
Introduction to Functional Analysis – Errata

With thanks to Robin Chapman, Juan David González Cobas, Wojciech
Oźaṅski, Richard Rivero, and Shamindra Shrotiya.

p24 The first line of the proof of Lemma 2.17 should read ‘for some ε > 0’
(rather than ‘for every ε > 0’).

p31 Exercise 2.12: S must also be bounded above (otherwise the supremum
need not exist).

p29 The displayed equation in the proof of Proposition 2.29 is incomplete: it
should read

sup{y : y ∈ f(K)} ∈ f(K)

p37 In the statement of Lemma 3.4, it should be N : X → [0,∞). Before the
final displayed equation in the proof, property (ii) from the statement of the
lemma is used (N(λx) = |λ|N(x)), not property (ii) from Definition 3.1.

p42 The left-hand side of the final displayed equations in the proof of Example
3.13 should be

‖λf + (1− λ)g‖pLp

p75 The definitions of g and p in the proof of Corollary 6.3 should be g(x) :=
f(a+ x(b− a)) and p(x) := q((x− a)/(b− a)).

p85 The space LipL(X;K) and the similar space on p86 are not compact
as defined. We need to include a boundedness condition (as required by
Corollary 6.13): so, for example, the space

{f ∈ C(X;K) : ‖f‖∞ ≤ B, |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ X}

is compact.

p94ff When defining Lp spaces as completions, a little more care is needed
than here. There are two issues: when Ω is unbounded, and when the bound-
ary of Ω has non-zero measure. In the first case (which includes Rn, of course)
there may be functions in C(Ω) that are not in Lp(Ω), so here one must take
the completion of functions in C(Ω) such that

´
Ω
|f |p < ∞. In the second

case one has to take the completion of continuous functions with compact
support in Ω.

p149 The proof of surjectivity of T +S uses the Contraction Mapping Theo-
rem, so the result guarantees that there is a unique x such that (T +S)x = y,
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so T +S is not only surjective, it is also injective. Given a different ordering
of the material in the book, one could now appeal to the Inverse Mapping
Theorem (Theorem 23.2) to deduce that (T + S)−1 is bounded.

p158 Exercise 12.3 (iii) - should read B(x, x) ≥ b‖x‖2 for some b > 0.

p158 Exercise 12.4 (iii) - should read f ∈ H∗

p170 Third paragraph of proof of Theorem 14.9 is unnecessary: it is an
immediate consequence of Proposition 11.18 that βiI − T is invertible for
each i, and hence βi /∈ σ(T ).

p178 The spectrum of a bounded operator on a Banach space is also non-
empty; but this requires the theory of operator-valued complex functions (see
Theorem X in Kreyszig, 1978, for example).

p179 Exercise 15.7: summation in the definition of Sx should be over j

p184 After the first sentence of the proof of Theorem 16.6, define λ1: “set
λ1 = ±‖T‖, so that Tw1 = λ1w1”.

p192 Lemma 17.3. For general functions u1 and u2, having zero Wronskian
W1(u1, u2) does not imply that u1 and u2 are linearly dependent: for ex-
ample, u1(x) = x|x| and u2(x) = x2 have u′1(x) = 2|x| and u′2(x) = 2x, so
W (u1, u2)(x) = 0 but these functions are linearly independent.

However, if L[u1] = L[u2] = 0 then zero Wronskian does imply linear de-
pendence. To see this, fix any x0 ∈ [a, b]; then, as written in the current
proof, there must exist α, β ∈ R such that αu1(x0) + βu2(x0) = 0 and
αu′1(x0) + βu′2(x0) = 0. The issue – not addressed in the proof as printed
– is that a priori α and β could depend on x. However, if we consider the
function φ(x) := αu1(x) + βu2(x) then

L[φ] = 0 with φ(x0) = φ′(x0) = 0.

Uniqueness of solutions for this initial-value problem now shows that φ(x) ≡
0 for all x ∈ [a, b].

p193 Theorem 17.5: u1, u2 here should be in C2([a, b]), not in D. [If they
were in D then Lemma 17.1 would imply that they were both zero.]

p194 The functions u1 and u2 constructed in this way satisfy

L[u1] = 0, u1(a) = 0, u′1(a) = 1 and L[u2] = 0, u2(b) = 0, u′2(b) = 1.

They are linearly independent, since otherwise u1(a) = u1(b) = 0, which
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coupled with the fact that L[u1] = 0 would imply (by Lemma 17.1) that
u1 = 0 (and u2 = 0 too).

p196 That Tg = u follows from the uniqueness of D-valued solutions of
L[u] = g: if L[u] = L[v] = g then L[u− v] = 0, so clearly

(L[u− v], u− v) = 0

and Lemma 17.1 implies that u = v.

p196 The final sentence of the penultimate paragraph should say “in partic-
ular, zero is not an eigenvalue of T”.

p198 The first case should be when λ < 0, in which case
√
λ should be

replaced by
√
|λ|. The final case is then λ > 0.

p234 line 5 of proof of Lemma 21.6, should read |φ(xn)| ≥ n since X could
be a complex space.

p260 in the displayed equation following (24.1), the denominator should be
‖xnj

− znj
‖ (znj

not ynj
).

p262 Proof of Proposition 24.6: if we set E0 = {0} then it is possible to take
n > m ≥ 1 in the penultimate line.

p294 Theorem 27.12: in the second paragraph of the proof, the separability
of Y ∗ is required in order to invoke Theorem 27.11, which is applied with
X = Y ∗ and X∗ = (Y ∗)∗ = Y ∗∗.

p297 Exercise 27.10: X here is once again (as in Exercise 27.9) a real Banach
space.

p301 “An element b ∈ P is an upper bound....” [‘is’ not ‘in’]

p366 solution of Exercise 12.3, the coefficient of B(v, v) in first equation after
(S.20) should be t2

2
.

p369 line -4: `∞ should be `2 (twice)

p382 solution of Exercise 20.9: in first line φ should read φn
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