
Errata and additional material for
Infinite-Dimensional Dynamical Systems

Many thanks to all who have sent me errata, including: Marco Cabral, Car-
men Chicone, Marcus Garvie, Grzegorz Lukaszewicz, Edgardo Moyano, &
Vittorino Pata

Errata in the book

p 25, l 13 dx is missing from two integrals

p 43, equation (2.3) should read T (0) = id.

p 45, l 9 delete “a” before “locally”

p 46, l5- change x(t) to x(s)

p 52, l 13 RHS should be 0

p 75, l 7- closed ball required (should be B(0, 1))

p 77, l 8- Should be inf q(x) and supw(x), not vice versa

p 80, l 3- Should be x̄n → x and Ax̄n → ȳ

p 103, l 9 Should be ‖ej‖

p 105, l 5- It is not true that the Alaoglu weak-* compactness theorem
is valid in any Banach space, as the following example shows (thanks to
Vittorino Pata for this example): take X = l∞, and consider the sequence of
functionals Ln : X → R defined by

Ln(x) = xn when x = (x1, x2, x3, . . .).

The Ln is clearly a bounded sequence in (l∞)∗, but does not have a weakly-
* convergent subsequence. However, Corollary 4.19 (Reflexive weak com-
pactness) does hold as stated, i.e. is true for any reflexive (not necessarily
separable) Banach space - this is where Yosida (1980) provides a proof.
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p 109, equation (5.1) and (5.3) on page 110 all derivatives (d/dxj) should
be partial derivatives (∂/∂xj).

p 112, Definition 5.2 - should say that the derivatives of φn should converge
uniformly to ‘the corresponding derivatives of φ’

p 115, l 5 should be Theorem 5.4

p 125, l 1 should be ‘a function u ∈ Hk(Rm
+ )’

p 132, l 8- the integral is between −1 and 1

p 160, l 6- shoudl be u instead of u(t)

p 161, l 4- (5.14) (not (5.13))

p 176, l 4- The use of λ in Proposition 6.15 is required since we cannot
prove immediately H2 regularity on the whole of D+, but only on λD+ for
some 0 < λ < 1.

p 190, l 8- should be duh/dt→ du/dt

p 196, l 14 change ψ to ψ(t)

p 203ff Section 7.4.3: in fact it is possible to make estimates on un − um,
following the calculations in section 7.4.2, and show directly that {un} is
a Cauchy sequence in L2(0, T ;V ) and L∞(0, T ;H), removing the need to
extract subsequences. However, the presentation as it stands closely paral-
lels the treatment in subsequent chapters when the subsequence method is
necessary.

p 204, l 12 weak-* convergence of Pnf to f in L2(0, T ;V ∗) follows using a
much simpler argument. In fact, a straightforward application of Lebesgue’s
dominated convergence theorem (theorem 1.7 (iii)) shows that Pnf converges
strongly to f in L2(0, T ;V ∗).

p 205, l 9- change to ‘suppose that xn is given by the constant sequence’
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p 207, l 8 should be ‘t ∈ [0, T ]’

p 229, equation (8.30) the expression [1 + ‖u‖H1 + ‖v‖H1 ] should be raised
to the power of γ rather than 1

2
: the last line of the inequality in the proof

should end (1 + |u|2γ
L2qγ + |v|L2qγ )2γ rather than what is written.

p231, Exercise 8.1 You need to assume that X and Y are continuously
embedded in some other Banach space Z. [If X ∩ Y is dense in both X and
Y then we have true equality (X ∩Y )∗ = X∗ +Y ∗; otherwise one should say
that elements of (X ∩Y )∗ can be formed by adding the restrictions to X ∩Y
of elements of X∗ and Y ∗.]

p 235, l 2- change to ‘neglecting all the nonlinear terms in (9.1) and taking
f to be time-independent’

p 248 we in fact need to take w ∈ C1(0, T ; C1(Ω)) in the argument show-
ing the convergence of B(un, un) to B(u, u), and then use the density of
C1(0, T ; C1(Ω)) in Lq(0, T ;V ). In fact it is better to take w =

∑N
j=1 cj(t)wj,

with cj(t) continuous: for such w it is easy to show that∫ T

0

〈PnB(un, un), w〉 dt→
∫ T

0

〈B(u, u), w〉 dt,

and then since such w are dense in Lp(0, T ;V ) we obtain convergence of
PnB(un, un) to B(u, u) in one step.

p 274, Proposition 10.12 second sentence should end ‘then ω(u0) is a single
equilibrium point’.

p 275, Theorem 10.13. Equation (10.20) should read

A = A ∩W s(E) = A ∩
⋃
z∈E

W s(z).

p 276, l 1 change ‘double equality’ to ‘the two equalities’

p 276, l 9- change ‘u0 ∈ A’ to ‘v0 ∈ A’
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p 277 the example is wrong (thanks to Prof. Grzegorz Lukaszewicz of War-
saw University for pointing this out). The calculations given are in fact for

dx/dt = −zy
dy/dt = zx

dz/dt = −µz|z|.

However, there are some subtleties here. In fact for this example every point
has a compact ω limit set, even though the attractor z ≡ 0 is not compact,
and this is why Proposition 10.14 and its corollary still apply: that problems
can arise otherwise is shown in the simpler system ż = −z2 with ẋ = zx
which has solution x(t) = x0(1 + z0t) and z(t) = z0/(1 + z0t): although
on z ≡ 0 all points are stationary, the x component of every solution has
constant speed x0z0. An example that does away with the need for such
subtleties – since it does in fact have a compact global attractor – is

dx/dt = (1− (x2 + y2))x− yz

dy/dt = (1− (x2 + y2))y + xz

dz/dt = −µz|z|,

or in polar coordinates

dr/dt = r(1− r2)

dθ/dt = z

dz/dt = −µz|z|.

p 287, l 7- (8.27) (not (8.26)); also in l 1-, should be 2l + 1 not l + 1

p 288, l 2- * missing above the arrow (it’s weak-* convergence)

p 294, equation (11.17) the central term in the equality should be
∫

Ω
f(u)ut dx.

p 354, l 6 of Notes the reference for fractal dimension is to Clark Robinson’s
1995 book “Dynamical Systems”.

p 354, l -6 instead of the paper by Blinchevskaya & Ilyashenko (which still
has not appeared), see instead: Chepyzhov & Ilyin: A note on the fractal
dimension of attractors of dissipative dynamical systems. Nonlinear Anal.
44 (2001), no. 6, Ser. A: Theory Methods, 811–819
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p 381, equation (14.34) the term in k should be |k|1/2.

p 390, Definition 15.2 (Strong Squeezing Property) the strictly positive con-
stant k that occurs in (15.9) depends only on the projection P (i.e. only on
n).

p 391, l 4ff the two displayed equations should read

|Qu−Qv| ≤ e−kt|Qut −Qvt|

and
|Qu−Qv| ≤ 2RHe−kt,

the conclusion being that Qu = Qv. The result then follows as before.

p 391, Definition 15.4 (i), B(0, ρ) ∩ PH should be replaced by

PH \ [B(0, ρ) ∩ PH] ,

the idea being that the portion of the ‘flat space’ PH ‘outside’ the absorbing
ball B(0, ρ) is invariant.

p 394, l2 we need ‘t ≥ t0(Y )’. It would be possible to consider B(0, |u0|)
instead of a general bounded set Y , and thus obtain more clearly

dist(S(t)u0,M) ≤ C(|u0|)e−kt.

[A more careful proof of exponential convergence can be used to show that
in fact

dist(S(t)u0,M) ≤ C dist(u0,M)e−kt,

see, for example, Chow et al. (1992).]

p 418, l5 while checking that ϕ satisfies the uniqueness property, the left-
hand side should be ϕ(t;ϕ(s;x)).

Solutions to Exercises

Some numbering problems for Chapter 3: Solution 3.8 is for Exercise 3.7;
Solution 3.9 for Exercise 3.8; and Solution 3.7 is for Exercise 3.9.
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The solution for Exercise 8.1 is incorrect, since the application of the Hahn-
Banach Theorem does not give a linear functional on X, since it extends
a linear functional on Z = X ∩ Y which is continuous with respect to the
norm of Z, but not that of X. Thanks to Vittorino Pata for a helpful email
correspondence to clear this up.

We need to assume in addition that X and Y are continuously embedded
in some other Banach space Z. Now take f ∈ (X ∩ Y )∗. Now consider the
subspace D of X×Y consisting of vectors of the form (w,w) with w ∈ X∩Y .

Define a bounded linear functional h on D by

h(w,w) = f(w).

Now use the Hahn-Banach theorem to extend h to a linear functional g on
X × Y , and set

f1(w) = g(w, 0)

and
f2(w) = g(0, w).

Then f1 ∈ X∗ and f2 ∈ Y ∗, and g = f1+f2. Then for w ∈ X∩Y , f = f1+f2.

Clearly if X ∩ Y is dense in X and Y then f1 and f2 are uniquely defined
by their restrictions to X ∩ Y , and so the equality (X ∩ Y )∗ = X∗ + Y ∗ is
meaningful. Otherwise, as noted above, we in fact have f = f1|X∩Y +f2|X∩Y ,
where f1 ∈ X∗ and f2 ∈ Y ∗.

Additional material

There is a very elegant formulation of an existence result for global attrac-
tors (cf. theorem 10.5) that is due to Crauel (2001) in the case of random
attractors.

Theorem 1. There exists a global attractor A iff there exists a compact
attracting set K, and then A = ω(K).
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Note that the condition of a compact attracting set is much weaker than the
existence of a compact absorbing set. The proof requires the following simple
lemma:

Lemma 2. If K is a compact set and xn is a sequence such that

dist(xn, K) → 0

then {xn} has a convergent subsequence whose limit lies in K.

As a first step to proving this new theorem first we reprove proposition 10.3
under the weaker condition here.

Proposition 3. If there exists a compact attracting set K then the ω-limit
set ω(X) of any bounded set X is a non-empty, invariant, closed subset of
K. Furthermore ω(X) attracts X.

Proof. To see that ω(X) is non-empty choose some point x ∈ X. Then since
K is attracting

dist(S(n)x,K) → 0.

It follows that for some sequence nj → 0

S(nj)x→ x∗ ∈ K.

As the intersection of a decreasing sequence of closed sets ω(X) is clearly
closed. To show that ω(X) ⊂ K suppose that tn →∞, xn ∈ X and

S(tn)xn → y.

Then since K is attracting

dist(S(tn)xn, K) → 0,

implying that a subsequence of S(tn)xn converges to a point in K. Since the
sequence itself converges it follows that y ∈ K. So ω(X) is compact.

Now suppose that ω(X) does not attract X. Then there exists a δ > 0 and
a sequence of tn such that

dist(S(tn)X,ω(X)) > δ,
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and hence xn ∈ X such that

dist(S(tn)xn, ω(X)) > δ. (1)

However, the argument above shows that a subsequence of {S(tn)xn} con-
verges to some point z. By (1) we should have

dist(z, ω(X)) ≥ δ,

while by definition z ∈ ω(X). So ω(X) attracts X.

Now observe that

A ⊆ B =⇒ ω(A) ⊆ ω(B), (2)

and that since ω(X) is invariant

ω[ω(X)] =
⋂
t≥0

⋃
s≥t

S(s)ω(X) = ω(X). (3)

Proof. (Proof of theorem 1). It follows from the previous proposition that
ω(K) is non-empty, compact, invariant, and attracts K. So all we have to
prove is that ω(K) attracts X. Since ω(X) attracts X it suffices to show
that ω(X) ⊂ ω(K). But this follows immediately from (2) and (3).
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