THE THEOREM OF THE CUBE, SQUARE, AND APPLICATIONS

DANIEL MARLOWE

Fix an algebraically closed field k.

Theorem 0.1 ([Mum85, §10, Theorem, p.91]). Suppose given X, Y complete k-varieties, Z a connected variety, and $\mathcal{L} \in \text{Pic}(X \times Y \times Z)$. If there exist points $x_0 \in X(k)$, $y_0 \in Y(k)$, $z_0 \in Z(k)$ with the restriction of \mathcal{L} to $\{x_0\} \times Y \times Z$, $X \times \{y_0\} \times Z$ and $X \times Y \times \{z_0\}$ trivial, \mathcal{L} is trivial.

We require the following results:

Theorem 0.2 (Formal function theorem, [GD61, Théorème 4.1.5]). For $X \xrightarrow{\pi} Y$ a proper morphism of noetherian schemes, \mathcal{F} a coherent sheaf of \mathcal{O}_X -modules, and $Y' \subset Y$ a closed subscheme with ideal sheaf \mathcal{I} , then for each $p \geq 0$ the system of maps

$$\mathbf{R}^p \pi_*(\mathfrak{F}) \otimes_{\mathscr{O}_Y} \mathscr{O}_Y/\mathfrak{I}^n \to \mathbf{R}^p(\mathfrak{F}/\mathfrak{I}^n\mathfrak{F})$$

induces an isomorphism of topological $\mathcal{O}_{\widehat{X}}$ modules

$$(\mathbf{R}^p\pi_*(\mathcal{F}))^{\wedge}\to \lim \mathbf{R}^p(\mathcal{F}/\mathcal{I}^n\mathcal{F}).$$

Corollary 0.3 ([GD61, Proposition 4.2.1]). For $X \xrightarrow{\pi} Y$ a proper morphism with Y locally noetherian and \mathcal{F} coherent on $X, y \in Y$, consider the following diagram of thickenings:

$$X_n := X \times_Y \operatorname{Spec}(\mathscr{O}_{Y,y}/\mathfrak{m}_y^n) \xrightarrow{i_n} X$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$Y_n := \operatorname{Spec}(\mathscr{O}_{Y,y}/\mathfrak{m}_y^n) \longrightarrow Y,$$

 $\mathcal{F}_n := i_n^* \mathcal{F};$ Then

$$(\mathbf{R}^p \pi_* \mathcal{F})_y^{\wedge} \cong \varprojlim_n H^p(X_n, \mathcal{F}_n)$$

as $\widehat{\mathscr{O}}_{Y,y}$ -modules.

Proposition 0.4 (Künneth formula, [Stacks, Tag 0BEF]). For X, Y locally noetherian schemes of finite type over k, there is a natural isomorphism

$$H^n(X \times Y, \mathscr{O}_{X \times Y}) \cong \bigoplus_{i+j=n} H^i(X, \mathscr{O}_X) \otimes_k H^j(Y, \mathscr{O}_Y).$$

Lemma 0.5 ([Stacks, Tag 0FD2]). For X a proper k-variety, $H^0(X, \mathcal{O}_X) \cong k$.

Lemma 0.6. For X a complete k-variety, $\mathcal{L} \in \text{Pic}(X)$ is trivial if and only if both \mathcal{L} and \mathcal{L}^{\vee} have nontrivial global sections.

Definition 0.7. For Y a topological space, and $Y \xrightarrow{f} \mathbb{Z}$ a map of sets. f is upper semicontinuous if for each $y \in Y$ there is an open $y \in U \subset Y$ such that for each $y' \in U$, $f(y') \leq f(y)$.

For \mathcal{F} a sheaf of $\mathscr{O}_{X\times Y}$ -modules and $y\in Y$, write $X_y\coloneqq X\times\{y\}$ and $\mathcal{F}_y\coloneqq \mathcal{F}|_{X_y}$.

Theorem 0.8 (Semicontinuity, [Mum85, §5, Corollary, p.50]). For $X \xrightarrow{\pi} Y$ a proper morphism of locally noetherian schemes, \mathcal{F} a coherent sheaf on X flat over Y, i.e. \mathcal{F}_x is a flat $\mathcal{O}_{Y,\pi(x)}$ -module for each $x \in X$. Then the function $y \mapsto \dim_{k(y)} H^p(\pi^{-1}(y), \mathcal{F}_{\pi^{-1}(y)})$ is upper semicontinuous on Y. Accordingly, the set

$$\{y \in Y \mid \dim_{k(y)} H^p(\pi^{-1}(y), \mathcal{F}|_{\pi^{-1}(y)}) \ge n\} \subset Y$$

is closed.

Corollary 0.9 (Grauert). For X, Y and \mathcal{F} as above with Y integral, suppose that for some i, $y \mapsto \dim_{k(y)} H^i(\pi^{-1}(y), \mathcal{F}|_{\pi^{-1}(y)}$ is constant on Y. Then $(\mathbf{R}^i \pi_* \mathcal{F})^+$ is locally free on Y, and

$$(\mathbf{R}^i \pi_* \mathcal{F})^+ \otimes k(y) \cong H^i(\pi^{-1}(y), \mathcal{F}_y)$$

naturally, where $(-)^+$ is the sheafification.

Theorem 0.10 ([Mum85, §5, Corollary 6, p.54]). Suppose given X, Y varieties over k with X complete, and $\mathcal{L}, \mathcal{M} \in \text{Pic}(X \times Y)$ such that for each $y \in Y$ closed, $\mathcal{L}_y \cong \mathcal{M}_y$. Then there exists $\mathcal{N} \in \text{Pic}(Y)$ with $\mathcal{L} \cong \mathcal{M} \otimes \pi^* \mathcal{N}$, for $X \otimes Y \xrightarrow{\pi} Y$ the projection.

Proof. Note that $X_y := X \times \{y\}$ is complete, and so $H^0(X_y, \mathcal{L}_y \otimes \mathcal{M}_y^{-1}) \cong H^0(X_y, \mathcal{O}_{X_y}) \cong k(y)$ for each $y \in Y$ closed. By Grauert's corollary, we have $\pi_*(\mathcal{L} \otimes \mathcal{M}^{-1}) \otimes k(y) \cong H^0(X_y, \mathcal{L}_y \otimes \mathcal{M}_y^{-1}) \cong k(y)$, and so $\pi_*(\mathcal{L} \otimes \mathcal{M}^{-1})$ is an invertible sheaf on Y. We claim that the $\pi^* \dashv \pi_*$ counit $\varepsilon : \pi^*\pi_*(\mathcal{L} \otimes \mathcal{M}^{-1}) \to \mathcal{L} \otimes \mathcal{M}^{-1}$ is an isomorphism.

Consider the pullback

$$X_{y} \xrightarrow{j} X \times Y$$

$$\downarrow^{\pi'} \qquad \qquad \downarrow^{\pi}$$

$$\operatorname{Spec}(k(y)) \xrightarrow{i} Y$$

with π and hence π' flat. Writing $\mathcal{F} \coloneqq \mathcal{L} \otimes \mathcal{M}^{-1}$, we have $j^*\pi^*\pi_*\mathcal{F} \cong \pi'^*i^*\pi_*\mathcal{F} \cong \pi'^{-1}\mathscr{O}_{k(y)} \cong \mathscr{O}_{X_y}$, and so $\varepsilon_y : j^*\pi^*\pi_*\mathcal{F} \to j^*\mathcal{F} \cong \mathscr{O}_{X_y}$ is an isomorphism.

It thus suffices to show that given a map $\mathcal{E} \xrightarrow{f} \mathscr{O}_{X \times Y}$ with f fibrewise an isomorphism, f is an isomorphism; Nakayama's lemma implies that f is surjective, and comparing ranks we see that it is injective.

The proof below follows Akhil Mathew's exposition in [Mat12]

Proof of Theorem 0.1. Set $Z' \subset Z$ the set of points z with $\mathcal{L}|_{X\times Y\times\{z\}}$ trivial; this is the case if and only if $\dim_{k(z)} H^0(\mathcal{L}|_{X\times Y\times\{z\}})$ and $\dim_{k(z)} H^0(\mathcal{L}^{\vee}|_{X\times Y\times\{z\}}) > 0$, and by semicontinuity this is closed; note that $z_0 \in Z'$.

Fix $z' \in Z'$. We first show for any local finite-dimensional k-algebra A and infinitesimal thickening $\operatorname{Spec}(A) \to Z$ of z' that $\mathcal{L}|_{X \times Y \times \operatorname{Spec}(A)}$ is trivial. Set $d := \dim_k(A)$, and note that the case d = 1 follows by hypothesis. Suppose the required triviality holds for any such A of k-dimension $d \geq 1$. There exists $a \in A$ nonzero with $\mathfrak{m}_A a = 0$, inducing a surjection of k-algebras $A \to A/a = A/ka$; then we have an exact sequence of sheaves (on z'):

$$0 \to \mathcal{O}_k \to \mathcal{O}_A \to \mathcal{O}_{A/a} \to 0$$

inducing

$$0 \to \mathcal{L}\mid_{X \times Y \times \operatorname{Spec}(k)} \to \mathcal{L}\mid_{X \times Y \times \operatorname{Spec}(A)} \to \mathcal{L}\mid_{X \times Y \times \operatorname{Spec}(A/a)} \to 0$$

on $X \times Y \times \operatorname{Spec}(A)$. We wish to find a trivialising section $s \in \Gamma(\mathcal{L} \mid_{X \times Y \times \operatorname{Spec}(A)})$; by induction, there exists some such $s' \in \Gamma(\mathcal{L} \mid_{X \times Y \times \operatorname{Spec}(A/a)})$, since $\dim_k A/a < d$. A lift of s' exists if and only if the connecting homomorphism

$$H^0(\mathcal{L}\mid_{X\times Y\times \operatorname{Spec}(A/a)}) \xrightarrow{\delta} H^1(\mathcal{L}\mid_{X\times Y\times \operatorname{Spec}(k)})$$

takes $s' \mapsto 0$. By the Künneth formula, we have

$$H^{1}(\mathcal{L} \mid_{X \times Y \times \{z_{0}\}}) \cong H^{0}(\mathcal{L} \mid_{X \times \{y_{0}\} \times \{z_{0}\}}) \otimes H^{1}(\mathcal{L} \mid_{\{x_{0}\} \times Y \times \{z_{0}\}}) \oplus H^{1}(\mathcal{L}_{X \times \{y_{0}\} \times \{z_{0}\}}) \otimes H^{0}(\mathcal{L} \mid_{\{x_{0}\} \times Y \times \{z_{0}\}})$$

$$\cong H^{0}(\mathscr{O}_{X \times \{y_{0}\} \times \{z_{0}\}}) \otimes H^{1}(\mathcal{L} \mid_{\{x_{0}\} \times Y \times \{z_{0}\}}) \oplus H^{1}(\mathcal{L}_{X \times \{y_{0}\} \times \{z_{0}\}}) \otimes H^{0}(\mathscr{O}_{\{x_{0}\} \times Y \times \{z_{0}\}})$$

$$\cong H^{1}(\mathcal{L} \mid_{\{x_{0}\} \times Y \times \{z_{0}\}}) \oplus H^{1}(\mathcal{L}_{X \times \{y_{0}\} \times \{z_{0}\}}),$$

since $X \times \{y_0\} \times \{z_0\}$ and $\{x_0\} \times Y \times \{z_0\}$ are complete. We then note that the connecting maps

$$H^0(\mathcal{L}\mid_{X\times\{y_0\}\times\mathrm{Spec}(A/a)})\stackrel{\delta'}{\to} H^1(\mathcal{L}\mid_{X\times\{y_0\}\times\{z_0\}})$$

and

$$H^0(\mathcal{L}\mid_{\{x_0\}\times Y\times \operatorname{Spec}(A/a)})\stackrel{\delta''}{\longrightarrow} H^1(\mathcal{L}\mid_{\{x_0\}\times Y\times \{z_0\}})$$

send $s' \mapsto 0$, since \mathcal{L} is trivial on $X \times \{y_0\} \times \{z_0\}$ and $\{x_0\} \times Y \times \{z_0\}$ by hypothesis, and so $\delta(s) = (\delta'(s), \delta''(s)) = 0$.

We now show we can extend triviality of \mathcal{L} to an open containing z'. We take Z to be irreducible, without loss of generality (otherwise we restrict to each irreducible component). Write $\pi: X \times Y \times Z \to Z$ for the projection, and set $\mathcal{M} := \pi_* \mathcal{L}$, a coherent sheaf on Z, so $\mathcal{M}_{z'}$ is a finitely generated $\mathscr{O}_{Z,z'}$ -module. By the corollary to the formal function theorem, we have

$$\widehat{\mathfrak{M}}_{z'} \cong \varprojlim H^0(\mathcal{L}\mid_{\operatorname{Spec}\mathscr{O}_{Z,z'}/\mathfrak{m}_{z'}^n}) \cong \widehat{\mathscr{O}}_{Z,z'},$$

since

$$H^{0}(X \times Y \times \operatorname{Spec} \mathscr{O}_{Z,z'}/\mathfrak{m}_{z'}^{n}, \mathcal{L} \mid_{X \times Y \times \operatorname{Spec} \mathscr{O}_{Z,z'}/\mathfrak{m}_{z'}^{n}})$$

$$\cong H^{0}(X \times Y, \mathscr{O}_{X \times Y}) \otimes H^{0}(\operatorname{Spec} \mathscr{O}_{Z,z'}/\mathfrak{m}_{z'}^{n}, \mathscr{O}_{\operatorname{Spec} \mathscr{O}_{Z,z'}/\mathfrak{m}_{z'}^{n}})$$

$$\cong H^{0}(\mathscr{O}_{\operatorname{Spec} \mathscr{O}_{Z,z'}/\mathfrak{m}_{z'}^{n}})$$

by Künneth and since $H^0(X \times Y, \mathcal{O}_{X \times Y}) \cong k$.

Since $\mathscr{O}_{Z,z'}$ is noetherian local, the completion $\mathscr{O}_{Z,z'} \to \widehat{\mathscr{O}}_{Z,z'}$ is faithfully flat, and so $\widehat{\mathcal{M}}_{z'} \cong \widehat{\mathscr{O}}_{Z,z'}$ if and only if $\mathcal{M}_{z'} \cong \mathscr{O}_{Z,z'}$. So $\mathcal{M}_{z'}$ is free of rank one, and by coherence, \mathcal{M} is a line bundle in a neighbourhood V of z'. We also note that $\mathcal{M}_{z'} \to H^0(\mathcal{L}|_{X \times Y \times \{z'\}}) \cong k$ is surjective, and so for some neighbourhood $z' \in U \subset V$, $1 \in H^0(\mathcal{L}|_{X \times Y \times \{z'\}}) \cong k$ lifts to a section s of \mathcal{L} over $X \times Y \times U$. Shrinking U, we may assume that s is invertible on $X \times Y \times U$, and so $\mathcal{L}_{X \times Y \times \{u\}} \cong \mathscr{O}_{X \times Y \times \{u\}}$ for each $u \in U$.

But the set of $t \in Z$ with $\mathcal{L}|_{X \times Y \times \{t\}}$ trivial is closed, and hence equal to Z, and we thus have that \mathcal{L} is the pullback of a line bundle on Z (in fact, to $\pi^*\mathcal{M}$). Then $\mathcal{L}|_{\{x_0\} \times \{y_0\} \times Z} \cong \mathcal{M} \cong \mathscr{O}_Z$, and hence \mathcal{L} is trivial.

From this we immediately obtain a number of useful corollaries. For an abelian k-variety X and $S \subset \{1, 2, 3\}$, denote by $\pi_S : X^3 \to X$ the map defined on k-points via $(x_1, x_2, x_3) \mapsto \sum_{s \in S} x_s$, where is $s = \emptyset$ the sum is the unit of 0 of X.

Corollary 0.11. X an abelian k-variety, $\mathcal{L} \in \text{Pic}(X)$. Then the line bundle

$$\Theta(\mathcal{L}) \coloneqq \pi_{123}^* \mathcal{L} \otimes \pi_{12}^* \mathcal{L}^{-1} \otimes \pi_{13}^* \mathcal{L}^{-1} \otimes \pi_{23}^* \mathcal{L}^{-1} \otimes \pi_1 * \mathcal{L} \otimes \pi_2 * \mathcal{L} \otimes \pi_3 * \mathcal{L}$$

is trivial on X^3 .

Proof. Clearly it suffices to check that the restriction of $\Theta(\mathcal{L})$ to $\{0\} \times X \times X$, $X \times \{0\} \times X$, and $X \times X \times \{0\}$ is trivial. Write $j : \{0\} \times X \times X \hookrightarrow X^3$ for the inclusion morphism, and note that $\pi_S \circ j = \pi_{S \setminus \{1\}}$. Writing $c_0 : X^3 \to X$ for the constant morphism to $0 \in X$, we have

$$c_0^*\mathcal{L}: U \mapsto \operatorname{colim}_{c_0(U) \subset V} \Gamma(V, \mathcal{L}) \cong \mathcal{L}_0 \cong \mathcal{O}_{X,0},$$

the stalk of the structure sheaf at zero, and hence $c_0^*\mathcal{L} \cong \mathscr{O}_{X\times X}$. Then

$$\begin{split} j^*\Theta(\mathcal{L}) = & \pi_{23}^*\mathcal{L} \otimes \pi_2^*\mathcal{L}^{-1} \otimes \pi_3^*\mathcal{L}^{-1} \otimes \pi_{23}^*\mathcal{L}^{-1} \otimes \pi_2^*\mathcal{L} \otimes \pi_3^*\mathcal{L} \\ & \cong \pi_{23}^*\mathcal{L} \otimes \pi_{23}^*\mathcal{L}^{-1} \otimes \pi_2^*\mathcal{L}^{-1} \otimes \pi_2^*\mathcal{L} \otimes \pi_3^*\mathcal{L}^{-1} \otimes \otimes \pi_3^*\mathcal{L} \\ & \cong \mathcal{O}_{X\times X}, \end{split}$$

and similarly for $X \times \{0\} \times X$ and $X \times X \times \{0\}$.

Corollary 0.12. For Y a k-variety and X an abelian k-variety, given maps $f, g, h : Y \to X$ and $\mathcal{L} \in \text{Pic}(X)$, we have

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1}.$$

Proof.

$$Y \xrightarrow{(f,g,h)} X^{3}$$

$$(f,g,h)_{S} \downarrow^{\pi_{S}}$$

$$X,$$

where for instance $(f, g, h)_{12} = f + g$. We see that

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1} \cong (f,g,h)^*\Theta(\mathcal{L})$$

$$\cong (f,g,h)^*\mathscr{O}_{X^3}$$

$$\cong \mathscr{O}_{Y}.$$

and we are done. \Box

Recall for an abelian variety X and $x \in X(k)$, we have the translation morphisms $t_x : X \to X$.

Corollary 0.13 (Theorem of the square, [Mum85, §, Corollary 4, p.59]). For X an abelian k-variety and $\mathcal{L} \in \text{Pic}(X)$,

$$t_{x+y}^* \mathcal{L} \otimes \mathcal{L} \cong t_x^* \mathcal{L} \otimes t_y^* \mathcal{L}.$$

Proof. Note firstly that $t_x = \mathrm{id}_X + c_x$, for c_x the constant map at x. Setting $f := \mathrm{id}_X$, $g := c_x$, $h := c_y$ in the above corollary,

$$t_{x+y}^* \mathcal{L} \cong t_x^* \mathcal{L} \otimes t_y^* \mathcal{L} \otimes (c_x + c_y)^* \mathcal{L} \otimes c_x^* \mathcal{L}^{-1} \otimes c_y^* \mathcal{L}^{-1} \otimes \mathcal{L}^{-1} \cong t_x^* \mathcal{L} \otimes t_y^* \mathcal{L} \otimes \mathcal{L}^{-1},$$

since $c_z^* \mathcal{L} \cong \mathscr{O}_X$ for any $z \in X$.

Definition 0.14. For A an abelian k-variety, we define the degree 0 part of the Picard group to consist of translation invariant line bundles:

$$\operatorname{Pic}^{0}(A) := \{ \mathcal{L} \in \operatorname{Pic}(A) \mid t_{x}^{*} \mathcal{L} \cong \mathcal{L} \}.$$

Note that t_x^* commutes with \otimes (as a left adjoint), and so $\operatorname{Pic}^0(A) \subset \operatorname{Pic}(A)$ is a subgroup.

The following is now immediate.

Corollary 0.15. For A an abelian k-variety and $\mathcal{L} \in \text{Pic}(A)$, there is a homomorphism of abelian groups

$$A \xrightarrow{\varphi_{\mathcal{L}}} \operatorname{Pic}^{0}(A)$$
$$a \mapsto t_{a}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}.$$

References

- [Mum85] David Mumford. Abelian varieties, second edition, 1985 reprint. Vol. 5. Tata Institute of Fundamental Research Studies in Mathematics. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 1985.
- [GD61] Alexandre Grothendieck and Jean Dieudonné. Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie. Vol. 11. Publications Mathématiques de l'IHÉS, 1961, pp. 5–167. URL: http://www.numdam.org/item/PMIHES_1961__11__5_0/.
- [Stacks] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu. 2018.
- [Mat12] Akhil Mathew. The theorem of the cube. 2012. URL: https://amathew.wordpress.com/2012/06/04/the-theorem-of-the-cube/ (visited on 10/24/2023).