
1 Week 7 Lecture 1: Curves and Their Parametrisations

Introduction

We want to describe curves in space so that we can later do calculus on curves. One approach to describing
a curve in the plane would be to consider the graph of a function f(x). The graph is the set of points
(x, y) where y = f(x). For the graph to be what we think of as a curve, we need f to be continuous and
the domain of f to be an interval of real numbers. There are problems with this approach. For example,
it can be awkward even for relatively simple curves, for example a circle, and it is unnatural to treat x
and y are treated differently. This brings us to vector functions.

1.1 Vector Functions

You know what a vector is. (A basic review is given at the end of the chapter.) The position of a point
can be represented as a vector from the origin to the point. We typically use the vector r to denote
position and write

r = (x, y) ∈ R2 for a point in the plane

r = (x, y, z) ∈ R3 for a point in space

so x, y, and possibly z are the components of the position vector. These are also the usual Cartesian
coordinates for a point. At times we consider the general case where the dimension is some unspecified
n. In these cases we label the components of position by r = (x1, x2, . . . , xn) ∈ Rn.

You know what a real valued function of a real variable is: f : U ⊆ R → R. To each real number in
U , a subset of R, f assigns a value in R.

A vector function
r : U ⊆ R → Rn

assigns a point in Rn, that is a vector, to each real number in U .

We usually denote the independent variable by t.

Vector function can be viewed in terms of component functions

r(t) =
(
x1(t), x2(t), · · ·xj(t), · · · , xn(t)

)
,

where each component function xj(t) is a real valued function. You can think of a vector function as just
a collection real-valued functions arranged as components of a vector.

We are primarily interested in either the plane (n = 2) or in space (n = 3), and in these cases we
usually to use the notation x(t), y(t), and possibly z(t) for component functions rather than x1(t), x2(t),
and x3(t). For example, in space we would typically write

r(t) =
(
x(t), y(t), z(t)

)
.

You should also be familiar with the unit vectors i, j, and k. Using these we can avoid outer parentheses
and write

r(t) = x(t)i+ y(t)j+ z(t)k

Things you know about vectors and functions can now be applied to vector functions is the obvious
way, e.g., given vector functions

f(t) = f1(t)i+ f2(t)j, g(t) = g1(t)i+ g2(t)j,

and scalar α, we could define the vector function r

r(t) = f(t) + αg(t)

=
(
f1(t) + αg1(t)

)
i+

(
f2(t) + αg2(t)

)
j

Example: Linear vector function. Let r(t) = at + b, where a ̸= 0 and b are constant vectors. The
function values trace a straight line as t varies. This is superior to the graph y = f(x) = mx+ b. With
a vector function we can represent a line in any dimension and in any direction.
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1.2 Curves Defined

There is a close connection between vector functions and curves. Essentially a curve is the set of points
traced out by a vector function as the independent variable ranges over an interval I = [a, b].

Let r(t) : I → Rn be a continuous vector function, where I ⊆ R is an interval.
Then the set of points

C = {r(t)|t ∈ I}

is a curve. The function r(t) is called a parametrisation of the curve C.

Remarks
• The definitions requires r(t) to be a continuous vector function. Continuous means what you think it
does: it guarantees that there are no breaks in the curve C.

• We will generically write the interval as I = [a, b], but it is understood that I could be infinite or
semi-infinite. For example: I = (−∞,∞), I = (−∞, 0], or I = [1,∞).

• You should be aware that there is some variation in the definition of a curve. In some texts a curve is
defined as r itself and not the set of points C. Some authors require I to be a closed interval, others
do not.

• There are infinitely many possible parametrisations for a given curve C.

• The definition in terms of parametrisations gives us something in addition to the set of points C, it gives
an orientation corresponding to increasing t. Different parametrisations can give opposite orientations,
but given a parametrisation, there is an orientation attached to the curve beyond its geometrical shape.

• From the way we motivated the subject, one sees a close connection between curves (purely geometrical
objects) and trajectories associated with motion in time, similar to what we have seen for ODEs. This
is further reinforced by using t for the independent variable.

1.3 Working with Parametrisations

Examples

We will primarily be concerned with the following examples.

• r(t) = (R cos t, R sin t), t ∈ [0, 2π] is the parametrisation for a circle of radius R centred on the origin.

• r(t) = (a + R cos t, b + R sin t), t ∈ [0, 2π] is the parametrisation for a circle of radius R centred on
(a, b).

• r(t) = (0, b + R cos t, c + R sin t), t ∈ [0, 2π] is the parametrisation for a circle in space. It has radius
R, lies in the (y, z) plane, and is centred on (0, b, c).

• If r(t) =
(
x(t), y(t)

)
is a parametrisation for some curve, then

(
ax(t), y(t)

)
will stretch the x-coordinate

if a > 1 and compress the x-coordinate stretched if 0 < a < 1. For example r(t) = (a cos t, b sin t),
t ∈ [0, 2π] is the parametrisation for an ellipse if a ̸= b.

• r(t) = (at cos t, at sin t), t ≥ 0 is the parametrisation of an Archimedean spiral, (a spiral given in polar
coordinates by r = aθ). r(t) = (eat cos t, eat sin t), t ∈ R is the parametrisation of a Logarithmic spiral,
(in polar coordinates r = eaθ).

You may have previously studied curves given as radius as a function of angle: r = f(θ). We shall
call such curves polar graphs or graphs of a polar function r = f(θ). The Archimedean and
Logarithmic spirals are simply expressed as polar functions. (A basic review of polar coordinate is
given at the end of this weeks’ notes, but we will not consider polar reprepresentation of curves.)

• In space: r(t) = (R cos t, R sin t, kt), t ∈ R, k ̸= 0, is the parametrisation of a helix.

• In space: r(t) = (et cos bt, et sin bt, et), t ∈ R, b ̸= 0, is the parametrisation of a curve winding around
a cone (circular conical surface).
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Sketching and finding parametrisations

You should learn how to sketch the examples in the previous section. With a computer, curve sketching
is relatively easy, so you should learn to use Python or other software to plot curves and verify your
sketches.

Finding a parametrisation is somewhat the opposite of sketching. Given some description or specific-
ation of a curve, you need to produce a parametrisation for it, generally for the purpose of doing some
further calculation involving the curve. This can be quite challenging in general, but you will not be
asked to do anything too complicated.

You need to be able to parametrise curves made of straight segments. You need to be able to
parametrise circles and circular arcs. You need to be able to parametrise ellipses, spirals, and helicies
and combinations of these. (See next section on curves with multiple segments).

1.4 Curves in Multiple Segments

We carefully defined curves and parametrisations so that curves are continuous images of a single interval
I. Yet, in many applications this is annoying and unnecessary. Consider parametrising the plane curve
C which starts at (1, 0) and proceed to (−1, 0) along the upper unit semicircle and then returns to (1, 0)
along the x-axis. The annoyance is that curve is easily described as the union of two segments, each of
which is easily parametrised:

r1(t) = cos(t)i+ sin(t)j, t ∈ [0, π]

r2(t) = i, t ∈ [−1, 1]

One can adjust things to produce a mapping over a single interval I, (probably you would adjust the
second parametrisation). However, for all things we care about in this moduel, this is simply unnecessary.
It is sufficient to work with a set of parametrisations, r1(t), · · · , rk(t) defined on intervals I1(t), · · · , Ik(t),
if these naturally describe a curve composed of a union of k segments. You may work with multiple
parametrisations when it is natural to do so.

1.5 Derivative of a Vector Function

The derivative of a vector function is itself a vector and is computed by differentiating component by
component. We often denote the derivative with a ′, e.g., r′(t), so

r′(t) =
dr

dt
(t) =

(
dx1

dt
(t),

dx2

dt
(t), · · · , dxn

dt
(t)

)

For example, in space we can write the derivative as

r′(t) = x′(t)i+ y′(t)j+ z′(t)k

If r(t) is a parametrisation of a curve C and if the derivative exists and is nonzero (r′(t) ̸= 0), then the
vector r′(t) is tangent to C at the point r(t). (We return to this next lecture.)
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1.6 Differentiation Rules

Suppose r(t) and s(t) are differentiable vector functions, and f(t) is a differentiable real function, and a
is a real number. Then the following hold:

•
d

dt
ar(t) = ar′(t)

•
d

dt

(
r(t) + s(t)

)
= r′(t) + s′(t)

•
d

dt
f(t)r(t) = f(t)r′(t) + f ′(t)r(t)

•
d

dt

(
r(t) · s(t)

)
= r′(t) · s(t) + r(t) · s′(t)

•
d

dt
r(f(t)) = r′(f(t))f ′(t)

These are obvious extensions of what you know for functions from R → R. You should learn and be
able to verify each of these.

1.7 Further Concepts

There are a few further concepts related to curves which are worth defining. Only the first concept is
essential in this module.

A curve is closed if I = [a, b] and r(a) = r(b). A closed curve is also called a loop.

A curve is embedded if it does not self intersect. In terms of parametrisations, a curve is embedded
if it can be parametrised by a mapping r : I → Rn that is injective except possibly at the end points of
I = [a, b]. We need to allow the possibility that r(a) = r(b) since this just means that the curve is closed
and does not correspond to an intersection. From the definition of injective, a curve is embedded if it
can be parametrised by r(t) where t1 ̸= t2 implies r(t1) ̸= r(t2), except if t1 = a and t2 = b.

A curve is regular if there exits a parametrisation such that its derivative r′ is defined and nonzero
at all points. In other words, regular curves have a tangent vector at each point. Regular curves are
nice in that they do not have corners or cusps and these are mainly the ones we want to do calculus on.
We will commonly assume, without explicitly stating so, that curves we consider are regular, or at least
piecewise regular (made up of pieces that are each regular).
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Review Material

Basics of vectors

This is just a quick reminder of some basic things you already be familiar with. In Linear Algebra you
will be spending a lot of time discussing vectors.

Notation. Vectors will be denoted by boldface and sometime over arrow, e.g., v or −→v . In lectures,
underline will be used instead of bold face, e.g., v. We only consider real vectors in this course, so
v = (v1, v2, . . . , vn) ∈ Rn. The real numbers v1, v2, . . . , vn are call the components of v.

Scalars. We shall use the term scalar to refer to a real number, to contrast with vectors. You should
know things such as how to multiply or divide a vector v by a scalar α:

αv = (αv1, αv2, . . . , αvn),
v

α
=

1

α
(v1, v2, . . . , vn) =

(v1
α
,
v2
α
, . . . ,

vn
α

)

Norms. The Euclidean norm, length, or magnitude of a vector v is defined as: ∥v∥ =
( n∑
i=1

v2i
)1/2

.

Dot Product. You should know properties of the dot product and how to compute the dot product,
either as

u · v = ∥u∥ ∥v∥ cos θ

where θ is the angle between u and v, or as

u · v =

n∑
i=1

uivi,

where ui and vi are the components of u and v. The dot product of two vectors is a scalar, and u·v = v·u.
Notice that ∥v∥ = (v · v)1/2.

Unit Vectors. A unit vector is a vector with length one. Often these are denoted with hats, for
example v̂ where ∥v̂∥ = 1. We say v̂ has “unit norm”,

Important unit vectors are the standard basis vectors. For example, the basis vectors for Cartesian
coordinates in three dimensions are (hats are not used for these unit vectors)

i = (1, 0, 0) j = (0, 1, 0) k = (0, 0, 1)

Then we can write the position vector r as a sum of components times basis vectors:

r = xi+ yj+ zk = (x, y, z)

One sometimes uses the following notation for these bases vectors:

e1 = (1, 0, 0) e2 = (0, 1, 0) e3 = (0, 0, 1)

(See Linear Algebra for the details on basis vectors. In this course we will only be concerned with standard
basis vectors for typical coordinate systems such as Cartesian and polar coordinates.)

Given a nonzero vector v, that is v ̸= (0, 0, . . . , 0) = 0, the direction of v is: v̂ =
v

∥v∥
So each nonzero vector can be written v = ∥v∥ v̂ =

(
magnitude

)
×

(
direction

)
=

(
scalar

)
×

(
unit vector

)
Polar coordinates

You should be familiar with polar coordinates, typically denoted (r, θ). The relationship between
polar and Cartesian coordinate is:

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x
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You should know how to go back and forth between Cartesian and polar coordinates and be able to use
polar coordinates as needed. There is a small issue here with non-uniqueness of polar coordinates. You
should know that coordinates (r, θ), (r, θ + 2π), and (−r, θ + π) all correspond to the same point in the
plane. One sometimes works with r ≥ 0 and θ restricted to a fixed range to avoid the non-uniqueness.
In this case I generally prefer to work with θ ∈ [0, 2π), but this depends on the problem. Sometimes it
is more convenient to work with θ ∈ (−π, π]. Sometimes it is best to live with the non-uniqueness. For
r = 0 the value of θ is irrelevant. (This is due to the coordinate singularity at r = 0, but we will not
concern ourselves with this.)

Conic sections

The following curves are conic sections: circle, ellipse, parabola, and hyperbola. These curves all come
from intersecting a circular conical surface with a plane, hence the name conic section. The curves also
come about as sets of points (x, y) satisfying the general quadratic equation:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

where A, B, C, D, E, F are constants with not all three of A, B, and C are equal to zero. See the
Wikipedia page on Conic Sections.

These curves arise frequently and you should know standard forms for the equations for each case:

• Circle: Points satisfying x2 + y2 = a2.

• Ellipse: Points satisfying
(x
a

)2

+
(y
b

)2

= 1

• Hyperbola: Points satisfying
(x
a

)2

−
(y
b

)2

= 1

• Parabola: Points satisfying y = ax2, or sometimes for consistency with the other expressions y2 = 4ax.
(In the first case the parabola opens upward or downward depending on the sign of a, while in the
second case it opens to the left or right.)
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2 Week 7 Lecture 2: Arc Length and Differential Geometry of
Curves

2.1 Arc Length

We are going to want to perform integration along curves, now and later in this module. To begin, let us
ask the question: “given a parametrised curve C, what is its length?” The answer will require integration
along C.

Our method for deriving the integral will be to take C and divide it up into “small” pieces, or arcs,
and sum up the lengths of these pieces. We then take the limit of the sum as the size of the pieces goes
to zero while the number of pieces going to infinity.

Let r : I = [a, b] → Rn be a parametrisation of C. To divide C into small arcs, all we need do is divide
I into small segments of size △t. Let

t0 = a, t1 = a+△t, · · · , tj = a+ j△t, · · · , tN = b.

So there are N segments of length △t = (b− a)/N .

Now, the jth segment [tj , tj+1] will get mapped by r to a small arc from r(tj) to r(tj+1) of the curve
C. The length of the arc, △sj , will be approximately the length of the chord from r(tj) to r(tj+1)

△sj ≈ ∥r(tj+1)− r(tj)∥

or, multiplying and dividing by △t

△sj ≈
∥∥∥∥r(tj +△t)− r(tj)

△t

∥∥∥∥△t (1)

The total length s is then approximately

s =

N−1∑
j=0

△sj ≈
N−1∑
j=0

∥∥∥∥r(tj +△t)− r(tj)

△t

∥∥∥∥△t

Taking the limit N → ∞ with △t → 0 we obtain the following

The length s of a curve C, denoted ℓ(C), is given by

s = ℓ(C) =
ˆ b

a

∥∥∥∥drdt (t)
∥∥∥∥ dt

where r(t), t ∈ [a, b] is a parametrisation of C.

Discussion

• We have implicitly assumed that the parametrisation r(t) does not repeat points of C. In practice this
is always obvious. For example, to compute the length of a circle (i.e. its circumference) one would not
use r(t) = (R cos t, R sin t), with t ∈ [0, 4π].

• Independence of parametrisation. While we defined the length of a curve based on a parametrisation,
the length of a curve is independent of the parametrisation. If r1 : [a, b] → Rn and r2 : [c, d] → Rn are
two parametrisations of the same curve C, the lengths will be the same.

• Arc length is never negative. The limits of integration are always from the left endpoint (smallest
value) of I to the right endpoint (largest value) of I.

• An infinitesimal increment dt in the parameter t corresponds to an infinitesimal increment of arc length
ds along the curve C. These are related by

ds = ∥r′(t)∥dt
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This is the infinitesimal version of Eq. (1). It can be equivalently written as

ds

dt
= ∥r′(t)∥ (2)

• Eq. (2) and the formula for length have simple physical interpretations. Let r(t) represent a particle
path. Then Eq. (2) states that the change in distance per change in time, ds/dt, i.e., the speed of the
particle, is ∥r′(t)∥. The equation for arc length states

Distance =

ˆ b

a

Speed dt

i.e., distance travelled is just the integral of speed over time a interval.

• We learnt that to differentiate a vector-valued function one simply differentiates component by com-
ponent, e.g., given

r(t) = x(t)i+ y(t)j+ z(t)k

the derivative is
r′(t) = x′(t)i+ y′(t)j+ z′(t)k

You might have therefore expected to see a similar start to the integration of vector-valued functions,
e.g., ˆ b

a

r(t)dt =

ˆ b

a

x(t)dt i+

ˆ b

a

y(t)dt j+

ˆ b

a

z(t)dtk

This formula is correct and it is the correct meaning of

ˆ b

a

r(t)dt. The reason we did not start with

this is that such integration does not often arise, and in any case it is easy. Integration along a curve,
such as in computing arc length, is more important and we will see it again later in this module when we
do line integrals. Be sure you understand the difference between

ˆ b

a

r(t)dt and

ˆ b

a

∥r′(t)∥dt.

2.2 Curves in Multiple Segments

We already noted that we often want to work with curves composed of multiple segments. Let C be the
union of k segments which meet end to end

C = C1 ∪ C2 ∪ · · · ∪ Ck,

Assuming each segment Cj is regular, then the curve C is piecewise regular. Such curves may fail to be
regular where the curves join. For example if C is square then it is not regular because it has 4 corners.
However it can clearly be composed of 4 regular curves and hence C is piecewise regular.

The length of C is given by

ℓ(C) = ℓ(C1) + ℓ(C2) + · · ·+ ℓ(Ck)

In practice one would typically use whatever parametrisation is most convenient for each segment to
compute the length of that segment, and then add up the lengths to obtain the length of C.

Differential Geometry of Curves

We now know how to differentiate and integrate along curves. We now explore some of the geometrical
properties of curves that can be addressed using differential calculus. We will be particularly interested
in the bending of curves (curvature).
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Unit tangent vector

Given a parametrisation r(t) of a curve C, r′(t) is tangent to C at r(t), assuming r′(t) ̸= 0. However the
length of this tangent vector will depend on the particular parametrisation. We define the unit tangent
vector to be

T =
r′

∥r′∥

Principal normal vector

Start with a little calculation. We know that by definition ∥T(t)∥ = 1 = const for all t. So

∥T∥2 = T ·T = const

Differentiating gives

d

dt

(
T ·T

)
= T′ ·T+T ·T′ = 2T′ ·T = 0

so

T′ ·T = 0

Thus either T′ = 0 or T′ is perpendicular to T. One can also see this graphically. We define the
principal normal vector to be the unit vector in the direction of T′:

N =
T′

∥T′∥

If T′ = 0 the principal normal vector is not defined.

Curvature

Intuitively curves can have different amounts of bending and this is seen in how quickly the unit tangent
vectorT changes as one moves along the curve. Unfortunately, T′ itself will depend on the parametrisation
used. To remove this dependence, one defines the curvature κ to be the magnitude of instantaneous
change in T with respect to arc length

κ =

∥∥∥∥dTds
∥∥∥∥

To obtain a useful expression, we use the chain rule

dT

ds
=

dT

dt

dt

ds
= T′ 1

ds/dt
= T′ 1

∥r′∥

Thus, given a parametrisation r(t) of a curve, the curvature is computed using

κ =
∥T′∥
∥r′∥

The radius of curvature ρ is defined to be

ρ =
1

κ

Example: Consider a circle of radius R parametrised by r = (R cos t, R sin t). Then T = (− sin t, cos t)
and N = (− cos t,− sin t). The curvature is κ = 1/R and the radius of curvature is ρ = R. Note any
regular parametrisation of the circle would give the same T, within a ± sign. Flipping the orientation
flips T but not N. You should verify this.
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2.3 Parametrisation by Arc Length (optional)

Imagine that the interval I is a straight piece of wire and that the mapping r corresponds to taking the
wire and bending in it around into a curve C without any stretching or compression. Then there is an
exact correspondence between distances along the interval I and arc length along C. For example, let
I = [0, 10] (think of a 10 centimetre long straight wire). Each subinterval [0, 1], [2, 3], . . . , [9, 10] of I gets
mapped by r to a segment of C with arc length one. (Each centimetre of straight wire gets bent around,
but maintains its length of one centimetre.)

Such a parametrisation of a curve C is call an arc-length parametrisation and the curve is said
to be parametrised by arc length. This is also call the natural parametrisation. Denote such are
parametrisation by rarc. It has the property that the arc length between rarc(t1) and rarc(t2) is precisely
|t2 − t1|, the distance between t1 and t2.

We shall simplify our discussion by assuming C has finite length ℓ(C) < ∞ and when parametrised by
arc-length the interval I is I = [0, ℓ(C)]. (One can in fact parametrise infinitely long curves by arc-length.)

Arc-length parametrisations are important for two reasons. The first is conceptual. We know that
there are infinitely many ways to parametrise a curve, yet these all give the same arc-length. By choosing
arc length along the curve as the parameter we select a parametrisation that is intrinsic to the curve
rather than arbitrary. Apart from orientation, the parametrisation by arc length is unique.

The second reason is more important in practice. Let rarc(t) be an arc-length parametrisation of C.
Then by definition ˆ s

0

∥r′arc(t)∥ dt = s

for all s ∈ [0, ℓ(C)]. Differentiating this with respect to s gives (see Additional Material),

d

ds

ˆ s

0

∥r′arc(t)∥ dt =
d

ds
s

∥r′arc(s)∥ = 1

Hence the derivative r′arc has unit length for an arc-length parametrisation. One often says that an arc-
length parametrisation has speed one, whether or not one is thinking of particle paths. Many calculations
for curves, such as those we will see next week, greatly simplify for arc-length parametrisations.

To obtain an arc-length parametrisation of a curve C, start with some parametrisation r(t) : [a, b] → Rn

and compute the arc length from r(a) to r(t) for t ∈ [a, b]

s = ℓ(t) =

ˆ t

a

∥r′(τ)∥dτ

Inverting this relationship, t = ℓ−1(s), gives us the parameter value t corresponding to arc length s from
the end point r(a). Using this to eliminate t in favour of s, we can in principle obtain an arc-length
parametrisation

rarc(s) = r(ℓ−1(s))

Be warned, however, even though this parametrisation exists in principle, obtaining an arc-length para-
metrisation is generally impossible because no formula exists for ℓ−1(s).

It is common practice to use s rather than t for the independent variable in an arc-length paramet-
risation, and so to write rarc(s) as appose to rarc(t). We will sometimes do this if we want to emphasise
arc-length parametrisation.
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3 Week 7 Lecture 3: Functions of Several Variables and Partial
Derivatives

3.1 Introduction

A functions of several variables

f : U ⊆ Rn → R

is a rule that assigns a real number to each point in U , a subset of Rn,

We sometimes call f a function of n variables, or say f is a function on Rn (meaning perhaps a subset
of Rn). When we focus specifically on n = 2 or n = 3 we commonly write

w = f(x, y) or w = f(x, y, z)

In fact, when we consider graphs (see below) for n = 2 we frequently use z for the dependent variable,
e.g., z = f(x, y).

Many physical systems are expressed as functions of several variables and the governing laws are
expressed in the calculus of such functions. Consider for example the temperature in a room. Temperature
is a real number that will be a function of both position and time. Call this function T , so T (x, y, z, t) is
the temperature at position (x, y, z) and time t. Under certain assumptions the physical law governing
the evolution of temperature is:

∂T

∂t
(x, y, z, t) =

∂2T

∂x2
(x, y, z, t) +

∂2T

∂y2
(x, y, z, t) +

∂2T

∂z2
(x, y, z, t)

You are familiar with ordinary differential equations. This is a partial differential equation. By the
end of this week you will be able to verify whether T (x, y, z, t) satisfies the equation. Finding solutions
to partial differential equations will come in later years.

Visualising functions on Rn

There are two primary ways to visualise functions of several variables: graphs for n = 2 and level set for
n = 2 and n = 3. One can also make movies of graphs or level sets, and thereby visualise functions of up
to four variables. For larger n visualisation is very difficult.

Graphs

For n = 2, f can be visualised as the graph

Gf = {(x, y, z)| (x, y) ∈ U, z = f(x, y)}

The function is seen as a sheet of height f(x, y) above or below each point (x, y).

Level sets

Level sets, also called contours in R2 or isosurfaces in R3, are subsets of U which are all mapped to the
same value by f . Formally, the definition is

The level sets of a function f : U ⊂ Rn → R are sets of points

Lk = {x ∈ U | f(x) = k}

for each constant k in the range of f .

11



Figure 1: The function f(x, y) = 9− x2 − y2 visualised as a graph (left) and as a contour plot (right) by
slicing the graph at constant heights.

The intuition is easy for function on R2. Plot the graph z = f(x, y) then intersect the graph with
plane z = k for some constant k. Project the intersection points down onto R2 and these will make
up the contour for this value of k. Typically contours will be curves in R2. To represent a function
using contours one typically plots several contours with the corresponding values of k labelled in some
way. These are call contour maps or contour plots. The concept is familiar from topographic maps,
weather maps, and such.

The level sets of a function of three variables f(x, y, z) are typically surfaces in R3 called isosurfaces
(iso meaning equal, so a surface of equal, i.e., constant, value of f). Using transparency or clipping,
computers can often make several isosurfaces visible simultaneously, allowing for good understanding of
the underlying function f .

Figure 2: Example of a topographic map (contour plot) and an isosurface. (Map reproduced from
http://mail.colonial.net/∼hkaiter/topographic maps)

3.2 Partial Derivatives

Partial derivatives are easy. For simplicity we initially restrict to the case f : R2 → R and define

12



The partial derivatives of f(x, y) with respect to x and y at the point (a, b) are

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h

Assuming the limits exist.

Sometimes partial derivatives are indicated by subscripts, e.g., fx(a, b) and fy(a, b), or f1(a, b) and
f2(a, b). Sometimes upper case D is used, e.g., Dx(a, b) and Dy(a, b). We will not use any of these
notations. We will on occasion use the following. Letting z = f(x, y) we will denote partial derivatives

of f by
∂z

∂x
and

∂z

∂y
.

Interpretation

What this definition says is that the partial derivative of f with respect to x is just the ordinary one-
dimensional derivative treating y as a fixed constant. Concretely, define g(x) = f(x, b) and then compute
the ordinary derivative dg/dx at a. This is the partial derivative of f with respect to x. The partial
derivative with respect to y is analogous. So the pedantic view of partial differentiation is:

Given f(x, y),
let g(x) = f(x, b), then

∂f

∂x
(a, b) =

dg

dx
(a)

let h(y) = f(a, y), then
∂f

∂y
(a, b) =

dh

dy
(b)

This is illustrated in the following pictures. The function g(x) is obtained by slicing f with a plane y = b,
and similarly for h(y).

Figure 3: The x partial derivative (left) and y partial derivative (right) of the function f(x, y) = 9−x2−y2.

While defining the auxiliary functions g(x) and h(y) is pedagogically useful for explaining partial
derivatives, in practice it is unnecessary to explicitly form these functions. You will quickly master
computing partial derivatives by doing examples.

13



Partial derivatives are functions

In the above definition we defined the partial derivatives
∂f

∂x
(a, b) and

∂f

∂y
(a, b) at a point (a, b). If we

allow this point to vary, then each partial derivatives will itself be a function of (x, y). In which case we
would write

∂f

∂x
(x, y),

∂f

∂y
(x, y)

or with the arguments understood,

∂f

∂x
,

∂f

∂y

In practice, given a function f(x, y) one first computes the partial derivatives as functions of (x, y) and
then evaluates them at particular points (a, b) as necessary. Sometimes vertical bars to indicate this
evaluation, e.g.,

∂f

∂x
(a, b) =

∂f

∂x

∣∣∣∣
(a,b)

You are of course already familiar with everything just stated from functions of one variable. The

derivative, f ′(x), is itself a function of x. One often suppresses the argument x by writing just
df

dx
or f ′.

To compute the derivative at a point one differentiates and then evaluates the derivative function at the
required point, e.g., f(x) = sin(x), gives f ′(x) = cos(x), from which f ′(0) = 1.

3.3 Gradient

The gradient plays a fundamental role in the differential calculus of functions of several variables. This
week and next week we will discuss different uses and interpretations of the gradient. It will appear in
many subsequent courses.

Let f be a functions of n variables. The gradient vector, denoted
by ∇f , is the vector formed from the n partial derivatives

∇f =

(
∂f

∂x1
, · · · , ∂f

∂xi
, · · · , ∂f

∂xn

)

The gradient is vector quantity, it has n components, and it a function of coordinates (x1, · · · , xn).
We are particularly interested in functions of two and three variable, for which we can write explicitly

∇f(x, y) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
=

∂f

∂x
(x, y)i+

∂f

∂y
(x, y)j

and

∇f(x, y, z) =
∂f

∂x
(x, y, z)i+

∂f

∂y
(x, y, z)j+

∂f

∂z
(x, y, z)k

3.4 Chain Rule

Almost all of the differentiation rules you know for functions of one variable go over to rules for partial
derivative exactly as you expect. In fact, one usually does not even state them as rules for partial
differentiation. For example, given f(x, y) and g(x, y) a partial derivative of their product is

∂fg

∂x
= g

∂f

∂x
+ f

∂g

∂x

14



but this is obvious (or soon will be to you) since taking the x partial derivative means treating y as a
constant and so the product rule really is just the product rule from ordinary differentiation.

The Chain Rule is different. It is also pervasive in the treatment of functions of several variables.
Recall the Chain Rule for functions of one variable. It tells us how to differentiate functions of functions.
Let g(t) = f(h(t)) then we have

g′(t) = f ′(h(t))h′(t)

In this chapter we consider the basic case of the mulivariable Chain Rule where we have a real valued
function of several variables, and each of these variables is a function of a single other variable. In later
chapters this will be generalised.

For simplicity, consider a function of just two variables f(x, y). Let both x and y be functions of
a third variable t. We name these functions with the variable names and write x(t) and y(t). Using
composition we can construct a function g : R → R, g(t) = f

(
x(t), y(t)

)
.

The chain Rule for this case is

dg

dt
(t) =

∂f

∂x
(x(t), y(t))

dx

dt
(t) +

∂f

∂y
(x(t), y(t))

dy

dt
(t)

which is often written simply as

dg

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

In the general case of f : Rn → R where f(x1, · · · , xn) and where each xi is itself a function of a single
variable t, we have

The Chain Rule. Let g(t) = f(x1(t), · · · , xn(t)), then

dg

dt
(t) =

n∑
i=1

∂f

∂xi
(x1(t), · · · , xn(t))

dxi

dt
(t) (3)

or

dg

dt
=

n∑
i=1

∂f

∂xi

dxi

dt
(4)

In words, the derivative is computed are follows: starting at the left, compute the partial derivative
of f with respect to its first argument and multiply by the ordinary derivative of that argument function.
Now do the same for the next argument of f and add that on. Continue until you get to the last
component of argument of f .

Warning: Most aspects of partial differentiation are straightforward, almost trivial extensions of what
you know from functions of one variable. However, the Chain Rule has a tendency to cause trouble. The
reason is compact notation that is used, as in Eq. (4). It is assumed you understand where the functions
are being evaluated, so be sure you do understand. If necessary write out the arguments in full as in
Eq. (3).

3.5 Chain Rule (again)

Let us now re-approach the Chain Rule using vector notation. Given a function of n variables f : Rn → R
and a vector function r : R → Rn, into same n-dimensions, we can compose these to obtain

g = f ◦ r : R → R, with g(t) = f(r(t))

15



This is the same composition considered in previous section. We have just notationally replaced all of
the component functions xi(t) with a single vector function r(t) and used the ◦ notation for function
composition.

Now re-write the Chain Rule using the gradient vector and the fact that
dxi

dt
are components of

dr

dt
.

Then

dg

dt
=

n∑
i=1

∂f

∂xi

dxi

dt
= ∇f · dr

dt
= ∇f · r′

The Chain Rule reduces to the dot product between the gradient vector and the derivative vector r′.

The Chain Rule (again). Let g(t) = f(r(t)), then

dg

dt
(t) = ∇f(r(t)) · dr

dt
(t) = ∇f(r(t)) · r′(t)

You should see clearly that this is simply the previous Chain Rule written using different notation.

3.6 Higher-Order Derivatives

Just as for functions of a single variable, it is generally possible to differentiate the derivative to obtain
the second and higher derivatives. In the case of functions of several variables, there a potentially many
second derivatives. For example, f(x, y) has the following second derivatives:

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
You can seen that there are many possibilities for high derivatives of functions of several variables.

One thing that you will learn is that the order of differentiation does not matter for mixed partial
derivatives, e.g.,

∂2f

∂x∂y
=

∂2f

∂y∂x

in the case where
∂2f

∂x∂y
and

∂2f

∂y∂x
are themselves continuous functions. This will normally be the case

for functions we consider in this course, but be careful about always assuming it to be true.
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Additional Material (optional)

3.7 Directional Derivative

For simplicity we again initially restrict to the case f : R2 → R. Using vector notation, we can write the
definitions of partial derivatives as

∂f

∂x
(x) = lim

h→0

f(x+ hi)− f(x)

h
∂f

∂y
(x) = lim

h→0

f(x+ hj)− f(x)

h

where x = (x, y).

As you may have guessed, there is nothing special about the unit vectors i and j and the derivative
can be generalised to any direction u, where u ∈ R2 is a unit vector. This is called the directional
derivative of f(x, y) in the direction u and is denoted by Duf . Specifically,

Duf(x) = lim
h→0

f(x+ hu)− f(x)

h

In the general case we have

The directional derivative of f : Rn → R in the direction u is

Duf(x) = lim
h→0

f(x+ hu)− f(x)

h

where u ∈ Rn is a unit vector.

While one can compute the directional derivative from the definition, it is more common to use the
gradient vector as follows. Let

g(t) = f(r(t)), where r(t) = x+ tu

with x and u fixed with u a unit vector. These have the same meaning as above: x will be the point
where we evaluate the directional derivative and u is the direction. Note

r(0) = x r′(t) = u

Now we compute
dg

dt
(0) two ways. By definition:

dg

dt
(0) = lim

h→0

g(h)− g(0)

h
= lim

h→0

f(r(h))− f(r(0))

h

= lim
h→0

f(x+ hu)− f(x)

h
= Duf(x)

By the Chain Rule:

dg

dt
(0) = ∇f(r(0)) · r′(0) = ∇f(x) · u

Equate the two we obtain

The directional derivative of f : Rn → R in the direction u can
be obtained as the dot product of the gradient vector ∇f and the
direction vector u:

Duf(x) = ∇f(x) · u

Caution: there is variation in the definition of directional derivative. Some authors do not require u to
be a unit vector, and then there is variation in how the case of non-unit vectors is treated. However, this
is not an issue when u is a unit vector and we will always work with unit vectors when taking directional
derivatives.
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3.8 Caution on the extension to Rn

Extending analysis from function f : R → R to functions f : Rn → R is more involved than it might at
first appear. One can see this from the example function

f(x, y) =

{
xy2

x2+y4 , if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

What is the limit of f(x, y) as (x, y) → (0, 0)? Since f = 0 when either x = 0 or y = 0 the limit f(x, y)
approaching the origin along either the x or y axis is 0. This is also the limit approaching the origin
along any line y = mx. Hence is might seem that the lim(x,y)→(0,0) f(x, y) = 0. However, along the curve
x = y2, we have f(x = y2, y) = y4/2y4 = 1/2. Hence, if the origin is approached along this curve the
limit is 1/2. Since one obtains different values depending on how (0, 0) is approached, the limit does not,
in fact, exist.

This illustrates that limits and continuity for functions on Rn cannot be view from a one-dimensional
perspective, but must be properly generalised using regions (called neighbourhoods) in Rn. This will be
covered in later Analysis modules and in Differentiation. While we will not define these things here, we
will sometimes state properties that hold for continuous functions. You will just have to take this on
faith for the present.

Fortunately, several of the most important aspects of mulivariable calculus are “one dimensional” and
follow easily from things you know. Nothing stops us from being able to define and do calculations using
these quantities.

Quadric surfaces

A quadric surface is the set of points in R3 that satisfy a second-degree equation three variables x, y,
z. The most general form of such an equation is:

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0

for constants A, · · · , J . In most cases (non-degenerate cases), by translation and rotation of coordinates
it is possible to bring the equation into standard form of

Ax2 +By2 + Cz2 + J = 0 or Ax2 +By2 + Iz = 0

Quadric surfaces are the generalisation to three dimensions of conic sections in two dimensions.

You should see that points satisfying an equation in three variables, e.g., f(x, y, z) = 0, is no different
than the zero level set, or isosurface, of a function of three variables f(x, y, z).

We will potentially be interested in the following surfaces and will use them as examples throughout
the remainder of the module.

Ellipsoid:

x2

a2
+

y2

b2
+

z2

c2
= 1.

Horizontal and vertical cuts are ellipses. For a = b ̸= c this is a spheroid. For a = b = c this is a sphere.

Note that here, and below, we follow common practice and write the equation with the constant, or
lower-order terms, on the right hand side of the equal sign. In this form it is evident that the ellipsoid is
the k = 1 isosurface of the second-degree polynomial

f(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
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Elliptic Paraboloid:

x2

a2
+

y2

b2
=

z

c
.

Horizontal cuts are ellipses and vertical cuts are parabolas.

Hyperbolic Paraboloid:

x2

a2
− y2

b2
=

z

c
.

Horizontal cuts are hyperbolas and vertical cuts are parabolas.

Hyperboloid of One Sheet:

x2

a2
+

y2

b2
− z2

c2
= 1.

Horizontal cuts are ellipses. Vertical cuts are hyperbolas.

Hyperboloid of Two Sheets:

−x2

a2
− y2

b2
+

z2

c2
= 1.

Horizontal cuts are ellipses (if they intersect the surface). Vertical cuts are hyperbolas.

We also will want to consider the degenerate case of circular cylinders.

Circular Cylinder:

x2 + y2 = a2

In practice we will consider cylinders whose axis is parallel to the x or y coordinate axes.

Making contour plots

For simple functions you should be able to sketch contours and thus produce an approximate contour
map. You should understand the relationship between graph of f and its contour map and you should
be able to describe a function given a contour map.

In practice one often uses software to generate of contours. Algorithms for generating contours are
non-trivial. Think a little about what you might do to numerically generate all curves at a given level
for a function f . While commonly the contour levels correspond to an equal spacing in k, at times it
might be more appropriate to choose a different spacing, e.g., powers of 10, k = 1, 10, 100, . . . . It is also
common to plot contours using colour or grey scale values. Here each set Lk is assigned a specific colour
or grey value depending on k.

Another approach (far easier algorithmically) is to generate colour contour plots where one only need
consider a grid of values (xi, yj) covering the region of interest. For each grid point one computes f(xi, yj)
and assigns a corresponding colour or grey level. It is not necessary to generate any curves in the plane
– your eye will do that for you.
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4 Week 8 Lecture 1: Multiple Integration 1

Introduction

Given a continuous function f(x) > 0, you know that the integral

ˆ b

a

f(x) dx can be interpreted as the

area under the curve f(x) from x = a to x = b. This interpretation as area under the curve is intimately
connected to with the definition of integration. Since the graph of a function of two variables f(x, y) > 0
is a surface above the xy-plane, it is natural to ask about the volume under the sheet. This volume will
be expressed as a multiple integral.

4.1 Multiple Integration

Consider a function f of two variables which is defined, and is positive, on the closed rectangle, i.e.,
f : R ⊂ R2 → R+, where

R = [a, b]× [c, d] = {(x, y)| a ≤ x ≤ b, c ≤ y ≤ d}

Our goal is to compute the volume V of the three dimensional solid Ω generated by the graph of f above
this rectangle

Ω = {(x, y, z)| 0 ≤ z ≤ f(x, y), (x, y) ∈ R}

This volume can be express as a double integral of f over the rectangle R, written

The double integral of f over the rectangle R is

V =

¨
R

f dA

This is just notation. One can define the double integral as a limit of a double sum (in x and y
directions) of rectangular columns, similar to how one defines a single integral for a function of one
variable as the limit of a sum of rectangles. (See optional material at end of this week’s notes, or
better look at figures in Chapter 15 of Stewart et al.) While it is useful for you to look briefly at how
double integrals are defined, the important thing is to be able to calculate such integrals using iterated
integration.

4.2 Iterated Integration over a Rectangle

To compute double integrals, one relies on iterated or repeated one-variable integration as we now explain.
Consider a fixed value of y between c and d. The area under the curve f(x, y) from x = a to x = b with
fixed y is given by

A(y) =

ˆ b

a

f(x, y) dx

We use A for area. It depends on the fixed value of y, hence we write A(y).

Such an integral is call partial integration – integration of a function of several variables with
respect to one variable while treating any others as constants. You will recognise the analogy with
partial differentiation.

Given that A(y) is the area under the function at a given value of y, the volume will be the integral
of these areas over y, that is

V =

ˆ d

c

A(y) dy
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Hence the volume, double integral, can be expressed as

V =

¨
R

f dA =

ˆ d

c

A(y) dy =

ˆ d

c

[ˆ b

a

f(x, y) dx

]
dy

The inner integral gives the area under a curve at constant y. The outer integral integrates these areas
over the range of y to give the volume.

We did not have to order the integrations such that the x-integral appeared on the inside. One could
have equally put the y integration on the inside.

We now drop the specific interpretation of volume under a function and arrive at the following rela-
tionship between double integrals and iterated integrals.

The double integral of f over the rectangle R = [a, b]×[c, d] is given by iterated,
also known as repeated, integration

¨
R

fdA =

ˆ d

c

ˆ b

a

f(x, y)dxdy =

ˆ b

a

ˆ d

c

f(x, y)dydx

Discussion

• Notation: You will notice that we dropped the square brackets in boxed expression above. This is
common. All of the following are used to denoted iterated integration

ˆ d

c

ˆ b

a

f(x, y)dxdy,

ˆ d

c

[ˆ b

a

f(x, y)dx

]
dy,

ˆ y=d

y=c

ˆ x=b

x=a

f(x, y)dxdy,

ˆ d

y=c

dy

ˆ b

x=a

dxf(x, y)

and other combinations of these forms.

• The boxed expression is known as Fubini’s Theorem, or would be if we stated is as a theorem. Equality
is guaranteed if f is a continuous function, and even under weaker conditions on f .

• Understanding the following is crucial to iterated integration: Integrals are nested. (Now just 2 levels,
but in higher dimensions there will be more nesting.) Integrals are done from inside out. You work with
one variable at a time treating any variables outside the current level as constants. As we generalise
to other integration domains this will be key to your success. If you are ever confused by an iterated
integral, explicitly include the square brackets showing the nesting.

• Sometimes the function f(x, y) separates into the product of a function of x only and a function of y
only. Letting f(x, y) = g(x)h(y),

ˆ d

c

ˆ b

a

f(x, y)dxdy =

ˆ d

c

[ˆ b

a

g(x)h(y)dx

]
dy

but h(y) is a constant as far as the inner x integration is concerned, so it can be pulled out

ˆ d

c

h(y)

[ˆ b

a

g(x)dx

]
dy

and now the whole x integral is a constant as far as the y integration is concerned to it can be pulled
out [ˆ b

a

g(x)dx

] ˆ d

c

h(y)dy

Thus the double integral is said to separateˆ d

c

ˆ b

a

f(x, y)dxdy =

ˆ b

a

g(x)dx

ˆ d

c

h(y)dy
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4.3 Multiple Integration in Three or More Variables

The extension of all the above to functions of more than two variables is straightforward. We will only
explicitly consider functions of three variables, but functions of four, five, etc variables are essentially the
same.

The following treatment is a natural extension of the above. The reader can fill in the details. Rather
than consider volume under a surface, a useful physical example would be the total mass of a solid whose
density (mass per unit volume) is given by f(x, y, z). f is necessarily positive in this example. Assume
the solid is in the shape of a rectangular box. We then have f : B ⊂ R3 → R+, where B is the rectangular
box

B = [a, b]× [c, d]× [r, s]

= {(x, y, z)| a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s}.

The total mass of the solid given as a triple integral

Total Mass =

˚
B

f dV

Now forgetting the particular physical example, and the requirement that f be positive,

The triple integral of f over the rectangular box B = [a, b] × [c, d] × [r, s] is given by
iterated integration

˚
B

f dV =

ˆ s

r

ˆ d

c

ˆ b

a

f(x, y, z) dxdydz

or other orderings of the x, y, and z integrals.

The same comments from Sec. 4.5 and 4.2 apply here as well.

4.4 Area and Volume

Suppose you want to compute the area of a region Ω in the plane. Using the formalism of double integrals,
we can just leave out the function f(x, y) to get the area of a region. Similarly one can obtain the volume
of a region Ω in space as a triple integral – just leave out the function f(x, y, z) in triple integration.

Denoting the area of a planar region Ω by A(Ω) and the volume of a space region by V (Ω), we have

Area of a region Ω in the plane

A(Ω) =

¨
Ω

dA

Volume of a region Ω in space

V (Ω) =

˚
Ω

dV
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4.5 ”Derivation” of Multiple Integration (Optional)

This will be a quick, heuristic development of multiple integration. Consider a function f of two variables
which is defined, and is positive, on the closed rectangle, i.e., f : R ⊂ R2 → R+, where

R = [a, b]× [c, d] = {(x, y)| a ≤ x ≤ b, c ≤ y ≤ d}

Our goal is to compute the volume V of the three dimensional solid Ω generated by the graph of f above
this rectangle

Ω = {(x, y, z)| 0 ≤ z ≤ f(x, y), (x, y) ∈ R}

To compute the volume we partition the rectangle R into subrectangles by partitioning separately
each of the intervals [a, b] and [c, d] as follows. First partition [a, b] into N equal subintervals by letting
x0 = a, x1 = a +△x, · · · , xi = a + i△x · · · , xN = b. This gives subintervals [xi, xi+1] each with length
△x = (a− b)/N .

Similarly partition [c, d] into M equal subintervals [yj , yj+1] of length △y by letting y0 = c, y1 =
c + △y, · · · , yj = c + j△y · · · , yM = d. Then form subrectangles Rij of R by taking the Cartesian
product of the x and y subintervals:

Rij = [xi, xi+1]× [yj , yj+1]

So each subrectangle has area △A = △x△y.

We can now approximate the volume of the solid over each subrectangle as f(xi, yj)△A. Summing
these we get an approximation for the volume of Ω

V ≈
M−1∑
j=0

N−1∑
i=0

f(xi, yj)△A

For N and M large, the size of each subrectangle is small and f does not vary much over the subrectangle.
Each term in the sum then corresponds to a subvolume that is very tall compared with its base dimensions.
Now take the limit as the number of elements N and M goes to infinity, with the sizes △x and △y going
to zero. We thus get the exact volume

V = lim
M,N→∞

M−1∑
j=0

N−1∑
i=0

f(xi, yj)△A

The volume under a function of two variables is just one of numerous quantities one wants to compute
in this way. In general there is no reason to restrict functions taking on positive values, so we now drop
this restriction and define

The double integral of f over the rectangle R is

¨
R

f dA = lim
M,N→∞

M−1∑
j=0

N−1∑
i=0

f(xi, yj)△A

Comments

• We have assumed here that the limit exists. If the limit exists, f is said to be integrable and in later
courses you will learn that f is continuous (in the mulivariable sense which we have not defined), then
it is integrable.

• It is unnecessary that R be partitioned into equal rectangles, all with the same area. In fact it is
unnecessary that the partition of R use rectangles at all, we did this here for convenience.

• We chose to approximate the subvolumes using f evaluated at (xi, yj), but we could have used any
sample point within Rij . It does not matter where we evaluate f within each element since in the limit
their size goes to zero.

23



5 Week 8 Lecture 2: Multiple Integration 2

5.1 Iterated Integration over General Domains

Now the fun starts. We are going to consider integration of functions over more general domains, first in
2D then in 3D. Doing integrals is not going to be the issue – getting the geometry right is.

The notes are short for this lecture, because there is not a lot to explain. One must do lots of examples.

Two variables

Let Ω denote the region or domain in R2 on which f is defined and over which we wish to integrate.

A Type I region can be expressed

Ω = {(x, y) ∈ R2| a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

where g1 and g2 are continuous functions on [a, b]. We evaluate the double integral of f over Ω as an
iterated integral in the following way

¨
Ω

fdA =

ˆ b

a

[ˆ g2(x)

g1(x)

f(x, y)dy

]
dx

Let us elaborate by examining the nesting from inside to outside. Within the brackets, x is treated as
a constant. Its actual value is not known, but everywhere it appears it acts like a constant. Hence the
limits of the y-integral are the “constants” g1(x) and g2(x). Assuming one can partially integrate f(x, y)
with respect to y, then one can evaluate the inner brackets resulting in a function of x only. Then the
outer integral is a standard integral over the interval [a, b].

A Type II region or domain is one that can be expressed

Ω = {(x, y) ∈ R2|h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d}

where h1 and h2 are continuous functions on [c, d]. In this case we evaluate the double integral of f over
Ω as iterated integral in the following way

¨
Ω

fdA =

ˆ d

c

[ˆ h2(y)

h1(y)

f(x, y)dx

]
dy

Comments

• There are two aspects to iterated integrals over these types of domains. First setting up the integration
correctly and second carrying out the integration correctly. One simply needs to practice a lot.

• My advice is, given some specification of the domain Ω, first write it explicitly as a set either of Type
I or Type II. It will then be immediately obvious which integral is on the inside and which is on the
outside and what the limits of integration are. If you cannot express Ω in this form, you won’t be able
to write the integral.

• Many domains can equally be written in Type I or Type II format. One way may easier to calculate
in the end, but it is not always obvious when you start. Again, practice helps.

Three variables

Now let Ω be a region or domain in R3 on which f is continuous and over which we wish to integrate.
In analogy with the 2D case we could define 6 types of regions. We won’t do this, but instead look at a
one case and let you deduce the others.
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Suppose the set Ω can be written

Ω = {(x, y, z) ∈ R3| a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x),

u1(x, y) ≤ z ≤ u2(x, y)}

Then ˚
Ω

fdV =

ˆ b

a

[ˆ g2(x)

g1(x)

[ˆ u2(x,y)

u1(x,y)

f(x, y, z)dz

]
dy

]
dx

The inner most integral is a partial integral over z. Here x and y, and hence integration limits u1(x, y)
and u2(x, y), are viewed as constants. The result will be a function of (x, y). The middle integral is a
partial integral over y with x treated as constant, followed by the outer definite integral over x with limits
a and b.

5.2 Area and volume elements

We began the topic integration by first recalling the finding the area under a curve for a function of a
single variable,

Area under curve =

ˆ b

z

f(x) dx

The notation for integration is chosen to envoke that the area under a curve is the sum of (infinitely
many) rectangles of height f(x) and infinitesimal width dx.

We then introduced double integration by considering the volume under a surface for a function of
two variables, and wrote

Volume under surface =

¨
R

f dA

While we did not formally define the double integral, the notation is similarly meant to envoke that the
volume is given by a sum of (infinitely many) boxes of height f and infinitesimal base area dA.

We then stated that the double integral can be evaluated by iterated integrals¨
R

f dA =

ˆ d

c

ˆ b

a

f(x, y) dx dy

Comparing the two sides, it is evident that the infinitesimal base area dA on the left hand side becomes
dx dy on the right hand side. Hence,

dA = dx dy

The correct way to think about this is that an infinitesimal element of area dA in the plane is given by
the product of infinitesimals dx and dy, where x and y are Cartesian coordinates.

Similarly for integration in 3D,

dV = dx dy dz

It is possible to make these statements rigorous, and derive the results through a systematic approach,
but this is beyond the scope of MA133. We will have to rely on heuristic understanding.

We are going to consider important non-Cartesian coordinate systems and address the question: what
are the infinitesimal elements of area dA and volume dV in terms of infinitesimal coordinate increments
in these coordinate systems?

6 Week 8 Lecture 3: Integration in Special Coordinates

Introduction

Many problems naturally involve symmetry. One should exploit it where possible and this often means
using coordinate systems other than Cartesian coordinates.
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6.1 Polar Coordinates

You know the relationship between polar coordinates (r, θ) and Cartesian coordinates (x, y):

x = r cos θ r2 = x2 + y2

y = r sin θ tan θ =
y

x

It is useful to view the polar coordinate system in terms of a polar grid consisting of curves of constant
r-coordinate – circles centred on the origin, and curves of constant θ-coordinate – radial lines.

Now consider the equivalent of a rectangular region R in polar coordinates.

R = {(r, θ)| a ≤ r ≤ b, α ≤ θ ≤ β}

This is referred to as a polar rectangle. Of course this is not a rectangle in the plane, but typically a
wedge (although these include disks and annuli).

In polar coordinates the relationship between the double integral and iterated integrals

In polar coordinates:

¨
R

f dA =

ˆ β

α

ˆ b

a

f(r cos θ, r sin θ) r dr dθ

where

R = {(r, θ)| a ≤ r ≤ b, α ≤ θ ≤ β}

The key feature that distinguishes integration in polar coordinates from integration in Cartesian
coordinates is that now the infinitesimal area element is no longer independent of position. It depends
on coordinate r.

Key fact, in polar coordinates:

dA = r dr dθ

This is the relationship between the infinitesimal area in polar coordinates and the infinitesimal
changes in the coordinates dr and dθ. You should understand this as follows. If one makes a small
(infinitesimal) change dr in the r coordinate, then the area element will be proportional to that change,
while if one makes an small (infinitesimal) change dθ in the θ coordinate, then the area element will be
proportional rdθ.

6.2 Iterated Integration in Cylindrical Coordinates

Cylindrical coordinates (r, θ, z) are a three dimensional coordinate systems composed of polar coordinates
(r, θ) in the plane and a Cartesian coordinate z in the third direction, generally thought of as the vertical
direction. The relationship between cylindrical and Cartesian coordinates is

x = r cos θ r =
(
x2 + y2

)1/2
y = r sin θ tan θ =

y

x
z = z z = z

One could give a different symbol ξ to the vertical coordinate in cylindrical coordinates and write rela-
tionship between this cylindrical coordinate and the Cartesian coordinate is ξ = z, but this is silly.
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It is useful to view the cylindrical coordinate system in terms of a grid consisting of surfaces of constant
r-coordinate – cylinders centred on the z-axis, surfaces of constant θ-coordinate – radial half-planes, and
surfaces of constant z-coordinate – horizontal planes.

We suppose have a function f defined on a cylindrical wedge given by

Ω = {(r, θ, z) | a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}.

and we want to compute the triple of f over Ω.

In cylindrical coordinates:

˚
Ω

f dV =

ˆ d

c

ˆ β

α

ˆ b

a

f(r cos θ, r sin θ, z) r dr dθ dz

where

Ω = {(r, θ, z) | a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}.

Key point is the expression of the infinitesimal volume element dV in terms of infinitesimal changes
in the coordinates.

Key fact, in cylindrical coordinates:

dV = rdrdθdz

Discussion

• In problems with symmetry, the integral separates in the corresponding coordinate, or coordinates,
and the integrals simplify.

• Sometimes we use special coordinates because of geometry, that is the region of integration suggest
special coordinates, but equally often we use special coordinates because the integrand simplifies in
these coordinates. Another way to say this is that in many cases the function we wish to integrate
arises because a problem depends only on distance from the origin (polar coordinates in 2D and
spherical coordinates in 3D) or because a problem depends only on distance from an axis (cylindrical
coordinates).

• In our statements of formulas for iterated integration we took the regions to be simple and hence the
limits of integration were constants. However, just as with integration in Cartesian coordinates, the
regions need not be this simple. In general, in iterated integration the limits of any inner integrals may
depend on coordinates of any of the outer integrals.

6.3 Iterated Integration in Spherical Coordinates (Mostly Optional)

Spherical coordinates (r, θ, ϕ) are a three dimensional coordinate systems where r is the distance from the
origin (three-dimensional radial coordinate), θ is same angle as in cylindrical coordinates (corresponds to
longitude where the x-axis is zero longitude), and ϕ is the angle from the vertical (angle from the north
pole or co-latitude). The relationship between spherical and Cartesian coordinates is

x = r sinϕ cos θ r =
(
x2 + y2 + z2

)1/2
y = r sinϕ sin θ tanϕ =

(x2 + y2)1/2

z

z = r cosϕ tan θ =
y

x
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Some authors give a different symbol ρ to the radial coordinate in spherical coordinates but we will not
do this. (Be warned, many authors use θ and ϕ in exactly the reverse of the roles here.) The ranges of
spherical coordinates are

r ≥ 0 0 ≤ θ ≤ 2π 0 ≤ ϕ ≤ π

We suppose have a function f of spherical coordinates f(r, θ, ϕ) defined on a spherical wedge

Ω = {(r, θ, ϕ) | a ≤ r ≤ b, α ≤ θ ≤ β, γ ≤ ϕ ≤ δ}.

and we want to compute the triple of f over Ω.

In spherical coordinates:

˚
Ω

f dV =

ˆ δ

γ

ˆ β

α

ˆ b

a

f(r, θ, ϕ) r2 sinϕdr dθ dϕ

where

Ω = {(r, θ, ϕ) | a ≤ r ≤ b, α ≤ θ ≤ β, γ ≤ ϕ ≤ δ}.

Note that in the above we have written f(r, θ, ϕ), meaning that the function is already expressed in
spherical coordinates. If the function is given in Cartesian coordinates, one needs to first substitute for
x, y and z in terms of r θ and ϕ.

Key point is the expression of the infinitesimal volume element dV in terms of infinitesimal changes
in the coordinates.

Key fact, in spherical coordinates:

dV = r2 sinϕdr dθ dϕ

Integrating function of r only (Not Optional)

Suppose the function we wish to integrate is a function of r only in spherical coordinates. Suppose further
that we want to integrate this function over a sphere of radius R, then the triple integral becomes

˚
Ω

f dV =

ˆ π

0

ˆ 2π

0

ˆ R

0

f(r) r2 sinϕdr dθ dϕ =

ˆ π

0

sinϕdϕ

ˆ 2π

0

dθ

ˆ R

0

f(r) r2 dr

= 2 · 2π ·
ˆ R

0

f(r) r2 dr = 4π

ˆ R

0

f(r) r2 dr

If Ω is a sphere of raduis R and f a function of r only, then

˚
Ω

f dV = 4π

ˆ R

0

f(r) r2 dr
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Some pictures

 6-5 

 
  dA = rdθdz . (6.2.11) 
 
Area elements are actually vectors where the direction of the vector dA


 points 

perpendicular to the plane defined by the area. Since there is a choice of direction, we 
shall choose the area vector to always point outwards from a closed surface. So for the 
surface of the cylinder, the infinitesimal area vector is 
 
     d


A = rdθdz r̂ . (6.2.12) 

 
 
 

 
 
 

Figure 6.6 Displacement vector d s  
between two points 

 

 
Figure 6.7 Area element for a cylinder: 

normal vector   ̂r  

 

Example 6.1 Area Element of Disk 

 
Consider an infinitesimal area element on the surface of a disc (Figure 6.8) in the  xy -
plane. 

 
 

 
 

Figure 6.8 Area element for a disc: 
normal k̂  

 
 

Figure 6.9 Volume element 

Figure 4: Volume elements in cylindrical and spherical coordinate systems. (Cylindrical case taken from
MIT Physics 8.01 course notes. Spherical case from Wikipedia.)

7 Week 9 Lecture 1: Vector Fields

7.1 Introduction

We have considered vector functions

r : U ⊆ R → Rn

and their relationship to curves in Rn.

We have considered functions of several variables

f : U ⊆ Rn → R

and how to differentiate such functions (partial derivatives) and integrate such functions (multiple integ-
rals).

29



We will now consider vector fields

F : U ⊆ Rn → Rn

The function F is viewed as assigning an n-vector to each point in Rn. This is called a vector field on
Rn.

There a many situations in which a vector is associated to each point in some region of space. Familiar
examples come from fluid motion such as the wind or the motion of water in a river. Wind has both a
magnitude and a direction (blowing North-East at 18 miles/hour) and hence is a vector quantity whose
value generally varies with location. Other applications include gravitational fields, electric fields, and
magnetic fields. These are all vector fields.

We typically use boldface to denote vector fields, (usually F, V, u or v), to emphasise that to each
point in U the function F assigns a vector. We will primarily be interested in vector fields on the plane
(n = 2) or in space (n = 3).

A few examples and notation

• The planar vector field,

F(x, y) = −yi+ xj

corresponds to vectors pointing counterclockwise around the origin.

The vector field,

F(x, y, z) = xi+ yj+ zk

corresponds to vectors in space pointing away from the origin.

• More generally, we can write our vector fields on R2 as

F(x, y) = P (x, y)i+Q(x, y)j

where P (x, y) and Q(x, y) are component functions, each a real valued function of two variables (co-
ordinates).

Similarly for a vector field on R3

F(x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k

where P , Q, and R are real valued functions of three variables (coordinates).

• Since a point in the plane or in space can be written as a vector x = (x, y) or x = (x, y, z), we will
sometimes write our vector fields compactly as

F(x)

You should always think of this as x specifies the coordinates of a point, and F is the vector associated
with that point.

• An example we have already seen is the gradient of a function f of several variables. The gradient is
a vector field since ∇f(x) is a vector whose value depends on the point x. On the plane for example

F(x) = ∇f(x) = ∇f(x, y) =
∂f

∂x
(x, y)i+

∂f

∂y
(x, y)j

• Systems of ordinary differential equations

ẋ1 = f1(x1, · · · , xn)

...

ẋn = fn(x1, · · · , xn)

can be viewed as vector fields on the corresponding phase space. To each point in phase space x =
(x1, · · · , xn) there is an associated derivative vector,

ẋ = F(x) = (f1(x1, · · · , xn), · · · , fn(x1, · · · , xn))

We return to this important example next week.
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Comment on scalar fields

In the context of what we will now be discussing, one can view a real valued function f of several variables
as a scalar field. That is, to each point (x1, x2, · · · , xn) in Rn, the function f assigns a scalar value.

7.2 Differential calculus of vector fields

There are two important differential operations that commonly arise for vector fields. These are known
as divergence and curl. One initially just learns how to compute these, and then with time their role in
applications will become evident.

7.2.1 Divergence

Let F be a vector field defined on R3

F(x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k

Then the divergence of F is defined to be

div F = ∇ · F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

Note that both div F and ∇ · F are used to denote divergence.

For a vector field F defined on R2

F(x, y) = P (x, y)i+Q(x, y)j

The divergence is

div F = ∇ · F =
∂P

∂x
+

∂Q

∂y

As you can surmise, the divergence in any dimension is just the sum of the partial derivatives of the
component functions. We will only consider the cases n = 2 and n = 3 as defined above.

Note that divergence is a real value, i.e., a scalar. Hence, divergence takes a vector field and gives a
scale field.

7.2.2 Curl

Curl is defined for vector fields F on R3. The definition is best expressed using the determinant notation
used for the cross product. If

F(x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k

Then the curl of F is defined to be

curl F = ∇× F =

∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣∣∣

31



From completeness we write out the expression for curl,

curl F = ∇× F =

(
∂R

∂y
− ∂Q

∂z

)
i+

(
∂P

∂z
− ∂R

∂x

)
j+

(
∂Q

∂x
− ∂P

∂y

)
k

but is it not recommended that you memorise the above line, but rather use the determinant notation.

Similar to the case of divergence, both curl F and ∇× F are used to denote the curl of F.

Curl is a more involved calculation than divergence, but with a little practice you will be easily able
to master it.

7.2.3 ”Curl” of 2D vector field

Although curl is defined for 3D vector fields, the following is common and useful. Suppose we have a 2D
vector field

F(x, y) = P (x, y)i+Q(x, y)j

We can think of this as a 3D vector field with a zero third component and no dependence on z

F(x, y, z) = P (x, y)i+Q(x, y)j+ 0k

Plugging this into the definition of curl we obtain

curl F = ∇× F =

(
∂Q

∂x
− ∂P

∂y

)
k

Hence, curl F has component only in the k direction and it is only a function of (x, y). It can be
useful to consider just this component of the curl, specifically

h(x, y) =

(
∂Q

∂x
− ∂P

∂y

)
= k · (curl F)

7.3 Vector calculus identities

There are a number of identities that arise and are important in vector calculus. We will only consider
a few of the most important ones.

div curl F

The divergence of the curl of a vector field is necessarily zero.

div (curl F) = ∇ · (∇× F) = 0

curl grad f

The curl of the gradient of a function of three variables is necessarily zero.

curl (grad f) = ∇× (∇f) = 0

Proofs of the above two statements are left to the reader. Proves follow by direct application of the
definitions.
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Laplacian

The divergence of the gradient of a function f of several variables is call the Laplacian and is denoted
∇2f

∇2f = ∇ · (∇f)

Note that the Laplacian is a scalar, just as is f . We have already seen the Laplacian, although we did
not give is a name.

The definition applies in any dimension, although as usual here were will be interested in the cases
n = 2 and n = 3. Using the definitions of div and grad one finds that the Laplacian is just the sum of
second derivatives, e.g., for n = 3

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

7.4 Final Remarks

At this point you should just learn how to compute div and curl from vector fields. Together with grad
for scalar fields, these form the basis of differential vector calculus. The only two vector identities that
you need to know now are ”div curl = 0” and ”curl grad = 0”. These are statement of fact you should
just know. You should know that the Laplacian is the div of grad.

Note that we are here working only in Cartesian coordinates. Div, grad, curl take different forms in
different coordinate systems. However, the vector identities hold independently of coordinate system.

It is highly recommended that you look at the Wikipedia page on Vector Calculus Identities.

8 Week 9 Lecture 2: Line Integrals I

Introduction

We return to parametrised curves and consider integration along such curves. We already saw this when
we integrated along a curve to find its length. Here we generalise this with particular emphasis on
integrating over vector fields.

8.1 Line Integrals

The basic line integral can be motivated as follows. Given an interval [a, b] and a function f(x) which is

positive over the interval,

ˆ b

a

f(x)dx is the area under the graph y = f(x). Intuitively one understands

that f(x) dx is the area of a tall skinny rectangle of height f(x) and width dx and

ˆ b

a

means “add these

up” for x’s in the interval [a, b].

Why restrict ourselves to just integrating along straight lines? We known how to work with curves so
let us generalise and consider a curve in the plane and a function f(x, y) that is positive in some region
containing the curve. A surface is formed by f over the curve. Think of a curtain hanging down from f
to the curve. We want to compute the area of this curtain by integration.

Recall the length of a curve C is given by

ℓ(C) =
ˆ
C
ds
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where ds is the infinitesimal arc length, or distance, along the curve. Thus to find the area of the curtain
formed from f over C, we simply multiply the height f times the infinitesimal arc length ds and integrate
over the curve ˆ

C
f ds

In practice, such an integral is evaluate by parametrising the curve. Given a parametrisation of the
curve r(t), t ∈ [a, b], the infinitesimal arc length ds can be expressed in terms of the infinitesimal change
dt via

ds = ∥r′(t)∥dt

so that arc length is in practice computed using
ˆ
C
ds =

ˆ b

a

∥r′(t)∥ dt

Thus, in practice to find the area of the curtain formed from f over C, we use
ˆ
C
f ds =

ˆ b

a

f(r(t)) ∥r′(t)∥ dt

It is not necessary to restrict to positive functions, nor does the method depend on dimension. The
relationship ds = ∥r′(t)∥dt holds in any dimension. Thus we can go directly to the general formula.

Given f : U ⊆ Rn → R and r : [a, b] → Rn a parametrisation of a curve C lying
in U , the line integral of f along a curve C is given by

ˆ
C
f ds =

ˆ b

a

f(r(t)) ∥r′(t)∥ dt

one must parametrise the curve in a sensible way.

8.2 Line Integrals for Vector Fields

Given a vector field F, it frequently occurs that one wants to compute a line integral where the function
f is

f = F ·T

where T is the unit tangent vector to the curve C. Examples of this type of integration are work and
circulation discussed below. Hence we need to evaluate

ˆ
C
F ·T ds

To derive a useful formula for such an integral we recall that

T =
r′

∥r′∥

Thus we can write

F ·T ds = F · r′

∥r′∥
∥r′(t)∥ dt = F · r′ dt

The right-most expression is what we will use in practice to evaluate this type of line integral. However,
it is common to write r′ dt as dr.

Let F be a vector field define in some region of Rn, and let r : [a, b] → Rn be a parametrisation of a
curve C in this region,
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The line integral of F along C is

ˆ
C
F ·T ds =

ˆ
C
F · dr =

ˆ b

a

F(r(t)) · r′(t) dt

One important feature of line integrals of vector fields is that they are not independent of the orient-
ation of the curve. The reason is that is that if one reverses the orientation of a curve, then the tangent
vector changes sign. Denoting −C as the curve C with the opposite orientation, then

ˆ
−C

F ·T ds = −
ˆ
C
F ·T ds

8.3 Fundamental Theorem of Line Integrals

When we introduced vector fields it was noted that an important class of vector fields was that obtained
as the gradient of a function of several variables: F = ∇f . Such vector fields are call conservative
vector fields. They are important because the arise in practice and because the following holds

Fundamental Theorem of Line Integrals (FTLI). Let C be a regular curve
parametrised by r : [a, b] → Rn and let f be a differentiable function whose
gradient vector is continuous on C, then

ˆ
C
∇f · dr = f(r(b))− f(r(a))

Note the analogy with the Fundamental Theorem of Calculus (FTC)

ˆ b

a

F ′(t)dt = F (b)− F (a)

Proving the FTLI is not difficult as it primarily relies on the Chain Rule and the FTC. The manipu-
lations are

ˆ
C
∇f · dr =

ˆ b

a

∇f(r(t)) · r′(t)dt

=

ˆ b

a

d

dt
f(r(t))dt = f(r(b))− f(r(a))

The FTLI tells use that if we know our vector field F is a conservative vector field, and hence given
by gradient of some function f , then we can evaluate any line integral of F over C simply by evaluating
f at the end points of C. Call these points ra and rb. The importance is not just that it simplifies our
calculations, but the fact that since the integral depends only on the end points, it in fact must be the
same for any curve that starts ra and ends at rb. That is, if F = ∇f , then

ˆ
C1

F · dr =

ˆ
C2

F · dr,

for any two C1 and C2 that start at ra and end at rb. The line integral is said to by path independent.

Note in particular that if F = ∇f , then the integral around any close curve will be zero because
ra = rb for a close curve. We will write this as

˛
C
F · dr = 0

where the circle on the integral symbol indicates that the curve C is closed.
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With some mild conditions, it can be shown that if all line integrals of a vector field F are path
independent, or equivalently if the line integral around all closed curves is zero, then F is a conservative
vector field and there is a function f such that a F = ∇f .

The converse is generally easier, although perhaps less important. If the line integral of F around a
close path is not zero, then F is definitely not a conservative vector field and it cannot be expressed as
the gradient of a function.

9 Week 9 Lecture 3: Line Integrals II

9.1 Work and potential energy

Work is an important physical concept that you can learn more about in a mechanics module. It is a
classic example of a case where one needs to do line integrals of a vector field. If a force F(r) acts on a
point particle and the particle moves from position ra to rb along a curve C, then the work Wab done by
the force on the particle is

Wab =

ˆ
C
F · dr

This definition is independent of whether or not the force F(r) is a conservative vector field.

In many situations (gravitational fields for example), but not all, the force F(r) is a conservative
vector field. It can thus written as a gradient of a function. One typically defines the function so that
F = −∇V where V is a potential, and more specifically in this case, V is potential energy.

The work done in moving from ra to rb is given in terms of the potential at the end points

Wab = (−V (rb))− (−V (ra)) = V (ra)− V (rb)

independently of how the particle moved from ra to rb.

You should visualise the potential V as the height of a hill, or more general landscape. Assume that
V (ra) > V (rb). This means the particle starts out a some high point and moves to some lower point.
The work done on the particle is Wab = V (ra)− V (rb) > 0, independently of the path followed from ra
to rb. Wab is the energy that can be extracted from the particle as it moves downhill from ra to rb.

Contrarily, if a particle starts at rb then one must expend energy to push it uphill to ra. We must input
energy equal to Wab, All work (or energy) differences are encoded in the potential V and are independent
of the path taken by the particle. Informally, the force conserves mechanical energy by converting work
to potential energy, and back. Gravitational and Coulomb forces are two examples of conservative forces
that are frequently described in terms of potentials.

9.2 Circulation

For many vector fields, line integrals around closed curves have physical significance. In fluid dynamics,
for example, such integrals give what is known as the circulation of the fluid around the curve. In
electricity and magnetism, such integrals appear in the integral statement of Maxwell’s equations and
correspond to a circulation of electric or magnetic fields.

We will focus of the fluids case. Let v be a vector field corresponding to the velocity of fluid in some
region of space (or could be confined to a plane). Then the circulation Γ of v over a closed curve C is

Γ =

˛
C
v · dr

Intuitively this integral corresponds to the net amount the fluid is circulating around the curve.

Knowing the circulation around a body such as a wing or a spinning ball, one can calculate the lift
force on the body. In the case of a wing, the lift force is what holds the aeroplane up. In the case of a
spinning ball, the lift force gives rise to a deflection, or bending, of its path through the air.
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9.3 Relationship between line integrals and double integrals

We end our brief tour of vector analysis with a look into the relationship between line a integral along a
closed curve and a double integral over the region enclosed by the curve. This is the simplest case of a
set of deep relationships between certain line, surface and volume integrals.

Let F(x, y) be a vector field in the plane. As previously discussed, we can view this as a three
dimensional vector field with zero component in the k direction. In this way we can then take the curl
of this vector field. It will have component only in the k direction. (You should view this geometrically
as a vector field in the plane whose the curl is a vector pointing out of the plane.)

It is a theorem that ˛
C

F · dr =

¨
Ω

(curl F) · k dA

where Ω is the region bounded by the close curve C. The orientation of the curve is what is call positive,
but simply think of this as ”counterclockwise”. There are mild conditions, such as the curve C must
be piecewise regular and curl F must be defined, but we will not worry about these. This relationship
between the line integral of a vector field and a double integral over a region is the vector form of Green’s
Theorem, or a baby version of Stokes’ Theorem.

(Optional)

For fun, we state integral formulas for Stokes’ Theorem and the Divergence Theorem.

Stokes’ Theorem states

˛
C

F · dr =

¨
S

(curl F) · n dS

The left-hand side is just a line integral over closed curve C that you know how to do. The right-hand
side is a surface integral over any surface S that is bounded by C. n is a unit normal vector to the surface.
There are some mild conditions of the curve and surface for this to make sense.

In the special case where F is a two-dimensional vector field and C is in the plane, then the surface
S can be taken to be the flat surface in the plane, i.e., a region in the plane and n become k and we get
the special case above.

The Divergence Theorem, also known as Gauss’s Theorem states

‹
S

(F · n) dS =

˚
Ω

(div F) dV

The right-hand side is a triple integral over a region Ω. Given F, this is in principle something you
now know how to calculate. The left-hand side is the integral over a closed surface S that bounds the
region Ω. n is the outward normal vector to this surface.
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