Errata and additional material for
Infinite-Dimensional Dynamical Systems

Many thanks to all who have sent me errata, including: Marco Cabral, Car-
men Chicone, Marcus Garvie, Grzegorz Lukaszewicz, Edgardo Moyano, &
Vittorino Pata

Errata in the book

p 25,113 dx is missing from two integrals

p 43, equation (2.3) should read T'(0) = id.

p 45,19 delete “a” before “locally”

p 46, 15-  change z(t) to z(s)

p 52,113 RHS should be 0

p 75,1 7-  closed ball required (should be B(0, 1))

p 77,18-  Should be inf ¢(x) and sup w(x), not vice versa

p 80,13- Should be z,, — = and Az, — ¥y

p 103,19  Should be |e;]|

p 105, 1 5- It is not true that the Alaoglu weak-* compactness theorem
is valid in any Banach space, as the following example shows (thanks to

Vittorino Pata for this example): take X = [*° and consider the sequence of
functionals L, : X — R defined by

L,(x) =z, when x = (21,79, X3, ...).

The L, is clearly a bounded sequence in (I°°)*, but does not have a weakly-
* convergent subsequence. However, Corollary 4.19 (Reflexive weak com-
pactness) does hold as stated, i.e. is true for any reflexive (not necessarily
separable) Banach space - this is where Yosida (1980) provides a proof.
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p 109, equation (5.1) and (5.3) on page 110 all derivatives (d/dx;) should
be partial derivatives (0/0x;).

p 112,  Definition 5.2 - should say that the derivatives of ¢,, should converge
uniformly to ‘the corresponding derivatives of ¢’

p 115,15 should be Theorem 5.4

p 125,11 should be ‘a function u € H*(R"")’
p 132, 18- the integral is between —1 and 1
p 160,16- shoudl be u instead of u(t)

p 161,14- (5.14) (not (5.13))

p 176, 1 4- The use of A in Proposition 6.15 is required since we cannot
prove immediately H? regularity on the whole of DT, but only on AD™ for
some 0 < A < 1.

p 190, 1 8- should be duy/dt — du/dt
p 196,114  change ¥ to ¥(t)

p 203ff Section 7.4.3: in fact it is possible to make estimates on w, — u,,,
following the calculations in section 7.4.2, and show directly that {u,} is
a Cauchy sequence in L2(0,T;V) and L*°(0,T; H), removing the need to
extract subsequences. However, the presentation as it stands closely paral-
lels the treatment in subsequent chapters when the subsequence method is
necessary.

p 204,112 weak-* convergence of P, f to f in L?(0,T;V*) follows using a
much simpler argument. In fact, a straightforward application of Lebesgue’s

dominated convergence theorem (theorem 1.7 (iii)) shows that P, f converges
strongly to f in L?(0,T; V™).

p 205,19- change to ‘suppose that x,, is given by the constant sequence’



p 207,18 should be ‘t € [0,T]

p 229, equation (8.30) the expression [1 + ||u|| g1 + ||v| 1] should be raised
to the power of v rather than %: the last line of the inequality in the proof
should end (1 + |u|?2w + |v|p24+)*7 rather than what is written.

p231, Exercise 8.1 You need to assume that X and Y are continuously
embedded in some other Banach space Z. [If X NY is dense in both X and
Y then we have true equality (X NY)* = X* + Y™*; otherwise one should say
that elements of (X NY')* can be formed by adding the restrictions to X NY
of elements of X* and Y* ]

p 235,12-  change to ‘neglecting all the nonlinear terms in (9.1) and taking
f to be time-independent’

p 248 we in fact need to take w € C1(0,T;C'(2)) in the argument show-
ing the convergence of B(u,,u,) to B(u,u), and then use the density of
CH(0,T;CH(Q)) in L0, T; V). In fact it is better to take w = S | ¢;(t)w;,

]:
with ¢;(t) continuous: for such w it is easy to show that

/0T<PHB(un,un),w) dt — /0T<B(u’u),w> dt.

and then since such w are dense in LP(0,7;V) we obtain convergence of
P, B(uy,u,) to B(u,u) in one step.

p 274, Proposition 10.12 second sentence should end ‘then w(uy) is a single
equilibrium point’.

p 275, Theorem 10.13. Equation (10.20) should read

A=AnNWE) = An|JW*(2).

ze€

’

p 276,11 change ‘double equality’ to ‘the two equalities

p 276,19-  change ‘ug € A’ to ‘vo € A’



p 277 the example is wrong (thanks to Prof. Grzegorz Lukaszewicz of War-
saw University for pointing this out). The calculations given are in fact for

de/dt = —zy
dy/dt = zzx
dz/dt = —pzlz|.

However, there are some subtleties here. In fact for this example every point
has a compact w limit set, even though the attractor z = 0 is not compact,
and this is why Proposition 10.14 and its corollary still apply: that problems
can arise otherwise is shown in the simpler system 2 = —2% with # = 2x
which has solution z(t) = xo(1 + 20t) and 2(t) = z0/(1 + zot): although
on z = 0 all points are stationary, the x component of every solution has
constant speed xgzyp. An example that does away with the need for such
subtleties — since it does in fact have a compact global attractor — is

de/dt = (1—(2*+y*)x —yz
dy/dt = (1— (2 +9*))y +az
dz/dt = —puz|z|,
or in polar coordinates
dr/dt = r(1—1?)
dg/dt = =z
dz/dt = —pz|z|.

p 287,17-  (8.27) (not (8.26)); also in 1 1-, should be 2l + 1 not [ + 1
p 288,12- * missing above the arrow (it’s weak-* convergence)
p 294, equation (11.17)  the central term in the equality should be [, f(u)u; dz.

p 354,16 of Notes the reference for fractal dimension is to Clark Robinson’s
1995 book “Dynamical Systems”.

p 354, 1-6 instead of the paper by Blinchevskaya & Ilyashenko (which still
has not appeared), see instead: Chepyzhov & Ilyin: A note on the fractal
dimension of attractors of dissipative dynamical systems. Nonlinear Anal.

44 (2001), no. 6, Ser. A: Theory Methods, 811-819
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p 381, equation (14.34) the term in k should be |k|'/2.

p 390, Definition 15.2 (Strong Squeezing Property) the strictly positive con-
stant k& that occurs in (15.9) depends only on the projection P (i.e. only on

p 391, 1 4ff the two displayed equations should read
|Qu — Qu| < efkt‘Qut — Quyl

and
|Qu — Qu| < 2Rpe ™,

the conclusion being that Qu = Qu. The result then follows as before.
p 391, Definition 15.4 (i), B(0, p) N PH should be replaced by

PH\ [B(0,p) N PH],
the idea being that the portion of the ‘flat space’ PH ‘outside’ the absorbing
ball B(0, p) is invariant.
p 394, 12 we need ‘¢ > ty(Y)’. It would be possible to consider B(0, |ug|)
instead of a general bounded set Y, and thus obtain more clearly

dist(S(t)ug, M) < C(|ug|)e .

[A more careful proof of exponential convergence can be used to show that
in fact
dist(S(t)ug, M) < C dist(ug, M)e ™,

see, for example, Chow et al. (1992).]

p 418, 15 while checking that ¢ satisfies the uniqueness property, the left-
hand side should be ¢(t; p(s; x)).

Solutions to Exercises

Some numbering problems for Chapter 3: Solution 3.8 is for Exercise 3.7;
Solution 3.9 for Exercise 3.8; and Solution 3.7 is for Exercise 3.9.
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The solution for Exercise 8.1 is incorrect, since the application of the Hahn-
Banach Theorem does not give a linear functional on X, since it extends
a linear functional on Z = X NY which is continuous with respect to the
norm of Z, but not that of X. Thanks to Vittorino Pata for a helpful email
correspondence to clear this up.

We need to assume in addition that X and Y are continuously embedded
in some other Banach space Z. Now take f € (X NY)*. Now consider the
subspace D of X x Y consisting of vectors of the form (w,w) with w € XNY'.

Define a bounded linear functional h on D by

h(w,w) = f(w).

Now use the Hahn-Banach theorem to extend A to a linear functional g on
X xY, and set

fi(w) = g(w,0)
and
fo(w) = g(0,w).
Then f € X*and f, € Y*, and g = f1+ fo. Thenforw € XNY, f = fi+ fo.

Clearly if X NY is dense in X and Y then f; and f; are uniquely defined
by their restrictions to X NY, and so the equality (X NY)* = X* 4+ Y* is

meaningful. Otherwise, as noted above, we in fact have f = fi|xny + fo|xny,
where f; € X* and f, € Y.

Additional material

There is a very elegant formulation of an existence result for global attrac-
tors (cf. theorem 10.5) that is due to Crauel (2001) in the case of random
attractors.

Theorem 1. There exists a global attractor A iff there exists a compact
attracting set K, and then A = w(K).



Note that the condition of a compact attracting set is much weaker than the
existence of a compact absorbing set. The proof requires the following simple
lemma:

Lemma 2. If K is a compact set and x, is a sequence such that
dist(x,, K) — 0
then {x,} has a convergent subsequence whose limit lies in K.
As a first step to proving this new theorem first we reprove proposition 10.3
under the weaker condition here.

Proposition 3. If there exists a compact attracting set K then the w-limit
set w(X) of any bounded set X is a non-empty, invariant, closed subset of
K. Furthermore w(X) attracts X.

Proof. To see that w(X) is non-empty choose some point z € X. Then since
K is attracting
dist(S(n)z, K) — 0.

It follows that for some sequence n; — 0
S(nj)xr — z* € K.
As the intersection of a decreasing sequence of closed sets w(X) is clearly
closed. To show that w(X) C K suppose that ¢, — oo, x, € X and
S(ty)x, — y.
Then since K is attracting
dist(S(tn)xn, K) — 0,

implying that a subsequence of S(t,)x, converges to a point in K. Since the
sequence itself converges it follows that y € K. So w(X) is compact.

Now suppose that w(X) does not attract X. Then there exists a § > 0 and
a sequence of t,, such that

dist(S(t,) X, w(X)) > 6,
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and hence z,, € X such that
dist(S(t,)x,, w(X)) > 0. (1)

However, the argument above shows that a subsequence of {S(¢,)z,} con-
verges to some point z. By (1) we should have

dist(z,w(X)) > 4,

while by definition z € w(X). So w(X) attracts X. O

Now observe that
ACB = w(A) Cw(B), (2)

and that since w(X) is invariant

wlw(X)] = MU S()(X) = w(X). (3)

£>0 s>t

Proof. (Proof of theorem 1). It follows from the previous proposition that
w(K) is non-empty, compact, invariant, and attracts K. So all we have to
prove is that w(K) attracts X. Since w(X) attracts X it suffices to show
that w(X) C w(K). But this follows immediately from (2) and (3). O



