds on the commutators do not depend on
the specific choice of Schwartz kernel ψ. In particular, the statements
ultimately do not depend on the semi-group property although this
property plays an important part in the proofs.

Finite domain. We mimic a finite domain by imposing periodicity in
both directions; w.l.o.g. we may set this scale equal to one. We will
typically measure the size of the distribution f by the expression

(19) sup
T≤1

(T
1
4 )2−α‖fT‖,

where the restriction T ≤ 1 reflects the period unity. With Lemma
9, cf Step 1, we have that this expression agrees with the standard
definition of the norm of Cα−2.
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Standing assumptions on the nonlinearities. There exists a
constant λ > 0 such that

a ∈ [λ, 1
λ
], ‖a′‖, ‖a′′‖, ‖a′′′‖ ≤ 1

λ
,

σ ∈ [−1, 1], ‖σ′‖, ‖σ′′‖, ‖σ′′′‖ ≤ 1
λ
.

(20)

We express the bound on the various norms of a and σ by the ellipticity
contrast λ in order to have a single constant that measures the quality
of the data. Note that the assumption σ ∈ [−1, 1] is only seemingly
stronger than ‖σ‖ . 1

λ
since that constant can always be absorbed into

the rhs f in the equation. These fairly high regularity assumptions
intervene in the proof of Lemma 1, they could be slightly weakened in
the sense of [4, Proposition 4], at the expense of a more complicated
notation. Here and in the entire deterministic section . means ≤ C
with a constant C only depending on λ and the exponent α.

2.2. Definitions and results. The following central definition is a
straightforward generalization of Gubinelli’s definition [4, Definition 1]
of a “controlled path”, a generalization from the time variable x2 to
multiple variables x, and to a “model” (v1, · · · , vI) (in the language of
Hairer [8]) that here may depend on an additional parameter a0. It
states that the increments u(y) − u(x) of the function u can be ap-
proximated by those of several functions vi, if the latter are locally
modulated by the amplitudes σi and the functions ai that locally de-
termine the value of the parameter a0. The functions σi can therefore
be interpreted as “derivatives” of u wrt vi. The increments of the linear
function x1 also have to be included because of α > 1

2
. In fact, since

2α > 1, given the model (v1, · · · , vI) (as modulated by the functions
ai), the “derivatives” (σ1, · · · , σI) and ν determine u up to a constant.
In our situation, we expect u and (v1, · · · , vI) to be Hölder continuous
with exponent not (much) larger than α, so that imposing closeness of
the increments to order 2α contains valuable additional information.

Definition 1. Let 1
2
< α < 1 and I ∈ N. We say that a function u

is modelled after the functions (v1, · · · , vI) of (x, a0) according to the
functions (a1, · · · , aI) and (σ1, · · · , σI) provided there exists a function
ν (which because of 2α > 1 is easily seen to be unique) such that

M := sup
x 6=y

1

d2α(y, x)

|u(y)− u(x)− σi(x)(vi(y, ai(x))− vi(x, ai(x)))− ν(x)(y − x)1|(21)

is finite. Here and in the sequel we use Einstein’s convention of sum-
mation over repeated indices.

Note that imposing (21) also for distant points x and y is consistent
with periodicity despite the non-periodic term (y− x)1 since by α ≥ 1

2

the latter is dominated by d2α(x, y) for d(x, y) ≥ 1. Note also that
(21) is reminiscent of a Hölder norm: In case of (σ1, · · · , σI) = 0,
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the finiteness of (21) implies that u is continuously differentiable in x1

and that ν(x) = ∂1u(x) so that M turns into the parabolic C2α-norm
of u. In this spirit, Step 1 in the proof of Lemma 2 shows that the
modelledness constant M in (21) controls the (2α − 1)-Hölder norm
of ν, provided x 7→ σi(x)vi(·, ai(x)) is α-Hölder continuous with values
in Cα. In addition, in the presence of periodicity, M also controls the
α-Hölder norm of u and the supremum norm of ν, which are of lower
order, cf Step 2 in the proof of Lemma 2.

The following lemma shows that the notion of modelledness in Defi-
nition 1 is well-behaved under sufficiently smooth nonlinear pointwise
transformation; it will be used in the proof of Theorem 2. It is essen-
tially identical to [4, Proposition 4], which in turn is a consequence of
Taylor’s formula; because of the minor modifications due to the pres-
ence of a more general model, we reproduce the proof.

Lemma 1. i) Suppose that u is modelled after v according to a and
σ with constant M . Let the function b be twice differentiable. Then
b(u) is modelled after v according to a and µ := b′(u)σ with constant
M̃ estimated by

M̃ + [b(u)]α ≤ (‖b′‖+ ‖b′′‖[u]α)(M + [u]α),(22)

[µ]α + ‖µ‖ ≤ (‖b′‖+ ‖b′′‖[u]α)([σ]α + ‖σ‖).(23)

ii) Suppose that for i = 0, 1, ui is modelled after vi according to ai and
σi with constant Mi. Suppose further that u1 − u0 is modelled after
(v1, v0) according to (a1, a0) and (σ1,−σ0) with constant δM . Let the
function b be three times differentiable. Then b(u1) − b(u0) is mod-
elled after (v1, v0) according to (a1, a0) and (µ1 := b′(u1)σ1,−µ0 :=
−b′(u0)σ0) with constant δM̃ estimated by

δM̃ + [b(u1)− b(u0)]α + ‖b(u1)− b(u0)‖
≤ (‖b′‖+ ‖b′′‖(max

i
Mi + max

i
[ui]α) + ‖b′′′‖(max

i
[ui])

2)

× (δM + [u1 − u0]α + ‖u1 − u0‖),(24)

[µ1 − µ0]α + ‖µ1 − µ0‖
≤ (‖b′‖+ ‖b′′‖max

i
[ui]α)([σ1 − σ0]α + ‖σ1 − σ0‖)

+ (‖b′′‖+ ‖b′′′‖max
i

[ui]α) max
i

([σi]α + ‖σi‖)

× ([u1 − u0]α + ‖u1 − u0‖).(25)

As discussed in the introduction, the main challenge in solving sto-
chastic ordinary differential equations is to give a sense to integrals of
the form (2). In the spirit of Hairer [8] we interpret this problem as
giving a meaning to the product u∂tv, which does not have a canonical
functional analytic definition because both u and v are only Hölder
continuous in the time variable t of exponent less than 1

2
, because they
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behave like Brownian motion. In view of the parabolic scaling, we en-
counter the same difficulty when giving a distributional sense to b�∂2

1u
when b and u are only Hölder continuous of exponent α < 1 (from now
we use the non-standard notation b � ∂2

1u instead of b ∂2
1u to indicate

that the definition of this product is non-standard).

As discussed in the introduction a main insight of Lyons’ theory of
rough paths, was the observation that such products can be defined
provided u is controlled by ū and the off-line product ū∂tv satisfies
the bound (4), which can be rewritten as

∫ t
s
(ū(r) − ū(s)) � ∂rv(r)

= ū(s)
∫ t
s
∂rv(r)−

∫ t
s
ū�∂rv =: −([ū,

∫ t
]�f)(s), that is, the expression

on both sides of (4) amount to a commutator [ū,
∫ t

] of multiplication
with ū and integration, applied to a distribution ∂rv. In our multi-
dimensional framework, we replace integration 1

t−s

∫ t
s

by (smooth) av-
eraging:

[v, (·)T ]�f := vfT − (v �f)T .(26)

In our set up, the role of the crucial “algebraic relationship” [4, (24)]
from rough path theory is played by the following straightforward con-
sequence of the semi-group property (17)

[v, (·)t+T ]�f − ([v, (·)T ]�f)t = [v, (·)t]fT ,(27)

cf (263) in the proof of Lemma 2. Note that it is (only the control of)
[v, (·)T ]�f that relates the distribution v �f to the function v and the
distribution f .

For our quasilinear SPDE, we need to give a sense to the two singular
products σ(u) � f and a(u) � ∂2

1u, so in particular to products of the
form u � f and b � ∂2

1u, where u and b behave like the solution v of
(∂2 − a0∂

2
1)v = f . Hence we will need the two off-line products v � f

and v�∂2
1v. For simplicity, we split the argument into Lemma 3 dealing

with the first and Lemma 4 with the second factor in the singular
products. We will use Lemma 3, or rather Corollary 1, in order to pass
from the definition of v � f and v � ∂2

1v to the definition of u � f and
b�∂2

1v, respectively (since the distribution ∂2
1v plays a role very similar

to f , the lemma and the corollary are formulated in the notation of the
former case). We will then use Lemma 4 to pass from b�∂2

1v to b�∂2
1u.

Lemmas 2, 3, and 4, reveal a clear hierarchy of norms and measures of
size:

• Functions u are measured in terms of the Hölder semi-norm
[u]α (the supremum norm ‖σ‖ of a function σ only intervenes
in scaling-wise suboptimal estimates like (60) that rely on the
periodicity or the constraint T ≤ 1 providing a large-scale cut-
off, otherwise just as part of the product ‖σ‖[a]α with the Hölder
norm of a),
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• distributions are measured in the Cα−2-norm supT≤1 (T
1
4 )2−α

‖fT‖, see Step 1 in the proof of Lemma 9 for this equivalence
of norms,
• commutators [u, (·)T ] � f are measured on level 2α − 2 < 0 via

supT≤1 (T
1
4 )2−2α ‖[u, (·)T ]�f‖, and

• differences [u, (·)T ]�f−[v, (·)T ]�f of commutators, like in case of
the rough path expression (5) divided by (t−s), are measured on

level 3α− 2 > 0 via supT≤1 (T
1
4 )2−3α ‖[u, (·)T ]�f −[v, (·)T ]�f‖,

see (32) of Lemma 2.

Equipped with this dictionary, Lemmas 3 and 4 can be seen to be very
close to [4, Theorem 1]; in particular, (32) in Lemma 2 is very close to
(28) in [4, Corollary 3]. The major difference is the multi-dimensional
extension through (26). A minor difference coming from the parabolic
nature is the appearance of the commutator [x1, (·)T ]f , which however
is regular, cf Lemma 10. A further minor difference arises from the a0-
dependence of the model v and the related appearance of the function
a, which necessitates control of ∂

∂a0
-derivatives of the functions and

the commutators and manifests itself via the evaluation operator E.
However, this minor difference can be embedded into the more general
form of the upcoming Lemma 2.

Lemma 2. Let 2
3
< α < 1. Suppose we have a family of functions

{v(·, x)}x of class Cα, parameterized by points x, a distribution f , and
a family of distributions {v(·, x)�f}x, both of class Cα−2, satisfying

[v(·, x)− v(·, x′)]α ≤ Ndα(x, x′),(28)

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N1,(29)

sup
T≤1

(T
1
4 )2−2α‖[v(·, x), (·)T ]�f

−[v(·, x′), (·)T ]�f‖ ≤ NN1d
α(x, x′)(30)

for all pairs of points x, x′ for some constants N,N1. Suppose we are
given a function u such that

|(u(y)− u(x))− (v(y, x)− v(x, x))

− ν(x)(y − x)1| ≤Md2α(y, x)(31)

for all pairs of points y, x for some constant M and some function ν.
Then there exists a unique distribution u�f such that

sup
T≤1

(T
1
4 )2−3α‖[u, (·)T ]�f

− E[v, (·)T ]�f − ν[x1, (·)T ]f‖ . (M +N)N1,(32)

where E stands for the evaluation of the continuous function (x, y) 7→
([v(·, x), (·)T ]�f)(y) at y = x.
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If moreover all functions and distributions are 1-periodic and we use
the constant N to also estimate the lower-order expressions

[v(·, x)]α ≤ N,(33)

sup
T≤1

(T
1
4 )2−2α‖[v(·, x), (·)T ]�f‖ ≤ NN1,(34)

for all points x then also

sup
T≤1

(T
1
4 )2−2α‖[u, (·)T ]�f‖ ≤ (M +N)N1.(35)

Equipped with Lemma 2, the upcoming Lemma 3 is more of a corollary
that specifies the form of the model. The general form of Lemma 2 is
in particular convenient for part ii) of Lemma 3, where the Lipschitz
continuity of the product σ�f in terms of the off-line product v�f and
the modulating property (both constant and modulating functions) is
established.

Lemma 3. Let 2
3
< α < 1. Suppose we are given a distribution f with

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N1(36)

for some constant N1.
i) We consider a family of functions {v(·, a0)}a0 and a family of distri-
butions {v(·, a0)�f}a0 satisfying

sup
a0

[{1, ∂

∂a0

}v]α ≤ N0,(37)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}[v, (·)T ]�f‖ ≤ N1N0(38)

for some constant N0. We are given a function u modelled after v
according to the α-Hölder functions a and σ with constant M and ν as
in (21). Then there exists a unique distribution u�f such that

lim
T↓0
‖[u, (·)T ]�f − σE[v, (·)T ]�f − ν[x1, (·)T ]f‖ = 0,(39)

where E evaluates a function of (x, a0) at (x, a(x)). Furthermore, in
case of

[σ]α ≤ 1, [a]α ≤ 1 and ‖σ‖ ≤ 1(40)

and when all functions are 1-periodic we have the sub-optimal estimate

sup
T≤1

(T
1
4 )2−2α‖[u, (·)T ]�f‖ . N1(M +N0).(41)
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ii) We consider two families of functions {vi(·, a0)}a0, i = 0, 1, and two
families of distributions {vi(·, a0)�f}a0 satisfying

sup
a0

[{1, ∂

∂a0

,
∂2

∂a2
0

}vi(·, a0)]α ≤ N0,(42)

sup
a0

[{1, ∂

∂a0

}(v1 − v0)(·, a0)]α ≤ δN0,(43)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

,
∂2

∂a2
0

}[vi, (·)T ]�f‖ ≤ N1N0,(44)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}([v1, (·)T ]�f − [v0, (·)T ]�f)‖ ≤ N1δN0

(45)

for some constants N0 and δN0. Suppose the function δu is modelled
after (v1, v0) according to the α-Hölder functions (a1, a0) and (σ1,−σ0)
with δM and δν in analogy to (21). Then there exists a unique distri-
bution δu�f such that

lim
T↓0
‖[δu, (·)T ]�f

− (σ1E1[v1, (·)T ]�f − σ0E0[v0, (·)T ]�f)− δν[x1, (·)T ]f‖ = 0,(46)

where Ei denotes the operator that evaluates a function of (x, a0) at
a0 = ai(x). Furthermore, in case of (40) and when all functions are
1-periodic we have the sub-optimal estimate

sup
T≤1

(T
1
4 )2−2α‖[δu, (·)T ]�f‖ . N1

(
δM

+N0([σ1 − σ0]α + ‖σ1 − σ0‖+ [a1 − a0]α + ‖a1 − a0‖) + δN0

)
.(47)

For the use in the proof of Theorem 2 it is very convenient to bring
Lemma 3 into the form of Corollary 1. The difference between part
i) and part iii) of the corollary on the one hand and part i) and part
ii), respectively, of the lemma on the other hand is that the corollary
allows for a distribution f that depends on an additional parameter a′0
and establishes estimates on the a′0-derivatives. Part ii) of the corollary
extends part i) of the lemma to two distributions f1 and f0.

Corollary 1. i) Let {v(·, a0)}a0 be a family of functions and let

{f(·, a′0)}a′0 , {v(·, a0)�f(·, a′0)}a0,a′0

be two families of distributions satisfying (37) and

sup
T≤1

(T
1
4 )2−α sup

a′0

‖{1, ∂

∂a′0
,
∂2

∂a′20
}fT‖ ≤ N1,(48)

sup
T≤1

(T
1
4 )2−2α sup

a0,a′0

‖{1, ∂

∂a0

}{1, ∂

∂a′0
,
∂2

∂a′20
}[v, (·)T ]�f‖ ≤ N1N0(49)
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for some constant N1. If u is modelled after v according to a and σ,
satisfying (40), with constant M we have

sup
T≤1

(T
1
4 )2−2α sup

a′0

‖{1, ∂

∂a′0
,
∂2

∂a′20
}[u, (·)T ]�f‖ . N1(M +N0).(50)

ii) Let {v(·, a0)}a0, {fj(·, a′0)}a′0, and {v(·, a0) � fj(·, a′0)}a0,a′0
, j = 0, 1,

be as in i) and suppose in addition

sup
T≤1

(T
1
4 )2−α sup

a′0

‖{1, ∂

∂a′0
}(f1T − f0T )‖ ≤ δN1,(51)

sup
T≤1

(T
1
4 )2−2α sup

a0,a′0

‖{1, ∂

∂a0

}{1, ∂

∂a′0
}([v, (·)T ]�f1

− [v, (·)T ]�f0)‖ ≤ δN1N0(52)

for some constant δN1. Then for u as in i) we have

sup
T≤1

(T
1
4 )2−2α sup

a′0

‖{1, ∂

∂a′0
}([u, (·)T ]�f1

− [u, (·)T ]�f0)‖ . δN1(M +N0).(53)

iii) Let the two families of functions {vi(·, a0)}a0, i = 0, 1, and the three
families of distributions {f(·, a′0)}a′0, {vi(·, a0)�f(·, a′0)}a0,a′0

be as in i)
and satisfy in addition (42), (43). Suppose we have in addition

sup
T≤1

(T
1
4 )2−2α sup

a0,a′0

‖{1, ∂

∂a0

,
∂2

∂a2
0

}{1, ∂

∂a′0
}[vi, (·)T ]�f‖ ≤ N1N0,(54)

sup
T≤1

(T
1
4 )2−2α sup

a0,a′0

‖{1, ∂

∂a0

}{1, ∂

∂a′0
}([v1, (·)T ]�f

− [v0, (·)T ]�f)‖ ≤ N1δN0.(55)

Let ui be two functions like in part i) and suppose that u1 − u0 is
modelled after (v1, v0) according to (a1, a0) and (σ1,−σ0) with constant
δM . Then we have

sup
T≤1

(T
1
4 )2−2α sup

a′0

‖{1, ∂

∂a′0
}([u1, (·)T ]�f − [u0, (·)T ]�f)‖ . N1

(
δM

+N0([σ1 − σ0]α + ‖σ1 − σ0‖+ [a1 − a0]α + ‖a1 − a0‖) + δN0

)
.(56)

We now turn to Lemma 4 that deals with the second factor in a�∂2
1u.

The reason why we consider several functions v1, · · · , vI in Lemma 4
instead of a single one for our scalar PDE is that this seems necessary
when establishing the contraction property for Proposition 1; because
of the a0-dependence, it turns out that we need not just I = 2 but in
fact I = 3, cf Corollary 2.
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Lemma 4. Let 2
3
< α < 1. We are given a function b, I families

of functions {v1(·, a0), · · · , vI(·, a0)}a0, and I families of distributions
{b�∂2

1v1(·, a0), · · · , b�∂2
1vI(·, a0)}a0 with

sup
a0

[{1, ∂

∂a0

}vi]α ≤ Ni,(57)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}[b, (·)T ]�∂2
1vi‖ ≤ N0Ni(58)

for some constants N0, · · · , NI . Let the function u be modelled after
(v1, · · · , vI) according to the α-Hölder functions a and (σ1, · · · , σI) with
constant M , cf Definition 1. Then there exists a unique distribution
b�∂2

1u such that on the level of the commutators

lim
T↓0
‖[b, (·)T ]�∂2

1u− σiE[b, (·)T ]�∂2
1vi‖ = 0,(59)

where E denotes the operator that evaluates a function in two vari-
ables (x, a0) at (x, a(x)). Moreover, provided [a]α ≤ 1, we have the
suboptimal estimate

sup
T≤1

(T
1
4 )2−2α‖[b, (·)T ]�∂2

1u‖ . [b]αM +N0Ni([σi]α + ‖σi‖).(60)

The following lemma is the only place where we use the PDE. It might
be seen as an extension of Schauder theory in the sense that it com-
pares, on the level of C2α, the solution u of a variable-coefficient equa-
tion ∂2u−a�∂2

1u = σ�f to the solutions of the corresponding constant-
coefficient equation (62), by saying that u is modelled after v according
to a and σ. To this purpose we apply (·)T to the equation and rearrange
to

∂2uT − P (a∂2
1uT − σfT ) = −P

(
[a, (·)T ]�∂2

1u+ [σ, (·)T ]�f
)
.

Since the previous lemmas estimate the commutators on the rhs, we
will right away assume that the lhs is estimated accordingly, cf (63).
Working with the commutator of multiplication with a coefficient a and
convolution is reminiscent of the DiPerna-Lions theory, which however
deals with a transport instead of a parabolic equations with a rough
coefficient, that is ∂2u− a∂1u instead of ∂2u− a∂2

1u. In our proof, we
follow the approach to classical Schauder theory of Krylov & Safanov,
see [12], in particular Section 8.6. This approach avoids the use of
kernels.

Lemma 5. Let 1
2
< α < 1 and suppose all functions and distributions

are periodic. Were are given I families of distributions {f1(·, a0), · · · ,
fI(· · · , a0)}a0 with

sup
T≤1

(T
1
4 )2−α sup

a0

‖{1, ∂

∂a0

}fiT‖ ≤ Ni(61)
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for some constants N1, · · · , NI . For a0 ∈ [λ, 1
λ
] we denote by vi(·, a0)

the function of vanishing mean solving

(∂2 − a0∂
2
1)vi(·, a0) = Pfi(·, a0) distributionally.(62)

We are also given a function u, modelled after (v1, · · · , vI) according
to some functions a ∈ [λ, 1

λ
] and (σ1, · · · , σI). We assume that u ap-

proximately satisfies the PDE ∂2u− Pa∂2
1u = PσiEfi in the sense of

sup
T≤1

(T
1
4 )2−2α‖∂2uT − P (a∂2

1uT + σiEfiT )‖ ≤ N2(63)

for some constant N , where E is defined as in Lemma 4. Then we have
for the modelling and the Hölder constant of u

M . N2 + [a]αM +Ni([σi]α + ‖σi‖[a]α),(64)

[u]α .M +Ni‖σi‖.(65)

In Corollary 2, we will combine Lemma 4 on the product a � ∂2
1u and

Lemma 5 to obtain an a priori estimate on the modelling and Hölder
constants. The use of the “infinitesimal” part ii) of this corollary will
be explained in the discussion of Proposition 1.

Corollary 2. Let 2
3
< α < 1. i) Suppose we are given two functions

σ and a, two distributions f and σ � f , and a family of distributions
{a�∂2

1v(·, a0)}a0 with

[σ]α + [a]α ≤ N,(66)

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N0,(67)

sup
T≤1

(T
1
4 )2−2α‖[σ, (·)T ]�f‖ ≤ NN0,(68)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

,
∂2

∂a2
0

}[a, (·)T ]�∂2
1v‖ ≤ NN0,(69)

where v(·, a0) denotes the mean-free solution of

(∂2 − a0∂
2
1)v(·, a0) = Pf,(70)

and satisfying the constraints

σ ∈ [−1, 1], a ∈ [λ,
1

λ
], [σ]α ≤ 1, [a]α � 1.(71)

Then if a function u is modelled after v according to a and σ with

∂2u− P (a�∂2
1u+ σ �f) = 0(72)

we have for the modelling and Hölder constants

M . N0N,(73)

[u]α . N0(N + 1).(74)
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ii) In addition, suppose we are given two functions δσ and δa, three
distributions δf , σ � δf , and δσ � f , and two families of distributions
{a�∂2

1δv(·, a0)}a0 and {δa�∂2
1v(·, a0)}a0 with

[δσ]α + ‖δσ‖+ [δa]α + ‖δa‖ ≤ δN,(75)

sup
T≤1

(T
1
4 )2−α‖δfT‖ ≤ δN0,(76)

sup
T≤1

(T
1
4 )2−2α‖[σ, (·)T ]� δf‖ ≤ NδN0,(77)

sup
T≤1

(T
1
4 )2−2α‖[δσ, (·)T ]�f‖ ≤ δNN0,(78)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}[a, (·)T ]�∂2
1δv‖ ≤ NδN0,(79)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}[δa, (·)T ]�∂2
1v‖ ≤ δNN0(80)

for some constants δN0, δN and where δv is the mean-free solution of

(∂2 − a0∂
2
1)δv = Pδf.(81)

Then if a function δu is modelled after (v, ∂v
∂a0
, δv) according to a and

(δσ, σδa, σ) with

∂2δu− P (a�∂2
1δu+ δa�∂2

1u+ σ � δf + δσ �f) = 0(82)

then we have for the modelling and Hölder constants

δM . N0δN + δN0N provided N ≤ 1,(83)

[δu]α . N0δN + δN0 provided N ≤ 1.(84)

The following Proposition 1 may be seen as the main contribution of
this paper. It establishes a solution theory for the linear equation
∂2u − P (a � ∂2

1u + σ � f) = 0 for given driver f (a distribution) and
functions σ and a. Because of the roughness of f , it does not only
require an definition of σ � f but also of a � ∂2

1v, where v(·, a0) solves
∂2v − a0∂

2
1v = Pf , so that when u is modelled after v according to a

and σ, also a�∂2
1u may be given a sense by Lemma 4. The most subtle

point is to establish Lipschitz continuity of u in the data (a, a � ∂2
1v).

This involves considering differences of solutions and quantifying

u1 − u0 is modelled after (v1, v0)

according to (a1, a0) and (σ1,−σ0).(85)

When quantifying differences of solutions, variable coefficients require
a somewhat different strategy compared to constant coefficients, as we
shall explain now. The modelledness (85) has to come from the PDE,
that is, Lemma 5. The naive approach is to consider the difference
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of the PDE for two given pairs of data (σi, ai, fi), i = 0, 1, (plus the
products), and to rearrange as follows

∂2(u1 − u0)− P (a0 �∂2
1u1 − a0 �∂2

1u0)

= P
(
σ1 �f1 − σ0 �f0 + (a1 �∂2

1u1 − a0 �∂2
1u1)

)
,(86)

which already means breaking the permutation symmetry in i = 0, 1
and therefore does not bode well. By the modelledness of u1 we expect
that for the purpose of Lemma 5, we may replace u1 by v1 on the rhs
of (86), leading to

∂2(u1 − u0)− P (a0 �∂2
1u1 − a0 �∂2

1u0)

≈ P
(
σ1 �f1 − σ0 �f0 + σ1(E1a1 �∂2

1v1 − E1a0 �∂2
1v1)

)
.(87)

In view of Lemma 5 and the discussion preceding it, this suggests that
we obtain

u1 − u0 is modelled after (v1, v0, (∂2 − a0∂
2
1)−1PE1∂

2
1v)

according to a0 and (σ1,−σ0, σ1(a1 − a0)),(88)

which is not the desired (85) unless a1 = a0. Instead, our strategy will
be to construct a curve {us}s∈[0,1] interpolating between u0 and u1. For
this, we interpolate the data linearly, that is, fs := sf1 + (1 − s)f0,
σs := sσ1 + (1− s)σ0, and as := sa1 + (1− s)a0, and solve

∂2us − P (as �∂2
1us + σs �fs) = 0.(89)

Provided we interpolate the products bi-linearly, that is,

σs �fs := s2σ1 �f1 + s(1− s)(σ1 �f0 + σ0 �f1) + (1− s)2σ0 �f0(90)

and the same definition for as�∂2
1vs, Leibniz’ rule for σs�fs holds, and

we expect it to hold for as �∂2
1us so that differentiation of (89) gives

∂2∂su− P (as �∂2
1∂su) = P (∂sa�∂2

1us + ∂sσ �fs + σs �∂sf),

which in view of (89) we approximate by

∂2∂su− P (as �∂2
1∂su) ≈ P (σsEs∂sa�∂2

1vs + ∂sσ �fs + σs �∂sf),

with vs = sv1 + (1− s)v0. It is this form that motivates the part ii) of
Corollary 2. Noting that (∂2 − a0∂

2
1) ∂vs

∂a0
= ∂2

1vs we obtain

∂su is modelled after (vs,
∂vs
∂a0

, ∂sv)

according to as and (∂sσ, σs∂sa, σs),(91)

which should be compared with (88). Using Leibniz’ rule once more,
but this time in the classical form of

∂

∂s

(
σs(x)vs(y, as(x))

)
= (∂sσ)(x)vs(y, as(x))

+ (σs∂sa)(x)
∂vs
∂a0

(y, as(x)) + σs(x)∂sv(y, as(x)),
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and integrating (91) in s ∈ [0, 1] yields the desired (85). We note
that this strategy differs from [4] even in case when a is constant:
When passing from the modelledness of u1 − u0 to the modelledness
of σ(u1) − σ(u0), the argument in [4, Proposition 4] uses the linear
interpolation us = su1 + (1 − s)u0 (as we do in Lemma 1), which
implicitly amounts to the interpolation σs�fs = sσ1�f1 + (1− s)σ0�f0,
as opposed to (90).

Proposition 1. Let 2
3
< α < 1. i) Suppose we are given two functions

σ and a, two distributions f and σ � f , and a family of distributions
{a�∂2

1v(·, a0)}a0 related by

[σ]α + [a]α ≤ N,(92)

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N0,(93)

sup
T≤1

(T
1
4 )2−2α‖[σ, (·)T ]�f‖ ≤ N0N,(94)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

,
∂2

∂a2
0

}[a, (·)T ]�∂2
1v‖ ≤ N0N,(95)

for some constants N0, N , where v(·, a0) denotes the mean-free solution
of (∂2 − a0∂

2
1)v(·, a0) = Pf . Let the functions σ and a satisfy

σ ∈ [−1, 1], a ∈ [λ,
1

λ
], [σ]α ≤ 1, [a]α � 1.(96)

Then there exists a unique mean-free function u modelled after v ac-
cording to a and σ and such that

∂2u− P (a�∂2
1u+ σ �f) = 0.(97)

The modelling and Hölder constants are estimated as follows

M . N0N,(98)

[u]α . N0(N + 1).(99)

ii) Suppose we are given four functions σi and ai, i = 0, 1, six distri-
butions fi and σi � fj, j = 0, 1, and four families of distributions {ai �
∂2

1vj(·, a0)}a0, where vi(·, a0) is the mean-free solution of (∂2 − a0∂
2
1)vi

= Pfi, satisfying the assumption (92), (93), (94), and (95), the two
latter with cross terms, that is,

sup
T≤1

(T
1
4 )2−2α‖[σi, (·)T ]�fj‖ ≤ N0N,(100)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

,
∂2

∂a2
0

}[ai, (·)T ]�∂2
1vj‖ ≤ N0N(101)
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and (96). We suppose in addition that

[σ1 − σ0]α + ‖σ1 − σ0‖+ [a1 − a0]α + ‖a1 − a0‖ ≤ δN,(102)

sup
T≤1

(T
1
4 )2−α‖f1T − f0T‖ ≤ δN0,(103)

sup
T≤1

(T
1
4 )2−2α‖[σi, (·)T ]�f1 − [σi, (·)T ]�f0‖ ≤ NδN0,(104)

sup
T≤1

(T
1
4 )2−2α‖[σ1, (·)T ]�fj − [σ1, (·)T ]�fj‖ ≤ δNN0,(105)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}
(
[ai, (·)T ]�∂2

1v1

−[ai, (·)T ]�∂2
1v0

)
‖ ≤ NδN0,(106)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}
(
[a1, (·)T ]�∂2

1vj

−[a0, (·)T ]�∂2
1vj
)
‖ ≤ δNN0(107)

for some constants δN0, δN . Let ui denote the corresponding solutions
ensured by part i). Then u1 − u0 is modelled after (v1, v0) according to
(a1, a0) and (σ1,−σ0) with modelling constant and Hölder norm esti-
mated as follows

δM . N0δN + δN0N,(108)

[u1 − u0]α + ‖u1 − u0‖ . N0δN + δN0(109)

both provided N ≤ 1.

We now proceed to Theorem 2, the main deterministic result of this
paper. It can be seen as a PDE version of the ODE result in [4,
Section 5]. Part i) of the theorem provides existence and uniqueness by
a contraction mapping argument, corresponding to [4, Proposition 7];
part ii) provides continuity of the fixed point in the model, the analogue
of the Lyons’ sense of continuity for the Itô map and corresponding to
[4, Proposition 8].

Theorem 2. i) Suppose we are given a distribution f satisfying

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N0(110)

for some constant N0 � 1; denote by v(·, a0) the mean-free solution of
(∂2− a0∂

2
1)v = Pf . Suppose further that we are given a one-parameter

family of distributions v(·, a′0)�f and a two-parameter family of distri-
butions v(·, a′0)�∂2

1v(·, a0) satisfying

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a′0
,
∂2

∂a′0
2}{1,

∂

∂a0

,
∂2

∂a2
0

}

[v, (·)T ]�
{
f, ∂2

1v
}
‖ ≤ N2

0(111)
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(in fact, we do not need the highest cross-derivative ∂2

∂a′20

∂2

∂a2
0
). Then

there exists a unique mean-free function u with the properties

u is modelled after v according to a(u) and σ(u),(112)

∂2u− P (a(u)�∂2
1u+ σ(u)�f) = 0 distributionally,(113)

under the smallness condition

[u]α � 1.(114)

This unique u satisfies the estimate

[u]α + ‖u‖ . N0 and M . N2
0 ,(115)

where M denotes the modelling constant in (112).

ii) Now suppose we have two distributions fj, j = 0, 1, with

sup
T≤1

(T
1
4 )2−α‖fjT‖ ≤ N0;(116)

denote by vj(·, a0) the mean-free solution of (∂2 − a0∂
2
1)vj = Pfj. Sup-

pose further that for i = 0, 1 we are given four one-parameter families
of distributions vi(·, a′0) � fj and four two-parameter families of distri-
butions vi(·, a′0) � ∂2

1vj(·, a0) satisfying the analogue of (111) including
cross-terms

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a′0
,
∂2

∂a′20
}{1, ∂

∂a0

,
∂2

∂a2
0

}

[vi, (·)T ]�
{
fj, ∂

2
1vj
}
‖ ≤ N2

0 .(117)

We measure the distance of f1 to f0 in terms of a constant δN0 with

sup
T≤1

(T
1
4 )2−α‖(f1 − f0)T‖ ≤ δN0,(118)

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a′0
}{1, ∂

∂a0

}
(
[vi, (·)T ]�{f1, ∂

2
1v1}

−[vi, (·)T ]�{f0, ∂
2
1v0}

)
‖ ≤ N0δN0,(119)

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a′0
}{1, ∂

∂a0

}
(
[v1, (·)T ]�{fj, ∂2

1vj}

−[v0, (·)T ]�{fj, ∂2
1vj}

)
‖ ≤ N0δN0.(120)

If ui, i = 0, 1, denote the corresponding solutions of (112)&(114)&(113)
we have

[u1 − u0]α + ‖u1 − u0‖ . δN0.(121)

Moreover, u1 − u0 is modelled after (v1, v0) according to (a(u1), a(u0))
and (σ(u1),−σ(u0)) with modelling constant δM estimated by

δM . N0δN0.(122)
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It remains to establish a link between the solution theory presented
in Theorem 2 and the classical solution theory in the case where f is
smooth, e.g. f ∈ Cβ for any 0 < β < 1. In this case by classical
Schauder theory supa0

[{∂2
1 , ∂2}v(·, a0)]β . [f ]β and in particular there

is the classical choice for the products

v(·, a′0)�{f, ∂2
1v(·, a0)} := v(·, a′0){f, ∂2

1v(·, a0)}.(123)

In the language of Hairer [8, Sec. 8.2], this corresponds to the canonical
model built from a smooth noise term. The only assumption on the
products v(·, a′0)�{f, ∂2

1v(·, a0)} entering the definition of the singular
products are the regularity bounds (111) expressed in terms of commu-
tators and they are easily seen to be satisfied in this case. For example
we have

‖[v, (·)T ]f‖ = sup
x

∣∣∣ ∫ ψT (x− y)(v(x)− v(y))f(y)dy
∣∣∣

. T
1
4‖{∂1, ∂2}v‖‖f‖,(124)

which is much more than needed. However, the canonical definition
(123) is by no means the only possible choice of product. In fact, as
(111) is the only requirement on v(·, a′0)�{f, ∂2

1v(·, a0)} we can set for
example

v(·, a′0)�f :=v(·, a′0)f + g(1),

v(·, a′0)�∂2
1v(·, a0) :=v(·, a′0)∂2

1v(·, a0) + g(2)(125)

for a one-parameter family of distributions g(1) indexed by a0 and a two-
parameter family g(2) indexed by a0, a′0. For this choice of “products”
� the commutators turn into

[v, (·)T ]�{f, ∂2
1v} = [v, (·)T ]{f, ∂2

1v} − ({g1, g(2)})T
so that (111) reduces to the regularity assumption

‖{1, ∂

∂a′0
,
∂2

∂a′0
2}(g

(1))T‖, ‖{1,
∂

∂a′0
,
∂2

∂a′0
2}{1,

∂

∂a0

,
∂2

∂a0
2
}(g(2))T‖

. (T
1
4 )2α−2.(126)

This mild assumption leaves a lot of freedom to choose g(i) (any dis-
tribution of order 2α − 2 that is smooth in the parameter would do)
but we are mostly interested in the case where they are constant in x
depending only on a0 and a′0. The following corollary provides a link
between solutions of (113) and classical solutions in the case where the
the products � are defined by (125).

Corollary 3. Let f be a function in Cβ for some 0 < β < 1 and let
the products v(·, a′0) � {f, ∂2

1v(·, a0)} be defined by (125) for g(1), g(2)

which are of class Cβ in x and smooth in a0, a
′
0. Then the following

are equivalent:
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i) u is modelled after v according to a(u) and σ(u) and solves
∂2u− P (a(u)�∂2

1u+ σ(u)�f) = 0 distributionally.
ii) u is of class Cβ+2 and it is a classical solution of

∂2u− P
(
a(u)∂2

1u+ a′(u)σ(u)2g(2)(·, a(u), a(u))

+σ(u)f + σ′(u)σ(u)g(1)(·, a(u))
)

= 0.

3. Stochastic bounds

We now present the stochastic bounds which are necessary as input
into our deterministic theory. We consider a random distribution f ,
construct (renormalized) commutators, and show that the bounds (19)
and (111) hold for these objects. The calculations in this section are
inspired by a similar reasoning (in a more complicated situation) in
[11, Sec. 5], [8, Sec. 10]; for the reader’s convenience we provide self-
contained proofs.

Let f be a Gaussian centered distribution which is 1-periodic in both
the x1 and the x2 direction. Such a distribution is most conveniently
represented in terms of its Fourier series development given by

f(x) =
∑

k∈(2πZ)2

√
Ĉ(k)eik·xZk,(127)

which converges in a suitable topology on distributions. Here the Zk
are complex-valued centered Gaussians which are independent except
for the symmetry constraint Zk = Z̄−k and satisfy 〈ZkZ−`〉 = δk,`. The

coefficients
√
Ĉ are assumed to be real-valued, non-negative, and sym-

metric

√
Ĉ(k) =

√
Ĉ(−k). This notation is chosen because in the case

where realisations from f are (say smooth) functions the coefficients in
(127) do coincide with the square root of the Fourier transform of the
covariance function as we now demonstrate. If, using the stationarity
of f , we define the covariance function

〈f(x)f(x′)〉 = C(x− x′)

for x = (x1, x2), x′ = (x′1, x
′
2), then stationarity also implies that

C(x) = 〈f(x)f(0)〉 = 〈f(0)f(−x)〉 = C(−x).

Hence the (discrete) Fourier transform

Ĉ(k) =

∫
[0,1)2

e−ik·xC(x)dx =

∫
[0,1)2

cos(k · x)C(x)dx, k ∈ (2πZ)2
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is real valued and symmetric. For k, ` ∈ (2πZ)2 we have

〈f̂(k)f̂(−`)〉 =

∫
[0,1)2

∫
[0,1)2

e−ik·xei`·x
′ 〈f(x)f(x′)〉 dxdx′

=

∫
[0,1)2

∫
[0,1)2

e−i(k−`)·xe−i`·(x−x
′) C(x− x′) dxdx′

= δk,` Ĉ(k),(128)

which implies in particular that Ĉ is non-negative, and exactly corre-
sponds to (127).

The construction of non-linear functionals of f involves regularisation.
For this, let ψ′ be an arbitrary Schwartz function with

∫
R2 ψ

′ = 1. As in

the deterministic part we define the rescaling ψ′ε(x1, x2) = 1

ε
3
4
ψ′( x1

ε
1
4
, x2

ε
1
2

)

and define fε = f ∗ψ′ε. Of course, ψ′ = ψ1 for ψ1 as in the deterministic
analysis constitutes an admissible choice, but in the following analysis
of stochastic moments the semi-group property for ψ′ is not needed and
we therefore do not need to restrict ourselves to this particular choice.

Throughout this section we assume that Ĉ(0) = 0, i.e. f has vanish-
ing average. Our quantitative assumptions on the regularity of f are
expressed in terms of Ĉ: We assume that there exist λ1, λ2 ∈ R and
α ∈ (0, 1) such that

Ĉ(k) ≤ 1

(1 + |k1|)λ1(
√

1 + |k2|)λ2

, k = (k1, k2) ∈ (2πZ)2,(129)

λ1 + λ2 = −1 + 2α λ1,
λ2

2
< 1.

The second condition, may seem confusing, because larger values of λ,
corresponding to more smoothness for f , should help our theory. The
point is here, that decay in one of the directions beyond summability
cannot compensate for a lack of decay in the other direction. In order
to use the bounds presented in Lemma 6 and Proposition 2 as input for
the deterministic theory in Section 2 we need α > 2

3
, but this condition

does not play a role in the proof of these bounds. The following lemma
shows that assumption (129) corresponds to the regularity assumption
(19) on f .

Lemma 6. Let f be a stationary centered Gaussian distribution given
by (127) and for ε > 0 set fε = f ∗ ψ′ε. If the assumption (129) holds
then we have for any p <∞ and α′ < α〈(

sup
T≤1

(T
1
4 )2−α′‖fT‖

)p〉 1
p
. 1.(130)
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If additionally 0 ≤ κ ≤ 4, then〈(
sup

0<ε≤1
sup
T≤1

(T
1
4 )2−α′+κ(ε

1
4 )−κ‖(fε)T − fT‖

)p〉 1
p
. 1.(131)

Here and in the proof the implicit constant in . depends only on p and
α′.

Because of (fε)T = fT ∗ψ′ε and because the operators ψ′ε∗ are bounded
with respect to ‖·‖ uniformly in ε the bound (130) immediately implies
a bound which holds uniformly in the regularisation ε〈(

sup
ε≤1

sup
T≤1

(T
1
4 )2−α′‖(fε)T‖

)p〉 1
p
. 1.

For a0 ∈ [λ, 1] let G(·, a0) be the (periodic) Green function of (∂2 −
a0∂

2
1), where the heat operator is endowed with periodic and zero av-

erage time-space boundary conditions. Its (discrete) Fourier transform
is given by

(132) Ĝ(k, a0) =

{
1

a0k2
1−ik2

=
a0k2

1+ik2

a2
0k

4
1+k2

2
for k ∈ (2πZ)2 \ {0}

0 for k = 0.

With these notations in place, the periodic zero-mean solutions of (∂2−
a0∂

2
1)v(·, a0) = f and (∂2 − a0∂

2
1)vε(·, a0) = fε are characterized by

their discrete Fourier transforms v̂(k, a0) = Ĝ(k, a0)f̂ε(k), v̂ε(k, a0) =

Ĝ(k, a0)f̂(k) for k ∈ (2πZ)2.

We aim at giving a meaning to the products v(·, a0)�f , v(·, a0)�∂2
1v(·, a′0)

and obtaining bounds for the families of commutators [v(·, a0), (·)T ]�f ,
[v(·, a0), (·)T ]�∂2

1v(·, a′0) derived from them. The quantity ∂2
1v(·, a0) is

obtained from f through a regularity-preserving transformation, as can
be expressed in terms of the Fourier transform

∂̂2
1v(k, a0) =

k2
1

a0k2
1 − ik2

f̂(k)

and noting that
k2

1

a0k2
1−ik2

is a bounded symbol (see also Lemma 9).

Therefore, the proofs for v(·, a0)�f and v(·, a0)�∂2
1v(·, a′0) are essentially

identical. The list of commutators needed for the deterministic analysis
also includes various derivatives with respect to a0 and a′0, but these
derivatives do not change the regularity either. For example we have
for any n ≥ 1

∂n

∂an0
v̂(k, a0) =

∂n

∂an0
Ĝ(k, a0)f̂(k) =

(−1)nn!k2n
1

(a0k2
1 − ik2)n

v̂(k, a0),(133)

and for every n the symbol
(−1)nn!k2n

1

(a0k2
1−ik2)n

is also bounded.

As the regularities of v(·, a0), f , ∂2
1v(·, a0) are not sufficient to give

a deterministic functional analytic interpretation to these products,
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we proceed by approximation and study the convergence of vε(·, a0)fε,
vε(·, a0)∂2

1vε(·, a′0) as ε goes to zero by bounding stochastic moments.
As a first step, in the following lemma we calculate the expectations of
vε(·, a0)fε and vε(·, a0)∂2

1vε(·, a′0), which by stationarity do not depend
on the point x ∈ [0, 1)2 they are evaluated at.

Lemma 7. For ε > 0 we have

c(1)(ε, a0) :=
〈
vε(·, a0)fε

〉
=

∑
k∈(2πZ)2\0

a0k
2
1

a2
0k

4
1 + k2

2

Ĉ(k)|(ψ′ε)2(k)|,(134)

c(2)(ε, a0, a
′
0) :=

〈
vε(·, a0)∂2

1vε(·, a′0)
〉

=
∑

k∈(2πZ)2\0

(−a0a
′
0k

4
1 + k2

2)k2
1

(a2
0k

4
1 + k2

2)((a′0)2k4
1 + k2

2)
Ĉ(k)|(ψ′ε)2(k)|.(135)

The regularity assumption (129) does not imply that the constants
c(1)(ε, a0) and c(2)(ε, a0, a

′
0) converge to a finite limit as ε tends to zero,

although there are interesting cases in which they do converge. This is
discussed below, but for the moment we study the convergence of the
renormalized products

vε(·, a0)�fε :=vε(·, a0)fε − c(1)(ε, a0),

vε(·, a0)�∂2
1vε(·, a′0) :=vε(·, a0)∂2

1vε(·, a′0)− c(2)(ε, a0, a
′
0),(136)

as well as the corresponding commutators,

[vε(·, a0), (·)T ]�fε =vε(·, a0)(fε)T − (vε(·, a0)�fε)T ,
[vε(·, a0), (·)T ]�∂2

1vε(·, a′0)

=vε(·, a0)(∂2
1vε(·, a′0))T − (vε(·, a0)�∂2

1vε(·, a′0))T .(137)

Observe that while the singular products appearing in this expression,
vε(·, a0)fε and vε(·, a0)∂2

1vε(·, a′0), are renormalized by subtracting the
expectation, the products vε(·, a0)(fε)T and vε(·, a0)(∂2

1vε(·, a′0))T are
not changed. In particular, unlike the renormalized products in (136)
the renormalized commutators in (137) do not have vanishing expec-
tation.

The key result of this section is the following proposition which shows
the convergence of the renormalized products and provides a control
for stochastic moments of the renormalized commutators in (137) as
well as their derivatives with respect to a0, a

′
0.

Proposition 2. Let f be a stationary centered Gaussian distribution
given by (127) and assume that (129) is satisfied. For ε > 0 set fε =

f ∗ ψ′ε. and v̂ε(·, a′0) = Ĝ(·, a′0)f̂ε for G(·, a′0) as in (132).

i) For any n, n′ ≥ 0 the random distributions ∂n

∂an0

∂n
′

∂(a′0)n′
vε(·, a0) �

{fε, ∂2
1vε(·, a′0)} converge as ε→ 0. This convergence takes place almost
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surely uniformly over a0, a
′
0 and with respect to any Cα′−2 norm for

α′ < α. We denote the limits by ∂n

∂an0

∂n
′

∂(a′0)n′
v(·, a0) � {f, ∂2

1v(·, a′0)}.
ii) We have the estimates〈(

sup
a0,a′0∈[λ,1]

sup
ε∈[0,1]

sup
T≤1

(T
1
4 )2−2α′‖ ∂

n

∂an0

∂n
′

∂(a′0)n′
[vε(·, a0), (·)T ]

�{fε, ∂2
1vε(·, a′0)}‖

)p〉 1
p
. 1,(138)

where . means up to a constant that may depend on n, n′, α′ and p,
as well as 〈(

sup
a0,a′0∈[λ,1]

sup
ε∈(0,1]

ε−
κ
4 sup

T≤1
(T

1
4 )2−2α′+κ

∥∥∥ ∂n
∂an0

∂n
′

∂(a′0)n′

(
[vε(·, a0), (·)T ]�{fε, ∂2

1vε(·, a′0)}

− [v(·, a0), (·)T ]�{f, ∂2
1v(·, a′0)}

)∥∥∥)p〉 1
p
. 1,(139)

where . means up to a constant depending only on n, n′, α′, κ and p.

Proposition 2 follows from the following estimate on the second mo-
ments of commutators.

Lemma 8. Let f be defined by (127) for Ĉ satisfying (129), and let G
be the Greens function defined in (132) for some a0 ∈ [λ, 1]. Then for

Fourier multipliers M̂1, M̂2 satisfying M̂i(k) = M̂i(−k) and

|M̂1(k)| . |k4
1 + k2

2|
κ1
4 , |M̂2(k)| . |k4

1 + k2
2|
κ2
4 , k ∈ (2πZ)2,(140)

for 0 ≤ κ1, κ2 � 1 (where � depends on λ1, λ2), let f ′ and v′ be

defined through f̂ ′ = M̂1f̂ and v̂′ = M̂2Ĝf̂ . We make the qualitative
assumption that f ′ and v′ are smooth and set v′�f ′ = v′f ′−〈v′f ′〉 and
[v′, (·)T ]�f ′ = v′(f ′)T − (v′ �f ′)T . Then

〈([v′, (·)T ]�f ′)2〉
1
2 . (T

1
4 )2α−2−κ1−κ2 .(141)

Here the implicit constant depends on λ1, λ2 in (129), the implicit con-
stants in (140), κ1, κ2 as well as the ellipticity contrast λ (but not on
the smoothness assumption on f ′, v′).

In the proof of Proposition 2 this Lemma is used in the form of the
following immediate corollary:

Corollary 4. For ε > 0 and a0, a
′
0 ∈ [λ, 1] let fε = ψ′ε∗f and v̂ε(·, a′0) =

Ĝ(·, a′0)f̂ε for G(·, a′0) as in (132). Furthermore, let [vε(·, a0), (·)T ]
�{fε, ∂2

1vε(·, a′0)} be defined as in (137).
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Then for n, n′ ≥ 0 we have〈([ ∂

∂an0
vε(·, a0), (·)T

]
�{fε,

∂

∂(a′0)n′
∂2

1vε(·, a′0)}
)2〉 1

2

. (T
1
4 )2α−2.(142)

Furthermore, we have for 0 ≤ κ� 1 (� may depend on λ1, λ2)〈( ∂
∂ε

([ ∂

∂an0
vε(·, a0), (·)T

]
�{fε,

∂

∂(a′0)n′
∂2

1vε}
))2〉 1

2

.
(T

1
4 )2α−2−κ

ε1−κ
4

.(143)

Finally, we come back to the products and commutators without renor-
malization. According to Lemma 7 the constants c(1)(ε, a0) converge
to a non-trivial limit if and only if∑

k∈(2πZ)2\0

k2
1

k4
1 + k2

2

Ĉ(k) <∞.(144)

Furthermore, given that the ratio of the kernels appearing in (134) and
(135)

λ ≤
∣∣∣−a′0k4

1 + a−1
0 k2

2

(a′0)2k4
1 + k2

2

∣∣∣ ≤ λ−3

is bounded away from 0 and ∞ the convergence of the c(2)(ε, a0, a
′
0)

as ε goes to zero is also equivalent to (144). The condition (144) also
implies the convergence for arbitrary derivatives of c(1), c(2) with respect

to a0, a
′
0. For example, recalling (133) and the fact that the term

a0k2
1

a2
0k

4
1+k2

2

is nothing but the real part R of Ĝ(k, a0) we can write

∂n

∂an0
c(1)(ε, a0) =

∑
k∈(2πZ)2\0

R
( ∂n
∂an0

Ĝ(k, a0)
)
Ĉ(k)|(ψ′ε)2(k)|

=
∑

k∈(2πZ)2\0

R
( (−1)nn!k2n

1

(a0k2
1 − ik2)n

Ĝ(k, a0)
)
Ĉ(k)|(ψ′ε)2(k)|.

Given that for any n ≥ 1 the absolute value of the quantity under the

real part R is . k2
1

k4
1+k2

2
the convergence as ε → 0 under (144) follows.

A similar argument works for c(2). We summarise this discussion in the
following corollary.

Corollary 5. Assume that both (129) and (144) hold. Then the state-
ments of Proposition 2 remain true if all of the renormalized products
are replaced by products without renormalisation.
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The limits which exist under the assumptions of this corollary will be
denoted by [v(·, a0), (·)T ]f , [v(·, a0), (·)T ]∂2

1v(·, a0) etc..

We finish this section by comparing the assumptions (129) and (144)
in particular cases. First consider the case

Ĉ(k) = (1 + |k1|)−λ1(1 + |k2|)−
λ2
2 .(145)

For this choice of Ĉ the regularity assumption (129) is equivalent to

λ1 + λ2 ≥ −1 + 2α, λ1 > −3 + 2α, and λ2 > −2 + 2α.(146)

(note that equality is not necessary in the first condition, because in
the case of strict inequality, one can find λ′1 ≤ λ1 and λ′2 ≤ λ2 that
satisfy (129) with equality. However, λ1 ≤ −3 + 2α or λ2 ≤ −2 + 2α
can never be compensated without violating the second condition in
(129)) The condition (144) on the other hand is equivalent to

(147) λ1 + λ2 > 1 λ1 > −1, and λ2 > −2.

For any α ∈ (0, 1) the first requirements in (146) is weaker than the
corresponding assumptions in (147). An interesting case in which both
assumptions are satisfied and for which our theory can therefore be
applied without renormalisation is the case where λ1 > 1 and λ2 = 0;
this corresponds to the case of noise which is white in the time-like
variable x2 but “trace-class” in x1. However, if we are willing to accept
renormalisation, the regularity requirement in the x1 direction reduces
to λ1 >

1
3

(recall that the deterministic analysis is applicable if α > 2
3
).

Another interesting case is the covariance

Ĉ(k1, k2) = δk2,0(1 + |k1|)−λ1 ,

which corresponds to a noise term which only depends on the space-like
x1 variable. The parabolic equations with constant diffusion coefficients
driven by such a noise term has recently been studied as Parabolic
Anderson model in two and three spatial dimensions [5, 10, 9, 1]. Our
theory applies without renormalisation for all λ1 > −1, which covers
in particular the case of one-dimensional spatial white noise, λ1 = 0.
If we admit renormalisation we can go all the way to λ1 > −5

3
by

choosing λ2 < 2 and α > 2
3

as close to 2 and 2
3
, respectively, as we

please. This covers the case λ1 = −1 for which the noise f has the
same scaling behaviour as spatial white noise in two dimensions (both
are distributions of regularity C−1−) but it does not cover the case
λ1 = −2 for which the noise scales like spatial white noise in three
dimensions.
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4. Proofs for the deterministic analysis

Proof of Theorem 2.
We write for abbreviation [·] = [·]α. We consider the map defined
through

(ū, ā, σ̄) 7→ (σ := σ(ū), a := a(ū), σ �f, a�∂2
1v) 7→ (u, a, σ),(148)

where u is the solution provided by Proposition 1, the map of which
we seek to characterize the fixed point.
Step 1. Pointwise nonlinear transformation, application of Lemma
1. We work under the assumptions of part ii) of the theorem on the
distributions fj and the off-line products vi � fj, vi �∂2

1vj. Suppose we
are given two triplets (ūi, āi, σ̄i), i = 0, 1, of functions satisfying the
constraints

σ̄i ∈ [−1, 1], āi ∈ [λ,
1

λ
], [σ̄i], [āi] ≤ 1.(149)

We measure the size of {(ūi, āi, σ̄i)}i and their distance through

M̄ := max
i

(Mūi + [ūi]) +N0,(150)

δM̄ := Mū1−ū0 + [ū1 − ū0] + ‖ū1 − ū0‖
+N0([σ̄1 − σ̄0] + ‖σ̄1 − σ̄0‖+ [ā1 − ā0] + ‖ā1 − ā0‖) + δN0,(151)

where Mūi denotes the constant in the modelledness of ūi after vi ac-
cording to āi and σ̄i, and where Mū1−ū0 denotes the constant in the
modelledness of ū1−ū0 after (v1, v0) according to (ā1, ā0) and (σ̄1,−σ̄0).

We now consider σi := σ(ūi) and ai := a(ūi). We claim

σi ∈ [−1, 1], ai ∈ [λ,
1

λ
], [σi], [ai] ≤ 1 provided max

i
[ūi]� 1,(152)

M̃ . M̄ provided max
i

[ūi] ≤ 1,(153)

δM̃ . δM̄ provided M̄ ≤ 1,(154)

where we define in analogy with (150) and (151):

M̃ := max
i

(Mσi + [σi] +Mai + [ai]) +N0,(155)

δM̃ := Mσ1−σ0 + [σ1 − σ0] + ‖σ1 − σ0‖
+N0

(
[ω1 − ω0] + ‖ω1 − ω0‖+ [ā1 − ā0] + ‖ā1 − ā0‖

)
+Ma1−a0 + [a1 − a0] + ‖a1 − a0‖
+N0

(
[µ1 − µ0] + ‖µ1 − µ0‖+ [ā1 − ā0] + ‖ā1 − ā0‖

)
+ δN0,(156)

with the understanding that σi is modelled after vi according to āi and
ωi := σ′(ūi)σ̄i and constant Mσi ; that ai is modelled after vi according
to āi and µi := a′(ūi)σ̄i and constant Mai ; that σ1 − σ0 is modelled
after (v1, v0) according to (ā1, ā0) and (ω1,−ω0) and a constant we
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name Mσ1−σ0 ; and that a1 − a0 is modelled after (v1, v0) according to
(ā1, ā0) and (µ1,−µ0) and a constant we name Ma1−a0 .

It is obvious from (20) that (149) turns into (152) under the assump-
tion maxi[ūi] � 1. Estimate (153) follows from part i) of Lemma 1
with u replaced by ūi and the generic nonlinearity b replaced by σ and
by a, respectively, (using our assumptions (20)). More precisely, (153)
follows from (22) by [ūi] ≤ 1. We now turn to (154), which by defini-
tions (151) of δM̄ and (156) of δM̃ and because of N0 ≤ 1 we may split
into the four statements

Mσ1−σ0 + [σ1 − σ0] + ‖σ1 − σ0‖ .Mū1−ū0 + [ū1 − ū0] + ‖ū1 − ū0‖,
[ω1 − ω0] + ‖ω1 − ω0‖ . [σ̄1 − σ̄0] + ‖σ̄1 − σ̄0‖

+ [ū1 − ū0] + ‖ū1 − ū0‖,
Ma1−a0 + [a1 − a0] + ‖a1 − a0‖ .Mū1−ū0 + [ū1 − ū0] + ‖ū1 − ū0‖,

[µ1 − µ0] + ‖µ1 − µ0‖ . [σ̄1 − σ̄0] + ‖σ̄1 − σ̄0‖
+ [ū1 − ū0] + ‖ū1 − ū0‖,

all provided max
i

(Mūi + [ūi]) ≤ 1,

where we also used the definition (150) of M̄ . This is a consequence of
part ii) of Lemma 1 with (ūi, σ̄i, āi) playing the role of (ui, σi, ai). The
first two estimates follow from replacing the generic nonlinearity b by
σ, the last two estimates from replacing it by a. The first and the third
estimate are a consequence of (24), the second and fourth one of (25),
in which we use (152). It is on all four we use our full assumptions (20)
on the nonlinearities σ and a.

Step 2. Using the off-line products, application of Corollary 1. We
claim that under the hypothesis of part ii) of the theorem on the dis-
tributions fj and the off-line products vi �fj and vi �∂2

1vj we have the
commutator estimates

sup
T≤1

(T
1
4 )2−2α‖[σi, (·)T ]�fj‖ . N0M̃,(157)

sup
T≤1

(T
1
4 )2−2α‖[σi, (·)T ]�f1 − [σi, (·)T ]�f0‖ . δN0M̃,(158)

sup
T≤1

(T
1
4 )2−2α‖[σ1, (·)T ]�fj − [σ0, (·)T ]�fj‖ . N0δM̃,(159)

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a0

,
∂2

∂a2
0

}[ai, (·)T ]�∂2
1vj‖ . N0M̃,(160)
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and

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a0

}
(
[ai, (·)T ]�∂2

1v1

− [ai, (·)T ]�∂2
1v0

)
‖ . δN0M̃,(161)

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a0

}
(
[a1, (·)T ]�∂2

1vj

− [a0, (·)T ]�∂2
1vj
)
‖ . N0δM̃.(162)

This is an application of Corollary 1 with (N1, δN1) = (N0, δN0). Esti-
mate (157) is an application of Corollary 1 i) with u replaced by σi; the
hypotheses (48) and (49) are contained in the theorem’s assumptions
(110) and (111) (note that f does not depend on an extra parame-
ter a′0). The output (50) turns into (157) since by definition (155),
Mσi + N0 ≤ M̃ . Estimate (158) is an application of Corollary 1 ii)
still applied with u replaced by σi; the hypotheses (51) and (52) are
contained in the theorem’s assumptions (118) and (119). The output
(53) turns into (158) as in the previous application. Estimate (159) is
an application of Corollary 1 iii) now applied with ui replaced by σi
(and thus (σi, ai) replaced by (ωi, āi)); the hypotheses (54) and (55) are
contained in the theorem’s assumptions (117) and (120). The output
(56) turns into (159), since by definition (156) we have

Mσ1−σ0

+N0([ω1 − ω0] + ‖ω1 − ω0‖+ [ā1 − ā0] + ‖ā1 − ā0‖) + δN0 ≤ δM̃.

The arguments for (160), (161), and (162) follow the same lines of
those for (48), (158), and (159), respectively. The only difference is
that in all instances, the distribution fj is replaced by the family of
distributions ∂2

1vj(·, a0) (and ai plays the role of u in Corollary 1).
Hence the hypotheses (48) and (51) in Corollary 1 turn into

sup
T≤1

(T
1
4 )2−α‖{1, ∂

∂a0

,
∂2

∂a2
0

}∂2
1vjT‖ . N0,

sup
T≤1

(T
1
4 )2−α‖{1, ∂

∂a0

}∂2
1(v1T − v0T )‖ . δN0.

This follows from Step 1 in the proof of Corollary 2 via (18).

Step 3. Application of Proposition 1. We claim that under the hy-
pothesis of part ii) of the theorem regarding the distributions fj and
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the off-line products vi �fj and vi �∂2
1vj

M . N0(M̃ + 1) provided max
i

[ūi]� 1,(163)

max
i
Mui . N0M̃ provided max

i
[ūi]� 1,(164)

δM . N0δM̃ + δN0 provided in addition M̃ . 1,(165)

Mu1−u0 . N0δM̃ + δN0M̃ provided in addition M̃ . 1,(166)

where we define in consistency with (150) and (151)

M : = max
i

(Mui + [ui]) +N0,(167)

δM : = Mu1−u0 + [u1 − u0] + ‖u1 − u0‖+N0

(
[σ1 − σ0]

+ ‖σ1 − σ0‖+ [a1 − a0] + ‖a1 − a0‖
)

+ δN0.(168)

Indeed, (163) and (164) are an application of part i) of Proposition
1: The hypothesis (92) of the proposition is build into the definition
(155) of M̃ , so that M̃ here plays the role of N in the proposition.
The hypothesis (93) is identical with the theorem’s assumption (116),
hypothesis (96) was established in (152), hypotheses (94) and (95) are
contained in (157) and (160) of Step 2 which is consistent with M̃
playing the role of N there. The combination of (98) and (99) amounts
to (163) by definition (167) of M . Estimate (98) by itself amounts to
(164).

Estimate (165) in turn is a consequence of part ii) of Proposition 1:
Hypothesis (102) of the proposition is build into the definition (156) of
δM̃ , so that δM̃ here plays the role of δN in the proposition. Hypotheses
(100) and (101) are identical with (157) and (160) of Step 2. Hypothesis
(103) is identical with our assumption (118), hypotheses (104), (105),
(106), and (107) are identical with (158), (159), (161), and (162) in
Step 2. The outcome (108) of the proposition turns into (166). The
latter trivially for M̃ . 1 implies

Mu1−u0 . N0δM̃ + δN0,

whereas the outcome (109) of the proposition assumes the form

[u1 − u0] + ‖u1 − u0‖ . N0δM̃ + δN0.

By definition (156) of δM̃ we have

[σ1 − σ0] + ‖σ1 − σ0‖+ [a1 − a0] + ‖a1 − a0‖ ≤ δM̃.

The combination of the last three statement yields (165) in view of
definition (168).

Step 4. Under the assumptions of part ii) of the theorem on the
distributions fj and the off-line products vi � fj and vi � ∂2

1vj, Step 1
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and Step 3 obviously combine to

M . N0(M̄ + 1) provided max
i

[ūi]� 1,(169)

max
i
Mui . N0M̄ provided max

i
[ūi]� 1,(170)

δM . N0δM̄ + δN0 provided in addition M̄ ≤ 1,(171)

Mu1−u0 . N0δM̄ + δN0M̄ provided in addition M̄ ≤ 1.(172)

Step 5. Contraction mapping argument. We work under the assump-
tions of part ii) of the theorem on the distributions fj and the off-line
products vi � fj, vi � ∂2

1vj. In this step, we specify to the case of a
single model f1 = f0 =: f with the corresponding constant-coefficient
solution v; this means that we may set δN0 = 0.

We consider the space of all triplets (ū, ā, σ̄), where ū is modelled after
v according to ā and σ̄, which fulfill the constraints (149), and which
satisfy

M̄ ≤ N,(173)

cf. (150), for some constant N to be fixed presently. We apply Step
4 to (fi, āi, σ̄i) = (f, ā, σ̄). From (173) and the definition (150) of M̄
we learn that the proviso of (169) is fulfilled provided the constant N
is sufficiently small, which we now fix accordingly. We thus learn from
(169), which by (173) assumes the form of M . N0, that the map
defined through (148) sends the set defined through (173) into itself,
provided N0 � 1.

For two triplets (ui, ai, σi) as above we first note that

d
(
(u1, a1, σ1), (u0, a0, σ0)

)
:= Mu1−u0 + [u1 − u0] + ‖u1 − u0‖

+N0([σ1 − σ0] + ‖σ1 − σ0‖+ [a1 − a0] + ‖a1 − a0‖)(174)

defines a distance function. Indeed, that also the modelledness con-
stant Mu1−u0 satisfies a triange inequality in (ui, ai, σi) can be seen by
rewriting the definition (21) as

sup
x,R

1

R2α
inf
`

sup
y:d(x,y)≤R

|u1(y)− σ1(x)v(u, a1(x))

− (u0(y)− σ0(x)v(y, a0(x)))− `(y)|
where ` runs over all linear functionals of the form ay1 + b. We now
apply Step 4 to the case of (fi, āi, σ̄i) = (f, āi, σ̄i). From (173) we learn
that the proviso of (171) is fulfilled; because of δN0 = 0, (171) assumes
the form δM . N0δM̄ . By definitions (151) and (168) of δM̄ and δM ,
combined with δN0 = 0, this turns into

d
(
(u1, a1, σ1), (u0, a0, σ0)

)
. N0d

(
(ū1, ā1, σ̄1), (ū0, ā0, σ̄0)

)
.

Hence the map (148) is a contraction for N0 � 1. We further note that
the space of above triplets (u, a, σ) endowed with the distance function
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(174) is complete; and that the subset defined through the constraints
(149) and (173) is closed. Hence by the contraction mapping principle
the map (148) admits a unique fixed point on the set defined through
(149) and (173).

Step 6. Conclusion on part i) of the theorem. Let u now be as in
part i) of the theorem. We note that the assumptions of part i) on
the distribution f and the off-line products v �f, v �∂2

1v turn into the
assumptions of part ii) with δN0 = 0. We claim that (u, a(u), σ(u)) =:
(u, a, σ) is a fixed point of the map (148), which is obvious, and which
lies in the set defined through the constraints (149) and (173), and
therefore is unique. Indeed, in view of [a] ≤ ‖a′‖[u] ≤ 1, [σ] ≤ ‖σ′‖[u] ≤
1 by (20) and (114), the constraints (149) are satisfied. The constraint
(173) would be an immediate consequence of the stronger statement
(115) (provided N0 is sufficiently small). We thus turn to this a priori
estimate (115). We apply Step 4 to (fi, āi, σ̄i) = (f, a(u), σ(u)). Since
we are dealing with fixed points, we have M̄ = M . By the theorem’s
assumption [u] � 1, the provisos of (169) and (170) are satisfied so
that because of N0 � 1, their application yields

M . N0 and thus Mu . N2
0 .(175)

By definition (163) this turns into (115).

Step 7. Conclusion on part ii) of the theorem. Let ui, i = 0, 1, now be
as in part ii) of theorem. By Step 6, the two triplets (ui, a(ui), σ(ui))
=: (ui, ai, σi) satisfy the constraints (149) and (173) and each triplet
is a fixed point of “its own” map (148) (which depends on i through
the model fi). We apply Step 4 to (fi, āi, σ̄i) = (fi, a(ui), σ(ui)). Since
we are dealing with fixed points, we have M̄ = M and δM̄ = δM . By
the a priori estimate (115) and N0 � 1, the two provisos of Step 4 are
satisfied. Because of N0 � 1, (171) and (172) turn into

δM . δN0 and then Mu1−u0 . N0δN0,

where we used (175). By definition (168) of δM , this turns into (121)
and (122).

Proof of Proposition 1.
We write for abbreviation [·] = [·]α. When a function v depends on a0

next to x, we continue to write ‖v‖ when we mean supa0
‖v(·, a0)‖ and

[v] for supa0
[v(·, a0)]. When we speak of a function u, we automatically

mean that it is Hölder continuous with exponent α, that is, [u] < ∞;
when we speak of a distribution f , we imply that it is of order α− 2 in
the sense of supT≤1(T

1
4 )2−α‖fT‖ <∞. When a distribution depends on

the additional parameter a0, we imply that the above bound is uniform
in a0.

Step 1. Uniqueness. Under the assumptions of part i) of the propo-
sition we claim that there is at most one mean-free u modelled after
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v according to a and σ satisfying the equation (97). Indeed, let u′ be
another function with these properties; we trivially have by Definition
1 that u − u′ is modelled after v according to a and to 0 playing the
role of σ. We now apply Lemma 4 with b replaced by a. We apply it
three times, namely to u, to u′, and to u − u′. We obtain from these
three versions of (59) and the triangle inequality that

lim
T↓0
‖[a, (·)T ]�∂2

1u− [a, (·)T ]�∂2
1u
′ − [a, (·)T ]�∂2

1(u− u′)‖ = 0

and thus limT↓0 ‖(a�∂2
1u−a�∂2

1u
′−a�∂2

1(u−u′))T‖ = 0 so that a�∂2
1u

−a�∂2
1u
′ = a�∂2

1(u− u′). Hence we obtain from taking the difference
of the equations:

∂2(u− u′)− Pa�∂2
1(u− u′) = 0.(176)

We may also say that u − u′ is modelled after 0 playing the role of v
and 0 playing the role of σ; we call δM the corresponding modelling
constant. Hence we may apply Corollary 2 i) with f = 0 and thus
N0 = 0. We apply it with u replaced by u − u′ (and thus M by δM),
which we may thanks to (176). In this context, the output (73) of
Corollary 2 assumes the form δM = 0. Since u − u′ is periodic, we
first infer δν = 0 and then u − u′ = const. Since u − u′ has vanishing
average, we obtain as desired u− u′ = 0.

Step 2. A special regularization. Under the assumptions of Lemma 4
and for τ > 0 and i = 1, · · · , I we consider the convolution viτ of vi
and define

a�∂2
1viτ := (a�∂2

1vi)τ .(177)

Then, we claim that for any function u of class Cα+2, which is modelled
after (v1τ , · · · , vIτ ) according to a and (σ1, · · · , σI), we have

a�∂2
1u = a∂2

1u− σiE[a, (·)τ ]�∂2
1vi.(178)

Indeed, by Lemma 4 (with b replaced by a) we understand the distri-
bution a�∂2

1u as defined by

lim
T↓0
‖[a, (·)T ]�∂2

1u− σiE[a, (·)T ]�∂2
1viτ‖ = 0.(179)

We note that (177) implies

[a, (·)T ]�∂2
1viτ = [a, (·)T+τ ]�∂2

1vi,(180)

which ensures that [a, (·)T ] �∂2
1viτ → [a, (·)τ ] �∂2

1vi as T ↓ 0 uniformly
in x for fixed a0. Thanks to the bound on the ∂

∂a0
-derivative in (58),

this convergence is even uniform in (x, a0), so that (179) turns into

lim
T↓0
‖[a, (·)T ]�∂2

1u− σiE[a, (·)τ ]�∂2
1vi‖ = 0.
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Since u is of class Cα+2, this further simplifies to

lim
T↓0
‖a∂2

1u− (a�∂2
1u)T − σiE[a, (·)τ ]�∂2

1vi‖ = 0,

from which we learn that the distribution a�∂2
1u is actually the function

given by (178).

Step 3. Existence in the regularized case. Under the assumptions of
part i) of this proposition and in line with Step 2, for τ > 0 we consider
the mollification fτ of f , so that vτ satisfies (∂2 − a0∂

2
1)vτ = Pfτ , and

complement definition (177) (without the index i) by

σ �fτ := (σ �f)τ .(181)

Then we claim that there exists a mean-free uτ of class Cα+2 modelled
after vτ according to a and σ such that

∂2u
τ − P (a�∂2

1u
τ + σ �fτ ) = 0 distributionally,(182)

and at the same time

∂2u
τ − P (a∂2

1u
τ − σE[a, (·)τ ]�∂2

1v + (σ �f)τ ) = 0 classically.(183)

We first turn to the existence of (183) and start by noting that the rhs
−σE[a, (·)τ ] � ∂2

1v + (σ � f)τ in (183) is of class Cα. Leveraging upon
[a] � 1 we rewrite the equation as ∂2u

τ − a0∂
2
1u

τ = P ((a − a0)∂2
1u

−σE[a, (·)τ ] � ∂2
1v +(σ � f)τ ) for a0 = a(0). Using the invertibility

of the constant-coefficient operator ∂2 − a0∂
2
1 on periodic mean-free

functions, and equipped with the corresponding Schauder estimates,
see for instance [12, Theorem 8.6.1] lifted to the torus, we see that a
solution of class Cα+2 exists, using a contraction mapping argument
based on ‖a− a0‖ � 1. Since both uτ and vτ (·, a0) are in particular of
class Cα+1, u is modelled after vτ according to — in fact any — a and
σ. By Step 2 and definition (181) we see that (183) may be rewritten
as (182).

Step 4. Basic construction. We now work under the assumptions of
part ii) of the proposition. We interpolate the functions σi, ai, and vi
as well as the distribution fi linearly:

σs := sσ1 + (1− s)σ0 and same for a, f , and v.(184)

We note that this preserves (96). We interpolate the products bi-
linearly

σs �fs := s2σ1 �f1 + s(1− s)σ1 �f0

+ (1− s)sσ0 �f1 + (1− s)2σ0 �f0,

∂sσ �fs := sσ1 �f1 + (1− s)σ1 �f0 − sσ0 �f1 − (1− s)σ0 �f0,

σs �∂sf := sσ1 �f1 − sσ1 �f0 + (1− s)σ0 �f1 − (1− s)σ0 �f0,

and same for as �∂2
1vs, ∂sa�∂2

1vs and as �∂2
1∂sv.(185)
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Thanks to the estimate (101), which is preserved under bilinear inter-
polation, the family of distributions {as �∂2

1vs(·, a0)}a0 is continuously
differentiable in a0 so that we may define

as �∂2
1

∂vs
∂a0

(·, a0) :=
∂

∂a0

as �∂2
1vs(·, a0).(186)

For given 0 < τ ≤ 1, we define the singular products with the regular-
ized distributions as in Step 2, namely

σs �fsτ := (σs �fs)τ and same for ∂sσ �fsτ , σs �∂sfτ ,

as �∂2
1vsτ , ∂sa�∂2

1vsτ , as �∂2
1∂svτ , as �∂2

1

∂vsτ
∂a0

.(187)

We claim that there exists a curve uτs of mean-free functions continu-
ously differentiable in s wrt to the class Cα+2 such that

uτs is modelled after vsτ according to as and σs(188)

and satisfies

∂2u
τ
s − P (as �∂2

1u
τ
s + σs �fsτ ) = 0 distributionally.(189)

Furthermore, we claim that

∂su
τ is modelled after (vsτ ,

∂vsτ
∂a0

, ∂svτ )

according to as and (∂sσ, σs∂sa, σs)(190)

and satisfies

∂2∂su
τ − P (as �∂2

1∂su
τ + ∂sa�∂2

1u
τ
s + σs �∂sfτ + ∂sσ �fsτ ) = 0(191)

distributionally.

By Steps 3 and 1 and our definitions of σs�fsτ and as�∂2
1vsτ by convo-

lution, cf (187), there exists a unique mean-free uτs of class Cα+2 such
that (188) and (189) hold. Furthermore by Step 2 uτs is characterized
as the classical solution of

∂2u
τ
s − P (as∂

2
1u

τ
s − σsEs[as, (·)τ ]�∂2

1vs + (σs �fs)τ ) = 0.(192)

In preparation of taking the s-derivative of (192) we note that the
definition (185) of σs�fs and as�∂2

1vs by (bi-)linear interpolation ensures
that Leibniz’ rule holds:

∂s(σs �fs) = ∂sσ �fs + σs �∂sf,(193)

∂s(as �∂2
1vs) = ∂sa�∂2

1vs + as �∂2
1∂sv.(194)

We recall that Es denotes the evaluation operator that evaluates a
function of (x, a0) at (x, as(x)); with the obvious commutation rule
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[∂s, Es] = (∂sa)Es
∂
∂a0

we obtain from (194) and (186)

∂s(Esas �∂2
1vs)

= Es∂sa�∂2
1vs + ∂saEsas �∂2

1

∂vs
∂a0

+ Esas �∂2
1∂sv,

which in conjunction with the classical differentiation rules extends to
the commutator:

∂s(Es[as, (·)τ ]�∂2
1vs) = Es[∂sa, (·)τ ]�∂2

1vs

+ ∂saEs[as, (·)τ ]�∂2
1

∂vs
∂a0

+ Es[as, (·)τ ]�∂2
1∂sv.(195)

Equipped with (193) and (195) we learn from (192) that uτs is differen-
tiable in s with values in the class Cα+2 and

∂2∂su
τ − P

(
as∂

2
1∂su

τ + ∂sa∂
2
1u

τ
s − σsEs[∂sa, (·)τ ]�∂2

1vs

− ∂sσEs[as, (·)τ ]�∂2
1vs − σs∂saEs[as, (·)τ ]�∂2

1

∂vs
∂a0

− σsEs[as, (·)τ ]�∂2
1∂sv + (∂sσ �fs)τ + (σs �∂sf)τ

)
= 0.(196)

Moreover, like in Step 3, (190) holds automatically because of the reg-
ularity of ∂su

τ and of (vsτ ,
∂vsτ
∂a0

, ∂svτ ). In view of the definition (187)

of ∂sa � ∂2
1vsτ we have by Step 2 applied to uτs modelled according to

(188)

∂sa�∂2
1u

τ
s = ∂sa∂

2
1u

τ
s − σsEs[∂sa, (·)τ ]�∂2

1vs.

In view of the similar definition of as�∂2
1∂sv, as�∂2

1
∂vsτ
∂a0

, and as�∂2
1∂svτ

we have by Step 2 applied to ∂su
τ modelled according to (190)

as �∂2
1∂su

τ = as∂
2
1∂su

τ − ∂sσEs[as, (·)τ ]�∂2
1vs

− σs∂saEs[as, (·)τ ]�∂2
1

∂vs
∂a0

− σsEs[as, (·)τ ]�∂2
1∂sv.

Plugging these two formulas and the definition (187) of ∂sσ � fτ and
σs �∂sfτ into (196), we obtain (191).

Step 5. We now work under the assumptions of part ii) of the propo-
sition. We claim

[σs] + [as] ≤ N,(197)

sup
T≤1

(T
1
4 )2−α‖(fsτ )T‖ . N0,(198)

sup
T≤1

(T
1
4 )2−2α‖[σs, (·)T ]� (fsτ )T‖ . NN0,(199)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

,
∂2

∂a2
0

}[as, (·)T ]�∂2
1vsτ‖ . NN0(200)
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and

[∂sσ] + ‖∂sσ‖+ [∂sa] + ‖∂sa‖ ≤ δN,(201)

sup
T≤1

(T
1
4 )2−α‖∂s(fτ )T‖ ≤ δN0,(202)

sup
T≤1

(T
1
4 )2−2α‖[σs, (·)T ]�∂sfτ‖ . NδN0,(203)

sup
T≤1

(T
1
4 )2−2α‖[∂sσ, (·)T ]�fsτ‖ . δNN0,(204)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}[as, (·)T ]�∂2
1∂svτ‖ . NδN0,(205)

sup
T≤1

(T
1
4 )2−2α sup

a0

‖{1, ∂

∂a0

}[∂sa, (·)T ]�∂2
1vsτ‖ . δNN0.(206)

Indeed, (197) and (201) are immediate from (92) (with i) and (102),
respectively, by the linear interpolation (184). For τ = 0 the remaining
estimates, even with . replaced by ≤, follow from the linear and bilin-
ear interpolations (184) and (185) from the assumptions of this propo-
sition: inequality (198) from (93) (with i), (199) from (100), (200) from
(101). Still for τ = 0, the five estimates (202), (203), (204), (205), and
(206), are direct consequences of (103), (104), (105), (106), and (107),
respectively.

It remains to pass from τ = 0 to 0 < τ ≤ 1 in the eight estimates of
this step, based on our definition (187) of singular products. This is
done with help of the next step.

Step 6. Let the (generic) function u and the (generic) distributions f
and u�f be such that

[u] ≤ N0, sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N1 and(207)

sup
T≤1

(T
1
4 )2−2α‖[u, (·)T ]�f‖ ≤ N0N1(208)

for some constants N0 and N1. Then we claim that for τ ≤ 1 the
distributions fτ and u�fτ := (u�f)τ satisfy the same estimates:

sup
T≤1

(T
1
4 )2−α‖(fτ )T‖ . N1, sup

T≤1
(T

1
4 )2−2α‖[u, (·)T ]�fτ‖ . N0N1.

(209)

Indeed, by definition of u�fτ we have like for (180) by the semi-group
property

[u, (·)T ]�fτ = [u, (·)T+τ ]�f,
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so that (209) follows automatically provided we can show that (207) &
(208) extend from the range of T ≤ 1 to the range T ≤ 2 in form of

sup
T≤1

(T
1
4 )2−α‖f2T‖ . N1, sup

T≤1
(T

1
4 )2−2α‖[u, (·)2T ]�f‖ . N0N1.(210)

For this, we appeal to the semi-group property giving us

f2T = (fT )T and [u, (·)2T ]�f = ([u, (·)T ]�f)T + [u, (·)T ]fT ,

so that by the boundedness of (·)T in ‖ · ‖ indeed (208) entails (210),
appealing to (268) and using in addition that by (207)

‖[u, (·)T ]fT‖ . N0(T
1
4 )α‖fT‖ . N0N1(T

1
4 )2α−2.

Step 7. Application of Corollary 2. We claim for the modelling and
Hölder constants of uτs and ∂su

τ :

M τ
s . N0N,(211)

[uτs ] . N0(N + 1),(212)

δM τ
s . N0δN + δN0N provided N ≤ 1,(213)

[∂su
τ ] . N0δN + δN0 provided N ≤ 1.(214)

Indeed, for estimates (211) and (212) we apply Corollary 2 i) with (f, v,
σ, a, σ �f, a�∂2

1v, u) replaced by (fsτ , vsτ , σs, as, σs �fsτ , as �∂2
1vsτ , u

τ
s)

(where it is clear that linear interpolation and convolution preserves
the relation between fsτ and vsτ through the constant coefficient equa-
tion). As already remarked in Step 4 the constraints (96) turn into
(71) under the linear interpolation (184). The hypotheses (66), (67),
(68), and (69) were established in Step 5, cf (197), (198), (199), and
(200), respectively. Hypothesis (72) and the modelledness are clear by
construction, cf (189) and (188) in Step 4. The outputs (73) and (74)
assume the form (211) and (212).

For the remaining estimates (213) and (214), we apply Corollary 2
ii) with (δf, δv, δσ, δa, σ � δf, δσ � f, a � ∂2

1δv, δa � ∂2
1v, δu) replaced by

(∂sfτ , ∂svτ , ∂σ, ∂sa, σs�∂sfτ , ∂sσ�fsτ , as�∂2
1∂svτ , ∂sa�∂2

1vsτ , ∂su
τ ). The

six hypotheses (75)–(80) were established in Step 5, cf (201)– (206).
Hypothesis (82) and the corresponding modelledness are clear by con-
struction, cf (191) and (190) in Step 4. The outputs (83) and (84)
assume the form of (213) and (214).

Step 8. Integration. We claim that uτ1 − uτ0 is modelled after (vτ1 , v
τ
0 )

according to (a1, a0) and (σ1,−σ0) with the modelling constant and
Hölder constant estimated as follows

δM τ . N0δN + δN0N provided N ≤ 1,(215)

[uτ1 − uτ0] . N0δN + δN0 provided N ≤ 1.(216)
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Indeed, the Hölder estimate (216) is obvious from (214) by integration
in s ∈ [0, 1]. The estimate on the modelling constant relies on the
differentiation rule

∂

∂s

(
uτs(y)− σs(x)vsτ (y, as(x))

)
= ∂su

τ (y)− (∂sσ)(x)vsτ (y, as(x))

− (σs∂sa)(x)
∂vsτ
∂a0

(y, as(x))− σs(x)∂svτ (y, as(x)),

and on defining ν :=
∫ 1

0
νsds, where ν belongs to uτ1−uτ0 and νs to ∂su

τ

in the sense of Definition 1. This provides the link between (213) and
(215) by integration.

Step 9. Passage to limit. We claim that we may pass to the limit
τ ↓ 0 in (211) and (212) with s = 0, 1, recovering (98) and (99) in
part i) of this proposition, and in (215) and (216), recovering (108)
and (109) in part ii) of the proposition. Clearly, from the uniform-in-τ
estimate (212) (in conjunction with the vanishing mean of uτi which
provides the same bound on the supremum norm) we learn by Arzelà-
Ascoli that there exists a subsequence τ ↓ 0 (unchanged notation) and
a continuous mean-free function ui to which uτi converges uniformly.
Hence we may pass to the limit in the Hölder estimates (212) and
(216). Since also the convolution viτ converges to vi uniformly, we may
pass to the limit in the estimates (211) and (215) of the modelling
constants. By uniqueness, cf Step 1, it thus remains to argue that ui
solves (97) (with (f, σ, a) replaced by (fi, σi, ai)). In order to pass from
(189) to (97) it remains to establish the distributional convergences

σi �fiτ ⇀ σi �fi,(217)

ai �∂2
1u

τ
i ⇀ ai �∂2

1ui.(218)

The convergence (217) is build-in by the definition (187) through convo-
lution. One of the ingredients for the convergence (218) is the analogue
of (217)

ai �∂2
1viτ (·, a0) ⇀ ai �∂2

1vi(·, a0),

which in conjunction with the pointwise convergence of viτ extends to
the commutator

[ai, (·)T ]�∂2
1viτ (·, a0)→ [ai, (·)T ]�∂2

1vi(·, a0).

Since ‖ ∂
∂a0

[ai, (·)T ] � ∂2
1viτ (·, a0)‖ is uniformly bounded, cf (101) and

(187) in conjunction with a formula of type (180), we even have

[ai, (·)T ]�∂2
1viτ (·, a0)→ [ai, (·)T ]�∂2

1vi(·, a0) uniformly in a0,

so that

σiEi[ai, (·)T ]�∂2
1viτ → σiEi[ai, (·)T ]�∂2

1vi.
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In order to relate this to (218) we appeal to the modelledness of ui wrt
to vi according to ai and σi which by (59) in Lemma 4 yields

lim
T↓0
‖[ai, (·)T ]�∂2

1ui − σiEi[ai, (·)T ]�∂2
1vi‖ = 0.

Likewise, the uniform modelledness of uτi , cf (213), in conjunction with
the uniform commutator bounds (95) and the uniform bounds on viτ ,
we have, again by (59) in Lemma 4, the uniform convergence

lim
T↓0

sup
τ
‖[ai, (·)T ]�∂2

1u
τ
i − σiEi[ai, (·)T ]�∂2

1viτ‖ = 0.

The combination of the three last statements implies

lim
T↓0

lim sup
τ↓0

‖[ai, (·)T ]�∂2
1u

τ
i − [ai, (·)T ]�∂2

1ui‖ = 0,

which by the convergence of uτi yields

lim
T↓0

lim sup
τ↓0

‖(ai �∂2
1u

τ
i − ai �∂2

1ui)T‖ = 0.(219)

Now the next step shows that this implies (218).

Step 10. Suppose that the sequence {fn}τ↓0 of uniformly bounded
distributions satisfies

lim
T↓0

lim sup
n↑∞

‖fnT‖ = 0.

We claim that this implies distributional convergence:

fn ⇀ 0.

Indeed, we have for fixed T > 0 and any τ ≤ T that ‖fnT‖ . ‖fnτ‖ and
therefore lim supn↑∞ ‖fnT‖ . lim supn↑0 ‖fnτ‖ and lim supn↑0 ‖fnT‖ .
limτ↓0 lim supn↑0 ‖fnτ‖. The latter is equal to zero by assumption.
Hence we have fnT → 0 for every T > 0, which yields the claim by
the uniform boundedness of fn in the sense of supT≤1(T

1
4 )2−α‖fT‖,

and then also in the more classical Cα−2-norm, cf (336) in Step 1 of
Lemma 9.

Proof of Corollary 2.
We write [·] for [·]α.
Step 1. Application of Lemma 9. We claim

sup
a0

[{1, ∂

∂a0

,
∂2

∂a2
0

}v] . N0,(220)

sup
a0

[{1, ∂

∂a0

}δv] . δN0.(221)

The estimate (220) is based on the two identities following from differ-
entiating (70) twice wrt a0

(∂2 − a0∂
2
1)(v,

∂v

∂a0

,
∂2v

∂a2
0

) = (Pf, ∂2
1v, 2∂

2
1

∂v

∂a0

).(222)
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We now see that (220) follows by an iterated application of Lemma
9: From (67) we first obtain the bound on v by Lemma 9, then the
bound on ∂2

1vT by (18), then via (222) the bound on ∂v
∂a0

by Lemma 9,

then the bound on ∂2
1
∂vT
∂a0

by (18), then via (222) finally the bound on
∂2v
∂a2

0
by Lemma 9. The argument for (221) is identical, just with (f, v)

replaced by (δf, δv), cf (81), and starting from (76) instead of (67) and
thus with N0 replaced by δN0.

Step 2. Application of Lemma 4. We claim that

sup
T≤1

(T
1
4 )2−2α‖[a, (·)T ]�∂2

1u‖ . [a]M +NN0,(223)

sup
T≤1

(T
1
4 )2−2α‖[δa, (·)T ]�∂2

1u‖ . [δa]M + δNN0,(224)

sup
T≤1

(T
1
4 )2−2α‖[a, (·)T ]�∂2

1δu‖ . [a]δM +N(N0δN + δN0).(225)

Here comes the argument: Estimate (223) follows from Lemma 4 with
b replaced by a, I = 1 and vi=1 = v, so that the hypothesis (57) is
satisfied by (220) in Step 1 with N0 playing the role of Ni=1. Hypothesis
(58) is satisfied by our assumption (69) with N playing the role of N0.
In view of (71), the outcome (60) of Lemma 4 turns into (223).

Estimate (224) follows from applying Lemma 4 with b replaced by δa,
still I = 1, vi=1 = v, and N0 playing the role of Ni=1. Hypothesis (58)
is satisfied by our assumption (80) with δN playing the role of N0. In
view of (71), the outcome (60) of Lemma 4 turns into (224).

Finally, estimate (225) follows from applying Lemma 4 with b again
replaced by a, but this time I = 3 and (v1, v2, v3) = (v, ∂v

∂a0
, δv). We

learn from Step 1 that hypothesis (57) is satisfied with (N1, N2, N3) =
(N0, N0, δN0). We now turn to the hypothesis (58): For i = 1 it is
contained in our assumption (69) with N playing the role of N0. In
preparation of checking hypothesis (58) for i = 2 we note that our
assumption (69) implies in particular that the family of distributions
{a�∂2

1v(·, a0)}a0 is continuously differentiable in a0. This allows us to
define the family of distributions {a�∂2

1
∂v
∂a0

(·, a0)}a0 via

a�∂2
1

∂v

∂a0

:=
∂

∂a0

a�∂2
1v,

which extends to the commutator:

[a, (·)T ]�∂2
1

∂v

∂a0

=
∂

∂a0

[a, (·)T ]�∂2
1v.(226)

Hence the hypothesis (58) for i = 2 is also satisfied by (69) (here we use

it up to ∂2

∂a2
0
). Hypothesis (58) for i = 3 is identical to our assumption

(79). We apply Lemma 4 with δu playing the role of u; the triple
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(δσ, σδa, σ) then plays the role of (σ1, σ2, σ3) and δM that of M . The
outcome (60) of Lemma 4 assumes the form

sup
T≤1

(T
1
4 )2−2α‖[a, (·)T ]�∂2

1δu‖

. [a]δM +N
(
N0([δσ] + ‖δσ‖+ [σδa] + ‖σδa‖)

+ δN0([σ] + ‖σ‖)
)
.(227)

We note that by (71) and (75) we have

N0([δσ] + ‖δσ‖+ [σδa] + ‖σδa‖) + δN0([σ] + ‖σ‖)
. N0([δσ] + ‖δσ‖+ [δa] + ‖δa‖) + δN0

. N0δN + δN0,

so that (227) yields (225).

Step 3. Commutator estimates. We claim

sup
T≤1

(T
1
4 )2−2α‖∂2uT − P (a∂2

1uT + σfT )‖ . [a]M +NN0,(228)

sup
T≤1

(T
1
4 )2−2α‖∂2δuT − P (a∂2

1δuT + σδaE∂2
1vT + σδfT + δσfT )‖

. [a]δM + ([δa] + ‖δa‖)M +N(N0δN + δN0) + δNN0.(229)

Indeed, we apply (·)T to (72) and rearrange terms:

∂2uT − P (a∂2
1uT + σfT ) = −P ([a, (·)T ]�∂2

1u+ [σ, (·)T ]�f).(230)

Similarly, we apply (·)T to (82) and rearrange terms:

∂2δuT − P (a∂2
1δuT + σδaE∂2

1vT + σδfT + δσfT )

= −P
(
− δa(∂2

1uT − σE∂2
1vT )

+ [a, (·)T ]�∂2
1δu+ [δa, (·)T ]�∂2

1u

+ [σ, (·)T ]� δf + [δσ, (·)T ]�f
)
.(231)

By assumption (68) and by (223) in Step 2 we obtain estimate (228)
from identity (230). By assumptions (77) and (78) and by (224) and
(225) from Step 2 and from writing

(∂2
1uT − σE∂2

1vT )(x) =

∫
dy∂2

1ψT (x− y)

×
(
(u(y)− u(x))− σ(x)(v(y, a(x))− v(x, a(x)))− ν(x)(y − x)1

)
,

which entails with help of (18)

sup
T≤1

(T
1
4 )2−2α‖δa(∂2

1uT − σE∂2
1vT )‖ . ‖δa‖M,

we obtain (229) from (231).

Step 4. Application of Lemma 5 and conclusion. We first apply
Lemma 5 with I = 1 and f playing the role of fi=1 (which does not
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depend on a0). The hypothesis (61) is ensured by our assumption (67)
with N0 playing the role of Ni=1. The hypothesis (63) is settled through
(228) in Step 3 with N2 given by [a]M +NN0. Hence the two outputs
(64) and (65) of Lemma 5 take the form of

M . [a]M +NN0 +N0([σ] + ‖σ‖[a]),(232)

[u] .M +N0‖σ‖.(233)

The smallness of [a] and the boundedness of ‖σ‖, cf (71), imply that
(232) simplifies to M . NN0 +N0([σ]+[a]), which by (66) means (73).
Inserting (73) into (233) and using once more ‖σ‖ ≤ 1 yields (74).

We now apply Lemma 5 with I = 3 and (f, ∂2
1v, δf) playing the role

of (f1, f2, f3). In view of assumption (70), of (222) in Step 1, and
of assumption (81), the triplet (v, ∂v

∂a0
, δv) plays the role of (v1, v2, v3);

by (220) & (221) in Step 1, it also satisfies the estimates (61) with
(N1, N2, N3) = (N0, N0, δN0). We apply Lemma 5 to δu playing the
role of u, (δσ, σδa, σ) playing the role of (σ1, σ2, σ3), and δM playing
the role of M . The hypothesis (63) is settled through Step 3 with N2

estimated by the rhs of (229). Hence the two outputs (64) and (65) of
Lemma 5 take the form

δM . expression on rhs of (229) + [a]δM

+N0([δσ] + ‖δσ‖[a] + [σδa] + ‖σδa‖[a]) + δN0([σ] + ‖σ‖[a]),

[δu] . δM +N0(‖δσ‖+ ‖σδa‖) + δN0‖σ‖.
Making use of the constraints (71) on σ and a, in particular to absorb
[a]δM into the lhs, this simplifies to

δM . ([δa] + ‖δa‖)M +N(N0δN + δN0) + δNN0

+N0([δσ] + ‖δσ‖+ [δa] + ‖δa‖) + δN0([σ] + [a]),

[δu] . δM +N0(‖δσ‖+ ‖δa‖) + δN0.

Making use of (66) and (75), this reduces to

δM .MδN +N(N0δN + δN0) +N0δN,(234)

[δu] . δM +N0δN + δN0.(235)

Making use of the estimate (73) on M we just established, (234) implies

δM . N(N0δN + δN0) +N0δN.

Clearly, this estimate implies the desired (83). Plugging (83) into (235)
yields the desired (84).
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Proof of Lemma 5.
All functions are 1-period if not stated otherwise.
Step 1. Estimate of vi and ∂vi

∂a0
. We claim

sup
a0

[{vi,
∂vi
∂a0

}(·, a0)]α . Ni.(236)

This follows immediately from assumption (61) on fi and the definition
(62) of vi via Lemma 9 and the argument of Step 1 of Corollary 2.

Step 2. Freezing-in the coefficients. We claim that we have for all
points x0

(∂2 − a(x0)∂2
1)
(
uT − σi(x0)viT (·, a(x0))

)
= PgTx0

,(237)

where the function gTx0
is estimated as follows

|gTx0
(x)| . Ñ2

(
(T

1
4 )2α−2 + (T

1
4 )α−2dα(x, x0)

)
for T ≤ 1(238)

with the abbreviation

Ñ2 := N2 + [a]α[u]α +Ni([σi]α + ‖σi‖[a]α).(239)

Indeed, making use of P 2 = P we write

(∂2 − a(x0)∂2
1)uT = P (σi(x0)fiT (·, a(x0)) + gTx0

)(240)

with gTx0
defined through

gTx0
:= ∂2uT − P (a∂2

1uT + σiEfiT ) + (a− a(x0))∂2
1uT

+ (σi − σi(x0))EfiT + σi(x0)(EfiT − fiT (·, a(x0))).(241)

By definition (62) of vi(·, a0), to which we apply (·)T , which we evaluate
for a0 = a(x0), and which we contract with σi(x0) we have

(∂2 − a(x0)∂2
1)σi(x0)viT (·, a(x0)) = Pσi(x0)fiT (·, a(x0)).(242)

From the combination of (240) and (242) we obtain (237), so that it
remains to estimate gTx0

, cf (241). Making use of the assumption (63)
we obtain

|gTx0
(x)| ≤ N2(T

1
4 )2α−2 + dα(x, x0)

(
[a]α‖∂2

1uT‖

+ [σi]α sup
a0

‖fiT‖+ ‖σi‖[a]α sup
a0

‖( ∂fi
∂a0

)T‖
)
,

so that by (18) and by assumption (61)

|gTx0
(x)| . N2(T

1
4 )2α−2

+ (T
1
4 )α−2dα(x, x0)

(
[a]α[u]α +Ni([σi]α + ‖σi‖[a]α)

)
which can be consolidated into the estimate (238).
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Step 3. PDE estimate. Under the outcome of Step 2, we have for all
points x0 and radii R� L

1

R2α
inf
`
‖uT − σi(x0)viT (·, a(x0))− `‖BR(x0)

. (
R

L
)2(1−α) 1

L2α
inf
`
‖uT − σi(x0)viT (·, a(x0))− `‖BL(x0)

+ Ñ2
( L2

R2α(T
1
4 )2−2α

+
L2+α

R2α(T
1
4 )2−α

)
,(243)

where ` runs over all functions spanned by 1 and x1 and ‖ · ‖BR(x0) de-
notes the supremum norm restricted to the ball BR(x0) in the intrinsic
metric (15) with center x0 and radius R. This step mimics the heart of
the kernel-free approach of Krylov & Safanov to the classical Schauder
theory, see [12, Theorem 8.6.1]. Here comes the argument: Wlog we
restrict to x0 = 0 and write BR = BR(0) and ‖ · ‖R := ‖ · ‖BR . Let w>
be the (non-periodic) solution of

(∂2 − a(0)∂2
1)w> = I(BL)gT0 ,

so that in view of (237), where we write PgT0 = gT0 + c with c =
−
∫

[0,1)2 g
T
0 , the function

w< := uT − σi(0)viT (·, a(0))− w>(244)

satisfies

(∂2 − a(0)∂2
1)w< = c in BL(245)

with the constant c given by c := −
∫

[0,1)2 g
T
0 . By standard estimates

for the heat equation we have

‖w>‖ . L2‖gT0 ‖L,(246)

‖{∂2
1 , ∂2}w<‖L

2
. L−2‖w< − `L‖L(247)

for any function `L ∈ span{1, x1}. The interior estimate (247) is
slightly non-standard because of the non-vanishing rhs c but can be
easily reduced to the case of c = 0: First of all, replacing w by w − `L
in (245) and (247) we may reduce to the case of `L = 0. Testing (245)
with a cut-off function for BL that is smooth on scale L we learn that
|c| . L−2‖w<‖L. We then may replace w by w + cx2 which reduces
the further estimate to the standard case of c = 0. We refer to [12,
Theorem 8.4.4] for an elementary argument for (247) in case of c = 0
only relying on the maximum’s principle via Bernstein’s argument. We
refer to [12, Exercise 8.4.8] for the statement (246) via the representa-
tion through the heat kernel. Since by construction, cf (244), we have
uT −σi(0)viT (·, a(0)) = w< + w> we obtain by the triangle inequality
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for a suitably chosen `R ∈ span{1, x1}
‖uT − σi(0)viT (·, a(0))− `R‖R
≤ ‖w< − `R‖R + ‖w>‖R . R2‖{∂2

1 , ∂2}w<‖R + ‖w>‖R.
Inserting (247) for R � L, and another application of the triangle
inequality this yield

‖uT − σi(0)viT (·, a(0))− `R‖R
. L−2R2‖w< − `L‖L + ‖w>‖R
≤ L−2R2‖uT − σi(0)viT (·, a(0))− `L‖L + 2‖w>‖.

Inserting (246) & (238) this yields

inf
`
‖uT − σi(0)viT (·, a(0))− `‖R

. L−2R2 inf
`
‖uT − σi(0)viT (·, a(0))− `‖L

+ Ñ2L2((T
1
4 )2α−2 + Lα(T

1
4 )α−2),(248)

where we recall that ` runs over span{1, x1}. Dividing by R2α gives
(243).

Step 4. Equivalence of norms. We claim that the modelling constant
M of u is estimated by the expression appearing in Step 3:

M .M ′,(249)

where we have set for abbreviation

M ′ := sup
x0

sup
R≤4

R−2α inf
`
‖u− σi(x0)vi(·, a(x0))− `‖BR(x0)(250)

and where the maximal radius 4 is chosen such that a ball of half of that
radius covers the periodic cell [0, 1]2. In fact, also the reverse estimate
holds, highlighting once more that the modulation function ν in the
definition of modelledness (Definition 1) plays a small role compared to
σi. The equivalence of (249) and (250) on the level of standard Hölder
spaces is the starting point for the approach to Schauder theory by
Krylov and Safanov, see [12, Theorem 8.5.2]. We first argue that the `
in (250) may be chosen to be independent of R, that is,

sup
x0

inf
`

sup
R≤4

R−2α‖u− σi(x0)vi(·, a(x0))− `‖BR(x0) .M ′.(251)

Indeed, fix x0, say x0 = 0, and let `R = νRx1 + cR be (near) optimal in
(250), then we have by definition of M ′ and by the triangle inequality
R−2α‖`2R−`R‖R .M ′. This implies R1−2α|ν2R−νR|+R−2α|c2R−cR| .
M ′, which thanks to α > 1

2
yields by telescoping R1−2α|νR − νR′| +

R−2α|cR − cR′ | . M ′ for all R′ ≤ R and thus the existence of ν, c ∈ R
such that R1−2α|νR − ν| + R−2α|cR − c| . M ′, so that ` := νx1 + c
satisfies

R−2α‖`R − `‖R .M ′.(252)
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Hence we may pass from (250) to (251) by the triangle inequality.

It is clear from (251) that necessarily for any x0, say x0 = 0, the
optimal ` must be of the form `(x) = u(0) −σi(0)vi(0, a(0)) −ν(0)x1.
This establishes the main part of (249), namely the modelledness (21)
for any “base” point x and any y of distance at most 4. Since B4(x)
covers a periodic cell, we may use (21) for y = x + (1, 0) so that by
periodicity of y 7→ (u(y) − u(x)) −σi(x)(vi(y, a(x)) − vi(x, a(x))) we
extract |ν(x)| . M ′. Since α ≥ 1

2
, this implies that |ν(x)(x − y)1| .

M ′d2α(x, y) for all y 6∈ B4(x). Hence once again by periodicity of
y 7→ (u(y)− u(x)) −σi(x)(vi(y, a(x))− vi(x, a(x))), (21) holds also for
y 6∈ B4(x).

Step 5. Modelledness implies approximation property. We claim that
for any mollification parameter 0 < T ≤ 1, radius L, and point x0 we
have

1

(T
1
4 )2α
‖(uT − u)− σi(x0)(viT − vi)(·, a(x0))‖BL(x0)

.M + Ñ2(
L

T
1
4

)α,(253)

where we recall the definition (239) of Ñ . Wlog we restrict ourselves
to x0 = 0, write vi(y, x) = vi(y, a(x)), and note that the first moment
of ψT vanishes

(uT − u)(x)− σi(0)(viT − vi)(x, 0)

=

∫
dyψT (x− y)

(
(u(y)− u(x))− σi(0)(vi(y, 0)− vi(x, 0))

− ν(x)(y − x)1

)
.

We split the rhs into three terms:

(uT − u)(x)− σi(0)(viT − vi)(x, 0)

=

∫
dyψT (x− y)

(
(u(x)− u(y))− σi(x)(vi(y, x)− vi(x, x))

− ν(x)(x− y)1

)
+

∫
dyψT (x− y)(σi(x)− σi(0))(vi(y, 0)− vi(x, 0))

+

∫
dyψT (x− y)σi(x)

(
(vi(y, x)− vi(y, 0))− (vi(x, x)− vi(x, 0))

)
.

For the first rhs term we appeal to the modelledness assumption (21),
which implies that the integrand is estimated by |ψT (x−y)|M d2α(x, y).

Hence by (18) the integral is estimated by M (T
1
4 )2α. The integrand of

the second rhs term is estimated by |ψT (x− y)| [σi]α dα(x, 0) [vi(·, 0)]α
dα(x, y) so that by (18) and (236) the integral is controlled by . [σi]α
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dα(x, 0) Ni (T
1
4 )α; since x ∈ BL(0) it is controlled by . [σi]α L

α Ni

(T
1
4 )α. Using the identity (and dropping the index i)

(v(y, a(x))− v(y, a(0)))− (v(x, a(x))− v(x, a(0))) = (a(x)− a(0))

×
∫ 1

0

ds
( ∂v
∂a0

(y, sa(x) + (1− s)a(0))− ∂v

∂a0

(x, sa(x) + (1− s)a(0)))
)
,

we see that the integrand of the third rhs term is estimated by ‖σi‖
dα(x, y) [a]α d

α(x, 0) supa0
[ ∂vi
∂a0

(·, a0)]α; hence in view of (236) the third

term itself is estimated by ‖σi‖ Ni (T
1
4 )α [a]α Lα. Collecting these

estimates we obtain for x ∈ BL(0)

|(uT − u)(x)− σi(0)(viT − vi)(x, 0)|

.M(T
1
4 )2α +Ni([σi]α + ‖σi‖[a]α)Lα(T

1
4 )α.

In view of the definition (239) of Ñ2, this yields (253).

Step 6. Estimate of M . We claim that

M . Ñ2.(254)

Indeed, we now may buckle and to this purpose rewrite (243) from Step
3 with help of the triangle inequality as

1

R2α
inf
`
‖u− σi(x0)vi(·, a(x0))− `‖BR(x0)

. (
R

L
)2−2α 1

L2α
inf
`
‖u− σi(x0)vi(·, a(x0))− `‖BL(x0)

+ Ñ2
( L2

R2α(T
1
4 )2−2α

+
L2+α

R2α(T
1
4 )2−α

)
+ (

T
1
4

R
)2α 1

(T
1
4 )2α
‖(uT − u)− σi(x0)(viT − vi)(·, a(x0))‖BL(x0).

We now insert (253) from Step 5 to obtain

1

R2α
inf
`
‖u− σi(x0)vi(·, a(x0))− `‖BR(x0)

. (
R

L
)2−2αM + Ñ2

( L2

R2α(T
1
4 )2−2α

+
L2+α

R2α(T
1
4 )2−α

)
+ (

T
1
4

R
)2αM + Ñ2L

α(T
1
4 )α

R2α
.(255)

Here we have used that

sup
x0

sup
L

1

L2α
inf
`
‖u− σi(x0)vi(·, a(x0))− `‖BL(x0) .M

by the definition of the modelling constant M with `x0(x) = u(x0)

−σi(x0)vi(x0, a(x0)) −ν(x0)(x − x0)1. Relating the length scales T
1
4

and L to the given R ≤ 4 in (255) via T
1
4 = εR (so that in particular
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as required T ≤ 1 since we think of ε � 1) and L = ε−1R, taking the
supremum over R ≤ 4 and x0 yields by definition (250) of M ′

M ′ . (ε2−2α + ε2α)M +
(
ε2α−4 + ε−4 + 1

)
Ñ2.

By (249) in Step 4, this implies

M . (ε2−2α + ε2α)M + ε−4Ñ2.

Since 0 < α < 1, we may choose ε sufficiently small such that the first
rhs term may be absorbed into the lhs yielding the desired estimate
M . Ñ2 (note that M <∞ is part of our assumption).

Step 7. Conclusion. Clearly, (64) and (65) immediately follow from
the combination of

M . N2 + [a]α[u]α +Ni([σi]α + ‖σi‖[a]α),

[u]α .M +Ni‖σi‖.

The first estimate is identical to (254) in Step 6 into which we plug the
definition (239) of Ñ . The second estimate is an application of Step 2
in the proof of Lemma 2 with v(y, x) := σi(x)vi(y, ai(x)), so that the
hypothesis (33) holds with N replaced by ‖σi‖Ni, cf (236) in Step 1.

Proof of Lemma 2.
We write for abbreviation [·] := [·]α.
Step 1. We claim

[ν]2α−1 .M +N.(256)

Indeed, introducing `x(y) := ν(x)y1 we see that (31) can be rewritten
as

|(u− v(·, x)− `x)(y)− (u− v(·, x)− `x)(x)| ≤Md2α(y, x),

so that we obtain by the triangle inequality

|(u− v(·, x)− `x)(y)− (u− v(·, x)− `x)(y′)|
≤M(d2α(y, x) + d2α(y′, x)).(257)

In combination with (28) this yields by the triangle inequality

|(u− v(·, x′)− `x)(y)− (u− v(·, x′)− `x)(y′)|
≤M(d2α(y, x) + d2α(y′, x)) +Ndα(x, x′)dα(y, y′).

We now take the difference of this with (257) with x replaced by x′ to
obtain, once more by the triangle inequality,

|(`x − `x′)(y)− (`x − `x′)(y′)| ≤M
(
d2α(y, x) + d2α(y′, x)

+ d2α(y, x′) + d2α(y′, x′)
)

+Ndα(x, x′)dα(y, y′).
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By definition of ` and with the choice of y = x and y′ = x+ (R, 0), this
assumes the form

|ν(x)− ν(x′)|R
≤M(R2α + d2α(x, x′) + (R + d(x, x′))2α) +Ndα(x, x′)Rα.

With the choice of R = d(x, x′) this turns into

|ν(x)− ν(x′)|d(x, x′) . (M +N)d2α(x, x′),

which amounts to the desired (256).

Step 2. We claim

[u] + ‖ν‖ .M +N.(258)

By the triangle inequality on (31) we obtain for all pairs of points
|ν(x)(x−y)1| ≤ |u(x)−u(y)| +[v(·, x)]dα(y, x) +Md2α(x, y). Choosing
y = x+(1, 0), appealing to the 1-periodicity of u, taking the supremum
over x, and appealing to (33), this turns into the ν-part of (258):

‖ν‖ .M +N.(259)

We now consider pairs of points (x, y) with d(x, y) ≤ 2. By the triangle
inequality from (31) we get

1

dα(x, y)
|u(x)− u(y)| .M +N + ‖ν‖.

By 1-periodicity, this extends to all pairs so that

[u] .M +N + ‖ν‖.

Inserting (259) into this yields the u-part of (258).

Step 3. Dyadic decomposition. For τ < T (with T a dyadic multiple
of τ) we claim that(

ufT − E[v, (·)T ]�f − ν[x1, (·)T ]f
)

−
(
ufτ − E[v, (·)τ ]�f − ν[x1, (·)τ ]f

)
T−τ

=
∑
τ≤t<T

((
[u, (·)t]− E[v, (·)t]− ν[x1, (·)t]

)
ft

− [ν, (·)t][x1, (·)t]f − [E, (·)t][v, (·)t]�f
)
T−2t

,(260)

where the sum runs over the dyadic “times” t = T
2
, T

4
, · · · , τ . By tele-

scoping based on the semi-group property (17) this reduces to(
uf2t − E[v, (·)2t]�f − ν[x1, (·)2t]f

)
−
(
uft − E[v, (·)t]�f − ν[x1, (·)t]f

)
t

=
(
[u, (·)t]− E[v, (·)t]− ν[x1, (·)t]

)
ft

− [ν, (·)t][x1, (·)t]f − [E, (·)t][v, (·)t]�f,
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and splits into the three statements

uf2t − (uft)t = [u, (·)t]ft,(261)

ν[x1, (·)2t]f − (ν[x1, (·)t]f)t = ν[x1, (·)t]ft + [ν, (·)t][x1, (·)t]f,
E[v, (·)2t]�f − (E[v, (·)t]�f)t = E[v, (·)t]ft + [E, (·)t][v, (·)t]�f.

Plugging in the definition of the commutator [ν, (·)t], the middle state-
ment reduces to

[x1, (·)2t]f − ([x1, (·)t]f)t = [x1, (·)t]ft.(262)

By the definition of the commutator [E, (·)t], the last statement reduces
to

[v, (·)2t]�f − ([v, (·)t]�f)t = [v, (·)t]ft,(263)

which by definition of [v, (·)T ]�f splits into

vf2t − (vft)t = [v, (·)t]ft and (v �f)2t − ((v �f)t)t = 0.(264)

Now identities (261), (262), and (264) follow immediately from the
semi-group property.

Step 4. For τ < T ≤ 1 (with T a dyadic multiple of τ) we claim the
estimate

‖
(
ufT − E[v, (·)T ]�f − ν[x1, (·)T ]f

)
−
(
ufτ − E[v, (·)τ ]�f − ν[x1, (·)τ ]f

)
T−τ‖

. (M +N)N1(T
1
4 )3α−2.(265)

Indeed, by the dyadic representation (260), the triangle inequality in
‖ · ‖ and the fact that (·)T−2t is bounded in that norm, cf (18), it is
enough to show that the rhs term of (260) under the parenthesis is

estimated by (M + N)N1 (t
1
4 )3α−2 for all t ≤ 1; here we crucially use

that by assumption 3α − 2 > 0 for the convergence of the geometric
series. Using Step 1 to control [ν]2α−1 in (266) by M+N , this estimate
splits into

‖
(
[u, (·)t]− E[v, (·)t]− ν[x1, (·)t]

)
ft‖ .MN1(t

1
4 )3α−2,

‖[ν, (·)t][x1, (·)t]f‖ . [ν]2α−1N(t
1
4 )3α−2,(266)

‖[E, (·)t][v, (·)t]�f‖ . NN1(t
1
4 )3α−2.(267)

Appealing to our assumptions (29) & (30) and to Lemma 10, these
three estimates reduce to

‖
(
[u, (·)t]− E[v, (·)t]− ν[x1, (·)t]

)
f̃‖ .M‖f̃‖(t

1
4 )2α,

‖[ν, (·)t]f̃‖ . [ν]β‖f̃‖(t
1
4 )β,(268)

‖[E, (·)t]ṽ‖ . sup
x,x′

1

dα(x, x′)
‖ṽ(·, x)− ṽ(·, x′)‖(t

1
4 )α,(269)
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where f̃ = f̃(y) plays the role of ft or [x1, (·)t]f , and ṽ = ṽ(x, y)
plays the role of ([v(·, x), (·)t] � f)(y), but now can be, like ν, generic
functions; similarly, β plays the role of 2α−1 but could be any exponent
in [0, 1]. Using the definition of E, we may rewrite these estimates more
explicitly as

|
∫
dyψt(x− y)

((
u(x)− u(y)

)
−
(
v(x, x)− v(y, x)

)
− ν(x)(x− y)1

)
f̃(y)| .M‖f̃‖(t

1
4 )2α,

|
∫
dyψt(x− y)

(
ν(x)− ν(y)

)
f̃(y)| . [ν]β‖f̃‖(t

1
4 )β,

|
∫
dyψt(x− y)

(
ṽ(y, x)− ṽ(y, y)

)
|

. sup
x,x′

1

dα(x, x′)
‖ṽ(·, x)− ṽ(·, x′)‖|(t

1
4 )α.

All three estimates rely on the moment bounds (18), the first estimate
is then an immediate consequence of (31) and the two last ones tauto-
logical.

Step 5. For

F τ := ufτ − E[v, (·)τ ]�f − ν[x1, (·)τ ]f
we claim the estimates

sup
T≤1

(T
1
4 )2−2α‖ufT − F τ

T−τ‖ . (M +N)N1,(270)

sup
T≤1

(T
1
4 )2−α‖F τ

T ‖ . (M +N + ‖u‖)N1.(271)

Indeed, (270) follows from (265) in Step 4 via the triangle inequality
and

sup
T≤1

(T
1
4 )2−2α‖E[v, (·)T ]�f‖

(34)

≤ NN1,

sup
T≤1

(T
1
4 )2−2α‖ν[x1, (·)T ]f‖

(258),(342)

≤ (M +N)N1,

the latter being a consequence of Step 2 and Lemma 10; here, we make
extensively use of T ≤ 1. Estimate (271) in turn follows from (270)
via ‖F τ

T ‖ = ‖(F τ
T−τ )τ‖ . ‖F τ

T−τ‖ (cf (17) and (18)) by the triangle
inequality and (29), again making use of T ≤ 1.

Step 6. Conclusion. Indeed by (271) in Step 5, the sequence {F τ}τ↓0
of functions is bounded as distributions in Cα−2. By standard weak
compactness based on the equivalence of norms from Step 1 in the
proof of Lemma 9, there exists a subsequence τn ↓ 0 and a distribution
we give the name of u � f such that F τn ⇀ u � f . By standard lower
semi-continuity, we may pass to the limit in (270) in Step 5 to obtain
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(35). Likewise, we may pass to the limit in (265) in Step 4 to obtain
(32).

Proof of Lemma 4.
The proof follows the lines of Steps 3 through 6 of the proof of Lemma
2.
Step 1. For τ < T (with T a dyadic multiple of τ) we claim the
formula (

b∂2
1uT − σiE[b, (·)T ]�∂2

1vi
)
−
(
b∂2

1uτ − σiE[b, (·)τ ]�∂2
1vi
)
T−τ

=
∑
τ≤t<T

((
[b, (·)t]∂2

1ut − σiE[b, (·)t]∂2
1vit
)

− [σi, (·)t]E[b, (·)t]�∂2
1vi − σi[E, (·)t][b, (·)t]�∂2

1vi

)
T−2t

,(272)

where the sum runs over t = T
2
, T

4
, . . . , τ . By telescoping based on the

semi-group property the formula reduces to(
b∂2

1u2t − σiE[b, (·)2t]�∂2
1vi
)
−
(
b∂2

1ut − σiE[b, (·)t]�∂2
1vi
)
t

=
(
[b, (·)t]∂2

1ut − σiE[b, (·)t]∂2
1vit
)

+ [σi, (·)t]E[b, (·)t]�∂2
1vi + σi[E, (·)t][b, (·)t]�∂2

1vi,

and splits into the two statements

b∂2
1u2t − (b∂2

1ut)t = [b, (·)t]∂2
1ut,(273)

σiE[b, (·)2t]�∂2
1vi − (σiE[b, (·)t]�∂2

1vi)t = σiE[b, (·)t]∂2
1vit

+[σi, (·)t]E[b, (·)t]�∂2
1vi + σi[E, (·)t][b, (·)t]�∂2

1vi.

By definition of the commutator [σi, (·)t], the last statement reduces to

E[b, (·)2t]�∂2
1vi − (E[b, (·)t]�∂2

1vi)t

= E[b, (·)t]∂2
1vit + [E, (·)t][b, (·)t]�∂2

1vi,

and by the definition of [E, (·)t] further to

[b, (·)2t]�∂2
1vi − ([b, (·)t]�∂2

1vi)t = [b, (·)t]∂2
1vit.(274)

Now (273) and (274) are consequences of the semi group property.

Step 2. We claim the estimate

‖
(
b∂2

1uT − σiE[b, (·)T ]�∂2
1vi
)
−
(
b∂2

1uτ − σiE[b, (·)τ ]�∂2
1vi
)
T−τ‖

.
(
[b]αM +N0Ni([σi]α + ‖σi‖[a]α)

)
(T

1
4 )3α−2.

In view of (272) this estimate splits into

‖[b, (·)t]∂2
1ut − σiE[b, (·)t]∂2

1vit‖ . [b]αM(t
1
4 )3α−2,(275)

‖[σi, (·)t]E[b, (·)t]�∂2
1vi‖ . N0Ni[σi]α(t

1
4 )3α−2,(276)

‖[E, (·)t][b, (·)t]�∂2
1vi‖ . N0Ni[a]α(t

1
4 )3α−2.(277)
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Estimate (276) follows from (268) (with σi playing the role of ν,

E[b, (·)T ] �∂2
1vi playing the role of f̃ , and β playing the role of α) and

our assumption (58) (without ∂
∂a0

). Estimate (277) from (269) (with

[b, (·)t] � ∂2
1vi playing the role of ṽ and our assumptions (57) and (58)

(with ∂
∂a0

),

1

dα(x, x′)
‖([b, (·)t]�∂2

1vi)(·, a(x))− ([b, (·)t]�∂2
1vi)(·, a(x′))‖

≤ [a]α sup
a0

‖ ∂

∂a0

[b, (·)t]�∂2
1vi‖ ≤ [a]αN0Ni(t

1
4 )2α−2.

For (275) we write(
[b, (·)t]∂2

1ut − σiE[b, (·)t]∂2
1vit
)
(x)

=

∫
dyψt(x− y)(b(x)− b(y))

(
∂2

1ut(y)− σi(x)∂2
1vit(y, a(x))

)
(278)

and

∂2
1ut(y)− σi(x)∂2

1vit(y, a(x)) =

∫
dz∂2

1ψt(y − z)×(
u(z)− u(x)− σi(x)(vi(z, a(x))− vi(x, a(x)))− ν(x)(z − x)1

)
.

Hence by the modelledness assumption of u, the triangle inequality
d(z, x) ≤ d(z, y) + d(y, x), and (18) we obtain

|∂2
1ut(y)− σi(x)∂2

1vit(y, a(x))| .M((t
1
4 )2α−2 + (t

1
4 )−2d2α(y, x)).

Plugging this into (278), we obtain using (18) once more∣∣[b, (·)t]∂2
1ut − σiE[b, (·)t]∂2

1vit
∣∣(x) . [b]αM(t

1
4 )3α−2,

as desired.

The further two steps are as Steps 5 and 6 in Lemma 2.

Proof of Lemma 3.
We write [·] for [·]α.
Step 1. Suppose that {v(·, a0)}a0 and {vi(·, a0)}a0 , i = 0, 1, are three
families of functions and | · | a semi-norm on functions of x (like [·])
such that

sup
a0

|{1, ∂

∂a0

}v(·, a0)| ≤ N0,(279)

sup
a0

|{1, ∂

∂a0

,
∂2

∂a2
0

}vi(·, a0)| ≤ N0,(280)

sup
a0

|{1, ∂

∂a0

}(v1 − v0)(·, a0)| ≤ δN0(281)

for some constants N0, δN0; the reason for this more general frame-
work is useful because we shall also apply it with v(·, a0) replaced by
[v(·, a0), (·)T ]�f , the supremums norm ‖ · ‖ playing the role of | · |, and
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with (N0, δN0) replaced by (N1N0(T
1
4 )2α−2, N1δN0(T

1
4 )2α−2). We claim

that this entails

|σ(x)v(·, a(x))| ≤ N0‖σ‖,(282)

|σ(x)v(·, a(x))− σ(x′)v(·, a(x′))| ≤ N0([σ] + ‖σ‖[a])dα(x, x′),(283)

|σ1(x)v1(·, a1(x))− σ0(x)v0(·, a0(x))|
≤ N0(‖σ1 − σ0‖+ max

i
‖σi‖‖a1 − a0‖) + δN0 max

i
‖σi‖,(284)

|
(
σ1(x)v1(·, a1(x))− σ0(x)v0(·, a0(x))

)
−
(
σ1(x′)v1(·, a1(x′))− σ0(x′)v0(·, a0(x′))

)
|

≤
(
N0 max

i,j

(
[σ1 − σ0] + ‖σi‖[a1 − a0] + [σi]‖a1 − a0‖

+ ‖σ1 − σ0‖[ai] + ‖σi‖[aj]‖a1 − a0‖
)

+ δN0 max
i

(
[σi] + ‖σi‖[ai]

))
dα(x, x′).(285)

Estimate (282) follows immediately from (279). We treat (283), (284),
and (285) along the same lines, which is a bit of an overkill for (283) and
(284). We start with the two elementary, and purposefully symmetric,
formulas

σv − σ′v′ = 1

2
(σ − σ′)(v + v′) +

1

2
(σ + σ′)(v − v′)(286)

and

(σ1v1 − σ0v0)− (σ′1v
′
1 − σ′0v′0)

=
1

4
((σ1 − σ0)− (σ′1 − σ′0))(v1 + v′1 + v0 + v′0)

+
1

4
((σ1 + σ′1 + σ0 + σ′0))((v1 − v0)− (v′1 − v′0))

+
1

4
((σ1 − σ′1) + (σ0 − σ′0))((v1 − v0) + (v′1 − v′0))

+
1

4
((σ1 − σ0) + (σ′1 − σ′0))((v1 − v′1) + (v0 − v′0)).(287)

We use the first formula twice. The first application is for σ = σ(x)
and σ′ = σ(x′), v = v(·, a(x)), and v′ = v(·, a(x′)) to obtain using the
triangle inequality

|σ(x)v(·, a(x))− σ(x′)v′(·, a(x′))|

≤ [σ]dα(x, x′) sup
a0

|v(·, a0)|+ ‖σ‖ sup
a0

| ∂v
∂a0

(·, a0)|[a]dα(x, x′).

In view of the assumption (279) this yields (283). The second ap-
plication is for σ = σ1(x) and σ′ = σ0(x), v = v1(·, a1(x)), and
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v′ = v0(·, a0(x)). We obtain the inequality

|σ1(x)v1(·, a1(x))− σ0(x)v0(·, a0(x))|
≤ ‖σ1 − σ0‖max

i
sup
a0

|vi(·, a0)|

+ max
i
‖σi‖|v1(·, a1(x))− v0(·, a0(x))|.(288)

In view of the assumption (280), the first rhs term is estimated as
desired. For the second rhs term we interpolate linearly in the sense of
vs := sv1 +(1− s)v0 and as := sa1 +(1− s)a0, to the effect of

v1(·, a1(x))− v0(·, a0(x))

=

∫ 1

0

ds
(
(v1 − v0)(·, as(x)) +

∂vs
∂a0

(·, as(x))(a1 − a0)(x),(289)

from which we learn

|v1(·, a1(x))− v0(·, a0(x))|

≤ sup
a0

|v1 − v0|+ max
i

sup
a0

| ∂vi
∂a0

|‖a1 − a0‖.(290)

Inserting this into (288) and in view of the assumption (280)&(281) we
obtain the remaining part of (284).

We use the second formula (287) for σi = σi(x), σ′i = σi(x
′), vi =

vi(·, ai(x)), and v′i = vi(·, ai(x′)) to obtain

|
(
σ1(x)v1(·, a1(x))− σ0(x)v0(·, a0(x))

)
−
(
σ1(x′)v1(·, a1(x′))− σ0(x′)v0(·, a0(x′))

)
|

≤ [σ1 − σ0]dα(x, x′) max
i

sup
a0

|vi(·, a0)|

+ max
i
‖σi‖|(v1(·, a1(x))− v0(·, a0(x)))− (v1(·, a1(x′))− v0(·, a0(x′)))|

+ max
i

[σi]d
α(x, x′) sup

y
|v1(·, a1(y))− v0(·, a0(y))|

+ ‖σ1 − σ0‖max
i

sup
a0

| ∂vi
∂a0

(·, a0)|[ai]dα(x, x′).

In order to deduce (285) from this inequality, in view of (290) and of
our assumption (280) & (281), it remains to show for the second rhs
terms

|(v1(·, a1(x))− v0(·, a0(x)))− (v1(·, a1(x′))− v0(·, a0(x′)))|

≤ sup
a0

| ∂
∂a0

(v1 − v0)(·, a0)|max
i

[ai]d
α(x, x′)

+ max
i

sup
a0

|∂
2vi
∂a2

0

(·, a0)|max
j

[aj]d
α(x, x′)‖a1 − a0‖

+ max
i

sup
a0

| ∂vi
∂a0

(·, a0)|[a1 − a0]dα(x, x′).(291)
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We appeal again to the outcome (289) of the linear interpolation, which
immediately yields the first rhs term (291) from the first rhs term in
(289). For the second rhs term in (291), we appeal once more to formula
(286) (applied to σ = ∂vs

∂a0
(·, as(x)), σ′ = ∂vs

∂a0
(·, as(x′)), v = (a1−a0)(x),

and v′ = (a1 − a0)(x′)).

Step 2. Argument for part i) of the lemma. We apply Lemma 2
to the family of functions v(·, x) := σ(x)v(·, a(x)) and the family of
distributions v(·, x)� f := σ(x)v(·, a(x))� f , both parameterized by x.
We claim that the hypotheses (28) and (30) of Lemma 2 are satisfied
with

N = N0([σ] + ‖σ‖[a]).(292)

We also claim that in addition the hypotheses (33) and (34) of Lemma
2 are satisfied provided N is enlarged to

N = N0([σ] + ‖σ‖+ ‖σ‖[a]) . N0 for [σ], [a], ‖σ‖ ≤ 1.(293)

Indeed, for (28) this follows from (283) of Step 1 with the Hölder
semi-norm [·] playing the role of | · |. In the same vein, hypothesis
(33) follows from (282). The relevant hypothesis (279) of Step 1 co-
incides with the assumption (37) of this lemma. For (30) this follows
again from (283) but this time with [v(·, a0), (·)T ] � f playing the role
of v(·, a0), the supremum norm ‖ · ‖ playing the role of | · |, and with

N1N0(T
1
4 )2α−2, N1δN0(T

1
4 )2α−2 playing the role of (N0, δN0). Likewise,

hypothesis (34) follows from (282). The relevant hypothesis (279) of
Step 1 coincide with the assumptions (38) of this lemma. With the def-
inition (292), the output (32) of Lemma 2 quantifies the claim (39) of
this lemma. Likewise, with definition (293), the output (35) of Lemma
2 turns into the claim (41) of this lemma.

Step 3. Argument for part ii) of the lemma. We apply Lemma 2
to the family of functions v(·, x) := σ1(x)v1(·, a1(x)) −σ0(x)v0(·, a0(x))
and the family of distributions v(·, x)�f := σ1(x) v1(·, a1(x))�f −σ0(x)
v0(·, a0(x))�f , both parameterized by x. We claim that the hypotheses
(28) and (30) of Lemma 2 are satisfied with

N = N0 max
i,j

(
[σ1 − σ0] + ‖σi‖[a1 − a0] + [σi]‖a1 − a0‖

+ ‖σ1 − σ0‖[ai] + ‖σi‖[aj]‖a1 − a0‖
)

+ δN0 max
i,j

(
[σi] + ‖σi‖[aj]

)
.(294)
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We also claim that in addition the hypotheses (33) and (34) of Lemma
2 are satisfied provided N is enlarged to

N = N0 max
i,j

(
[σ1 − σ0] + ‖σ1 − σ0‖+ ‖σi‖[a1 − a0]

+ ‖σi‖‖a1 − a0‖+ [σi]‖a1 − a0‖+ ‖σ1 − σ0‖[ai]
+ ‖σi‖[aj]‖a1 − a0‖

)
+ δN0 max

i,j

(
[σi] + ‖σi‖+ ‖σi‖[aj]

)
. N0

(
[σ1 − σ0] + ‖σ1 − σ0‖+ [a1 − a0] + ‖a1 − a0‖+ δN0

for [σ], [a], ‖σ‖ ≤ 1.(295)

Indeed, for (28) this follows from (285) of Step 1 with the Hölder semi-
norm [·] playing the role of | · |. In the same vein, hypothesis (33)
follows from (284) in Step 1. The relevant hypotheses (280) and (281)
of Step 1 coincide with the assumptions (42) and (43) of this lemma.
For (30) this follows from Step 1 with [v(·, a0), (·)T ]�f playing the role
of v(·, a0), the supremum norm ‖ · ‖ playing the role of | · |, and with

N1N0(T
1
4 )2α−2, N1δN0(T

1
4 )2α−2 playing the role of (N0, δN0). Likewise,

hypothesis (34) follows from (284). The relevant hypotheses (280) and
(281) of Step 1 coincide with the assumptions (44), and (45) of this
lemma. With the definition (294), the output (32) of Lemma 2, when
applied to (δu, δν, δM) playing the role of (u, ν,M), coincides with the
claim (46) of this lemma. Likewise, with definition (295), the output
(35) of Lemma 2 turns into the claim (47) of this lemma.

Proof of Corollary 1.
Step 1. Generalization of part i) of Lemma 3. Let fj, j = 1, · · · , J ,
be finitely many distributions satisfying (36) and in addition

sup
T≤1

(T
1
4 )2−α‖

J∑
j=1

cjf1T‖ ≤ δN1(296)

for some scalars {cj}j=1,··· ,J . Suppose that next to (38) we have

sup
T≤1

(T
1
4 )2−2α‖{1, ∂

∂a0

}
J∑
j=1

cj[v, (·)T ]�fj‖ ≤ δN1N0.(297)

Then we claim in the situation of Lemma 3 i)

sup
T≤1

(T
1
4 )2−2α‖

J∑
j=1

cj[u, (·)T ]�fj‖ . δN1(M +N0).(298)

Indeed, in view of (296) & (297) we may apply part i) of Lemma 3 to

(f, v�f) replaced by
(∑J

j=1 cjfj, v�(
∑J

j=1 cjfj) :=
∑J

j=1 cjv�fj
)

(and

thus N1 replaced by δN1), yielding the existence of a distribution we
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name u� (
∑J

j=1 cjfj) with

sup
T≤1

(T
1
4 )2−2α‖[u, (·)T ]� (

J∑
j=1

cjfj)‖ . δN1(M +N0).(299)

It follows from the unique characterization of the product with u by the
products with (v, x1) through (39) in conjunction with our definition

v � (
∑J

j=1 cjfj) =
∑J

j=1 cjv �fj and the linearity of the regular product

in form of x1(
∑J

j=1 cjfj) =
∑J

j=1 cjx1fj that we have u�(
∑J

j=1 cjfj) =∑J
j=1 cju�fj. Hence (299) turns into (298).

Step 2. Conclusion for part i) and ii). The only new element in part i)

are the terms involving ∂
∂a′0

and ∂2

∂(a′0)2 in (48), (49), and (50). For ∂
∂a′0

,

this follows from Step 1 by the choice of
∑J

j=1 cjfj = f(·, a+
0 )−f(·, a−0 )

with two arbitrary parameters a+
0 , a

−
0 , in which case δN1 = N1|a+

0 −a−0 |.
Likewise for ∂2

(∂a′0)2 , this follows from Step 1 by the choice of
∑J

j=1 cjfj

= (f(·, a++
0 ) − f(·, a+−

0 )) −(f(·, a−+
0 ) − f(·, a−−0 )) (and thus J = 4)

with four arbitrary parameters a++
0 , a+−

0 , a−+
0 , a−−0 with a++

0 − a+−
0

= a−+
0 − a−−0 ; in this case δN1 = N1|(a++

0 − a+−
0 ) −(a−+

0 − a−−0 )|.

Part ii) without the term involving ∂
∂a′0

in assumptions and conclusions

follows from Step 1 by the choice of
∑J

j=1 cjfj = f1 − f0. Part ii)

with the term involving ∂
∂a′0

follows by the choice of
∑J

j=1 cjfj = (f1 −
f0)(·, a′0)− (f1 − f0)(·, a′′0) (hence J = 4).

Step 3. Conclusion for part iii). From the unique characterization
of ui � f through (39) and (u1 − u0) � f through (46), and the fact
that by uniqueness of ν we have δν = ν1− ν0, it follows (u1− u0)�f =
u1�f−u0�f . Modulo this identity, the only new element in assumptions
and conclusions of part iii) of this corollary over part ii) of Lemma 3
is the appearance of ∂

∂a′0
. The argument proceeds by establishing the

linearity property analogous to Step 1, now on the level of part ii) of

Lemma 3, and applying it to
∑J

j=1 cjfj = f(·, a′0)− f(·, a′′0), cf Step 2.

Proof of Lemma 1.
We write for abbreviation [·] := [·]α.

Step 1. Taylor’s formulas. We start from two levels of Taylor’s formula
for the function b of u:

b(u′)− b(u) =

∫ 1

0

drb′(ru′ + (1− r)u)(u′ − u),

b(u′)− b(u)− b′(u)(u′ − u)

=

∫ 1

0

dr(1− r)b′′(ru′ + (1− r)u)(u′ − u)2.
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Substituting u by su1 + (1− s)u0 and u′ by su′1 + (1− s)u′0, taking the
derivative in s and integrating over s ∈ [0, 1] we obtain

(b(u′1)− b(u′0))− (b(u1)− b(u0))

=

∫ 1

0

ds

∫ 1

0

dr
(
b′(·)

(
(u′1 − u1)− (u′0 − u0)

)
+ b′′(·)

×
(
r(u′1 − u′0) + (1− r)(u1 − u0)

)(
s(u′1 − u1) + (1− s)(u′0 − u0)

))
,

(b(u′1)− b(u′0))− (b(u1)− b(u0))

− (b′(u1)(u′1 − u1)− b′(u0)(u′0 − u0))

=

∫ 1

0

ds

∫ 1

0

dr(1− r)
(
b′′(·)2

(
s(u′1 − u1) + (1− s)(u′0 − u0)

)
×
(
(u′1 − u1)− (u′0 − u0)

)
+ b′′′(·)

×
(
r(u′1 − u′0) + (1− r)(u1 − u0)

)(
s(u′1 − u1) + (1− s)(u′0 − u0)

)2
)
,

where the argument of b′′ and of b′′′ is given by s(ru′1 + (1 − r)u1)
+(1− s)(ru′0 + (1− r)u0).

Step 2. Inequalities. We use the formulas from Step 1 in terms of the
inequalities

|b(u′)− b(u)| ≤ ‖b′‖|u′ − u|,(300)

|b(u′)− b(u)− b′(u)(u′ − u)| ≤ 1

2
‖b′′‖(u′ − u)2,(301)

and ∣∣∣b(u′1)− b(u′0))− (b(u1)− b(u0)
∣∣∣

≤ ‖b′‖
∣∣(u′1 − u1)− (u′0 − u0)

∣∣
+ ‖b′′‖max{|u′1 − u′0|, |u1 − u0|}max

i
|u′i − ui|,(302) ∣∣(b(u′1)− b(u′0))− (b(u1)− b(u0))

− (b′(u1)(u′1 − u1)− b′(u0)(u′0 − u0))
∣∣

≤ ‖b′′‖max
i
|u′i − ui||(u′1 − u1)− (u′0 − u0)|

+
1

2
‖b′′′‖max{|u′1 − u′0|, |u1 − u0|}max

i
|u′i − ui|2.(303)

By smuggling in a term b′(u)(v′ − v), we obtain from (301) by the
triangle inequality

|b(u′)− b(u)− b′(u)(v′ − v)|
≤ ‖b′‖|(u′ − u)− (v′ − v)|+ ‖b′′‖(u′ − u)2.(304)
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Likewise, we smuggle in the term b′(u1)(v′1 − v1)− b′(u0)(v′0 − v0) into
(303) and use (286) in form of(

b′(u1)(u′1 − u1)− b′(u0)(u′0 − u0)
)

−
(
b′(u1)(v′1 − v1)− b′(u0)(v′0 − v0)

)
=

1

2
(b′(u1) + b′(u0))

×
((

(u′1 − u1)− (u′0 − u0)
)
−
(
(v′1 − v1)− (v′0 − v0)

))
+ (b′(u1)− b′(u0))

× 1

2

((
(u′1 − u1)− (v′1 − v1)

)
+
(
(u′0 − u0)− (v′0 − v0)

))
,

to obtain∣∣(b(u′1)− b(u′0))− (b(u1)− b(u0)
)

−
(
b′(u1)(v′1 − v1)− b′(u0)(v′0 − v0)

)
|

≤ ‖b′‖|
(
(u′1 − u1)− (u′0 − u0)

)
−
(
(v′1 − v1)− (v′0 − v0)

)
|

+ ‖b′′‖|u1 − u0|max
i
|(u′i − ui)− (v′i − vi)|

+ ‖b′′‖max
i
|u′i − ui||(u′1 − u1)− (u′0 − u0)|

+
1

2
‖b′′′‖max{|u′1 − u′0|, |u1 − u0|}max

i
|u′i − ui|2.(305)

Step 3. Application of inequalities. We apply (300) from Step 2 to
u = u(x), u′ = u(y), which yields

[b(u)] ≤ ‖b′‖[u](306)

and (304) to v = σ(x)v(x, a(x)) +ν(x)x1, v′ = σ(x)v(y, a(x)) +ν(x)y1,
which yields

|b(u)(y)− b(u)(x)− (b′(u)σ)(x)(v(y, a(x))− v(x, a(x)))

− (b′(u)ν)(x)(y − x)1| ≤ (‖b′‖M + ‖b′′‖[u]2)d2α(y, x),

from which we deduce

M̃ ≤ ‖b′‖M + ‖b′′‖[u]2.

We combine the latter with (306) to (22).

Likewise, we apply (302) to ui = ui(x), u′i = ui(y), which yields

[b(u1)− b(u0)] ≤ ‖b′‖[u1 − u0] + ‖b′′‖‖u1 − u0‖max
i

[ui],(307)
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and (305) to vi = σi(x)vi(x, ai(x)) +νi(x)x1, v′i = σi(x)vi(y, ai(x))
+νi(x)y1, which entails∣∣((b(u1)− b(u0))(y)− (b(u1)− b(u0))(x)

)
−
(
(b′(u1)σ1)(x)(v1(y, a1(x))− v1(x, a1(x)))

− (b′(u0)σ0)(x)(v0(y, a0(x))− v0(x, a0(x)))
)

− (b′(u1)ν1 − b′(u0)ν0)(x)(y − x)1

∣∣∣
≤
(
‖b′‖δM + ‖b′′‖‖u1 − u0‖max

i
Mi + ‖b′′‖max

i
[ui][u1 − u0]

+
1

2
‖b′′′‖‖u1 − u0‖max

i
[ui]

2
)
d2α(y, x).

The latter implies

δM̃ ≤ ‖b′‖δM + ‖b′′‖‖u1 − u0‖max
i
Mi + ‖b′′‖max

i
[ui][u1 − u0]

+
1

2
‖b′′′‖‖u1 − u0‖max

i
[ui]

2.

In combination with (307) and ‖b(u1) − b(u0)‖ ≤ ‖b′‖‖u1 − u0‖ this
yields (24).

Step 4. Estimate of the modulating functions. Indeed, estimate (23)
is straightforward. We will now argue for (25). We appeal to iden-
tity (286) (with (σ, σ′, v, v′) replaced by (b(u1), b(u0), σ1, σ0)) for the
estimate

‖b′(u1)σ1 − b′(u0)σ0‖
≤ ‖b′′‖‖u1 − u0‖max

i
‖σi‖+ ‖b′‖‖σ1 − σ0‖.(308)

We appeal to identity (287) (σ1, σ
′
1, v1, v

′
1) replaced by (b(u1(y)),

b(u0(y)), σ1(y), σ0(y)) and (σ0, σ
′
0, v0, v

′
0) by (b(u1(x)), b(u0(x)), σ1(x),

σ0(x)) to obtain

[b′(u1)σ1 − b′(u0)σ0]

≤ [b′(u1)− b′(u0)] max
i
‖σi‖+ max

i
‖b′(ui)‖[σ1 − σ0]

+ max
i

[b′(ui)]‖σ1 − σ0‖+ ‖b′(u1)− b′(u0)‖max
i

[σi].

The first rhs term can be estimated by (307) with b′′ playing the role
of b′ so that

[b′(u1)σ1 − b′(u0)σ0]

≤ (‖b′′‖[u1 − u0] + ‖b′′′‖‖u1 − u0‖max
i

[ui]) max
i
‖σi‖

+ ‖b′‖[σ1 − σ0] + ‖b′′‖max
i

[ui]‖σ1 − σ0‖+ ‖b′′‖‖u1 − u0‖max
i

[σi].

Estimate (25) follows from this and (308).
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Proof of Corollary 3.
Step 1. Proof of (i) ⇒ (ii). As v is a Cβ+2 function the assumption
that u is modelled after v according to a(u), σ(u) implies that u is
of class C2α, in particular ∂1u is a function of class C2α−1 (of course,
as we will see below, u is actually of class Cβ+2 but we do not have
this information to our disposal yet). Together with the regularity
assumption on f this implies that there is a classical interpretation of
the products σ(u)f and a(u)∂2

1u the latter as a distribution. In fact,
this is obvious for σ(u)f and for a(u)∂2

1u we can set, for example,

a(u)∂2
1u := ∂1(a(u)∂1u)− ∂1a(u)∂1u.(309)

The claim then follows from standard parabolic regularity theory as
soon as we have established that

σ(u)�f = σ(u)f + σ′(u)σ(u)g(1)(·, a(u))(310)

a(u)�∂2
1u = a(u)∂2

1u+ a′(u)σ2(u)g(2)(·, a(u), a(u)).(311)

We first argue that (310) holds. To see this, first by Lemma 1 σ(u)
is modelled after v according to a(u) and σ′(u)σ(u). Then, Lemma 3
characterizes σ(u)�f as the unique distribution for which

lim
T↓0
‖[σ(u), (·)T ]�f − σ′(u)σ(u)E[v, (·)T ]�f − ν[x1, (·)]f‖ = 0.(312)

By the Cβ regularity of f as well as the C2α regularity of σ(u) one sees
immediately that each of the commutators in this expression goes to
zero if � is replaced by the classical product

‖[σ(u), (·)T ]f‖, ‖σ′(u)σ(u)E[v, (·)T ]f‖, ‖ν[x, (·)]f‖ → 0

for T → 0. Hence (312) turns into

lim
T↓0
‖σ(u)f − (σ(u)�f)T − σ′(u)σ(u)g

(1)
T (·, a(u))‖ = 0.

Since, g(·, a0) ∈ Cβ by assumption, this yields (310). In the same way,
one can see that for any a′0 we have

a(u)�∂2
1v(·, a′0) = a(u)∂2

1v(·, a′0) + a′(u)σ(u)g(2)(·, a(u), a′0)(313)

(the classical definition of a(u)∂2
1v(·, a′0) poses no problem because v is

of class Cβ+2).

It remains to upgrade (313) to (311), i.e. the second factor ∂2
1v in (313)

should be replaced by ∂2
1u. To this end we make the ansatz

a(u)�∂2
1u = a(u)∂2

1u+ a′(u)σ2(u)g(2)(·, a(u), a(u)) +B,(314)

and aim to show that B = 0. Recalling once more that u is modelled
after v according to a(u), σ(u) we invoke Lemma 4 and plug in our
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ansatz (314) to obtain

lim
T↓0
‖[a(u), (·)T ]∂2

1u− (a′(u)σ2(u)g(2)(·, a(u), a(u)))T + (B)T

− σ(u)E[a(u), (·)T ]�∂2
1v‖ = 0.(315)

Plugging (313) into (315) we obtain

lim
T↓0
‖[a(u), (·)T ]∂2

1u− (a′(u)σ2(u)g(2)(·, a(u), a(u)))T + (B)T

− σ(u)E[a(u), (·)T ]∂2
1v − a′(u)σ2(u)E(g(2)(·, a(u), a′0))T‖ = 0.(316)

Now according to our regularity assumptions we have both

‖(a′(u)σ2(u)g(2)(·, a(u), a(u)))T − a′(u)σ2(u)E(g(2)(·, a(u), a′0))T‖ → 0

‖σ(u)E[a(u), (·)T ]∂2
1v‖ → 0,

for T → 0, which reduces (316) to

lim
T↓0
‖[a(u), (·)T ]∂2

1u−BT‖ = 0,

where we recall that the classical commutator is defined based on (309).
Now, according to its definition (309) we have [a(u), (·)T ] ⇀ 0, which
characterizes B as 0.

Step 2. Proof of (ii) ⇒ (i). If u as well as all the v(·, a0) are of class
Cβ+2, then u is automatically modelled after v according to a(u) and
σ(u). Thus we can conclude from Step 1 that (310) and (311) hold
which in turn implies that u solves ∂2u− P (a(u)�∂2

1u + σ(u)�f) = 0
distributionally.

5. Proofs of the stochastic bounds

Proof of Lemma 6.
Step 1. Proof of (130). Assumption (129) and the stationarity and
periodicity of f imply that for T ≤ 1

〈f 2
T (0)〉

=
〈∫

[0,1)2

f 2
T dx

〉
=

∑
k∈(2πZ)2

ψ̂T (k)2Ĉ(k)

≤ (T
1
4 )−3+λ1+λ2

∑
k∈(2πZ)2\{0}

(T
1
4 )3 e−2|T

1
4 k1|4−2|T

1
2 k2|2

(T
1
4 (1 + |k1|))λ1(T

1
2 (1 + |k2|))

λ2
2

. (T
1
4 )2α−4.

In the last estimate we have used that the sum in the second line is a
Riemann sum approximation to the integral

∫
e−2k̂4

1−2k̂2
2 |k̂1|−λ1|k̂2|−

λ2
2 dk̂

which converges due to λ1,
λ2

2
< 1.
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The fact that fT is Gaussian and stationary implies that we have
〈|fT (x)|p〉 . 〈fT (0)2〉 p2 uniformly over x, which permits to write〈∫

[0,1)2

|fT |pdx
〉 1
p
. 〈f 2

T (0)〉
1
2 . (T

1
4 )α−2.

In order to upgrade this Lp bound to an L∞ bound under the ex-
pectation we observe that by the semi-group property (17) we have
fT = (fT/2)T/2 such that Young’s inequality implies

‖fT‖ . ‖fT/2‖Lp‖ψT/2,per‖Lp′

where as before ‖ · ‖ refers to the supremums norm over R2 (or equiva-
lently [0, 1)2 by periodicity) and ‖·‖Lp refers to the Lp norm over [0, 1)2,
p′ = p

p−1
is the dual exponent of p and ψT,per(x) =

∑
k∈Z2 ψT (x + k)

is the periodisation of ψT . By observing that for for small T the dif-

ference
∣∣‖ψT,per‖Lp′ −

( ∫
R2 ψ

p′

T dx
) 1
p′
∣∣ stays bounded and scaling we get

‖ψT,per‖Lp′ . (T
1
4 )

3
p such that finally〈

‖fT‖p
〉 1
p . (T

1
4 )−

3
p
〈
‖fT‖pLp

〉 1
p . (T

1
4 )α−2− 3

p .

To also accommodate for the supremum over the scales T we first note
that ‖fT+t‖ . ‖fT‖ implies

sup
T≤1

(T
1
4 )2−α′‖fT‖ . sup

T≤1,dyadic
(T

1
4 )2−α′‖fT‖,

where the subscript dyadic means that this supremum is only taken
over T of the form T = 2−k for k ≥ 0. Then we write〈(

sup
T≤1,dyadic

(T
1
4 )2−α′‖fT‖

)p〉
≤

∑
T≤1,dyadic

(T
1
4 )p(2−α

′)
〈
‖fT‖p

〉
.

∑
T≤1,dyadic

(T
1
4 )p(2−α

′)(T
1
4 )p(α−2)−3,

which converges as soon as p > 4
α−α′ and establishes (130) for large p.

The bound for smaller p can be derived from the bound for large p and
Jensen’s inequality.

Step 2. Proof of (131). The bound on the ε-differences follows from
(130) as soon as we have established the deterministic bound

‖(fε)T − fT‖ . min
{ ε
T
, 1
}
‖fT/2‖.(317)

Given the bound

‖(fε)T − fT‖ ≤ ‖(fε)T‖+ ‖fT‖ . ‖fT/2‖(318)

which follows from the triangle inequality, the semi-group property in
the form (fε)T = (fT/2)T/2 ∗ ψ′ε and fT = (fT/2)T/2 as well as the
fact that the operators (·)T and ψ′ε∗ are bounded with respect to ‖ · ‖
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uniformly in T and ε, it suffices to establish (317) for ε ≤ 1
4
T . We then

write

‖(fε)T − fT‖ = ‖(ψT/2 ∗ ψ′ε − ψT/2) ∗ fT/2‖

≤
∫
R2

|ψT/2 ∗ ψ′ε − ψT/2|dx ‖fT/2‖,

and have thereby reduced (317) (and hence (131)) to establishing that∫
R2

|ψT/2 ∗ ψ′ε − ψT/2|dx .
ε

T
for ε ≤ T

4
.

By scaling (recalling that ψT (x1, x2) = T−
3
4ψ1(T−

1
4x1, T

− 1
2x2)), it suf-

fices to show this bound for T
2

= 1, in which case it turns into∫
R2

|ψ1 ∗ `−3ψ′(`−1x1, `
−2x2)− ψ1(x1, x2)| . `

for 0 ≤ ` ≤ (1
2
)

1
4 , which is immediate for a Schwartz kernels ψ1 and ψ′.

Proof of Lemma 7. By stationarity and (128) we may write

〈vε(0, a0)fε(0)〉

=
〈∫

[0,1)2

vε(x, a0)fε(x)dx
〉

=
∑

k∈(2πZ)2

〈v̂ε(k, a0)f̂ε(−k)〉

=
∑

k∈(2πZ)2

Ĝ(k, a0)〈fε(k)fε(−k)〉 =
∑

k∈(2πZ)2

Ĝ(k, a0)Ĉ(k)|(ψ̂′ε)2(k)|.

As the left hand side of this expression is real valued, the imaginary
part of the sum of the right hand side also has to vanish. As both Ĉ
and ψ̂ε are real valued this means that we can replace Ĝ(·, a0) by its
real part (given in (132)) thereby yielding (134).

The same calculation yields

〈vε(0, a0)∂2
1v(0, a′0)〉 =

∑
k∈(2πZ)2

Ĝ(k, a0)(−k2
1)Ĝ(−k, a′0)〈fε(k)fε(−k)〉

=
∑

k∈(2πZ)2

Ĝ(k, a0)(−k2
1)Ĝ(k, a′0)Ĉ(k)|(ψ̂′ε)2(k)|,

and after calculating the real part of Ĝ(k, a0)(−k2
1)Ĝ(k, a′0) we arrive

at (135).

Proof of Lemma 8.
Step 1. Bound on the expectation. We start the derivation of (141)
by bounding 〈[v′, (·)T ] � f ′〉. By definition 〈v′ � f ′〉 = 0. Furthermore,
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by stationarity and (127) and (129) we have∣∣〈v′(f ′)T 〉∣∣ =
∣∣∣∑

k

〈v̂′(−k)ψ̂T (k)f̂ ′(k)〉
∣∣∣

=
∣∣∣∑

k

(M̂2Ĝ)(−k)ψ̂T (k)M̂1(k)Ĉ(k)
∣∣∣

≤ (T
1
4 )−3+2+λ1+λ2−κ1−κ2

×
∑
k

(T
1
4 )3 ψ̂T (k)

|T 1
4k1|2 + |T 1

2k2|
(|T 1

4k1|4 + |T 1
2k2|2)

κ1+κ2
4

(T
1
4 (1 + |k1|))λ1(T

1
2 (1 + |k2|))

λ2
2

. (T
1
4 )2α−2−κ1−κ2 ,

where the sum is taken over (2πZ)2. In the last step we have used the
fact that the Riemann sum in the third line approximates the integral∫
ψ̂1(k̂) (|k̂1|4+|k̂2|2)

κ1+κ2
4

|k̂1|2+|k̂2|
1

|k̂1|λ1 |k̂2|λ2/2
dk̂. This integral converges because

the singularities near the axes k̂1 = 0 and k̂2 = 0 are integrable because
of λ1,

λ2

2
< 1 and the singularity near the origin is integrable due to

−2+λ1 +λ2 = −3+2α > −3, where we appeal to parabolic dimension
counting (alternatively, one may split the integral into |x1| ≤

√
|x2|

and its complement). This establishes that the expectation satisfies
the bound (141).

Step 2. Bound on the variance. For the variances we seek the bound∣∣∣〈([v′, (·)T ]�f ′)2〉 − 〈v′(f ′)T 〉2
∣∣∣ 1

2
. (T

1
4 )2α−2−κ1−κ2 ,

which by definition of� can be expressed equivalently without the renor-
malisation as∣∣∣〈([v′, (·)T ]f ′)2〉 − 〈[v′, (·)T ]f ′〉2

∣∣∣ 1
2
. (T

1
4 )2α−2−κ1−κ2 .(319)

To derive the estimate in the form (319) we write using stationarity
once more

〈([v′, (·)T ]f ′)2〉 =
〈∫

[0,1)2

([v′, (·)T ]f ′)2dx
〉

=
∑

k∈(2πZ)2

〈
|[v′, (·)T ]f ′
∧

(k)|2
〉
.

The expression appearing in the last expectation can be evaluated ac-
cording to its definition

[v′, (·)T ]f ′
∧

(k)

=
∑

`∈(2πZ)2

(ψ̂T (`)− ψ̂T (k))v̂′(k − `)f̂ ′(`)

=
∑

`∈(2πZ)2

(ψ̂T (`)− ψ̂T (k))(M̂2Ĝ)(k − `)f̂(k − `)M̂1(`)f̂(`),(320)
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which permits to write

〈([v′, (·)T ]f ′)2〉

=
∑
k

∑
`

∑
`′

(ψ̂T (`)− ψ̂T (k))(ψ̂T (−`′)− ψ̂T (−k))

× (M̂2Ĝ)(k − `)(M̂2Ĝ)(−(k − `′))M̂1(`)M̂1(−`′)

×
〈
f̂(k − `)f̂(`)f̂(−(k − `′))f̂(−`′)

〉
,(321)

where all sums are taken over (2πZ)2. We now use (127) and the
Gaussian identity

〈f̂(k − `)f̂(`)f̂(−(k − `′))f̂(−`′)〉(322)

= δk,0Ĉ(`)Ĉ(`′) + δ`,`′Ĉ(k − `)Ĉ(`) + δk−`,`′Ĉ(k − `)Ĉ(`),

and bound the three terms resulting from plugging this identity into
(321) one by one. The first term coincides with the square of the
expectation∑

`

∑
`′

(ψ̂T (`)− ψ̂T (0))(ψ̂T (−`′)− ψ̂T (0))

(M̂2Ĝ)(−`)(M̂2Ĝ)(`′)(M̂1Ĉ)(`)(M̂1Ĉ)(−`′)

=
(∑

`

(ψ̂T (`)− ψ̂T (0))(M̂2Ĝ)(−`)(M̂1Ĉ)(`)
)2

= 〈[v′, (·)T ]f ′〉2

so that the required bound (319) follows as soon as we can bound the
remaining two terms. The term originating from the third contribution
on the right hand side of (322) can be absorbed into the second term
using the Cauchy-Schwarz inequality. Indeed, we may write∑

k

∑
`

(ψ̂T (`)− ψ̂T (k))(ψ̂T (−(k − `))− ψ̂T (−k))

× (M̂2Ĝ)(k − `)(M̂2Ĝ)(−`)(M̂1Ĉ)(`)(M̂1Ĉ)(−(k − `))

≤
(∑
k,`

|ψ̂T (`)− ψ̂T (k)|2|(M̂2Ĝ)(k − `)|2|M̂1(`)|2Ĉ(−(k − `))Ĉ(`)
) 1

2

×
(∑

k,`

|ψ̂T (−(k − `))− ψ̂T (−k)|2|(M̂2Ĝ)(−`)|2

× |M̂1(−(k − `))|2Ĉ(−(k − `))Ĉ(`)
) 1

2
,

and the second factor on the right hand side can be seen to coincide
with the first one by performing the change of variables k′ = −k and
`′ = ` − k and the symmetry Ĉ(k) = Ĉ(−k). Hence, it only remains
to bound the term coming from the second contribution on the right
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hand side of (322). We use the assumptions (129) and (140) to write∑
k,`

|ψ̂T (`)− ψ̂T (k)|2|(M̂2Ĝ)(k − `)|2|M̂1(`)|2Ĉ(`)Ĉ(k − `)

.
∑
k 6=`

|ψ̂T (`)− ψ̂T (k)|2

(|(k − `)2
1 + |(k − `)2|)2

(|`1|4 + |`2|2)
κ1
2

(1 + |`1|)λ1(1 + |`2|)
λ2
2

× (|(k − `)1|4 + |(k − `)2|2)
κ2
2

(1 + |(k − `)1)|)λ1(1 + |(k − `)2|)
λ2
2

= (T
1
4 )4α−4−2κ1−2κ2

∑
k 6=`

(
T

1
4

)6
( ψ̂T (`)− ψ̂T (k)

|T 1
4 (k − `)1|2 + T

1
2 |(k − `)2|

)2

× (|T 1
4 `1|4 + |T 1

2 `2|2)
κ1
2

(T
1
4 (1 + |`1|))λ1(T

1
2 (1 + |`2|))

λ2
2

× (|T 1
4 (k − `)1|4 + |T 1

2 (k − `)2|2)
κ2
2

(T
1
4 (1 + |(k − `)1|))λ1(T

1
2 (1 + |(k − `)2|))

λ2
2

.(323)

Step 3. Bound on an integral. In order to show that the expression
(323) is bounded by . (T

1
4 )4α−4−2κ1−2κ2 which in turn establishes (319),

it remains to show that the integral which is approximated by the
Riemann sum in the last line converges. To this end we write this
integral as∫ ∫ ( ψ̂1(ˆ̀)− ψ̂1(k̂)

(k̂ − ˆ̀)2
1 + |k̂2 − ˆ̀

2|

)2 (|ˆ̀1|4 + |ˆ̀2|2)
κ1
2

|ˆ̀1|λ1|ˆ̀2|
λ2
2

× (|(k̂ − ˆ̀)1|4 + |(k̂ − ˆ̀)2|2)
κ2
2

|k̂1 − ˆ̀
1|λ1 |k̂2 − ˆ̀

2|
λ2
2

dˆ̀dk̂

=

∫ ∫ ( ψ̂1(ˆ̀)− ψ̂1(ˆ̀+ h)

h2
1 + |h2|

)2 (|ˆ̀1|4 + |ˆ̀2|2)
κ1
2

|ˆ̀1|λ1|ˆ̀2|
λ2
2

(|h1|4 + |h2|2)
κ2
2

|h1|λ1|h2|
λ2
2

dˆ̀dh.

We treat the inner dˆ̀ integral first. For |h1|+|h2| ≤ 2 we use the bound

|ψ̂1(ˆ̀)− ψ̂1(ˆ̀+h)| . (|h1|+ |h2|)
∫ 1

0
|∇ψ̂1(ˆ̀+ θh)|dθ which yields using

Jensen’s inequality:∫
(ψ̂1(ˆ̀)− ψ̂1(ˆ̀+ h))2 (|ˆ̀1|4 + |ˆ̀2|2)

κ1
2

|ˆ̀1|λ1|ˆ̀2|
λ2
2

dˆ̀

. (|h1|+ |h2|)2 sup
θ∈[0,1]

∫
|∇ψ̂1(ˆ̀+ θh)|2 (|ˆ̀1|4 + |ˆ̀2|2)

κ1
2

|ˆ̀1|λ1|ˆ̀2|
λ2
2

dˆ̀

. (|h1|+ |h2|)2.(324)

The integral converges because according to our assumption (129) we

have λ1,
λ2

2
< 1 which together with the exponential decay of ∇ψ̂1
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implies that the integrals over {ˆ̀: |ˆ̀2| ≥ 1} and {ˆ̀: |ˆ̀1| ≥ 1} are

finite and that the integral over {|ˆ̀1|, |ˆ̀2| ≤ 1} is finite as well. For

|h1|+|h2| > 2 we use the estimate (ψ̂1(ˆ̀)−ψ̂1(ˆ̀+h))2 . ψ̂2
1(ˆ̀)+ψ̂2

1(ˆ̀+h)
and obtain∫

(ψ̂1(ˆ̀)− ψ̂1(ˆ̀+ h))2 (|ˆ̀1|4 + |ˆ̀2|2)
κ1
2

|ˆ̀1|λ1 |ˆ̀2|
λ2
2

dˆ̀. 1 + (|h1|4 + |h2|2)
κ1
2 .

It remains to treat the outer dh-integral∫ (min{1, |h1|+ |h2|}
h2

1 + |h2|

)2 (|h1|4 + |h2|2)
κ1+κ2

2

|h1|λ1|h2|
λ2
2

dh.(325)

The integrability of this expression outside of {h : |h1|, |h2| ≤ 1} can be
seen using the decay of (h2

1 + |h2|)−2 for large |h1|+ |h2| (note that our
assumption (129) allows for negative λ1 > −3+2α or λ2 > −2+2α, but
this potential growth at infinity as well as the growth of the numerator
is still compensated by the decay of (h2

1+|h2|)−2 because of κ1+κ2 � 1)

and the integrability of |h1|−λ1 , and |h2|−
λ2
2 for small |h1| and |h2| due

to λ1,
λ2

2
< 1. Near the origin we drop the numerator (|h1|4+|h2|2)

κ1+κ2
2

and split into A1 = {h : h2
1 ≤ |h2| ≤ 1} and A2 = {h : |h2| ≤ h2

1 ≤ 1}.
We furthermore bound brutally |h1|+ |h2| ≤ |h1|+

√
|h2| which yields

the bound ∫
A1

( |h1|+ |h2|
h2

1 + |h2|

)2 1

|h1|λ1|h2|
λ2
2

dh

.
∫ 1

0

∫ √|h2|

0

1

|h1|2 + |h2|
1

|h1|λ1|h2|
λ2
2

dh1dh2

.
∫ 1

0

1

|h2|1+
λ2
2

∫ √|h2|

0

1

|h1|λ1
dh1dh2

.
∫ 1

0

1

|h2|
1+λ1+λ2

2

dh2 <∞.

Here we have made use of (129) and more specifically of λ1 < 1 as well
1
2
(1 + λ1 + λ2) = α < 1. The integral over A2 can be bounded in a

similar way concluding the proof of (141).

Proof of Corollary 4. The estimate (142) follows immediately

from (141) either with fε in the role of f ′ (i.e. M̂1 = ψ̂′ε) or
(
∂
∂a′0

)n′
∂2

1vε(·, a′0) in the role of f ′ which amounts to

M̂1(k) =
(−1)nn!k2n

1

(a′0k
2
1 − ik2)n

−k2
1

a′0k
2
1 − ik2

ψ̂′ε(k)
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and with
(
∂
∂a0

)n
vε(·, a0) in the role of v′ i.e.

M̂2(k) =
(−1)nn!k2n

1

(a′0k
2
1 − ik2)n

ψ̂′ε(k).

For the derivatives wrt ε we observe that the product rule applies in
the form

∂

∂ε

([ ∂

∂an0
vε(·, a0), (·)T

]
�{fε,

∂

∂(a′0)n′
∂2

1vε}
)

=
[ ∂
∂ε

∂

∂an0
vε(·, a0), (·)T

]
�{fε,

∂

∂(a′0)n′
∂2

1vε}

+
[ ∂

∂an0
vε(·, a0), (·)T

]
� ∂
∂ε
{fε,

∂

∂(a′0)n′
∂2

1vε}.

We then apply (142) to each of the terms on the rhs separately. The

multipliers M̂1, M̂2 are the same as above only with ψ̂′ε replaced by
∂
∂ε
ψ′ε . (k4

1 + k2
2)

κ
4 ε1−κ

4 in M2 for the first term and in M1 for the
second term.

Proof of Proposition 2.
Step 1. Bound on the supremum over x and T . Our first claim is
that uniformly over a0, a

′
0 ∈ [λ, 1], ε ∈ (0, 1] for some κ� 1 and for all

n, n′ ≥ 1 we have〈(
sup
T≤1

(T
1
4 )2−2α′‖ ∂

n

∂an0

∂n
′

∂(a′0)n′
[vε(·, a0), (·)T ]

�{fε, ∂2
1vε(·, a′0)}‖

)p〉 1
p
. 1.(326) 〈(

sup
T≤1

(T
1
4 )2−2α′+κ‖ ∂

∂ε

∂n

∂an0

∂n
′

∂(a′0)n′
[vε(·, a0), (·)T ]

�{fε, ∂2
1vε(·, a′0)}‖

)p〉 1
p
. ε

κ
4
−1.(327)

To keep the notation concise, for the moment we restrict ourselves to
the bound for [vε, (·)T ]�∂2

1v without the derivatives wrt a0, a′0, ε. The
general case of (326) follows in the identical way and so does (327) if in
the proof (142) is replaced by (143). To simplify the notation further
we drop the subscript ε as well as the dependence on a0, a

′
0 for the

moment.

First of all [v, (·)T ] � ∂2
1v is a random variable in the second Wiener

chaos over the Gaussian field f such that by equivalence of moments
for random variables in the second Wiener chaos and by stationarity,
the bound (142) can be upgraded to

〈|[v, (·)T ]�∂2
1v|p〉

1
p . (T

1
4 )2α−2(328)
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for any p <∞ (the implicit constant then depends on p). We now aim
to upgrade this Lp bound to an L∞ bound over x. At the same time,
we want to show that the supremum over all T ≤ 1 can be reduced to
a supremum over all dyadic T , i.e. over T of the form T = 2−k for a
k ≥ 0. For any given T ≤ 1 there is a unique a dyadic T ′ ≤ 1

2
such

that T = 2T ′ + t for with 2T ′ ≤ T < 4T ′ and we refer to this choice
when we write T ′ in the sequel.

We make use of the commutator identity

[v, (·)T ]�∂2
1v =

(
[v, (·)T ′ ]�∂2

1v
)
T ′+t

+ [v, (·)T ′+t](∂2
1v)T ′ .(329)

The second term on the right hand side of (329) can be bounded di-
rectly by making the convolution with ψT ′+t explicit and using Lemma 9
and (18) to get(

[v, (·)T ′+t](∂2
1v)T ′

)
(x)

=

∫
(v(x)− v(y))ψT ′+t(x− y)(∂2

1v)T ′(y)dy

. [v]α′‖(∂2
1v)T ′‖

∫
dα
′
(x, y)|ψT ′+t(x− y)|dy

. ((T ′)
1
4 )α

′−2((T ′ + t)
1
4 )α

′
[v]α′(((T

′)
1
4 )2−α′‖(∂2

1v)T‖)

. (T
1
4 )2α′−2

(
sup
T≤1

(T
1
4 )2−α′‖fT‖

)2
.

(Note that here we have used Lemma 9 to bound the semi-norm [v]α
by the Cα−2 norm of f . The same argument applies to ∂

∂an0
v(·, a0) using

an identity like (222) and iterating Lemma 9. Similarly the Cα−2 norm
of ∂

∂an0
∂2

1v(·, a0) is controlled by the Cα−2 norm of f .) Taking the sup

over x and T and then the p-th moment in the expectation we get from
Lemma 6〈(

sup
T≤1

(T
1
4 )2−2α′‖[v, (·)T ′+t](∂2

1v)T ′‖
)p〉 1

p .
〈(

sup
T≤1

(T
1
4 )2(2−α′)‖fT‖2

)p〉 1
p

. 1.

To bound the first term on the right hand side of (329) we use Young’s
inequality (on the torus) in the form

‖
(
[v, (·)T ′ ]�∂2

1v
)
T ′+t
‖ . ‖[v, (·)T ′ ]�∂2

1v‖Lp‖ψT ′+t,per‖Lp′

where Lp denotes the Lp norm on the torus [0, 1)2, p′ = p
p−1

is the dual

exponent of p and ψT,per(x) =
∑

k∈Z2 ψT (x + k) is the periodisation

of ψT . By observing that for for small T the difference
∣∣‖ψT,per‖Lp′ −( ∫

R2 ψ
p′

T dx
) 1
p′
∣∣ stays bounded and scaling we get ‖ψT,per‖Lp′ . (T

1
4 )−

3
p

such that finally

‖
(
[v, (·)T ′ ]�∂2

1v
)
T ′+t
‖ . ((T ′ + t)

1
4 )−

3
p‖[v, (·)T ′ ]�∂2

1v‖Lp .
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Dropping the t and taking the supremum over T we get for any p(
sup
T≤1

(T
1
4 )2−2α′‖

(
[v, (·)T ′ ]�∂2

1v
)
T ′+t
‖
)p

.
∑

T ′≤ 1
2
,dyadic

((T ′)
1
4 )p(2−2α′)((T ′)

1
4 )−3‖[v, (·)T ′ ]�∂2

1v‖
p
Lp .

Finally, we take the expectation of this estimat and use (328) and the
stationarity to get〈(

sup
T≤1

(T
1
4 )2−2α′‖

(
[v, (·)T ′ ]�∂2

1v
)
T ′+t
‖
)p〉

.
∑

T ′≤ 1
2
,dyadic

((T ′)
1
4 )p(2−2α′)((T ′)

1
4 )−3

〈
‖[v, (·)T ′ ]�∂2

1v‖
p
Lp

〉
.

∑
T≤ 1

2
,dyadic

(T
1
4 )p(2α−2α′)(T

1
4 )−3.

To obtain (326) for fixed α′ < α and p we now apply this estimate for
an exponent p′ > max{ 3

2(α−α′) , p}, sum the resulting geometric series

and use Jensen’s inequality.

Step 2. Introducing the supremum over a0, a′0. In the following steps
we use the notation

A(T, a0, a
′
0, ε) =

∂n

∂an0

∂n
′

∂(a′0)n′
[vε(·, a0), (·)T ]�{fε, ∂2

1vε(·, a′0)}.(330)

In this step aim to show that for each ε ∈ (0, 1] and κ� 1

〈(
sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′‖A(T, a0, a

′
0, ε)‖

)p〉 1
p
. 1,(331)

〈(
sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′‖ ∂

∂ε
A(T, a0, a

′
0, ε)‖

)p〉 1
p
. ε

κ
4
−1.(332)

For (331) we use the Sobolev inequality

sup
a0∈[λ,1]

sup
a′0∈[λ,1]

‖A‖p .
∫ 1

λ

∫ 1

λ

‖A‖pda0 da
′
0 +

∫ 1

λ

∫ 1

λ

‖ ∂

∂a0

A‖pda0 da
′
0

+

∫ 1

λ

∫ 1

λ

‖ ∂

∂a′0
A‖pda0 da

′
0
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which holds for p > 2. Taking the supremum over T , then the expec-
tation and invoking Fubini’s theorem and (326) yields〈(

sup
a0∈[λ,1]

sup
a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′‖A‖

)p〉
.
∫ 1

λ

∫ 1

λ

〈(
sup
T≤1

(T
1
4 )2−2α′‖A‖

)p〉
da0 da

′
0

+

∫ 1

λ

∫ 1

λ

〈(
sup
T≤1

(T
1
4 )2−2α′‖ ∂

∂a0

A‖
)p〉

da0 da
′
0

+

∫ 1

λ

∫ 1

λ

〈(
sup
T≤1

(T
1
4 )2−2α′‖ ∂

∂a′0
A‖
)p〉

da0 da
′
0 . 1,

so (331) follows. For (332) we repeat the same calculation with A
replaced by ∂

∂ε
A and (326) replaced by (327).

Step 3. Bounding the supremum over ε. Let A(T, a0, a
′
0, ε) be defined

as in (330) above. In this step we upgrade (331)and (332) to〈(
sup
ε∈(0,1]

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′‖A(T, a0, a

′
0, ε)‖

)p〉 1
p
. 1(333)

valid for α′ < α. We start with the elementary inequality

sup
0<ε≤1

|A(ε)| ≤
∫ 1

0

|A(ε)|dε+

∫ 1

0

| ∂
∂ε
A(ε)|dε.

We now multiply with (T
1
4 )2−α′+κ for some α′ < α and κ � 1, take

the supremum over T , a0, a′0 of this estimate, take p-th moments and
invoke Minkowski’s inequality to arrive at〈(

sup
ε∈(0,1]

sup
a0∈[λ,1]

sup
a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′+κ‖A‖

)p〉 1
p

.
∫ 1

0

〈(
sup

a0∈[λ,1]

sup
a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′+κ‖A‖

)p〉 1
p
dε

+

∫ 1

0

〈(
sup

a0∈[λ,1]

sup
a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′+κ‖ ∂

∂ε
A‖
)p〉 1

p
dε

.
∫ 1

0

(1 + ε
κ
4
−1)dε . 1.

Now (333) follows by relabelling −2α′ + κ as −2α′.

Step 4. Bounding ε differences. We claim that for κ � 1 and all
p <∞ and α′ < α〈(

sup
a0,a′0∈[λ,1]

sup
ε1 6=ε2∈(0,1]

sup
T≤1

(T
1
4 )2−2α′+κ|ε2 − ε1|−

κ
4

× ‖A(T, a0, a
′
0, ε1)− (T, a0, a

′
0, ε1)‖

)p〉 1
p
. 1.(334)
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We start the argument with Hölder’s inequality in the form

|A(ε2)− A(ε1)| =
∣∣∣ ∫ ε2

ε1

∂

∂ε
A(ε)dε

∣∣∣
≤ |ε2 − ε1|

κ
4

(∫ 1

0

∣∣ ∂
∂ε
A(ε)

∣∣ 1
1−κ4 dε

)1−κ
4
.

Now, we multiply this estimate with (T
1
4 )2−2α+κ+κ̄ for another κ̄� 1,

take the supremum over T , a0 and a′0, then p-th moments, and finally
invoke Minkowski’s inequality and (327) to get〈(

sup
a0,a′0∈[λ,1]

sup
ε1 6=ε2∈(0,1]

sup
T≤1

(T
1
4 )2−2α′+κ+κ̄|ε2 − ε1|−

κ̄
4

× ‖A(T, a0, a
′
0, ε2)− (T, a0, a

′
0, ε1)‖

)p〉 1
p

.
(∫ 1

0

〈(
sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′+κ+κ̄‖ ∂

∂ε
A‖p

)〉 1
p

( 1
1−κ4

)

dε
)1−κ

4

.
∫ 1

0

ε
(κ+κ

4
−1)( 1

1−κ4
)
dε . 1,

so (334) follows by relabelling −2α′ + κ as −2α′.

Step 5. Conclusion. To shorten notation, we only treat the product
vε �fε. Writing

(vε �fε)T = vε(fε)T − [vε, (·)T ]fε,

and invoking (130) and (131) for the first and (334) for the second
term imply that vε � fε converges almost surely with respect to the
Cα−2 norm to a limit v�f . Furthermore, the estimates (333) and (334)
remain true if the supremum over ε ∈ (0, 1] is extended to include the
limit as ε→ 0.

6. Appendix

Lemma 9. The (mean-free) solution of (62) satisfies the estimate

sup
a0

[v(·, a0)]α . sup
T≤1

(T
1
4 )2−α‖fT‖.(335)

Proof of Lemma 9.
All functions are 1-period if not stated otherwise.
Step 1. Reduction. We claim that it is enough to show

sup
T≤1

(T
1
4 )2−α‖fT‖

∼ inf
{

[f1]α + [f2]α + |c|
∣∣∣ f = ∂2

1f1 + ∂2f2 + c
}
,(336)

where the infimum is over all triplets (f1, f2, c) of two functions and
a constant. Incidentally, the equivalence confirms that the lhs indeed
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defines the (parabolic) Cα−2-norm. Indeed, let the decomposition f =
∂2

1f1 + ∂2f2 + c be near-optimal in the rhs of (336), that is,

[f1]α + [f2]α . sup
T≤1

(T
1
4 )2−α‖fT‖.(337)

By uniqueness of the mean-free solution of (62) this induces v(·, a0)
= ∂2

1v1 +∂2v2 where vi, i = 1, 2, denote the mean-free solutions of

(∂2 − a0∂
2
1)v1 = f1 and (∂2 − a0∂

2
1)v2 = f2.

By classical Cα+2-Schauder theory [12, Theorem 8.6.1] we have [∂2
1vi]α

+[∂2vi]α . [fi]α, so that (335) follows from (337).

Step 2. For the solution of

(∂2 − ∂2
1)v = Pf(338)

we claim

‖vT − v‖ . N0 max{(T
1
4 )α, (T

1
4 )2} for all T > 0,(339)

where we have set for abbreviation N0 := supT≤1(T
1
4 )2−α‖fT‖. We

start by noting that the definition of N0 may be extended to the control
of T ≥ 1 by the semi-group property (17) in form of fT = (f1)T−1 and
(18) in form of ‖fT‖ . ‖f1‖. We thus have

‖fT‖ . N0 max{Tα−2, 1}.(340)

By approximation through (standard) convolution, which preserves
(338) and does increase N0, we may assume that f and v are smooth.
By definition of the convolution (·)t we have

∂tvt = −(∂4
1 − ∂2

2)vt = (−∂2
1 − ∂2)(∂2 − ∂2

1)vt
(338)
= (−∂2

1 − ∂2)Pft
(17)
= (−∂2

1 − ∂2)(f t
2
) t

2
.

Hence we obtain by (18) for all T ≤ 1

‖∂tvt‖ . (t
1
4 )−2‖f t

2
‖

(340)

. N0 max{(t
1
4 )α−4, (t

1
4 )−2}.

Integrating over t ∈ (0, T ) we obtain (339) by the triangle inequality.

Step 3. For v defined through (338) we have

[v]α . N0(341)

As in Step 2 we may assume that f and v are smooth so that [v]α is
finite. Because of periodicity, it is sufficient to probe Hölder continuity
for pairs (x, y) of points with d(y, x) ≤ 4. For any T > 0 we have the
identity

v(y)− v(x) = (vT − v)(y)− (vT − v)(x)

−
∫ 1

0

∂1vT (sy + (1− s)x)(y − x)1 + ∂2vT (sy + (1− s)x)(y − x)2ds,
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from which we obtain the inequality

|v(y)− v(x)| ≤ 2‖vT − v‖+ ‖∂1vT‖d(y, x) + ‖∂2vT‖d2(y, x).

From Step 2 and (18) we obtain the estimate

|v(y)− v(x)|

. N0 max{(T
1
4 )α, (T

1
4 )2}+ [v]α

(
(T

1
4 )α−1d(y, x) + (T

1
4 )α−2d2(y, x)

)
.

With the ansatz T
1
4 = 1

ε
d(y, x) for some ε ≤ 1 and making use of

d(y, x) . 1 we obtain

|v(y)− v(x)| .
(
ε−2N0 + [v]α(ε1−α + ε2−α)

)
dα(y, x).

Fixing an ε sufficiently small to absorb the last rhs term into the lhs
we infer (341).

Step 4. We finally establish the equivalence of norms (336). The
direction . follows immediately from (18). The direction & follows
from Step 3 with f1 = v, f2 = −v, and c =

∫
[0,1)2 f .

Lemma 10.

sup
T≤1

(T
1
4 )1−α‖[x1, (·)T ]f‖ . sup

T≤1
(T

1
4 )2−α‖fT‖(342)

Proof of Lemma 10.
Introducing the kernel ψ̃T (x) := x1ψT (x) we start by claiming the
representation

[x1, (·)T ]f = 2ψ̃T
2
∗ fT

2
.(343)

Indeed, by definition of the commutator and ψ̃T we have [x1, (·)T ]f =

ψ̃T ∗ f , so that the above representation follows from the formula

ψ̃T = 2ψ̃T
2
∗ ψT

2
.(344)

The argument for (344) relies on the fact that convolution is com-

mutative in form of ψ̃T
2
∗ ψT

2
= ψT

2
∗ ψ̃T

2
, which spelled out means∫

dy(x1 − y1)ψT
2
(x − y)ψT

2
(y) =

∫
dyψT

2
(x − y)y1ψT

2
(y), and thus im-

plies 2
∫
dy(x1 − y1)ψT

2
(x − y)ψT

2
(y) = x1

∫
dyψT

2
(x − y)ψT

2
(y), that

is 2(ψ̃T
2
∗ ψT

2
)(x) = x1(ψT

2
∗ ψT

2
)(x). Together with the semi-group

property (17) in form of ψT
2
∗ ψT

2
= ψT this yields (344).

From the representation (343) we obtain the estimate

‖[x1, (·)T ]f‖ ≤ 2

∫
dx|x1ψT

2
(x)|‖fT

2
‖

(18)

. T
1
4‖fT

2
‖,

which yields the desired (342).
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Lemma 11. Let ψ and ψ′ be Schwartz functions over R2 with
∫
ψ =∫

ψ′ = 1. For T > 0 set

ψT (x1, x2) = T−
3
4ψ
( x1

T
1
4

,
x2

T
1
2

)
, ψ′T (x1, x2) = T−

3
4ψ′
( x1

T
1
4

,
x2

T
1
2

)
.

(345)

(i) For an arbitrary Schwartz distribution f ∈ S ′(R2) set

(f)T = f ∗ ψT and (f)′T = f ∗ ψ′T .(346)

Then for any γ < 0 we have

sup
T≤1

(T
1
4 )−γ‖(f)T‖ . sup

T≤1
(T

1
4 )−γ‖(f)′T‖,(347)

where . only refers to ψ, ψ′ and γ.

(ii) Let α > 0 and γ < 0. Let u be function of class Cα and f a
distribution of class Cγ. Furthermore, let u � f be an arbitrary distri-
bution of class Cγ and define the generalised commutators [u, (·)]�f =
u(f)T − (u�f)T and [u, (·)′]�f = u(f)′T − (u�f)′T . Then for γ̄ = γ+α
we have

sup
T≤1

(T
1
4 )−γ̄‖[u, (·)T ]f‖ . sup

T≤1
(T

1
4 )−γ̄‖[u, (·)′T ]f‖

+ [u]α sup
T≤1

(T
1
4 )−γ‖(f)′T‖,(348)

where . depends on α, γ as well as ψ and ψ′.

Proof of Lemma 11.
Step 1. The proof relies on a variant of a construction from [3]
which we recall in this step. For the reader’s convenience we give self-
contained proofs of the identities in Step 4 below. First of all, for any
p > 0 there exists a Schwartz function ω0 such that ϕ′ = ω0∗ψ′ satisfies∫

xnϕ′(x)dx =

{
1 for α = 0

0 for 0 < ‖n‖par < p,
(349)

where for n = (n1, n2) and x = (x1, x2) we use the parabolic norm
‖n‖par = |n1| + 2|n2| and xn = xn1

1 x
n2
2 . Furthermore, it is shown that

for any p and any ϕ′ satisfying (349) as well as θ � 1 (depending on
ϕ, ψ, p), the function ψ can be represented as

ψ =
∞∑
k=0

ω(k) ∗ ϕ′θk ,(350)

where ϕ′
θk

is the rescaled version of ϕ′ defined as in (345) for T = θk,

and the ω(k) are Schwartz functions satisfying∫
|ω(k)| . (C0θ

p
4 )k,(351)
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where C0 = C0(ϕ′, ψ, p). The convergence of the sum in (350) holds in
L1(R2) . Additionally, we will make use of the bounds∫

dα(0, x)|ω(k)(x)|dx . (C0θ
p
4 )k.(352)

We summarize this as ψ =
∑∞

k=0 ω
(k) ∗ω0

θk
∗ψ′

θk
, which can be rescaled

as

ψT =
∞∑
k=0

ω
(k)
T ∗ ω

0
θkT ∗ ψ

′
θkT ,(353)

where as before the index T expresses that a function is rescaled by T
as in (345).

Step 2. Equipped with these results we now proceed to prove (347).

Wlog we assume that f is smooth. We set supT≤1 ‖(f)′T‖(T
1
4 )−γ = N0

and write

‖(f)T‖ = ‖f ∗
∞∑
k=0

ψ′θkT ∗ (ω
(k)
T ∗ ω

0
θkT )‖

= ‖
∞∑
k=0

(f)′θkT ∗ (ω
(k)
T ∗ ω

0
θkT )‖ ≤

∞∑
k=0

‖(f)′θkT‖
∫
|ω(k)
T |
∫
|ω0
θkT |

. N0

∞∑
k=0

(θ
k
4T

1
4 )γ(C0θ

p
4 )k
∫
|ω0|,

where in the last line, we have used (351). Then (347) follows by choos-

ing first p > |γ| and then θ
1
4 ≤ 1

2C0
and then summing the geometric

series over k.

Step 3. As in the previous step we assume wlog that u, f , u �
f are smooth (however, we do not assume that u � f = uf). We

set supT≤1 ‖[u, (·)′T ] � f‖ (T
1
4 )−γ̄ = N1 and as in the previous step

supT≤1 ‖(f)′T‖(T
1
4 )−γ = N0. As in the proof of (347) we make use of

the representation (353) of ψT to write

[u, (·)T ]�f =
∞∑
k=0

[u, ω
(k)
T ∗ ω

0
θkT ∗ ψ

′
θkT∗]�f.

We apply the commutator relation [A,BC] = [A,B]C+B[A,C] twice,
to rewrite each term in this sum as

[u, ω
(k)
T ∗ ω

0
θkT ∗ ϕθkT∗]�f

= [u, ω
(k)
T ∗ ω

0
θkT∗](f)′θkT + ω

(k)
T ∗ ω

0
θkT ∗ [u, (·)′θkT ]�f

= [u, ω
(k)
T ∗](ω

0
θkT ∗ (f)′θkT ) + ω

(k)
T ∗ ([u, ω0

θkT∗](f)′θkT )

+ ω
(k)
T ∗ ω

0
θkT ∗ [u, (·)′θkT ]�f.(354)
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We bound the terms on the rhs of (354) one by one, starting with the
last. This expression can be directly bounded using Young’s inequality

‖(ω(k)
T ∗ ω

0
θkT ) ∗ [u, (·)′θk ]�f‖ ≤

∫
|ω(k)
T |

∫
|ω0
θkT | (θ

k
4T

1
4 )γ̄N1

=

∫
|ω(k)|

∫
|ω0| (θ

k
4T

1
4 )γ̄N1.

Therefore, the sum in k over this term is controlled by invoking (351)
for p large enough, then choosing θ small enough, resulting with a
geometric series as above.

By Young’s inequality, the second term on the rhs of (354) is bounded

‖ω(k)
T ∗ ([u, ω0

θkT∗](f)′θkT )‖ ≤
∫
|ω(k)|dx ‖[u, ω0

θkT∗](f)′θkT‖.

According to (351) the first factor on the rhs is bounded by . (C0θ
p
4 )k,

while the second factor can be bounded as

‖[u, ω0
θkT∗](f)′θkT‖

= sup
x

∣∣∣ ∫ (u(x)− u(y))ω0
θkT (y − x)(f)′θkT (y)dy

∣∣∣
≤ [u]αN0(θ

k
4T

1
4 )γ sup

x

∫
dα(x, y)|ω0

θkT (y − x)|dy

≤ [u]αN0(θ
k
4T

1
4 )γ((θkT )

1
4 )α
∫
dα(0, z)|ω0(z)|dz,

so that summing these terms over k also yields the required bound.

It remains to bound the first term on the rhs of (354) and for this we
write

‖[u, ω(k)
T ∗](ω

0
θkT ∗ (f)′θkT )‖

≤ sup
x

∫
|u(y)− u(x)| |ω(k)

T (y − x)|dy
(∫
|ω0
θkT |
)
‖(f)′θkT‖

≤ [u]α sup
x

∫
dα(x, y)|ω(k)

T (y − x)|dy
(∫
|ω0|

)
N0(θ

k
4T

1
4 )γ

= [u]α(T
1
4 )α
∫
dα(0, z)|ω(k)(z)|dz

(∫
|ω0|

)
N0(θ

k
4T

1
4 )γ.

The first integral on the rhs is bounded . (C0θ
p
4 )k in (352), so that

finally (348) follows once more by choosing p large enough and θ small
enough and summing over k.
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Step 4. It remains to give the argument for (349), (350) and (352)
following [3]. The construction of ω0 is based on the identity

An,m :=

∫
xn∂mψ′(x)dx

=

{
0 if ‖n‖par ≤ ‖m‖par, n 6= m

(−1)|m1|+|m2|m1!m2! for m = n
.

This trigonal structure implies that for any fixed p the linear map
(am)‖m‖par<p 7→ (

∑
‖m‖par<p

An,mam)‖n‖par<p is invertible. Furthermore,

for each n,m the numbers Arn,m :=
∫
xn∂m(ψ′r ∗ ψ′)(x)dx converge to

An,m as r → 0 and for r > 0 small enough the linear map associated
to (Arn,m)‖n‖par,‖m‖par≤p is still invertible. This implies in particular the
existence of coefficients (am) such that∑

‖m‖par<p

Arn,mam =
∑

‖m‖par<p

am

∫
xn∂m(ψ′r ∗ ψ′)(x)dx

=

{
1 if n = 0

0 else
.

The identity (349) thus follows for ω0 =
∑
‖m‖par<p

am∂
mψ′r.

The key ingredient for the proof of (350) and (352) are the following
estimates (355)–(358). We claim that for an arbitrary Schwartz func-
tion ω and any multi-index m = (m1,m2) with ‖m‖par ≤ p+ 1 we have
for any T > 0

∫
|∂m(ω − ϕ′T ∗ ω)| ≤ C0

∫
|∂mω|,

(355)

∫
d(0, x)α|∂m(ω − ϕ′T ∗ ω)|dx

≤ C0

(∫
d(0, x)α|∂mω|dx+ (T

1
4 )α
∫
|∂mω|dx

)
.(356)

Furthermore, for T ≤ 1∫
|ω − ϕ′T ∗ ω| ≤ C0(T

1
4 )p

∑
‖m‖par=p,p+1

∫
|∂mω|(357)

∫
d(0, x)α|ω − ϕ′T ∗ ω|

≤ C0(T
1
4 )p

∑
‖m‖par=p,p+1

(∫
d(0, x)α|∂mω|+ (T

1
4 )α
∫
|∂mω|

)
,(358)

where we have C0 = C0(ϕ′) in (355) – (358). The estimates (357) and
(358) rely on the Assumption (349) that ϕ′ integrates to zero against
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monomials of degree 0 < ‖n‖par < p. Once these bounds are estab-
lished, the representation (350) follows if we define the ω(k) recursively
by

ω(0) = ψ and ω(k+1) = ω(k) − ϕ′θk ∗ ω
(k)

for a θ > 0 small enough. Indeed, iterating (355) and (356) yields∑
‖m‖par=p,p+1

∫
(1 + d(0, x)α)|∂mω(k)|dx

≤ (2C0)k
∑

‖m‖par=p,p+1

∫
(1 + d(0, x)α)|∂mψ|dx,

which can then be plugged into (357) and (358) to yield∫
(1 + d(0, x)α)|ω(k+1)|dx

≤ (2C0)k+1(θ
k
4 )p

∑
‖m‖par=p,p+1

∫
(1 + d(0, x)α)|∂mψ|dx,

which in turn yields (351) and (352). The representation then follows
by observing

ψ = ω(0) = ω(0) ∗ ϕ′ + ω(1) = ω(0) ∗ ϕ′ + ω(1) ∗ ϕ′θ + ω(2) = . . . .

which together with (351) implies that the convergence holds in L1.

The bounds (355) and (357) are provided in the discussion following
Equation (295) in [3] (up to the parabolic scaling which can be included
in the same way as in the following argument). Here we only present
the proofs for (356) and (358) which follow along similar lines. First
of all, in order to bound

∫
d(0, x)α|∂mω − ϕ′T ∗ ∂mω|dx we make use

of the triangle inequality in the form |∂mω − ϕ′T ∗ ∂mω| ≤ |∂mω| +
|ϕ′T ∗ ∂mω|. The integral resulting from the first term then already
has the desired form. For the second term, we write |ϕ′T ∗ ∂mω(x)| ≤∫
|ϕ′T (x− y)∂mω(y)|dy and use the triangle inequality once more, this

time in the form d(0, x)α ≤ d(0, x − y)α + d(0, y)α. Hence, it remains
to bound the two integrals∫ ∫

d(0, x− y)α|ϕ′T (x− y)| |∂mω(y)|dxdy

≤
∫
d(0, z)α|ϕ′T (z)|dz

∫
|∂mω(y)|dy,

= (T
1
4 )α
∫
d(0, ẑ)α|ϕ′(ẑ)|dẑ

∫
|∂mω(y)|dy,
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d(0, y)α|ϕ′T (x− y)| |∂mω(y)|dxdy

≤
∫
|ϕ′T (x)|dx

∫
d(0, y)α|∂mω(y)|dy,

and estimate (356) follows.

To obtain (358), similar to [3] we obtain the pointwise bound

|ϕ′T ∗ ω − ω|(x)

≤ 2
∑

‖m‖par=p,p+1

∫ 1

0

∫
d(0, z)‖m‖par |ϕ′T (−z)| |∂mω(x+ sz)|dzds.(359)

We recall their argument (adjusted to the case of parabolic scaling):
First, according to (349) ϕ′ integrates non-constant monomials of (par-
abolic) degree < p to zero which permits us to write (ϕ′T ∗ω−ω)(x) =∫ (

ω(x+z)−
∑
‖m‖par<p

1
m1!m2!

∂mω(x)zm
)
ϕ′T (−z)dz. At this point we

seek to apply Taylor’s formula, but unlike [3] we need an anisotropic
version of the error term. In order to formulate this we define for
m = (m1,m2)

Tm =
∂mω(x)zm

(m1 +m2)!
Em =

∫ 1

0

(1− s)(m1+m2−1)

(m1 +m2 − 1)!
zm∂mω(x+ sz)ds,

and observe the elementary identities ω(x+z)−ω(x) = E(1,0)+E(0,1) as
well as Em = Tm+E(m1+1,m2) +E(m1,m2+1) which permit to recursively
obtain

ω(x+ z)−
∑

‖m‖par<p

1

m1!m2!
∂mω(x)zm

=
∑

‖m‖par=p

(
m1 +m2

m1

)
E(m1,m2) +

∑
‖m‖par=p−1

(
m1 +m2

m1

)
E(m1,m2+1)

≤
∑

‖m‖par=p,p+1

(
m1 +m2

m1

)
E(m1,m2).

Then bounding |zm| ≤ d(0, z)‖m‖par and observing that the combina-
torial pre-factor satisfies 1

(m1+m2−1)!

(
m1+m2

m1

)
≤ 2 and dropping (1 −

s)m1+m2−1 ≤ 1 the claimed expression (359) follows.

To bound
∫
d(0, x)α|ϕ′T ∗ ω(x) − ω(x)|dx we then use the triangle in-

equality in the form d(0, x)α ≤ d(0, sz)α + d(0, x+ sz)α which prompts
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to bound the two integrals∫ ∫ 1

0

∫
d(0, sz)αd(0, z)‖m‖par |ϕ′T (−z)| |∂mω(x+ sz)|dzdsdx

≤
(∫

d(0, z)‖m‖pard(0, z)α|ϕ′T (−z)|dz
) (∫

|∂mω(x)|dx
)
,∫ ∫ 1

0

∫
d(0, x+ sz)αd(0, z)‖m‖par |ϕ′T (−z)| |∂mω(x+ sz)|dzdsdx

=
(∫

d(0, z)‖m‖par|ϕ′T (−z)|
) (∫

d(0, x)α|∂mω(x)|dx
)
,

both of which are bounded as claimed in (358).

References

[1] I. Bailleul and F. Bernicot. Heat semigroup and singular PDEs. J. Funct. Anal.,
270(9):3344–3452, 2016.

[2] M. Furlan and M. Gubinelli. Paracontrolled quasilinear SPDEs. arXiv preprint
arXiv:1610.07886, 2016.

[3] A. Gloria and F. Otto. The corrector in stochastic homogenization:
optimal rates, stochastic integrability, and fluctuations. arXiv preprint
arXiv:1510.08290, 2015.

[4] M. Gubinelli. Controlling rough paths. J. Funct. Anal., 216(1):86–140, 2004.
[5] M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and

singular PDEs. Forum Math. Pi, 3:e6, 75, 2015.
[6] M. Hairer. Rough stochastic PDEs. Comm. Pure Appl. Math., 64(11):1547–

1585, 2011.
[7] M. Hairer. Solving the KPZ equation. Ann. of Math. (2), 178(2):559–664, 2013.
[8] M. Hairer. A theory of regularity structures. Invent. Math., 198(2):269–504,

2014.
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