
MA132: FOUNDATIONS, LECTURE NOTES FOR SECOND HALF OF
MODULE

DAVID WOOD

These lecture notes have not been previously used, and will be being typed up and adjusted
as the module is being taught, so are very much a work in progress. Please inform me via
an email (david.wood@warwick.ac.uk), or via the Moodle forums, of any obvious errors.

Still to do

Contents

18. Factors and Prime Numbers 2
18.1. Division with Remainder 2
19. Euclids Algorithm 4
19.1. Algorithms 4
19.2. Euclid’s Algorithm 4
19.3. Geometric interpretation of Euclid’s Algorithm 5
20. Fundamental Theorem of Arithmetic 6
20.1. Continued Fractions 7
20.2. Results we will need later 8
21. Chinese Remainder Theorem 9
22. Fermat’s Little Theorem and Euler’s Theorem 9
22.1. Multiplication module m 9
23. Algorithmic Complexity 11
23.1. Big O Notation 11
23.2. Running Times of Algorithms 12
24. Discrete Logarithm Problem and the Diffee-Hellman Problem 14
24.1. Discrete Logarithm 14
25. Cryptography Primer and the Corrupt Postal Service 17
26. Diffie-Hellman Key Exchange 19
27. Primality Testing 19
27.1. Eratosthenes Sieve 20
27.2. More Number Theory and Wilson’s Theorem 20
27.3. Miller-Rabin Primality Test 21
28. RSA 22
References 23

1

18. Factors and Prime Numbers

Notation 18.1. We donote the set N∗ to be N\{0}, i.e. the natural numbers but not con-
taining 0.

Remember that we say a divides b, a | b if b = ac where a, b ∈ N∗ for some c ∈ N∗. We
say a is a factor of b, and b is a multiple of a.

Definition 18.2. We say p is a prime number if it has exactly two factors, 1 and p (so 1 is
not a prime number).

Definition 18.3. If for a, b ∈ N we have c | a and c | b for some c ∈ N then c is a common
factor of a and b. If c is the largest such factor of a and b then it is the highest common
factor:

hcf(a, b)

(sometimes called the greatest common denominator gcd(a, b)).

For example, 12 and 18 have common factors 1, 2, 3 and 6, so the highest common factor
of 12 and 18 is 6.

Definition 18.4. If the highest common factor of a and b is 1, then a and b are said to be
coprime.

Definition 18.5. If for a, b ∈ N, the smallest positive m ∈ N such that a | m and b | m is
called the lowest common multiple of a and b

lcm(a, b).

For example, 12 and 18 has lcm(12, 18) = 36.

Theorem 18.6. Suppose a, b ∈ N then we have

hcf(a, b)× lcm(a, b) = a× b.

We do not prove this here, since the proof requires prime factorisation which we have not
yet properly done. We may return to this proof later, or try it yourself assuming that every
number has a unique prime factorisation.

We recall a result that was on Exercise Sheet 5 for completeness:

Lemma 18.7. Suppose a, b, c ∈ N. If a | b and a | c then a | (b+ c)

Proof. If a | b then there exists a d ∈ N such that b = ad, if a | c then there exists e ∈ N
such that c = ae. Then b+ c = ad+ ae = a(d+ e) so a | (b+ c). □

18.1. Division with Remainder.

Theorem 18.8. If a ∈ Z and b ∈ N∗ then ∃! r, q ∈ Z such that

a = bq + r

where 0 ≤ r < b. I.e. divide a by b gives q times a plus remainder term r.

Proof. Fix b ∈ N∗, prove existence of q, r by induction on a. P (a) is the statement ”there
exists q, r such that a = qb+ r where 0 ≤ r < b”. We can assume b > 1 since if b = 1 then
a = ab so q = a and r = 0 so we are done.
P (1) is true since we can choose q = 0 and r = 1 < b and 1 = 0b+ 1.

Suppose P (k) is true so that there exists a q and 0 ≤ r < b such that k = qb+ r. Consider
k + 1 = qb+ r + 1. Either r + 1 = b or r + 1 < b. In the first case take k + 1 = (q + 1)b+ 0
and in the second k+1 = qb+ (r+1). So P (k+1) is true. Hence by induction it is true for
all a ∈ N∗. The choice of b was arbitrary so true for all a, b ∈ N∗. □

You may be thinking that this is obvious, so let’s look at a different scenario where this
Theorem does not hold. Consider 2Z = . . . , −4, −2, 0, 2, 4, . . . (the even numbers). A
number in 2Z is prime if it is not a product of two smaller even numbers. The first few
positive prime numbers are 2, 6, 10, 14 (anything not divisible by four). So 6, 18, 30, 90
are all prime.

540 = 6× 90 = 18× 30

so note we do not have unique factorisation. If a = 6 and b = 4 then 6 = 4 × s + r where
0 ≤ r < s cannot be found with r, s ∈ 2Z so we do not have division with remainder.

How do we find the highest common factor hcf(a, b)? If we knew we could factorise a, b
into primes then we are done. For example, to find hcf(84, 98) note that 84 = 22× 3× 7 and
98 = 2 × 72 so the highest common factor hcf(84, 98) = 2 × 7 = 14. But we will be using
highest common factor to prove prime factorisation later, so instead try repeated division
with remainder.

Example 18.9. Apply repeated division with remainder to 81 and 51

81 = (51× 1) + 30

51 = (30× 1) + 21

30 = (21× 1) + 9

21 = (9× 2) + 3

9 = (3× 3) + 0

Note that we can also work the above backwards

3 = 21− (9× 2)

3 = 21− 2× (30− (21× 1))

3 = (3× 21)− (2× 30)

3 = 3× (51− (1× 30))− (2× 30)

3 = (3× 51)− (5× 30)

3 = (3× 51)− 5× (81− (1× 51)

3 = (8× 51)− (5× 81)

We claim that hcf(81, 51) = 3.

Definition 18.10. Given numbers a, b ∈ Z an integer linear combination of a and b is
something of the form

xa+ yb

for some x, y ∈ Z

Theorem 18.11. If h = hcf(a, b) and d = xa+ yb for some x, y ∈ Z then h | d.

Proof. If h = hcf(a, b) then h | a and h | b. Therefore a = hm for some m ∈ Z and b = hn
for some n ∈ Z. Therefore

d = ax+ by = mhx+ nhy = h(mx+ ny)

so h | d. □

In general, if hcf(a, b) = 1 then given any n ∈ Nwe can find an x and y in Z so that
n = xa+ yb.

Definition 18.12. For a, b ∈ N, if hcf(a, b) = 1 then a and b are called co-prime.

19. Euclids Algorithm

19.1. Algorithms. An algorithm consists of

• An input(s), assumed to be a string of length n,
• a set of rules that are repeated, taking the input and providing an output that
becomes the next input,

• an output such that the algorithm terminates in finite time (usually a number or
another string).

Can we generalise the process from 18.9 to find the highest common factor of two numbers?

19.2. Euclid’s Algorithm. Given a, b ∈ N with a > b > 0 (re-ordering if necessary) we
can write

a = q1b+ r1 where b > r1 ≥ 0

b = q2r1 + r2 where r1 > r2 ≥ 0

r1 = q3r2 + r3 where r2 > r1 ≥ 0

in general rt = qt+2rt+1 + rt+2 with rt+1 > rt+2 ≥ 0.

Theorem 19.1 (Euclid’s Algorithm). Given the above algorithm on a, b:

(1) It stops. That is ∃k ∈ N such that rk−1 = qk+1rk + rk+1 and rk = qk+2rk+1 + 0,
(2) In this case rk+1 = hcf(a, b),
(3) ∃x, y ∈ Z such that hcf(a, b) = xa+ yb.

Proof. We consider each case in turn.

(1) Note that we have b > r1 > r2 > r3 > . . . ≥ 0, the ri are getting ”strictly smaller”.
Each ri ∈ N, ri → 0 as i increases, so eventually there must be a k ∈ N such that
rk+2 = 0.

(2) Consider one step in the algorithm

ri = qi+2ri+2 + ri+2

we show common factors of {ri, ri+1} are the same as for {ri+1, ri+2}. This is since
(a) if m | ri and m | ri+1 then ri+2 = ri − qi+2ri+1 so m | ri+2,
(b) if n | ri+1 and n | ri+2 then ri = qi+2ri+1 + ri+2 so n | ri.
So every step of Euclid’s Algorithm preserves the set of common factors, so preserve
the highest common factor. The final pair of remainders is {rk, rk+1} but rk =
qk+2rk+1 + 0 so hcf(rk, rk+1) = rk+1 and so hcf(a, b) = rk+1.

(3) Finally,we have that

rk+1 = rk−1 − qk + 1rk

so rk+1 is a linear combination of rk−1 and rk. Assume there exists x, y ∈ Z such that

rk+1 = xrk−t + yrk−t+1

then

rk−t−1 = qk−t+1rk−t + rk−t+1

so

rk−t+1 = rk−t−1 − qk−t+1rk−t

giving

rk+1 = xrk−t + y[rk−t−1 − qk−1+1rk−t]

which is equal to

[x− yqk−t+1]rk−t + yrk−t−1

the bit in square brackets is just an integer, so rk+1 is a linear combination of rk−t and
rk − t− 1, so by principle of mathematical induction we can write rk+1 as a linear
combination of any consecutive pair of remainders. In particular hcf(a, b) = rk+1 is
a linear combination of a and b.

□

19.3. Geometric interpretation of Euclid’s Algorithm. We can think of Euclid’s Al-
gorithm geometrically. Say we want to find hcf(a, b) then consider a rectangle of length a
and height b. Remove the largest possible square from this rectangle, which will be a b × b
square, then with the rectangle that remains repeat. Keep repeating until you only have a
square left.

Example 19.2. Consider hcf(24, 15) EVENTUALLY ADD DIAGRAM HERE!

The final part of the Euclid’s Algorithm Theorem is known as Bezout’s Lemma:

Theorem 19.3 (Bezout’s Lemma). Let a, b be positive integers. Then hcf(a, b) is the smallest
positive integer so that it can be written in the form xa+ yb where x, y ∈ Z.

Corollary 19.4. If a and b, natural numbers, are coprime, then any positive integer can be
written as xa+ yb for some x, y ∈ Z.

Earlier we saw that every natural number can be divided by a prime number. We now
show, given the above, a similar result that we will find useful

Theorem 19.5. If p is a prime number, a, b ∈ N with p | ab, then either p | a or p | b (or
both).

Proof. We will show that if p | ab and p ∤ b then p | a. If p ∤ b then hcf(p, b) = 1 so ∃x, y ∈ Z
such that 1 = xp+ yb therefore

a = xap+ yab

but p | (xap) since p is an explicit factor, and p | (yab) since by hypothesis p | ab, so therefore
p | (xap+ yab) and so p | a proving the result.

□

20. Fundamental Theorem of Arithmetic

We are now in a position to state and prove a theorem we have been alluding to for a
while (which is contained in Part 1 of the notes, but we have left to here).

Theorem 20.1 (Fundamental Theorem of Arithmetic). Every n ∈ N can be written uniquely
as a product of primes.

Proof. We prove by induction

(1) (Can be factorised) by (strong) induction P (n) is the statement ”∀2 ≤ m ≤ n, m
can be factorised into primes”.

P (2) is true since 2 = 2. Suppose P (k) true, all 2 ≤ m ≤ k can be factorised into
primes, then

• either k + 1 is prime, whence k + 1 = k + 1 is the factorisation into primes
• or (k+1) = ab where a, b ∈ N and 2 ≤ a, b ≤ k. So by inductive hypothesis each
a, b is a product of primes, so (k + 1) = ab gives k + 1 as a product of primes.

(2) (Can be factorised uniquely) Suppose that

n = p1p2 . . . pr = q1q2 . . . qm

where all the pi and qi are primes. First consider p1 divides q1q2 . . . qm = n (p1 divides
n). Either p1 | q1 or p1 | q2q3 . . . qm (p | ab then p | a or p | b). In the first case p1 = q1
since q1 is prime. In second case p1 | q2 or p1 | q3q4 . . . qm. Continuing we conclude
that p1 = qi for some i. Without loss of generality say p1 = q1, reordering if necessary.
So now

p2p3 . . . pr = q2q3 . . . qm

by dividing by p1 = q1. Now repeat the argument with p2. Inductively we get p1 = q1,
p2 = q2 up to pr = qm with r = m.

□

Remark 20.2. Summary of steps we have taken to prove this fundamental result:

• Division with remainder a ∈ Z, b ∈ N,∃r, s ∈ Z s.t. a = bs+ r,
• hcf(a, b) = c using Euclid, then can find p, q ∈ Z so that c = pa+ qb,
• Lemma that if p prime, a, b ∈ N then p | ab implies p | a or p | b,
• Prove Fundamental Theorem of Arithmetic.

Recall earlier Theorem:

Theorem 20.3. Suppose a, b ∈ N then we have

hcf(a, b)× lcm(a, b) = a× b.

We now prove this

Proof. Let h = hcf(a, b) a so a = hm and b = hn for some m,n ∈ N where m and n
are coprime (using unique factorisation into primes). So lcm(a, b) = mnh. Now compute
m× n = hm× hn = h× (nmh) this is precisely hcf(a, b)× lcm(a, b) as required. □

20.1. Continued Fractions. We can look at Euclid’s Algorithm in a slightly different way.
Suppose a, b ∈ N and consider operations on the fraction a/b. Using division with remainder,
if a = bq + r then

a

b
=

bq + r

b
= q +

r

b
.

Let’s take 81 and 51 again as an example.

81

51
= 1 +

30

51
51

30
= 1 +

21

30
30

21
= 1 +

9

21
21

9
= 2 +

3

9
9

3
= 3

As before we can now work backwards

21

9
= 2 +

1

3
30

21
= 1 +

1

2 + 1
3

51

30
= 1 +

1

1 + 1
2+ 1

3

81

51
= 1 +

1

1 + 1
1+ 1

2+1
3

Such an expression is called a continued fraction. If instead of a rational number we have
x ∈ R we can still carry out the same process, but it will not terminate.

Let [x] denote ”integer part of x and x the decimal expansion, then apply the following
process:

(1) Start with x
(2) Write down [x]
(3) Form {x}
(4) If {x} = 0 then stop
(5) Replace x by 1/{x}
(6) Go to step 2 and repeat

Each step will give a better approximation to x. For example, consider π ≈ 3.1415026:

x [x] {x} 1/{x}
3.1415926 3 0.1415926 7.062516
7.062516 7 0.062516 15.995905
15.995905 15 0.995905 1.0041118
1.0041118 1 0.0041118 243.20249
243.20249 243 0.20249 4.9385155

Note that the longer we go on the worse rounding errors get. The above gives the continued
fraction

π = 3 +
1

7 + 1
15+ 1

1+ 1
243+...

We write this as [3; 7, 15, 1, 243, . . .], let’s calculate successive stages

[3;] 3 3.000000
[3; 7] 22/7 3.1428571
[3; 7, 15] 333/106 3.1415094
[3; 7, 15, 1] 355/113 3.1415929

The simplest possible non-terminating continued fraction is [1; 1, 1, 1, 1, . . .]. Note, by its

definition, this is the same as x = 1 + 1
x
or x2 = 1 + x so x = 1+

√
5

2
.

20.2. Results we will need later. We can now see a slightly different proof of a result
proved in Part 1 of the notes.

Theorem 20.4. There are infinitely many primes.

Proof. Suppose not, so there are a finite number of primes p1, p2, . . . , pn for some n.
Consider N = p1p2 . . . pn+1. None of the pi divide N since this leaves remainder 1, so none

of the pi are in the prime factorisation of N , but the Fundamental Theorem of Arithmetic
says we can uniquely factorise N by primes, so there must exist prime(s) in addition to
p1, p2, . . . , pn contradicting the hypothesis (note, we have not said that N is prime, although
it could be). □

21. Chinese Remainder Theorem

There are some more results that we are going to need later on.

Theorem 21.1 (Chinese Remainder Theorem). Suppose n1, n2, . . . nk are integers, all of
which are pairwise coprime (any two are coprime). Then for any integers a1, a2, . . . , ak there
is an integer x satisfying

x ≡ ai (mod ni) for 1 ≤ i ≤ k.

Proof. The proof uses Euclid’s Algorithm and Bezout’s Lemma.
Using Euclid’s Algorithm we find numbers ei so that ei ≡ 1 (mod ni) and ei ≡ 0 (mod nj)

for j ̸= i.
By letting mi be the product of all the nj except for ni then 1 = bini+cimi (since pairwise

coprime).
Then cimi ≡ 1 (mod ni) and cimi ≡ 0 (mod nj) for i ̸= j. Take ei = cimi and then let

x =
k∑

i=1

aiei.

□

Example 21.2. Find a number x so that x ≡ 1 (mod 3), x ≡ 4 (mod 5) and x ≡ 2
(mod 8).

We look for e1, e2, e3 so that

e1 ≡ 1 (mod 3), 0 (mod 5), 0 (mod 8)

e2 ≡ 0 (mod 3), 1 (mod 5), 0 (mod 8)

e3 ≡ 0 (mod 3), 0 (mod 5), 1 (mod 8)

e1 needs to be a multiple of 5× 8 = 40, with e1 ≡ 1 (mod 3) and e1 ≡ 0 (mod 40) i.e. for
some m,n we need e1 = 3m + 1 = 40n so −3m + 40n = 1. We use Euclid’s Algorithm to
obtain 40 = 13× 3 + 1 giving e1 = 40.

Now want e2 ≡ 1 (mod 5) and e2 ≡ 0 (mod 24) since 24 = 8× 3. So e2 = 5m+ 1 = 24n
or −5m + 24n = 1 or 5m′ + 24n = 1. Using Euclid again we find 24 = 4 × 5 + 4 and
5 = 4× 1 + 1 so 1 = 5− (4× 1) but 4 = 24− 4× 5 so 1 = 5− (24− 4× 5) = 5× 5− 24 so
m′ = 5 or m = −5 giving e2 = −24. Similarly we find e3 = −15 (Exercise!).
Thus x = 1× e1 + 4× e2 + 2× e3 (mod 120) ≡ −86 (mod 120) ≡ 34 (mod 120).
We can check this answer by computing 34 ≡ 1 (mod 3) ≡ 4 (mod 5) ≡ 2 (mod 8).

22. Fermat’s Little Theorem and Euler’s Theorem

22.1. Multiplication module m.

Definition 22.1. A number a ∈ Z/mZ is called a unit if it has a multiplicative inverse in
Z/mZ.

Theorem 22.2. A number a ∈ Z/mZ is a unit iff hcf(a,m) = 1,

Proof. Straightforward, left as an exercise. □

Note the special cases where m is prime.

Definition 22.3. The Euler Totient Function, ϕ(n), is the number of positive integers less
than or equal to n that are relatively prime to n, alternatively, ϕ(n) is the number of units
in Z/nZ.

For example

ϕ(1) = 1,

ϕ(12) = 4 (1, 5, 7, 11),

ϕ(p) = p− 1 for any prime p.

Theorem 22.4 (Fermat’s Little Theorem). If p is a prime number, a is any integer, then

ap ≡ a (mod p).

Following immediately on from this is the result

Corollary 22.5. If p is a prime number, a a number relatively prime to p, then

ap−1 ≡ 1 (mod p).

We prove the corollary.

Proof. Start by listing the first (p− 1) multiples of a

a, 2a, 3a, . . . , (p− 1)a (∗).

We claim that these are all distinct modulo p. Suppose not, so ra = sa (mod p) some r, s.
Thus (r − s)a ≡ 0 (mod p). Since a is not a multiple of p, it has an inverse a−1 (mod p) so
(r − s) ≡ 0 (mod p) i.e. r ≡ s (mod p).

But all numbers 1, . . . , (1− p) are all different (mod p) so r = s and numbers in (∗) are
1, 2, 3, . . . , (p− 1) (mod p) in some order. Multiply all together

(a)(2a) . . . ((p− 1)a) ≡ (p− 1)! ap−1

But this is also conjugate to (p − 1)! (mod p). Dividing by (p − 1)! gives the result we
require that ap−1 ≡ 1 (mod p). □

Theorem 22.6 (Euler’s Theorem). If n is any positive integer, a is relatively prime to n,
then

aϕ(n) ≡ 1 (mod n).

Proof. This is similar to Fermat’s Little Theorem. Look at numbers of the form ka where
1 ≤ k ≤ n and hcf(k, n) = 1, all will be different modulo n so are exactly the numbers
modulo n relatively prime to n. Multiply them all together

n∏
k=1

(ka) ≡ aϕ(n)
n∏

k=1,hcf(k,n)=1

k ≡
n∏

k=1,hcf(k,n)=1

k (mod n).

Divide both sides by
∏

k gives aϕ(n) ≡ 1 (mod n) as required. □

23. Algorithmic Complexity

23.1. Big O Notation. When looking at functions such as f(x) we are often interested
in how large the function grows as x grows, and one way of doing this is having another
function as an upper bound.

Definition 23.1. Let f(x) and g(x) be two functions. We say

f(x) = O(g(x))

if there is some constant C > 0, which does not depend on x, so that

|f(x)| ≤ Cg(x)

or possible this holds for x > x0 for some x0.

For example f(x) = x3 + 7x2 − 3x+ 5 = O(x3).
Roughly speaking, functions that are O(xa) for some a (polynomial) grow faster than

functions that are O(log(x)) (logarithmic), and functions that are O(ax) (exponential) grow
much faster than functions that are O(xa).

Note that a function f(x) that is O(x3) will also be O(x4) etc, we try to find the g(x) that
is in some sense the smallest such function that is an upper bound.

Aside: sometimes maybe f(x) is roughly x2 but is not O(x2), we may say f(x) = O(x2+ϵ)
if for any r > 2 we have that f(x) = O(xr) but maybe not f(x) = O(x2).

We won’t be using the following in this module, but for completeness, and to see why we
specifically call the above Big O notation we define

Definition 23.2 (Little o notation). We say that f(x) = o(g(x)) if for any positive constant
C > 0 there exists an x0 so that

0 ≤ f(x) < cg(x) ∀x ≥ x0.

This can be thought of by ”as x → ∞ we have that f(x) becomes insignificant compared
to g(x).

Definition 23.3 (Logarithm). Let b > 0, b ̸= 1. If c > 0 define

logb(c)

to be the unique real value a such that ba = c.

So log(1) = 0, logb(xy) = logb(x)+ logb(y), logb(x
a) = a logb(x) and logb(1/a) = − logb(a).

23.2. Running Times of Algorithms. We are interested in algorithms designed to solve
number theoretical problems, and how their ”running time” increases with the size of the
input (length of an input string). We count the ”steps” that are needed in order to complete
a calculation, so in particular a step might be adding or multiplying two single digit numbers.
each such step will take a finite time to compute, this adding up to a total running time.
We are not interested in exactly how long each step takes, but rather whether or not the
algorithm will terminate in a ”reasonable time” or not. Let’s consider some examples.

23.2.1. Addition. Consider adding two 3-digit numbers by an algorithm. Say a3a2a1+ b3b2b1
and think how you would do this using pen and paper. We would first add a1 to b1 to get d1
with a carry c1 (which may be zero). Then we add a2, b2 and c1 to get the next digit of the
sum d2 with another carry c2 (which may be zero). Finally we add a3, b3 and c2 to get the
third digit d3 and then we have either a three digit answer, or a four digit answer if there is
a further carry c3.

If we assume here that ”addition” is a single step, then this algorithm takes 3 steps. It
should be clear that if we have two n digit numbers then addition of those numbers would
now require n steps. This algorithm is O(n).

Note, if each we say that adding because of the carry we actually have another addition
each time then now our example of 3 digit numbers takes 2×3 steps, and so n digit numbers
take 2× n steps. This is still O(n).

Remember that running time takes the worst case sceneario, we could have taking 123
and 045 as our two three digit numbers, where the latter is actually a two digit numbers so
the algorithm would terminate in a shorter time.

23.2.2. Multiplication. Now conisder multiplying two n-digit numbers, as an example let’s
assume we have two 2-digit numbers, so we wish to multiply together a2a1 and b2b1. To do
this we multiply in pairs a1b1, a2b1, a1b2 and a2b2 which is four steps, and then we add, with
carry if neccessary the resultant numbers which is another 4.

In general, for two n digit numbers the same process will require n2 multiplications and
2n additions (plus carries). So multiplcaition is O(n2 + n) = O(n2).

Note that there are some clever algorithms that can reduce the number of steps by re-using
some calculations that have previously been computed, these have running time O(m) where
1 < m < 2 (m does not need to be integer valued).

23.2.3. Division. Division is no worse than multiplication so is also O(n2) for our purposes.
The most common reasoning for this is using Newton-Raphson to get better and better
approximations. We want to solve for x in

1/x+ a = 0.

We start with some first guess and then successive iterations given by xn+1 = xn −
f(xn)/f

′(xn) where f(x) = 1/x−a. This gives that xn+1 = xn(2−axn) since f
′(x) = −1/x2,

so we are taking a sequence of multiplications each of which is therefore O(n2).

23.2.4. Primality Testing (naive). We are given a number N and we want to know if it is
prime. Note that later on we’ll be more interested in finding factors of a given number N
which is a related problem, but is more complex since testing if a number is prime necessarily
only finds one factor, thus running time of factorisation will be greater than that of prime
testing.

The most naive way is to try to divide N by each integer from 2 to N − 1, for large N
this takes as good as N steps, at each step computing a division. We can reduce this since
if N is not prime then it has factors a and b in N with 2 ≤ a, b ≤ N − 1 so that N = ab.
At least one of these must be less than or equal to

√
N , so an upper bound on the number

of steps required to check primality is
√
N , so algorithm is O(

√
N)? Not quite, remember

that until now we have been looking at strings of n digits rather than a single number. N
has only n = O(logN) digits so N = O(10n), so algorithm runs in O(

√
10n) steps, but each

step requires a division which is O(n2) so the algorithm runs in O(
√
10n × n2) steps.

So we are already seeing that testing if a number is prime or not, or finding factors of very
large numbers, will not be as easy as we would like.

We will return to primality testing later on (including some some easy quick wins to reduce
complexity, but will see that we will still have problems factorising in polynomial time).

23.2.5. Euclid’s Algorithm. Remember that earlier we introduced Fibonacci numbers in the
following way: we take the function f : N → N by

• f(0) = 0,
• f(1) = 1, and
• f(k + 2) = f(k + 1) + f(k) for all k ∈ N.

Doing this f(n) is then the nth Fibonacci number. We also proved Binet’s Formula, that if
ϕ = (1 +

√
5)/2 and τ = (1−

√
5)/2 then

f(n) =
ϕn − τn√

5

and noted that as n → ∞ we have from the above formula that f(n) → ϕn/
√
5.

We now discover Fibonacci numbers in an unexpected place, the running time of Euclid’s
Algorithm. We wish to calculate hcf(a, b) where a, b ∈ N and a > b ≥ 0.

Lemma 23.4. If a > b ≥ 0 and Euclid’s Algorithm takes k ≥ 1 steps to complete, then
a ≥ f(k + 2) and b ≥ f(k + 1) where f(k) is the kth term of the Fibonacci sequence.

Proof. We prove by induction on k.
Start with the base case, and Suppose k = 1. Then b ≥ 1 = f(2) and since a > b we have

a ≥ 2 = f(3).
We now assume true for k − 1 steps and that hcf(a, b) takes k steps. Then

hcf(a, b) = hcf(b, a (mod b))

the latter is the previous step in Euclid’s algorithm and takes k − 1 steps and b ≥ f(k + 1)
and a (mod b) ≥ f(k). So we have shown that b ≥ f(k + 1), so now consider a.

b+ a (mod b) = b+ a− ⌊a/b⌋b) ≤ a

where ⌊a/b⌋ is the floor function (greatest integer less than or equal to a/b), and the final
inequality follows since a > b > 0 implies that ⌊a/b⌋ ≥ 1. So

a ≥ b+ a (mod b) ≥ f(k + 1) + f(k) = f(k + 2).

□

Corollary 23.5. For any integer k ≥ 1 if a > b ≥ 0 and b < f(k + 1) then Euclid’s
Algorithm requires fewer than k steps to calculate hcf(a, b).

Consecutive Fibonacci numbers will provide the worst case examples for Euclid’s Algo-
rithm,

hcf(f(k + 1), f(k)) = hcf(f(k), [f(k + 1) (mod f(k))]) = hcf(f(k), f(k − 1))

so needs precisely k − 1 steps. Recall for large k, f(k) ≈ ϕk/
√
5 so number of steps is

O(log b), but as before b will have O(log b) digits so running time of Euclid’s Algorithm is
O(log (log b)) to compare with previous algorithms.

23.2.6. P=NP (non-examinable). So far we have been looking at algorithms designed to
find solutions to a problem. If such a problem can find a solution (in worst case scenario) in
polynomial time, i.e. running time is O(nd) for some d, input string length n, we say it is P
or class P. For example, perviously, addition, multiplication, Euclid’s Algorithm are all P.
Primality testing is not.

Once we have an answer, we may wish to verify that it is true, also by an algorithm. If a
solution can be verified in polynomial time then it is called NP (nondeterministic polynomial
time). For example, it can be hard to find factors of a number, but once you have found a
factor it is relatively easy to show that it is a factor. In particular if we have a 200 digit
number that is two 100 digit prime numbers multiplied together, then it is very difficult to
find the factors of the composite number, but once you have found them very easy to verify
that they do multiply together to get the original number (an O(n2) problem).

In general, problems that can be solved and verified in polynomial time, can be done so
”quickly”. If it takes exponential time then it takes a long time (and the longer the input
string is the more unlikely it can be done in any reasonable time).

Conjecture 23.6. (P=NP or P vs NP) Any solution that can be verified in polynomial time
can be solved in polynomial time.

Consensus is that this conjecture is false (P ̸= NP), but has not been proven. It is
one of the Clay Mathematical Institute million dollar problems). If the conjecture is true
then factorising numbers can be done in polynomial time (we just haven’t found the right
algorithm yet).

24. Discrete Logarithm Problem and the Diffee-Hellman Problem

24.1. Discrete Logarithm. Suppose a, n ∈ Z and we are given an. Then

n = loga a
n

We can, in such cases, try to guess n by trial and error, for example take take a = 3 and
an = 2187, what is n? Try 35 = 243, this is clearly way too small, so try 310 = 59049 which
is way too large, but we now know that 5 < n < 10. Try 36 = 729, still too small, 37 = 2187
gives the correct answer, so n = 7.

But look what happens if we instead multiply modulo some number, we can no longer
use trial and error as above to hone in on the correct answer. I.e. if we are told that an

(mod m) and want to find n it becomes much harder.

32 (mod 5) = 4

33 (mod 5) = 2

34 (mod 5) = 1

35 (mod 5) = 3

In general, in group theory speak, if we have a cyclic group G with generator g we call n
the discrete logarithm of gn.

Conjecture 24.1. There is no polynomial time algorithm for computing discrete logarithms.

24.1.1. Modular Multiplication. We now introduce two problems that are difficult to solve,
with an eye on the ultimate aim of this part of the module.

Definition 24.2. A number a is a primitive root modulo n if every number b coprime to a
(i.e. hcf(a, b) = 1) is congruent to a power of a (mod n).

I.e. for every a ∈ Z coprime to n there is some integer k for which gk ≡ a (mod n).
As you should have seen in Algebra 1, let the set (Z/mZ)× be the set of the units of

Z/mZ, these are elements that have a multiplicative inverse. This set is a group under
multiplication. The primitive roots of (Z/mZ)× are generators for the group.

If p is prime, then (Z/pZ)× has p− 1 elements and the primitive roots are the generators.
For example, consider the multiplication table for p = 3:

× 1 2
1 1 2
2 2 1

We have (Z/3Z)× = {1, 2} and the primitive root is 2.

20 ≡ 1 (mod 3)

21 ≡ 2 (mod 3)

22 ≡ 1 (mod 3)

Similarly, for p = 5 we have

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

We have (Z/5Z)× = {1, 2, 3, 4} with primitive roots of 2 and 3. The element 4 is not since

40 ≡ 1 (mod 5)

41 ≡ 4 (mod 5)

42 ≡ 1 (mod 5)

43 ≡ 4 (mod 5)

If we keep going, the primitive roots for p = 7 are 3 and 5, the primitive roots of p = 11
are 2, 6, 7 and 8. The number of primitive roots is given by the following result.

Proposition 24.3. If (Z/pZ)×, p prime, has a primitive root, then it has precisely ϕ(p− 1)
of them.

Proof. If a is a primitive root of (Z/pZ)× then all elements of the group are of the form ak

(mod p) for some 1 ≤ k ≤ (p−1). If hcf(p−1, k) ̸= 1 then there will be an m < (p−1) such
that akm ≡ a (mod p) so cannot generate all elements of (Z/pZ)× and so is not a primitive
root. Hence the set {ak| hcf(p− 1, k) = 1} is precisely the set of primitive roots, which has
exactly ϕ(p− 1) elements. □

Problem 24.4 (The Discrete Logarithm Problem - DLP). Given a cyclic group G, a gener-
ator g for G and some element x of G, find n such that x = gn. Or, given (Z/pZ)×, where
p is prime, a ∈ (Z/pZ)× a primitive root, and some element x ∈ (Z/pZ)×, find a number n
such that

x ≡ an (mod p).

Problem 24.5 (The Diffie-Hellman Problem - DHP). Given a cyclic group G, a generator
g for G and two elements ga and gb, compute gab. Or, given (Z/pZ)×, with p prime, a a
primitive root, ax (mod p) and ay (mod p) for integers x and y, compute

axy (mod p).

If we can solve (DLP) then we can easily solve (DHP) but

Conjecture 24.6. There is no polynomial time algorithm for solving solving the Discrete
Logarithm Problem.

Example 24.7. Take p = 7 and primitive root g = 5. DHP says given ga ≡ 4 (mod 7)
and gb ≡ 2 (mod 7) what is gab? In this case we can use brute force to discover that 52 ≡ 4
(mod 7) and 54 ≡ 2 (mod 7) so gab = 58 = 390625 ≡ 4 (mod 7), but now think about
doing this for a (much) larger prime p and primitive root g. What condition on g would be
beneficial?

Note, choosing ga ≡ 1 (mod 7) would have been a bad choice because of Euler’s Theorem.

25. Cryptography Primer and the Corrupt Postal Service

A good introduction can be found in [2] or [5], we cover the basics to motivate later results.

25.0.1. Substitution Ciphers. Other than having a ”dictionary” where you simply substitute
words for other words (codes), the next simplest way to encode a message is by so called
substitution ciphers where we substitute each letter for another letter in some way.

Definition 25.1. We call the original, readable message, the clear text. The same message
that has been encoded in some way is called the cipher text.

The well-known Caesar’s Cipher (supposedly used by Julius Caesar) does this substitution
by a simple shift of letters in the alphabet, for example:

Clear A B C D E . . . Z
Cipher E F G H I . . . D

If we number each letter in the natural way

A B C D E . . . Z
0 1 2 3 4 . . . 25

Then a Caesar Cipher is just replacing the letter corresponding to the number n with the
letter corresponding to the number m = n + k (mod 26) for some k, called the key. The
recipient of the message then simply does the reverse substitution n = m−k (mod 26). The
above example has k = 4. It should be clear that such a cipher is going to be very easy to
crack, with only 25 possible non-trivial ciphers.

A better cipher would be to have more random substitutions, for example

Clear A B C D E . . . Z
Cipher G O X D S . . . A

There are now 26! − 1 non-trivial ciphers, 25 of which will be Caesar Ciphers of course,
and of the others some will be better than others. But we still have a chance to crack such
ciphers, especially as the messages get longer, using letter and word frequency. For example,
for the English language the frequency of the most common letters are E (12.7%), T (9.1%),
A (8.2%), O (7,5%), I (7.0%), N (6.7%), S (6.3%), H (6.1%) and so on. For three letter
words one would first guess that it may be ”the” or ”and” and so on. Similarly we can look
for double letters which could be LL, SS etc.

More sophisticated ciphers will not always substitute the same letter for each occurrence
of a clear letter. For example, let’s say we have a keyword ”DAVE” we can do the following:

Clear M A T H S I S N O T A S P E C T A T O R S P O R T
X 12 0 19 7 18 / 8 18 / 13 14 19 / 0 / 18 15 4 2 19 0 19 14 17 / 18 15 14 17 19
Y 3 0 21 4 3 / 0 21 / 4 3 0 / 21 / 4 3 0 21 4 3 0 21 4 / 3 0 21 4 3
Key D A V E D A V E D A V E D A V E D A V E D A V E D

X + Y (mod 26) 15 0 14 11 21 / 8 13 / 17 17 19 / 21 / 22 18 4 23 23 3 19 9 21 / 21 15 9 21 22
Cipher

Of course, this also improves with longer keywords. We may also want to remove the
spaces and split the message into blocks of five to make it even harder to try and guess
words:

MATHS ISNOT ASPEC TATOR SPORT.

25.0.2. Transposition Ciphers. Transposition ciphers on the other hand will keep the same
letters but put them in a different order, in a pre-arranged way. Now the ”key” will be how
this is done. The easiest way is to take every other letter, or every third. Where there are
then gaps we fill with garbage letters.

E.g.
M T S S O A P C A O S O T
A H I N T S E T T R P R X

or
M H S T P T O P T
A S N A E A R O C
T I O S C T S R F

Of course, to make your message even more secure, you can do a combination of substi-
tution and transposition ciphers.

25.0.3. The Corrupt Postal Service. Now let’s think about sending encrypted messages,
when there is the possibility that someone can intercept anything that is sent between two
parties. By convention we suppose that Alice wants to send a secret message to Bob, but a
third party, Eve can intercept anything sent between the two. We use the example of sending
a parcel by post to abstract the idea.

So we suppose that Alice wants to send a parcel to Bob, so that Eve cannot open the box
and see what is inside (Bob needs to receive the box as it was sent, Eve does not want Bob
or Alice to know that they have seen the contents. The simplest is the below:

Alice and Bob both possess the key to a padlock. Alice locks

the parcel with the padlock, on receiving the package Bob can

unlock it. Eve does not have a key so cannot open it.

This is the equivalent of the substitution and transposition ciphers above, both Alice and
Bob know the key that has encoded the message, so can encrypt and decrypt. Eve does not
know the key so cannot. The problem with this, is that it only works if Bob already has the
key. If Alice and Bob have never met, then the only way to get the key to Bob is to send it
by post which Eve can intercept and make a copy of. We therefore need a way for Alice to
send a parcel without having to send the key first.

Alice and Bob each possess their own padlock, with their own key.

Alice padlocks the package and sends it to Bob. Bob cannot unlock

Alice’s padlock since he doesn’t have a key, so also locks the

package with his padlock and sends the package back to Alice.

Alice now removes her padlock, the package is still locked by Bob’s

padlock so she sends the package back to Bob again. Bob can now

unlock his padlock and open the package. At no stage can Eve

intercept and open the package.

The problem we have with using a similar idea for encryption is that if Alice’s key is a
function, or operation, f and Bob’s key is a function, or operation, g , then we require f and
g to commute, which in general it will not. So instead we need a way to transfer the key, so
that it can still be intercepted, but even if it is, cannot be used to decrypt the message.

26. Diffie-Hellman Key Exchange

A message is converted into a number (in fact several numbers where each is then en-
crypted and sent). For example split the message into sequences of 5 characters, convert
each character into its ASCII code (two digit numbers in hexadecimal, or three digit numbers
in decimal). This gives either a 10 digit number (hex) or 15 digit number (dec). Beauty
of ASCII code unlike the naive numbering earlier is that we can encode spaces, upper and
lower case letters, numbers and characters. We then require a key in order to encrypt and
decrypt these. We then encrypt this message by some method using a key, which is a further
(large?) number.

To get around the issues of key exchange, we want a way to pass the keys between Alice
and Bob in such a way that it doesn’t matter if someone intercepts messages they cannot
construct the key used to encrypt the message. One such method is Diffie-Hellman Key
exchange.

(1) Alice and Bob between them pick some prime number p (this will typically be large,
circa hundred digits long), and some primive root of Z/pZ, call it g. Both of these
are public information.

(2) Now Alice chooses some number a and Bob chooses some number b, they both keep
these numbers secret top themselves.

(3) Alice computes ga (mod p) and sends to Bob, Bob computes gb mod p and sends to
Alice.

(4) Now Alice can compute (gb)a = gab (mod p) and Bob can compute (ga)b = gab

(mod p).

Hence both Alice and Bob can compute gab (mod p), this is the key to encrypt the message.
Even if Eve intercepts ga and gb she cannot ”easily” find a or b and so calculate gab (mod p),
especially if a, b, p are large (would need to compute gk mod p for 0 ≤ k < p− 2 and check
if it is the same as ga or gb).

Example 26.1. Alice and Bob choose p = 37 and primitive root 5, these are both public.
Alice now chooses a = 8, and Bob chooses some b. Alice computes 58 = 390625 ≡ 16
(mod 37). Bob computes 5b ≡ 14 (mod 37). Alice now computes

5ab = 148 = 1475789056 ≡ 26 (mod 37).

The key is thus 26, then use favourite method to use this key to encrypt a message.

27. Primality Testing

Another major method for key exchange also uses large prime numbers, and factorising
large numbers into (two) prime factors. So we’ll have a quick look at algorithms for finding
prime numbers/factorisation that are better than our naive methods previously (but will still
not be polynomial time algorithms). Showing a number is prime, and finding the factors are
clearly related problems, but not exactly the same. The former is easier to demonstrate at
this level, so we will concentrate on that.

27.1. Eratosthenes Sieve. Eratosthenes was a Greek philosopher and mathematician around
approximately 300 BC, his most famous discovery was calculating the circumferance of the
Earth to within a couple of percent of the actual, but he was also interested in prime numbers
and the following is thus named after him. We have already seen a naive method for trying
to test if a number N is prime, by trying all possible factors up to

√
N . A related task is

to find all possible prime numbers up to N . To do this we note that if p is a prime number
then any multiple of p is certainly not (so if looking for factors of a number N if p is not a
factor then we also know any multiple of p is also not). So list the numbers from 2 to N , and
start by circling 2 as a prime number, and crossing off every multiple of 2. Then go to the
next number in the list that is not crossed off (in this case 3), this must be a prime number
so circle it and cross off every mutliple of 3, and so on. We do this up until N/2, the any
number left uncrossed will also be a prime.

There are other sieve methods that are more efficient, but we do not discuss those here.

27.2. More Number Theory and Wilson’s Theorem. How about more sophisticated
methods to test if a number is prime, which may not tell us what the factors are, but at least
would tell us if a number is composite or not. For example, recall Fermat’s Little Theorem,
if p is prime, a any integer then ap ≡ a (mod p) or if a is coprime to p, ap−1 ≡ 1 (mod p).
Thus if a number does not satisfy either of these then it cannot be prime and so must be
composite.

This is not an ”if and only if” though, there are composite numbers for which these
conditions can be satisfied. For example take 341, and a number a = 2 then

2340 ≡ 1 (mod 341)

and 341 is not prime (341 = 11 × 31), but is known as a pseudoprime. There are also
so called Carmichael Numbers, which are numbers n such for all a coprime to n we have
an ≡ a (mod n). The smallest such number is 561, but it has been shown that there are
an infinite number of these. We will return to a better method to primality test essentially
using Fermat’s Little Theorem later, but first we need some more theory.

Lemma 27.1. An integer n is prime iff the only solutions to the equation

x2 ≡ 1 (mod n)

are x ≡ ±1 (mod n).

Proof. Let p be prime. If x2 ≡ 1 (mod p) then this means that (x2 − 1) ≡ 0 (mod p) and so
p divides x2−1. Using difference of two squares we further have (x−1)(x+1) ≡ 0 (mod p).
Thus p divides (x− 1) or p divides (x+ 1) so x = 1 or x = −1 modulo p and no others.

If a number n is composite then there are more solutions by the Chinese Remainder
Theorem (we neglect the remainder of the proof for time but show an example next). □

Example 27.2. We show an example of a composite number that has more than two solu-
tions to x2 − 1 ≡ 0 (mod n) by choosing n = 77 where 77 = 7 × 11. (x2 − 1) has roots ±1

(mod 7) and ±1 (mod 11) so we have

x ≡ 1 (mod 7), x ≡ 1 (mod 11) =⇒ x ≡ 1 (mod 77)

x ≡ 1 (mod 7), x ≡ −1 (mod 11) =⇒ x ≡ 43 (mod 77)

x ≡ −1 (mod 7), x ≡ 1 (mod 11) =⇒ x ≡ 34 (mod 77)

x ≡ −1 (mod 7), x ≡ −1 (mod 11) =⇒ x ≡ −1 (mod 77) ≡ 76 (mod 77)

So now return to primality testing. If p is prime, then as above, the only square roots of
1 (mod p) are ±1, so for any a ∈ (Z/pZ)×) we have that a ̸= a−1 unless a = ±1 (mod p)
(i.e. there are only two numbers that are self-inverses). So in the list 2, 3, . . . , p− 2 we have
each element and its inverse once and once only. Multiply all these together means that
they ”cancel each other out” in pairs. If p is composite then this canceling does not happen
for all numbers, we get something that is divisible by all proper factors of p. Thus we have
proved

Theorem 27.3. (Wilson’s Theorem) For an integer p > 1 we have

(p− 1)! ≡ −1 (mod p)

if and only if p is prime.

27.3. Miller-Rabin Primality Test. We now return to Fermat’s Little Theorem, and
using the above result concerning roots of x2− 1, to describe a probabilistic test for whether
a number n is prime or not. This means that we run a sequence of steps that either tells us
n is composite, or suggest that n is a prime number with some probability. If we then repeat
this exercise it either tells us n is composite or could be prime with increasing confidence.

We suppose that n is a candidate number to be prime, n > 2, and choose a number a such
that 2 ≤ a ≤ (n− 1). Our first step is then to calculate

an−1 (mod n).

If this is not congruent to 1 then we are done, n must be composite. Now note that if
an−1 ≡ 1 (mod n) and n is prime, then the square root of an−1 must be congruent to 1
or −1, if not then n is composite. This square root is simply a(n− 1)/2, since we must
have n odd otherwise it is clearly composite. We have two possibilities, a(n− 1)/2 ≡ ±1
(mod n) or a(n− 1)/2 ̸≡ ±1 (mod n). In the latter case n must be composite, in the former
if a(n− 1)/2 ≡ −1 (mod n) we stop, if a(n− 1)/2 ≡ 1 (mod n) and n − 1 ≡ 0 (mod 4)
then we repeat.

In general, assume that we can write (n− 1) = 2sq for some s and odd q, and work your
way down the list

a2
sq, a2

s−1q, a2
s−2q, . . . , aq

and stop when the result modulo n is no longer 1. If it’s −1 stop and choose another a, if
it’s anything else stop because n must be composite.

Note that it’s easier to work backwards, start with aq and square until you get either
the sequence −1, 1, 1, . . . in which case n remains a candidate for a prime, or we go from
something that is not ±1 to 1 in which case n must be composite.

For any composite number n, the probability that n passes this test for primality is less
than 0.25 for each choice of a, so if we repeat with several a we start to get a high confidence
that n is prime. Let’s see a couple of examples (second from [2]).

Example 27.4. Test for n = 73 using a = 3. Note that 73 = 9× 23. Then

39 ≡ 46 (mod 73)

318 ≡ 72 (mod 73)

336 ≡ 1 (mod 73)

But note that 72 ≡ −1 (mod 73) so 73 (unsurprisingly) passes the test with a = 3.

Example 27.5. Now let’s test for n = 57 using a = 20. Note that 56 = 7× 23. Then

2056 ≡ 1 (mod 57)

2028 ≡ 1 (mod 57)

2014 ≡ 1 (mod 57)

207 ≡ 20 (mod 57)

So 57 is composite.

28. RSA

RSA (Rivest-Shamir-Adleman) forms the basis for modern cryptography, often to encrypt
keys to swap between parties rather than directly being used to encrypt messages. As before
we describe the basic idea, when used in anger there are various other bells and whistles
added to make it even harder to break with brute force methods such as looking for patterns
in common message components.

As with Diffie-Hellmann Key Exchange we have a private and public keys, but the differ-
ence now is that only one party needs a key.

(1) Alice chooses two prime numbers p and q (typically each of at least 100 digits);
(2) Alice then computes n = pq and ϕ(n) = (p− 1)(q − 1);
(3) Then Alice chooses e ∈ Z with 1 < e < ϕ(n) and hcf(e, ϕ(n)) = 1 (often e = 216 + 1

is used);
(4) Alice then computes d = e−1 (mod ϕ(n)).

The public key is then n and e, the private key is d. The main point here is that only
Alice knows p and q and so ϕ(n), and it is very difficult to recover p and q from n. Bob
wants to send a message to Alice, plaintext message m, a number modulo n (m coprime to
p, but p and q are very large). He computes the ciphertext c = me (mod n) and sends it to
Alice.

Alice can now decrypt by computing m = cd (mod n), which is (me)d (mod n) = med

(mod n). We also know that mϕ(n) ≡ 1 (mod n) by Euler’s Theorem. So mr (mod n)
depends only on r (mod ϕ(n)). Since ed ≡ 1 (mod ϕ(n)) we have that

ed = 1 + kϕ(n)

for some k. So
med ≡ m1+kϕ(n) ≡ m× (mϕ(n))k ≡ m (mod n).

Alice needs to find d, the inverse of e (mod ϕ(n)) but she can do this because she knows
ϕ(n), nobody else does. Knowing n it is hard to find ϕ(n) unless you know p and q when
ϕ(n) = (p− 1)(q − 1).

Example 28.1. (from [2]) Choose p = 71, q = 89 so n = 6319 and ϕ(n) = 70× 88 = 6160.

(1) Alice chooses e to be coprime to ϕ(n), for example e = 53. Then compute d = e−1

(mod ϕ(n)). Using Euclid’s Algorithm we obtain d = 2557.
(2) Alice sends public key n = 6319 and e = 53 to Bob.
(3) Bob wants to send m = 2161, computes c = me (mod n) which is c = 3248 and sends

c to Alice.
(4) Alice computes m = cd (mod n) which is 2161.

References

[1] I. Stewart and D. Tall, The Foundations of Mathematics, 2nd Edition, Oxford University Press, 2015.
[2] S. Rubinstein-Salzedo, Cryptography, Springer Undergraduate Mathematics Series, 2018.
[3] B. Lynn, Number Theory, Stanford lecture notes, https://crypto.stanford.edu/pbc/notes/

numbertheory/, 1980.
[4] J. Buhler and S. Wagon, Basic Algorithms in Mumber Theory, Algorithmic Number Theory, 44, 2008.
[5] C.J. Budd and C. Sanguin, Mathematics Galore, Oxford University Press, 2001.

https://crypto.stanford.edu/pbc/notes/numbertheory/
https://crypto.stanford.edu/pbc/notes/numbertheory/

	18. Factors and Prime Numbers
	18.1. Division with Remainder

	19. Euclids Algorithm
	19.1. Algorithms
	19.2. Euclid's Algorithm
	19.3. Geometric interpretation of Euclid's Algorithm

	20. Fundamental Theorem of Arithmetic
	20.1. Continued Fractions
	20.2. Results we will need later

	21. Chinese Remainder Theorem
	22. Fermat's Little Theorem and Euler's Theorem
	22.1. Multiplication module m

	23. Algorithmic Complexity
	23.1. Big O Notation
	23.2. Running Times of Algorithms

	24. Discrete Logarithm Problem and the Diffee-Hellman Problem
	24.1. Discrete Logarithm

	25. Cryptography Primer and the Corrupt Postal Service
	26. Diffie-Hellman Key Exchange
	27. Primality Testing
	27.1. Eratosthenes Sieve
	27.2. More Number Theory and Wilson's Theorem
	27.3. Miller-Rabin Primality Test

	28. RSA
	References

