
Calculus 1: MA141

2022 Lecturer: Roger Tribe

Contents

Up periscope 2

10 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Limits 8

Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Convergence and divergence of sequences . . . . . . . . . . . . . . . . . . . . . . 10

Scales of growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Completeness 22

The completeness axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

The Cauchy property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Infinite series 37

Convergence and divergence of infinite series . . . . . . . . . . . . . . . . . . . . 37

Some convergence tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Absolute convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Continuous functions 54

Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Boundedness and attainment of bounds . . . . . . . . . . . . . . . . . . . . . . . 64

1



Chapter 0. Up periscope

This first chapter is an up-persicope to show you where Calculus 1 and 2 are headed,

along with a few ideas from year two maths modules. The very careful proof writing in

the these two modules is quite a change from school mathematics, and takes time to get

used to, often practising on rather simple, or even obvious, statements. At the risk of

stealing thunder from my fellow lecturers in probability, statistics, differential equations,

combinatorics e.t.c. I think it is important to keep some of the eventual high points in

mind. I think this section should be read quickly (without worrying about details) - it

is not needed for revision, but we will meet some of the examples again later and also in

exercises. The theory in this module really starts with Chapter 1.

10 examples

Here are ten examples we should meet during Calculus 1 and Calculus 2.

1. Stirling’s formula. Stirling’s approximation for factorials

n! ≈ nne−nn1/2
√

2π

is enormously useful in many counting problems (and therefore also in various prob-

ability problems).

I have left it here with a ≈ symbol, just to mean ’approximately equal to’.

We will have to (i) make a precise statement (ii) prove it.

How on earth is π going to emerge?

2. The number e. The limit

e = lim
n→∞

(
1 +

1

n

)n
can be taken as a definition of the number e. If we see a different definition we had

better check they really are the same. For example we need to reconcile the above

limit with the power series

ex =
∞∑
k=0

xk

k!

which would indicate that e =
∑∞

k=0
1
k!

.

The related limit

lim
n→∞

(
1− λ

n

)n
= e−λ for any λ ∈ R

arises early in probability modules, for example in Poisson approximations.
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3. Newton Raphson. You may well have seen the Newton Raphson method in action

at school. Here it is as a scheme for calculating
√

2:

a1 = 3/2, an+1 =
a2n + 2

2an
for n ≥ 1.

My first approximation was 3/2. Working to 12 decimal places I get

a2 = 1.41666666666, a3 = 1.41421568627, a4 = 1.41421356237

and we are finished to my level of precision. It is an example of a quadratic algo-

rithm, meaning the the nth error, that is the distance between nth approximation

and the true value of
√

2, approximately squares each operation. So the number of

decimal places that are correct roughly doubles each time you iterate the algorithm.

Finding a quadratic algorithm to approximate π was a more recent discovery. Cubic,

quartic, ... algorithms (where the error cubes or quarts...) are now known.

4. The number π. There are many formulae that lead to π, for example

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

How many terms of this infinite series need you add before you correctly find the

first 3 decimal places of π? We’ll see some quicker ways to evaluate π accurately.

We’ll also meet a third constant (after π and e) that commonly arises: the Euler-

Mascheroni constant γ.

5. Infinite series. How do you answer a person in the street who says ’if you keep

on adding strictly positive numbers for ever you will reach infinity’? (You might be

wise to steer clear of them). We know this isn’t true since we know

1 +
1

2
+

1

4
+

1

8
+ . . . = 2

as this is just an infinite geometric series.

For most infinite series, even when they converge to a finite total, there is no simple

exact formula for the total using our commonly met functions xa/ exp / log / sin / cos . . ..

But we will learn techniques to be sure the total is finite, and to estimate how many

terms we need to add to approximate the total to any desired accuracy.

One famous infinite series with an simple exact total is

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ . . .

This is known as Euler’s identity. There are quite a few proofs but none very short.
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6. Riemann’s re-arrangement theorem. A well known infinite series is

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = log(2).

(We will always use logarithms to the base e in the this module unless we state

otherwise (why?)). Riemann argued that if you add the numbers up in a different

order you may get a different total. For example

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . . =

3

2
log(2).

Note here we are adding two of the positive terms each time and then one of the

negative terms, but we still end up using up all the positive terms 1, 1
3
, 1
5
, 1
7
, . . . and

all the negative terms −1
2
,−1

4
,−1

6
,−1

8
, . . . (that is we don’t miss any out). Mind-

boggling? In fact Riemann’s argument shows that we can rearrange the terms to

get any final total we want. Adding up infinitely many numbers can be slippery.

On the other hand, however, if we rearrange the terms of the geometric series

1− 1

2
+

1

4
− 1

8
+

1

16
− . . .

we will always end up with the same total once we have added them all up. How

can we tell if the order matters?

7. Asymptotics. Approximate answers are often possible for hard problems if they

are ’close’ to a solvable problem. Here is a simple example. We can solve the

equation

x3 − x = 0

as we can factor x3−x = x(x−1)(x+1) and we find the three solutions x = −1, 0, 1.

If we change the problem to ask for solutions to

x3 − x+ ε = 0

for a small constant ε the problem is harder (I know there is a formula to solve cubics

but I have forgotten it...). But thinking about the graph of x3 − x+ ε suggests, for

small ε, that there are still three roots and they lie close to −1, 0, 1. Let’s make an

Ansatz (that is a unjustified assumption) the there is a root r(ε) near 1 which be

written as

r(ε) = 1 + aε+ bε2 + . . .
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for some as yet unknown constant coefficients a and b - like the first few terms of a

series in the increasing powers of the variable ε. Substituting this into x3−x+ε = 0

I get

0 = (1 + aε+ bε2 + . . .)3 − (1 + aε+ bε2 + . . .) + ε

= ε(2a+ 1) + ε2(3a2 + 2b) + ε3(. . .) + . . .

where I have collected up terms in increasing powers of ε. Then we equate the

coefficient of ε and then ε2 (and then...) to zero, which suggest a = −1/2 and

b = −3a2/2 = −3/8. Something must go wrong if ε is too big as the root becomes

complex, but the formula will be accurate for small ε.

8. Gaussian tails. Gaussian (also called Normal) random variables permeate proba-

bility and statistics. A Gaussian N(0, 1) variable has the famous bell shaped density

f(x) =
1√
2π
e−x

2/2 for x ∈ R.

Tail probabilities are the probabilities

Pr[N(0, 1) > z] =

∫ ∞
z

f(x)dx =
1√
2π

∫ ∞
z

e−x
2/2dx

It is a famous result that there are no simple anti-derivatives for the function f(x) (in

terms of familiar functions xn/ exp / log / sin / cos . . .), so there is no simple formula

for this integral (and this is the typical situation for most integrals). When I was a

student I was given a large book with values of the integral that had been calculated

numerically and recorded. But we’ll see good approximations such as∫ ∞
z

e−x
2/2dx ≈ e−z

2/2

(
1

z
− 1

z3
+

3

z5
...

)
that give very accurate answers when z is large. Note this looks like a few terms of

a series in increasing powers of 1
z
.

9. A Fourier synthesis formula. The formula, valid for x ∈ (π, π),

4

π

(
sin(x) +

1

3
sin(3x) +

1

5
sin(5x) +

1

7
sin(7x) + . . .

)
=


1 when 0 < x < π,

0 when x = 0,

−1 when −π < x < 0,

is an example of Fourier’s synthesis formula for expressing functions as mixtures of

trigonometric (sin and cosine) functions. Fourier needed such formulae when trying

to solve certain differential equations.
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Fourier’s formula has a surprising feature: with a mixture of very nice infinitely

differentiable functions sin(x), sin(2x), . . . you can create a function that is certainly

not differentiable at x = 0 - there is a jump. Fourier claimed, but could not fully

prove, that he could represent any function as such a mixture, and gave a recipe for

doing so. He was essentially correct, and analogues of this type of formula went on

to be used extensively throughout many areas of mathematics.

The book ’A radical approach to real analysis’, by David Bressoud (see the moodle

list of recommended books) blames this formula as ’the start of all the trouble’

- as a trigger for the re-examination of calculus. Mathematicians took 80 years

to re-develop calculus very rigorously, allowing them to resolve difficulties such as

the truth of Fourier’s formulae. At Warwick we will now drag you through this

re-development in one year.

10. Special functions. You have already met the most familiar special functions

exp(x), sin(x), cos(x), log(x). You will encounter more in your degree, and while

many of them started when investigating solutions of differential equations, they

arise in many (or most) areas of mathematics, including combinatorics, statistics

and probability. Two that are met early in statistics are the Gamma and Beta

functions which are defined by integrals:

Γ(p) =

∫ ∞
0

xp−1e−xdx, B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx.

For general p, q > 0 these integrals cannot be evaluated in terms of the simpler

special functions, but they arise so often that they deserve their own place as named

functions.

Here is one you will not have met: the Bessel function J0(x) (technically the

0th order Bessel function of the first kind). It was used to describe the shape

of the surface of a vibrating circular drum. As is quite common, it can be de-

fined in different but equivalent, ways: (i) it solves a simple differential equa-

tion (x2 d
2J0(x)
dx2

+ xdJ0(x)
dx

+ x2J0(x) = 0); (ii) it can be expressed as an integral

J0(x) = 1
π

∫ π
0

cos(x sin(t))dt; (iii) it has an explicit formula as a power series

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
= 1− x2

22
+

x4

24(2!)2
− . . .

Power series is a key topic in Calculus 2, and the power series does give good

approximations for small x, but it is not useful for describing the behaviour for
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large x. A good approximation for large x is

J0(x) ≈
√

2

π

1√
x

cos
(
x− π

4

)
.

Can you see this in the picture below, plotted below for x ∈ [0, 100]?

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1
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Chapter 1. Limits

I have taken the material in this chapter from chapter 3 of last years lecture notes by

Ian Melbourne et al., with a few things rearranged or omitted. We need to add a good

number of pictures, which I will draw in lectures and which you could add in by hand in

the margins, and I have marked places to do this with the symbol (P).

Sequences

A sequence is a list of numbers written in a definite order so that we know which number

comes first, which number comes second, etc. Here are some simple examples: (P)

(i) (1 , 2 , 3 , 4 , 5 , . . .)

(ii) (2 , 3
2
, 4
3
, 5
4
, 6
5
, . . .)

(iii) (−1 , 2 ,−3 , 4 ,−5 , . . .)

(iv) (cos π
3
, cos 2π

3
, cosπ , cos 4π

3
, cos 5π

3
, . . .)

Here is a rough sketch of the first terms of the four different sequences above :

÷÷¥
☆

•

'

☆
•

&
"

'⑥
,

In general, we denote a sequence by

(an : n ≥ 1) = (a1, a2, a3, a4, a5, . . .).
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A particular sequence can be defined by giving a formula for the nth term an; the four

sequences considered above correspond to

(i) an = n, (ii) an =
n+ 1

n
, (iii) an = (−1)nn, (iv) an = cos(nπ/3).

We will be interested in describing how the elements of a sequence behave as n in-

creases.

Definition. A sequence (an : n ≥ 1) is:

• strictly increasing if an+1 > an for all n ≥ 1;

• increasing if an+1 ≥ an for all n ≥ 1;

• strictly decreasing if an+1 < an for all n ≥ 1;

• decreasing if an+1 ≤ an for all n ≥ 1;

• monotonic if it is increasing or decreasing or both;

Example. We can consider the four sequences listed above. We note that the sequence in

(i) is strictly increasing. The sequence in (ii) is strictly decreasing. The sequences in (iii)

and (iv) are not monotonic. The only sequences that are both increasing and decreasing

are constant sequences, for example (3, 3, 3, 3, . . .).

Definition. A sequence (an : n ≥ 1) is:

• bounded above if there exists M ∈ R such that an ≤M for all n ≥ 1.

In this case, we say that M is an upper bound for the sequence (an : n ≥ 1).

• bounded below if there exists m ∈ R such that an ≥ m for all n ≥ 1.

In this case, we say that m is a lower bound for the sequence (an : n ≥ 1).

• bounded if it is both bounded above and bounded below.

Example. We again consider the four sequences listed above. We note that the sequence

in (i) is bounded below by 1 and is not bounded above. The sequence in (ii) is is bounded

below by 1 and bounded above by 2. The sequence in (iii) is neither bounded below nor

above. The sequence in (iv) is is bounded below by −1 and bounded above by 1.

Example. Consider the sequence defined by an =
√
n+ 1−

√
n. We claim the sequence

(an : n ≥ 1) is bounded (see lectures).
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Convergence and divergence of sequences

We want to write down a careful definition of the idea that a sequence (an : n ≥ 1)

approaches a limiting value. Here it is - the first key definition of the module.

Definition. Let a ∈ R. A sequence (an : n ≥ 1) has the limit a if, for each ε > 0, there

exists N such that |an − a| < ε for all n ≥ N .

A sequence (an : n ≥ 1) is called convergent if it has a limit a ∈ R, and if it does

not have a limit it is called divergent.

a-! .
:
_ _

•
- - - - - - . . . .

!!!
•

⑥

•
°

•

°

•

a- s - - - - - - - -

•
-
-
- - - - ¥••

O

N1st

There are a lot of alternative phrases, and several bits of notation, that all are used to

mean that a sequence satisfies has the limit a: we can equivalently say that an converges

to a or that an tends to a as n tends to infinity; as shorthand we often use either of the

following notations

an → a as n→∞, or lim
n→∞

an = a.

Two simple ways for a sequence to be divergent are defined as follows.

Definition. A sequence (an : n ≥ 1) diverges to infinity if, for every C > 0, there

exists N such that an > C whenever n ≥ N .

A sequence (an : n ≥ 1) diverges to minus infinity if, for every C < 0, there exists

N such that an < C whenever n ≥ N .

We will use the shorthand notation

an →∞ as n→∞, or lim
n→∞

an =∞.
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and we replace ∞ with −∞ when the sequence diverges to minus infinity.

%
N2

Both definitions are a bit daunting, asking us to check infinitely many inequalities. We

first check on some very simple examples, that the definitions are doing what we want.

Example. (a) an = 1√
n
→ 0 as n→∞.

(b) an = n+2
n
→ 1 as n→∞.

(c) an = n+ (−1)n →∞ as n→∞.

(d) an = n sin nπ
2

diverges.

There is some rough work in italics below, followed by a full answer for (a),(b),(c).

Proof. (a) (We are asked to consider when |an − 0| =
∣∣∣ 1√

n

∣∣∣ < ε. This inequality is

equivalent to
√
n > 1

ε
or to n > 1

ε2
)

Given ε > 0, I choose an integer N > 1
ε2

. Then for n ≥ N we have
√
n ≥
√
N > 1

ε

and so 1√
n
< ε. Since also 1√

n
≥ 0 we have

∣∣∣ 1√
n

∣∣∣ < ε. The definition is satisfied.

(b) (We are asked to consider when |an − 1| =
∣∣n+2
n
− 1
∣∣ =

∣∣ 2
n

∣∣ < ε for a value ε > 0.

This final inequality is equivalent to n > 2
ε
.)

Given ε > 0, I choose an integer N > 2
ε
. Then for n ≥ N we have |an − 1| =∣∣n+2

n
− 1
∣∣ =

∣∣ 2
n

∣∣ < ε. The definition is satisfied.
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(c) (We are asked to consider when an = n + (−1)n > C for a value C > 0. Since

(−1)n is either +1 or −1 this will be true once n > C + 1.)

Given C > 0, I choose an integer N > C + 1. Then for n ≥ N we have an =

n+ (−1)n ≥ n− 1 ≥ N − 1 > C . The definition is satisfied.

(d) (The sequence is easy when written out (an : n ≥ 1) = (1, 0, −3, 0, 5, 0, −7, . . .).

Now it is obviously not converging - and nor is it diverging to ∞ or to −∞. We

are asked to rule out the possibility that an → a for any a ∈ R. How to start?).

We will discuss ’proofs by contradiction’ in lectures. Proof omitted for now.

Remark. It is often easier to show the terms of sequence get small, than to show they

get close to a non-zero number a. But checking that the sequence (a1, a2, a3, . . .) converges

to a is the same as checking that the sequence (a1 − a, a2 − a, a3 − a, . . .) converges to 0:

indeed in both cases we need to check for any ε > 0 there exists N so that |an− a| < ε for

n ≥ N . In other words

an → a as n→∞ is the same as an − a→ 0 as n→∞.

A tiny remark, but we will use it over and over.

The two key workhorses for making limits easier to establish are the next two theorems:

the Algebra of Limits and the The Sandwich Theorem. I hope they seem completely

reasonable - that is they must be true or our definitions are probably not right. The proofs

will be good examples of how to work with the definitions, and how to argue completely

convincingly.

Theorem (Algebra of Limits). Let a, b ∈ R. Suppose that an → a and bn → b as n→∞.

Then

Sum rule: an + bn → a+ b as n→∞; and can → ca, for any c ∈ R.

Product rule: anbn → ab as n→∞.

Quotient rule: provided b 6= 0, an/bn → a/b as n→∞.

Let’s see it in action. We will be able to avoid ever choosing ε > 0 or finding a suitable

N . Rather we will build upon limits we already know, such as 1
n
→ 0 as n→∞.
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Example. Compute the limit limn→∞ an where an =
(n2 + 1)(4n− 3)

2n3 + 4
.

Proof. We give the proof in full detail. On homework assignments and exams, one is not

expected to give such a large amount of detail in all of the steps unless it is specifically

asked for.

Dividing the numerator and denominator by n3,

an =
(1 + 1

n2 )(4− 3
n
)

2 + 4
n3

.

(We can already guess the answer is (1× 4)/2 = 2 since everything else converges to 0.)

By the quotient rule,

lim
n→∞

an =
limn→∞

[
(1 + 1

n2 )(4− 3
n
)
]

limn→∞
[
2 + 4

n3

] .

By the product rule limn→∞
[
(1 + 1

n2 )(4− 3
n
)
]

= limn→∞(1 + 1
n2 ) limn→∞(4− 3

n
).

We know 1
n
→ 0, so by the product rule 1

n2 → 0. Then using the sum rule several

times

lim
n→∞

an =

[
1 + limn→∞

1
n2

] [
4− 3 limn→∞

1
n

][
2 + 4 limn→∞

1
n3

] =
(1 + 0)(4− 3 · 0)

2 + 4 · 0
= 2 .

On a homework assignment or an exam, one could write a shorter version, as follows:

’By the sum, product and quotient rules,

lim
n→∞

(n2 + 1)(4n− 3)

2n3 + 4
= lim

n→∞

(1 + 1
n2 )(4− 3

n
)

2 + 4
n3

=
(1 + 0)(4− 3 · 0)

2 + 4 · 0
= 2.

Proof. (Proof of Algebra of Limits). Since an → a we know there exists N1 so that

|an − a| < 1
2
ε for all n ≥ N1. Since bn → b we know there exists N2 so that |bn − b| < 1

2
ε

for all n ≥ N2. Now we set N = max{N1, N2}. Then once n ≥ N we have

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| <
1

2
ε+

1

2
ε = ε

using the triangle inequality (that is |x+ y| ≤ |x|+ |y| for all x, y ∈ R). We have proved

the first part of the sum rule.
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The second part, that can → ca is trivial when c = 0. So we assume that c 6= 0. Then,

using an → a we may find N so that |an − a| < ε/|c| for all n ≥ N . Then

|can − ca| = |c(an − a)| = |c| |an − a| < ε for all n ≥ N .

We next prove a special case of the product rule, namely we suppose an → 0 and

bn → 0 as n → ∞ and we will show that anbn → 0 as n → ∞. We first note that, given

ε > 0, there exist N1, N2 ≥ 1 such that |an| <
√
ε for n ≥ N1 and |bn| <

√
ε for n ≥ N2.

Again let N = max{N1, N2}. For n ≥ N we have

|anbn| = |an||bn| <
√
ε
√
ε = ε

showing that anbn → 0. We have finished the special case.

We will now show that the general case stated in the theorem follows from the

special case. Indeed suppose an → a and bn → b as n→∞. We use the identity (please

check)

anbn − ab = (an − a)(bn − b) + a(bn − b) + b(an − a).

We claim each of the three terms on the right hand side converges to 0. Indeed by the

special case since an − a → 0 and bn − b → 0 we know (an − a)(bn − b) → 0. By the

sum rule we know that since an − a → 0 then b(an − a) → 0, and since bn − b → 0 then

a(bn− b)→ 0. Adding the three parts of the identity is another use of the sum rule (why

can we add three limits?) and we have shown anbn − ab→ 0 which is the product rule.

To prove the quotient rule, we we start by supposing bn → b 6= 0 and we will show

that 1
bn
→ 1

b
. Note that

1

bn
− 1

b
=
b− bn
bbn

.

Now bbn → b2 by the sum rule. Taking ε1 = b2/2, there exists N1 ≥ 1 such that

|bbn − b2| < b2/2 for all n ≥ N1. In particular, −b2/2 < bbn − b2 so we deduce that

bbn > b2/2 for all n ≥ N1. For n ≥ N1, it follows that∣∣∣ 1

bn
− 1

b

∣∣∣ =
|b− bn|
|bbn|

≤ 2

b2
|b− bn| .

By the sum rule 2
b2

(bn − b) → 0. Hence for any ε > 0, there exists N ≥ N1 such that∣∣∣ 1
bn
− 1

b

∣∣∣ < ε for all n ≥ N . That is, 1
bn
→ 1

b
.

To finish the proof of the quotient rule, we suppose an → a and bn → b 6= 0. Then
1
bn
→ 1

b
and so

an
bn

= an
1

bn
→ a

b

by the product rule. Done.
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Theorem (Sandwich Theorem). Suppose that an → L and bn → L as n → ∞, that is

they both converge to the same limit L ∈ R.

If an ≤ cn ≤ bn for all n, then cn → L as n→∞.

Example. Let cn = n+sin(n2+7)
n

. Since −1 ≤ sin(x) ≤ 1 we immediately have

an = 1− 1

n
=
n− 1

n
≤ cn ≤

n+ 1

n
= 1 +

1

n
= bn.

But we know an → 1 and bn → 1 and so the Sandwich Theorem guarantees cn → 1 as

n→∞ (and we never needed to get our hands messy with the sin(n2 + 7) term).

Example. Let cn =
√
n+ 1−

√
n. Recall that in lectures we used the trick

0 ≤ cn =
(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
1√

n+ 1 +
√
n
≤ 1√

n
.

Hence, we can take an = 0 and cn = 1√
n

in the Sandwich Theorem to see that cn → 0 as

n→∞.

Proof. (Proof of Sandwich Theorem). Given ε > 0, since an → L there exists N1 so that

|an − L| < ε when n ≥ N1. We use half of this, namely L − ε ≤ an. Since cn → L there

exists N2 so that |cn−L| < ε when n ≥ N2. We use half of this, namely cn ≤ L+ ε. Then

for n ≥ max{N1, N2} we have

L− ε ≤ an ≤ bn ≤ cn ≤ L+ ε.

This shows bn → L as n→∞.

There are similar Algebra of Limits, and Sandwich Theorems for sequences diverging

to infinity. Again, one feels they must be true. I have included just some proofs, again

as an example of how to work with the definition of diverging to infinity. I’ll put some

others on the example sheet.

Lemma. (A comparison lemma or a one sided sandwich). Let (an : n ≥ 1) and (bn : n ≥
1) be two sequences such that bn ≥ an for all n.

Suppose that an →∞ as n→∞. Then bn →∞ as n→∞.

Proof. Let C > 0 be given. Since an →∞, it follows that there exists N such that an > C

whenever n ≥ N . In particular, bn ≥ an ≥ C for n ≥ N . Easy!

We need a few more basic examples of simple limits with which to make our Sand-

wiches. We already know how to draw the polynomial functions f(x) = xN for N =

1, 2, 3, . . ..
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"

So we expect the following basic examples of geometric sequences.

Lemma.

lim
n→∞

xn =


∞ when x > 1,

1 when x = 1,

0 when 0 ≤ x < 1.

Proof. Take x > 1. What about the following proof? We want to show that xn > C and

taking logarithms this becomes n log(x) > log(C). So if we take N = log(C)/ log(x) then

xn > C for all n ≥ N .

Very convincing. But most books will avoid this as it uses the logarithm function

log(x) and the fact that it is strictly increasing. In most books there is an attempt to

prove things in a logical order, starting from basic axioms and building slowly up. I will

talk a bit about this in lectures (and see the handout on Proof Writing on the moodle

page). We will meet the exponential function and its inverse the logarithm function near

the end of the module when we can define exp(x) by a power series. Both exp(x) and

log(x) will, of course, be strictly increasing where they are defined.

Here is an alternative proof that is commonly presented. For x > 1 we can write

16



x = 1 + y where y > 0. Then

xn = (1 + y)n = 1 + ny +

(
n

2

)
y2 + . . .+ yn > 1 + ny

using the binomial identity. Now we have a comparison with a sequence 1 + ny that we

know diverges to infinity. I’ll do the case case x ∈ [0, 1) in lectures. .

Finally our last basic examples of simple limits. Here is my sketch of the nth root

functions f(x) = x1/n, for n = 1, 2, 3, . . ..

X

xs

x
"o#...."

So we expect the following basic limit for nth roots.

Lemma.

lim
n→∞

x1/n =

{
1 when x > 1,

0 when x = 0.

Proof. There is another proof that just uses Binomial expansions as in the the last lemma

- I will put this on the example sheet.

This lemma will be immediate to see by the end of the term, when we have logarithms

and the fact that the exponential functions is continuous. Indeed the sequence an =
1
n

log(x) clearly converges to 0 (x > 0 is fixed so that log(x) is just a fixed constant).

Then continuity of the exponential will tell us that x1/n = exp(an) → exp(0) = 1 as

n→∞. .

17



Example. An old chestnut that appears every year: find limn→∞ (2n + 3n)1/n.

3 ≤ (2n + 3n)1/n ≤ (3n + 3n)1/n = 21/n3.

The basic limit 21/n → 1 and the Sandwich lemma implies that limn→∞ (2n + 3n)1/n = 3.

One final simple property of limits, that is used over and over again. We give the

proof as it is a nice example of proof by contradiction.

Lemma. Suppose that an → a as n→∞. If an ≥ 0 for all n ≥ 1, then a ≥ 0.

Proof. We argue by contradiction: namely we suppose that a < 0. Since an → a, given

any ε > 0 it follows that there exists N ≥ 1 such that |an − a| < ε for n ≥ N . I choose

ε = −a > 0. Then |an − a| < ε is equivalent to

a = −ε < an − a < ε = −a

implying that an < 0 - this is a contradiction.

Corollary. Suppose that an → a and bn → b as n→∞. If an ≤ bn for all n then a ≤ b.

Proof. Define cn = bn− an. Then cn ≥ 0 and cn → b− a. So, by the lemma, b− a ≥ 0.

There are lots of other small, completely reasonable (I am trying not to use the word

obvious), lemmas that are good exercises in using the definitions. They are building

blocks in a pyramid of results that end up helping us with the targets in Chapter 0. I’ll

ask you to construct careful proofs for some of them on the example sheet. Think of them

now as good practice working with the definitions, or as verifying that the definitions are

working.

Lemma. The sequence (an : n ≥ 1) diverges to infinity if and only if the sequence

(−an : n ≥ 1) diverges to minus infinity.

Lemma. Suppose the sequence (a1, a2, a3, . . .) converges to a ∈ R. Then the shifted

sequence (a100, a101, a102, . . .), which starts at the 100th term, also converges to a ∈ R.

Lemma. If an →∞ then 1/an → 0. If an > 0 for all n and an → 0 then 1/an →∞.

Lemma. Every convergent sequence is bounded.

18



Remark. The definition of convergence or divergence of a sequence (an : n ≥ 1) only

tells us something about the behaviour of a the terms an for large values of n. Changing

the first 100, or 1000, values of the sequence won’t change whether it converges or not.

A property for a sequence (an : n ≥ 1) is said to hold eventually if it holds for all

sufficiently large n. For example, (an : n ≥ 1) is eventually increasing if there exists N

so that an+1 ≥ an for all n ≥ N . We can improve many of our results by asking that the

hypotheses only hold eventually. For example:

Lemma. (A comparison lemma or a one sided sandwich). Let (an : n ≥ 1) and (bn : n ≥
1) be two sequences such that bn ≥ an eventually.

Suppose that an →∞ as n→∞. Then bn →∞ as n→∞.

The proof hardly changes (but it needs somewhere to involve the N when the comparison

bn ≥ an starts to hold). We won’t halt to go back and improve all the results - but you

might meet eventually versions in books.

Scales of growth

Here is a list of sequences that diverge to ∞.
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I have listed them so that if a sequence (bn : n ≥ 1) is to the right of a sequence

(an : n ≥ 1) then it ’grows faster’. So super-exponential growth is faster than exponential
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growth, which is faster than polynomial growth, which is faster than logarithmic growth.

We will check this carefully below.

The list is not at all complete. Where does 2
√
n fit in? Where does n log(n) fit in? I’ll

put some questions like this on the example sheet.

We do know where factorials n! fit in: we met in lectures upper and lower bounds in

the spirit of Stirling’s approximation,

nne−n+1 ≤ n! ≤ nn+1e−n+1.

Check that these show that n! grows faster than exponential, but much slower than 2n
2
.

By taking reciprocals we get scales of decay to zero:

. . .
. ÷/÷. ÷/÷. ± ÷ .¥, own

" "

So factorial decay if faster than exponential decay, which is faster than polynomial

decay, which itself is faster than logarithmic decay.

We can make this a bit more precise with a bit of notation, as follows.

Definition. For two sequences (an : n ≥ 1) and (bn : n ≥ 1) of strictly positive numbers

we write

an = o(bn) when limn→∞
an
bn

= 0.

We write

an = O(bn) when there exists C so that an ≤ Cbn for all n.

Informally an = o(bn) means that an grows slower than bn, or decays faster than bn;

an = O(bn) means that an grows, or decays, at most as fast bn. In words we say an is

little o of bn, or we say an is big O of bn.

These two notations are very common is all areas of science. The computer science

students will meet them when they study the speed of computer algorithms. For example

the method bubblesort will sort a list of n numbers into increasing order using O(n2)

operations; however the method quicksort will sort a list of n numbers into increasing
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order using O(n log(n)) operations. We will use the notation to describe the speed of

approach of a limit an → a by writing for example an = a + O(2−n) when the error

|an − a| is O(2−n) - a fast approximation, or an = a+O(1/n) - a slow approximation.

Let’s check that np = o(cn) for any p > 0 and c > 1 - that is polynomials grow slower

than exponentials.

Lemma. For any p > 0 and any c > 1

lim
n→∞

np

cn
= 0.

Proof. Since c > 1 we can write c = 1 + d where d > 0. Then

n

cn
=

n

(1 + d)n
=

n2

1 + nd+
(
n
2

)
d2 + . . .+ dn

≤ n(
n
2

)
d2

=
2n

d2n(n− 1)
.

We used the binomial expansion of (1 + d)n here and the inequality follows since all the

terms are positive. But we know 2n
d2n(n−1) → 0 so by the Sandwich Theorem we have

proved limn→∞
n
cn

= 0 for any value of c > 1.

You can see how to adjust the proof to cope with limn→∞
n2

cn
or limn→∞

n3

cn
- just keep a

different term in the binomial expansion. Alternatively, you can argue using the product

rule that

lim
n→∞

n2

cn
= lim

n→∞

n

(
√
c)n

lim
n→∞

n

(
√
c)n

= 0

since
√
c > 1. Repeating this (that is using induction) one finds limn→∞

nk

cn
= 0 for any

k = 1, 2, . . . and any c > 1.

Finally, if p > 0 is not an integer just sandwich 0 ≤ np

cn
≤ nk

cn
for an integer k larger

than p.

Now we want to see that log(n) = o(np) for any p > 0 - that is logarithms grow slower

than polynomials. Recall that we use natural logarithms throughout this module. We

again will use properties of the logarithm function here although we won’t carefully define

it until chapter 4.

Lemma. For any p > 0

lim
n→∞

log(n)

np
= 0.

Proof. We know log(em) = m. If em ≤ n ≤ em+1 then we have np ≥ epm and log(n) ≤
log(em+1) = m+ 1. Hence, for such n we have

0 ≤ log(n)

np
≤ m+ 1

epm
.
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But we know that limm→∞
m+1
epm

= 0, since we just checked that exponentials grow faster

than polynomials. So, given ε > 0 we can find M so that

m+1
epm

< ε for all m ≥M .

This implies that
log(n)
np < ε for all n ≥ eM .

Chapter 2. Completeness

We recall the sequences that arise from two well used methods for root finding.

The Newton Raphson method for finding good approximations to a solution r to

f(r) = 0 is defined by the iteration (in lectures we re-derived this formula)

a1 = a good first approximation, an+1 = an −
f(an)

f ′(an)
.

I
In this picture it looks like we started with a1 larger than the root r satisfying f(r) = 0,

and it looks like we should get a decreasing sequence a1 > a2 > a3 > . . . that converges

to the root. I sketched a function that is convex, that is f ′′(x) > 0 near the root. If the

function is close to being linear at the root (that is f ′′ is small) then the algorithm is
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fast (why?). On the example sheets I ask you to sketch the situations (i) the initial guess

a1 < r; (ii) where f ′′(x) < 0 near the root; (iii) where the method fails to converge.

A simpler method, that is perhaps useful when it is not possible to calculate f ′ easily,

is just called iteration. The aim to approximate a solution to f(r) = r. One simply uses

a1 = a good first approximation, an+1 = f(an).

of
So a2 = f(a1), a3 = f(f(a1)), a3 = f(f(f(a1))) ... In this picture we started with a1

smaller than the root r satisfying f(r) = 0, and it looks like we should get a increasing

sequence a1 < a2 < a3 < . . . that converges to the root. I sketched a function that

satisfied, that is 0 < f ′(x) < 1 near the root. If f is nearly constant at the root, that is

f ′ is small, then the algorithm is fast (why?). On the example sheet I ask you to sketch

the situations (i) the initial guess a1 > r; (ii) where −1 < f ′(x) < 0 near the root (you

will see why these diagrams are called cobweb diagrams); (iii) situations where there is

no convergence to the root.

Example. Show the sequence defined by a1 = 1 and an+1 =
√

2 + an converges to 2.

Sketching the function f(x) =
√

2 + x and f(x) = x it all looks like the picture above.

We can guess that (an : n ≥ 1) should be increasing and that 1 ≤ an ≤ 2 for all n. It is

easy to check both statements by induction. Suppose 1 ≤ ak ≤ 2 for k = 1, 2, . . . , n; then

an+1 =
√

2 + an ≤
√

2 + 2 = 2, and an+1 =
√

2 + an ≥
√

2 + 1 ≥ 1.
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Suppose a1 ≤ a2 ≤ . . . ≤ an; then then

an+1 =
√

2 + an ≥
√

2 + an1 = an.

We can directly try anc calculate how close an gets to the limit 2.

2− an+1 = 2−
√

2 + an

=
2− an

2 +
√

2 + an

≤ 2− an
2 +
√

2 + 1
.

Thus the error En defined by En = 2−an satisfies En+1 ≤ cEn where c = 1/(2+
√

3) ≈ 0.267.

Since E1 = 2 − 1 = 1 we find E2 ≤ c, E3 ≤ c2, ... and in general En ≤ cn−1. The errors

are converging exponentially fast to zero.

Example. Aim: estimate the speed of convergence for the Newton-Raphson algorithm

a1 = 3/2 and an+1 = an
2

+ 1
an

to its limit
√

2.

This is the Newton-Raphson algorithm for finding the root
√

2 of f(x) = x2 − 2 = 0.

We directly try and calculate how close an is to the limit 2.

an+1 −
√

2 =
an
2

+
1

an
−
√

2

=
a2n + 2− 2

√
2an

2an

=
(an −

√
2)2

2an
.

This guarantees us that an ≥
√

2 for all n (yes - by induction). Also it shows us the error

En defined by En = 2− an satisfies

En+1 ≤
E2n
2an
≤ E2n

2
√

2
≤ E2n.

where the final two inequalities I have used the fact the that the denominator 2an is greater

than 2
√

2 and then recklessly thrown away 1
2
√
2
.

Now E1 = 3
2
−
√

2 ≤ 1
10

. So E2 ≤ 1
(10)2

and then E3 ≤ 1
(10)4

. Iterating I get

En ≤
1

(10)2n−1 .
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This is faster than exponential decay. Running the algorithm one more step, from an to

an+1, the error has changed from 1

(10)2n−1 to 1
(10)2n

- that is the number of accurate decimal

places has roughly doubled. (If I hadn’t thrown away the 1
2
√
2

factor I could have shown

the error is even smaller - see the example sheet.)

Both these root finding algorithms above are useful when we do not know a simple

explicit formula for the root. This chapter is all about how to establish that a sequence

converges when you do not know exactly what the limit is. Here is a very believable first

result in this direction.

Theorem. The Weierstrass Criterion

A sequence (an : n ≥ 1) that is increasing and bounded above must converge.

Recall that a monotone sequence is either decreasing or increasing. I have stated the

criterion just for increasing ones, but there is an immediate corollary:

A sequence (an : n ≥ 1) that is decreasing and bounded below must converge.

Indeed if (an : n ≥ 1) that is decreasing and bounded below then (−an : n ≥ 1) is

increasing and bounded above. The theorem guarantees that −an → a for some a, and

then we know an → −a as n→∞.

This result is so useful it deserves to be called a Theorem. It is worth repeating,

spelling out the hypotheses and the conclusion.

Hypotheses:

(an : n ≥ 1) is increasing, that is a1 ≤ a2 ≤ a3 ≤ . . .

(an : n ≥ 1) is bounded above, that is there exists U ∈ R so that an ≤ U for all n.

Conclusion:

The limit limn→∞ an = a ∈ R must exist.

The result is entirely believable - indeed I can tell you what the limit must be. It must

be a number a that lies above all the values a1, a2, . . . but it must be the smallest such

number. In other words the limit a will be an upper bound for the sequence (an : n ≥ 1)

but it should be the smallest such upper bound.

Amazingly, one cannot prove this Theorem with a simple arithmetic proof - one that

only uses the rules for addition/multiplication and the simple properties of inequalities.

Indeed in lectures I will waffle about Planet Rational, where they only believe in rational

25



numbers, and where despite agreeing with our definition of convergence this theorem is

false in their world. Their problem is that the sequence a1, a2, . . . might be a sequence of

increasing rationals that we can see converges to
√

2, but for them
√

2 does not exist so

there is no limit. This leads to an interesting discussion about axioms, proofs, models...

but I will not go further in the lecture notes, but discuss it a bit more in lectures and in

a handout.

To get a proof of the Theorem, which we do in the next section, we will write down a

basic natural property, an axiom, for the real numbers that we can appeal to at any time,

one that tries to encapsulate that there are no holes - hence it is called completeness.

At various points we will see we that require this property and I will probably waive my

hands up and down in lectures.

Let’s look at some examples of the Theorem in use first.

Key example The sequence an =
(
1 + 1

n

)n
converges. This has been a motivating

example for us and I tried in lectures to convince you (bank interest sequence...) that this

should be increasing. Here is one standard argument to check that (an : n ≥ 1) is both

increasing and bounded. The idea is to examine carefully the Binomial expansions for an
and an+1.(

1 +
1

n

)n
= 1 + n

1

n
+

(
n

2

)
1

n2
+ . . .+

(
n

k

)
1

nk
+ . . .+

1

nn
,(

1 +
1

n+ 1

)n+1

= 1 + (n+ 1)
1

n+ 1
+ . . .+

(
n+ 1

k

)
1

(n+ 1)k
+ . . .+

1

(n+ 1)n+1
.

The first expansion has n+ 1 terms and the second expansion has n+ 2 terms. The k-th

term in the first expansion for an is(
n

k

)
1

nk
=
n(n− 1) . . . (n− k + 1)

nkk!
=

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
.

The k-th term in the second expansion for an+1 is(
n+ 1

k

)
1

(n+ 1)k
=

(n+ 1)n(n− 1) . . . (n− k)

(n+ 1)kk!

=
1

k!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
. . .

(
1− k − 1

n+ 1

)
.

So each of the first n terms in the expansion of an+1 is larger than the corresponding

term for an. Also there is an extra term 1
(n+1)n+1 > 0 since the expansion for an+1 is

one term longer. We conclude an+1 > an. Phew! There is a simpler way when we
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have explored logarithms and derivatives as we will be ale to show more simply that the

functions x log
(
1 + 1

x

)
and its exponential

(
1 + 1

x

)x
are increasing for x > 0 (by checking

the derivative is positive).

Now we check that the sequence an =
(
1 + 1

n

)n
is bounded. In the expansion for an

above we can bound the kth term by(
n

k

)
1

nk
=

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
≤ 1

k!
≤ 1

2k−1

since k! = k(k − 1) . . . 2 ≥ 2.2. . . . 2. Then

an ≤ 1 + 1 +
1

2!
+

1

3!
+ . . .+

1

n!

≤ 1 + 1 +
1

2
+

1

22
+ . . .+

1

2n−1
≤ 3

where we know the sum of a geometric series 1 + 1
2

+ . . .+ 1
2n−1 = (1− 1

2n
)/(1− 1

2
) ≤ 2.

Now we can apply the Weierstrass Criterion to conclude limn→∞
(
1 + 1

n

)n
exists.

Definition. We define the number e to be the limit limn→∞
(
1 + 1

n

)n
.

This is traditionally the way to define the number e in this module. Later we might

prefer other ways, for example via the series expansion

e =
∞∑
k=0

1

k!

or, perhaps best of all,

e = x(1) where (x(t) : t ≥ 0) is the unique solution to the differential

equation dx
dt

= x for t ∈ R with initial condition x(0) = 1.

Of course, we need to check all of these define the same number.

The completeness axiom

We go slowly in our search for least upper bounds. We start by extending the definitions

of upper bounds and lower bounds for sequences to arbitrary subsets of R

Definition. Let A ⊂ R be a non-empty set. The set A is called

(i) bounded above if there exists M ∈ R such that a ≤ M for all a ∈ A, in which

case M is called an upper bound for A;
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(ii) bounded below if there exists m ∈ R such that a ≥ m for all a ∈ A, in which case

m is called a lower bound for A;

(iii) bounded if it is bounded above and below.

Upper and lower bounds are not uniquely determined. If M is an upper bound for A,

then any M ′ ≥ M is also an upper bound for A. Similarly if m is a lower bound for A,

then any m′ ≤ m is also a lower bound for A. The ’best possible’ bounds are defined as

follows.

Definition. Let A ⊂ R be a non-empty set bounded from above. A number U ∈ R is

called the supremum or the least upper bound of A, and we write U = supA, if the

following properties hold:

(i) U is an upper bound of A and (ii) if M is any upper bound of A, then M ≥ U .

Let A ⊂ R be a non-empty set bounded from below. A number L ∈ R is called the

infimum or the greatest lower bound of A, and we write L = inf A, if the following

properties hold:

(i) L is a lower bound of A and (ii) if m is any lower bound of A, then m ≤ L.

Convention

If A is non-empty but is not bounded from above, we set supA =∞.

If A is non-empty but is not bounded from below, we set inf A = −∞.

Remark. supA and inf A do not necessarily belong to A. Consider A = {x : 0 < x < 1}.
Then inf A = 0 and supA = 1, neither of which belong to A. If supA ∈ A, we say

that A has a maximal element and we can write maxA. Likewise, if inf A ∈ A, we say

that A has a minimal element and we write inf A also as minA. For example, consider

A = {x : 0 ≤ x ≤ 1}. Here minA = inf A = 0 and maxA = supA = 1.

Example. Let A = { 1
n

: n ≥ 1}. Then supA = maxA = 1 and inf A = 0. There is no

minimum element.

Example. Let A = {x : x2 < 2}. Then supA =
√

2, there is no maximum element, and

inf A = minA = 0.

Example. Let A = {x : x3 ≤ 2}. Then supA = maxA = 21/3 and inf A = −∞.

Example. Let A =
{

x
1+x2

: x > 0
}

. Then supA = maxA = 1
2

(plot the graph - there is a

single critical point at x = 1); inf A = 0 and no minimum element.
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You will meet sup(A) and inf(A) being used in many of your maths modules. I will give

some glimpses in lectures.

Completeness Axiom for R

A non-empty subset A ⊆ R that is bounded from above has a least upper bound supA.

A non-empty subset A ⊆ R that is bounded from below has a greatest lower bound inf A.

When working with a supremum we often use the following simple lemma.

Lemma. A supremum is always nearly attained.

Let A be a non-empty subset which is bounded from above. For every ε > 0, there exists

a ∈ A such that

supA− ε < a ≤ supA .

Proof. The fact that a ≤ supA for all a ∈ A is immediate, since supA is an upper bound

for A. It remains to show that for all ε > 0 there exists a ∈ A satisfying a > supA − ε.
Argue by contradiction: suppose there exists ε > 0 such that there is no a ∈ A such that

a > supA− ε. Then a ≤ supA− ε for all a ∈ A. Hence supA− ε is an upper bound of

A. But supA− ε < supA, which contradicts the fact that supA is the least upper bound

of A.

Now we can return and finish the proof of the Weierstrass Criterion. We restate it here.

Theorem. The Weierstrass Criterion.

A sequence (an : n ≥ 1) that is increasing and bounded above must converge.

Proof. Let A = {a1, a2, a3, . . .} = {an : n ≥ 1}. Since (an : n ≥ 1) is bounded the set A

is bounded. Clearly A is non-empty (since a1 ∈ A). Hence by the Completeness Axiom

a = supA is a well-defined real number. We will now check that an → a as n→∞.

Let ε > 0. By the lemma above there exists N ≥ 1 such that a− ε ≤ aN . Since an is

increasing we have a−ε ≤ an for all n ≥ N . Since a is an upper bound for A = {a1, a2, . . .}
we have an ≤ a < a+ ε for all n. We have shown that |an − a| < ε for n ≥ N and hence

proved that an → a.

Example. Consider the sequence (an : n ≥ 1) given recursively by

a1 = 1, an+1 = 1
5
(a2n + 6) for n ≥ 1 .
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Show that the sequence an has the following properties:

(i) 0 ≤ an < 2 for all n; (ii) an is increasing.

It follows from the Weierstrass Criterion that a = limn→∞ an exists.

Now (iii) compute a.

Solution. (i) We show by induction on n that 0 ≤ an < 2 for all n. The base case n = 1

holds since a1 = 1. Suppose now that an ∈ [0, 2). We want to show that an+1 ∈ [0, 2).

Since an ≥ 0, it is immediate that an+1 ≥ 1
5
· 6 ≥ 0. Furthermore, since 0 ≤ an < 2, it

follows that a2n < 4 and hence

an+1 = 1
5
(a2n + 6) < 1

5
(4 + 6) = 2 .

Hence, an+1 ∈ [0, 2), as was claimed.

(ii) We need to show that
1
5
(a2n + 6) ≥ an

for all n. Equivalently,

(an − 2)(an − 3) = a2n − 5an + 6 ≥ 0.

By part (i), an − 2 < 0 and an − 3 < 0 so the inequality holds for all n.

Let a = lim an. Then the shifted sequence an+1 → a also and by the product and sum

rule for limits
1
5
(a2n + 6)→ 1

5
(a2 + 6).

Hence, taking limits on both sides of the equation an+1 = 1
5
(a2n + 6) we find

a = 1
5
(a2 + 6) .

The solutions of this equation are a = 2 and a = 3. But we already know that an < 2

and so the limit a ≤ 2. Hence a = 2 must be the limit.

The Cauchy property

For an increasing sequence (an : n ≥ 1) we have a simple way of checking convergence

- we just need to check it is bounded above. We do not need to know what the limit is

before we start. Similarly for decreasing sequences we need to check if they are bounded

below. For a general sequence, that is not increasing or decreasing, is there a method for

checking convergence? Yes - it is called the Cauchy property.
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Definition. A sequence (an : n ≥ 1) has the Cauchy Property if, given ε > 0, there

exists N ≥ 1 such that

|an − am| < ε for all n,m ≥ 1 with n ≥ N and m ≥ N .

This is a bit harder than the definition of a limit, as we have to check all possible pairs

of terms, an and am, and show they get close. Informally, this means that the terms ‘get

closer to each other’ the further we go in the sequence. I find it difficult to draw a useful

picture - suggestions welcome.

This property is harder to check than just boundedness above or below. However

the theorem below shows that it is an exact test for convergence, and it still has the big

advantage that you do not need to know what the limit is before you start - it guarantees

a limit a must exist.

Theorem. Cauchy’s Criterion. A sequence (an : n ≥ 1) has the Cauchy property if

and only if it is convergent.

You will meet the Cauchy property many times in higher level modules, and its ex-

tension to functions (fn : n ≥ 1) satisfying a Cauchy property and random variables

(Xn : n ≥ 1) satisfying a Cauchy property. All these extensions have their root in this

theorem - a highlight of the module. This chapter will end with two proofs of this theorem,

but neither is very short. Let’s see it in action before we work through the proofs.

Example. Contracting sequences.

We call a sequence (an : n ≥ 1) contracting if the exists a contraction factor 0 < γ < 1

so that

|an+1 − an| ≤ γ|an − an−1| for all n ≥ 2.

In words, the successive differences shrink by at least γ. This property implies that

(an : n ≥ 1) has the Cauchy property - here is why. We have |a3 − a2| ≤ γ|a2 − a1| and

|a4 − a4| ≤ γ|a3 − a2| ≤ γ2|a2 − a1|. By induction we get

|an+1 − an| ≤ γn−1|a2 − a1| for all n.

Suppose m < n. We use the triangle inequality repeatedly to see

|an − am| = |an − an−1 + an−1 − am|
≤ |an − an−1|+ |an−1 − am|
≤ . . .

≤ |an − an−1|+ |an−1 − an−2|+ . . .+ |am+1 − am|.
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Substitute in the estimate just above to get

|an − am| ≤ |a2 − a1|
(
γn−2 + γn−3 + . . .+ γm−1

)
.

But the right hand side is a geometric series which we can sum:

|an − am| ≤ |a2 − a1|
γm−1

1− γ
.

I have taken the sum if the infinite geometric series here as it will be an upper bound for

any n. Now we have the Cauchy property, since γm → 0 as m→∞. Indeed for any ε > 0

I can choose M so that

|a2 − a1|
γM−1

1− γ
≤ ε

and then

|an − am| ≤ ε for all m,n ≥M.

I think checking the contraction property is often easier than directly checking the Cauchy

property. I will show in lectures (by glimpsing forward and using some Calculus) that

sequences coming from iterated function algorithm often have the contraction property.

Now the rest of this chapter is proofs - and probably the hardest proofs in the module.

Buckle up.

Proof. First proof of Cauchy’s Criterion. The easy part is to show that a convergent

sequence has the Cauchy property. The harder, but useful, direction is to show that if a

sequence has the Cauchy property then it must converge.

Easy part. Suppose that (an : n ≥ 1) is convergent. Denote its limit by a. Given

ε > 0, there exists N ≥ 1 such that |an− a| < ε/2 whenever n ≥ N . In particular, by the

triangle inequality, for all m,n ≥ N ,

|an − am| ≤ |an − a|+ |a− am| < ε/2 + ε/2 = ε .

Therefore (an : n ≥ 1) has the Cauchy property. Done.

Hard part. Now we suppose (an : n ≥ 1) has the Cauchy property, and we must

prove it is convergent. We will warm up by checking first that (an : n ≥ 1) must be

bounded. We choose ε = 1 in the definition of the Cauchy property. There exists N so

that |an − am| < 1 for all n,m ≥ N . In particular, choosing m = N ,

aN − 1 < an < aN + 1 for all n ≥ N .
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So the sequence (aN , aN+1, aN+2, . . .) is bounded above and below. But as we saw in

chapter 1 the first N − 1 terms will not prevent the whole sequence being bounded. We

write U for an upper bound and L for a lower bound.

Now to show (an :≥ 1) is convergent we will (i) write down a formula for the limit a

and (ii) prove that the sequence converges to a.

The Cauchy property tells us that eventually the sequence doesn’t ’vary’ that much.

Consider the tail of the sequence, the subsequence (an, an+1, an+2, . . .) from term number

n onwards. This is bounded by U and so has a least upper bound

Un = sup{an, an+1, an+2, . . .}.

The intuition is that Un should get closer and closer to the limit as n grows. As we look

further along the sequence these upper bounds will decrease (why?), that is Un+1 ≤ Un
for all n. We know Un ≥ an ≥ L so that the sequence (U1, U2, . . .) is bounded below. So

the Weierstrass Criterion tells us that the limit

a = lim
n→∞

Un = lim
n→∞

sup{an, an+1, an+2, . . .}

must exist. This is step (i) the promised formula or the likely limit. The final step (ii) is

to check we are right, that is to show that an → a.

Fix ε > 0. We use the Cauchy property to find N so that

|an − am| ≤ ε for all n,m ≥ N . (?)

Since Un → a there exists N1 ≥ N so that |UN1 − a| < ε. The supremum UN1 =

sup{aN1 , aN1+1, aN1+2, . . .} must be ’nearly attained’ (see the lemma after the definition

of supremum) so there exists N2 ≥ N1 so that

UN1 − ε < aN2 < UN1

and thus |aN2 − UN1| < ε. The triangle inequality gives

|aN2 − a| ≤ |aN2 − UN1 |+ |UN1 − a| < 2ε.

Combining this with the Cauchy property (?) above we find

|an − a| ≤ |an − aN2|+ |aN2 − a| < ε+ 2ε = 3ε

for n ≥ N2, finishing the proof that an → a as n→∞.

Non-examinable Remark. The argument above needs a series of steps done in exactly

the right order. If you check each step you may have an increased admiration for Cauchy.
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One reason I put the proof in the lecture notes is that it gives you a first view at two

notions related to limits: limsup and liminf defined as

lim sup
n→∞

an := lim
n→∞

sup{an, an+1, an+2, . . .},

lim inf
n→∞

an := lim
n→∞

inf{an, an+1, an+2, . . .}.

We used lim supn→∞ an as our guess for what the limit must be in the above proof. These

notions used to be in every first year calculus module, and you may well meet them if you

take further analysis or probability modules. They allow one to describe sequences that

do not converge, for example that oscillate. For example the non-convergent sequence

an = (−1)n n+1
n

has (please check) that

lim sup
n→∞

an = +1, lim inf
n→∞

an = −1.

They are used in proofs when arguing that limits exist, since (as can be checked), for

a bounded sequence (an : n ≥), both lim supn→∞ an and lim infn→∞ an always exist

and the limit limn→∞ an exists precisely when lim supn→∞ an = lim infn→∞ an. An ex-

pert’s summary of the proof above is ’The Cauchy property ensures that lim supn→∞ an =

lim infn→∞ an and so the limit must exist’.

Why will I give a second proof of Cauchy’s Criterion? The second proof uses the ideas

of subsequences, which turn out to be rather useful and you will meet in later maths and

stats modules (for example MA260, ST318, ST342).

Definition. A subsequence of (an : n ≥ 1) is a sequence of the form (an1 , an2 , an3 , . . .)

where 1 ≤ n1 < n2 < n3 < . . . is a strictly increasing sequence of integers.

In the above definition, the k-th term of the sequence (ank
: k ≥ 1) is ank

.

Example. Let (an : n ≥ 1) be a sequence. Examples of subsequences are the following:

• (a2, a4, a6, a8, . . .) which you could write as (a2n : n ≥ 1).

• (a1, a3, a5, a7, . . .) which you could write as (a2n−1 : n ≥ 1).

• (a101, a102, a103, . . .) which you could write as (a100+n : n ≥ 1).

The key step in the second proof of Cauchy’s Criterion is a result about subsequences

that is so often used in later modules that it merits itself being called a Theorem.

Theorem. The Bolzano Weierstrass Theorem

Every bounded sequence (an : n ≥ 1) has a convergent subsequence.
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Example. The sequence (1,−1, 1,−1, . . .) defined by an = (−1)n+1 has the convergent

subsequence (a2, a4, a6, a8, . . .) = (−1,−1,−1, . . .).

A more interesting example is an = sin(n). This is bounded above by 1 and below by

−1 so the Bolzano Weierstrass Theorem tells us it must have a convergence subsequence.

But it is not so easy to write down a specific such subsequence.

We will prove The Bolzano Weierstrass Theorem as the final proof of this chapter. We

first show that it leads to a short second proof Cauchy’s Theorem.

Proof. Second proof Cauchy’s Theorem We give a second proof for the harder im-

plication. That is we suppose that (an : n ≥ 1) has the Cauchy property and we show

it converges. We also steal the first step, where we checked the Cauchy property implies

that (an : n ≥ 1) must be bounded.

Now we may use the Bolzano Weierstrass theorem to conclude that (an : n ≥ 1) has a

convergent subsequence (an1 , an2 , an3 , . . .), whose limit we denote by a. We will now show

that the whole sequence converges to a.

Choose ε > 0. Using the Cauchy property, there exists N ≥ 1 such that |an− am| < ε

whenever m,n ≥ N . Since ank
→ a as k → ∞ there exists K so that |ank

− a| < ε

whenever k ≥ K. We may choose K so large that nK ≥ N . Then for n ≥ N the triangle

inequality gives

|an − a| ≤ |an − anK
|+ |anK

− a| < ε+ ε = 2ε

and therefore an → a.

The final debt we need to pay is ...

Proof. Proof of the Bolzano Weierstrass Theorem. I copy here the beautiful proof

from last year’s lecture notes. We need ak and bk as notation in this proof so we start by

supposing that (xn : n ≥ 1) is a bounded sequence. We shall assume that 0 ≤ xn ∈ 1

for all n thereby simplifying the notation. You can make the small changes in the proof

needed when you only know L ≤ xn ≤ U for all n.

Let us now define new sequences (an : n ≥ 1) and (bn : n ≥ 1) as follows. Let

a1 = 0, b1 = 1. We observe that at least one of the following statements is true.

(i) xn ∈ [0, 1
2
] for infinitely many n ≥ 1.

(ii) xn ∈ [1
2
, 1] for infinitely many n ≥ 1.

If (i) is true, we set a2 = 0, b2 = 1
2
. Otherwise, we set a2 = 1

2
, b2 = 1.

We now continue this algorithm with [a1, b1] replaced by [a2, b2], etc. More precisely,

suppose that for k ≥ 1 we are given 0 ≤ ak ≤ bk ≤ 1 such that xn ∈ [ak, bk] for infinitely

many n ≥ 1. Then at least one of the following statements is true.
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(i) xn ∈ [ak,
ak+bk

2
] for infinitely many n ≥ 1.

(ii) xn ∈ [ak+bk
2

, bk] for infinitely many n ≥ 1.

If (i) is true, we set ak+1 = ak, bk+1 = ak+bk
2

. Otherwise, we set ak+1 = ak+bk
2

, bk+1 = bk.

In either case,

xn ∈ [ak+1, bk+1] for infinitely many n ≥ 1

and

bk+1 − ak+1 = bk−ak
2

=
1

2k−1
.

To deduce the last equality we used the fact that

ak+bk
2
− ak = bk − ak+bk

2
= bk−ak

2
.

Furthermore,

ak ≤ ak+1, bk+1 ≤ bk .

Summarising, we have constructed sequences ak, bk taking values in [0, 1] which satisfy

the following properties.

(i) a1 = 0, b1 = 1.

(ii) bk − ak = 1
2k−1 for all k.

(iii) ak is increasing.

(iv) bk is decreasing.

(v) For all k we have that xn ∈ [ak, bk] for infinitely many n ≥ 1.

Note that (ak : k ≥ 1) is a bounded increasing sequence. Therefore by Weierstrass’s

Criterion it has a limit a ∈ R. Similarly, since (bk : k ≥ 1) is a bounded decreasing

sequence, it has a limit b ∈ R. Letting n→∞ in property (ii), a = b.

By induction on k, we can construct a strictly increasing sequence of positive integers

nk such that

xnk
∈ [ak, bk] .

Namely, given such n1 < n2 < . . . < nk−1, by property (v) there exists nk > nk−1
such that xnk

∈ [ak, bk] (this interval contains infinitely many terms of the sequence by

construction). In particular, (xn1 , xn2 , xn3 , . . .) is a subsequence of (x1, x2, x3, . . .).

By the Sandwich Lemma, xnk
→ a as k → ∞. We have found a convergent subse-

quence.
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Chapter 3. Infinite series

Convergence and divergence of infinite series

Let’s start with an old chestnut:

1 = 1 + 0 + 0 + 0 + . . .

= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + . . .

= (1− 1) + (1− 1) + (1− 1) + (1− 1) + . . .

= 0 + 0 + 0 + 0 + . . .

= 0.

Collapse of all mathematics? It can only be the fact that we have infinite sums that is

causing a problem somewhere. Our next aim is to make sense of infinite sums

∞∑
n=1

an = a1 + a2 + a3 + · · · (1)

Our knowledge of limits allows us to make everything precise.

Definition. Define the associated sequence of partial sums

Sn =
n∑
k=1

ak = a1 + a2 + · · ·+ an . (2)

We say that the series
∑∞

n=1 an converges if there exists A ∈ R such that Sn → A as

n→∞. In this case we say
∑∞

n=1 an converges to A and we write

∞∑
n=1

an = A

and we call A the sum of the series.

Definition. We say that a series is divergent if it is not convergent. If Sn → ∞, we

say that the series
∑∞

n=1 an diverges to ∞ and we write

∞∑
n=1

an =∞ .
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Remark. Since we have cast our definition of convergence of a series
∑
an in terms of

limits we can immediately apply the results we have built up for limits. For example the

sum rule for limits implies that:

if
∑∞

n=1 an = A and
∑∞

n=1 bn = B then
∑∞

n=1(an + bn) = A+B.

Of course! To check this look at the partial sums Sn =
∑n

k=1 ak and Tn =
∑n

k=1 bk.

Both series converge so that Sn → A and Tn → B as n → ∞. The sum rule tells us

Sn + Tn → A+B. But Sn + Tn equals the partial sum
∑n

k=1(ak + bk).

In the same way for any constant C ∈ R we have
∑∞

n=1C an = C
∑∞

n=1 an.

Example. Geometric series

We need to check that our familiar example, infinite geometric series, fits this defini-

tion. Fix x ∈ R and we consider the series

∞∑
n=1

xn−1 = 1 + x+ x2 + . . .

Lemma. The geometric series is convergent if |x| < 1, in which case its sum is 1
1−x , and

it is divergent if |x| ≥ 1.

Proof. Recall the standard argument, as follows. If x = 1 then Sn = n→∞ so the series

is divergent. Otherwise, write

Sn = 1 + x+ x2 + · · ·+ xn−1

and so

xSn = x+ x2 + x3 + · · ·+ xn.

Subtracting these equations many terms cancel leaving (1− x)Sn = 1− xn. Since x 6= 1,

Sn =
1− xn

1− x
.

If |x| < 1, then our basic limit xn → 0 implies Sn → 1
1−x . If |x| > 1, then x2n → ∞

so (1 − x)S2n = 1 − x2n → −∞. Therefore the series diverges. Finally, if x = −1, then

S2n = 0 and S2n+1 = 1 for all n and so the series diverges.

Example. Telescoping series Consider the series

∞∑
n=1

1

n(n+ 1)
=

1

1.2
+

1

2.3
+

1

3.4
+ . . . =

1

2
+

1

6
+

1

12
+ . . .
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There is a trick! Using the idea of partial fractions we have 1
n(n+1)

= 1
n
− 1

n+1
. This shows

SN =
N∑
n=1

1

n(n+ 1)

=
1

1.2
+

1

2.3
+

1

3.4
+ . . .+

1

N(N + 1)

=
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . .+

1

N
− 1

N + 1

= 1− 1

N + 1
.

A lucky break - the terms almost all cancel and long sum collapses like a collapsing telescope

into just two terms. Now we see that SN = 1− 1
N+1
→ 1 as N →∞ so that

∞∑
n=1

1

n(n+ 1)
= 1.

Example. We consider the harmonic series which is

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · · .

Lemma. The harmonic series is divergent.

Proof. Idea: we can regroup the terms of the harmonic series in blocks as follows:

1 +
1

2
+

1

3
+

1

4︸ ︷︷ ︸
≥1/2

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
≥1/2

+
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16︸ ︷︷ ︸
≥1/2

+ · · ·

We now make this more precise. We use this idea to estimate the partial sums:

S2 = 1 +
1

2
, S4 > 1 +

1

2
+

1

2
, S8 > 1 +

1

2
+

1

2
+

1

2
, S16 > 1 +

1

2
+

1

2
+

1

2
+

1

2
.

This leads to the guess

S2n ≥ 1 +
n

2
for all n ≥ 1.

We prove the guess by induction. The base case n = 1 holds since S21 = 1 + 1
2
. For the

step,

S2n+1 = S2n +
1

2n + 1
+

1

2n + 2
+ · · ·+ 1

2n+1︸ ︷︷ ︸
2n terms, all of which are at least 1

2n+1

.
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Therefore,

S2n+1 ≥ S2n +
2n

2n+1
= S2n +

1

2
.

Using this and the induction hypothesis,

S2n+1 ≥ 1 +
n

2
+

1

2
= 1 +

n+ 1

2
.

This verifies our guess above. Hence S2n ≥ 1 + n
2
→∞. But, since the terms in the series

are positive, the partial sums are increasing and it follows that Sn diverges.

Example. Find a value of N ≥ 1 such that

1 +
1

2
+

1

3
+ · · ·+ 1

N
≥ 10 .

Proof. We showed that S2n ≥ 1+n/2. Solving 1+n/2 ≥ 10 leads us to the choice n = 18.

Then S218 ≥ 1 + 18
2

= 10. This guarantees that you could take N = 218 = 262144.

The harmonic series diverges to infinity but very slowly. Indeed
∑1043

n=1
1
n
< 100.

Lemma. Suppose that the series
∑∞

n=1 an converges. Then an → 0 as n→∞.

Proof. If the series
∑∞

n=1 an converges, then the sequence of partial sums Sn =
∑n

k=1 ak
converges to s the sum of the series. But

an = Sn − Sn−1 .

We know the shifted sequence Sn−1 → s as n → ∞ also. So the sum rule tells us

an → s− s = 0.

This simple lemma above is commonly used in its contrapositive (P ⇒ Q is equivalent

to Not Q⇒ Not P .) Thus we get a Necessary Condition for Convergence:

if an does not converge to 0 then the series
∑∞

n=1 must diverge.

The examples above suggest that the terms an in a series should be converging to zero

sufficiently fast for the infinite series
∑∞

n=1 an to converge. The telescoping series shows

that an = 1
n(n+1)

is fast enough, but the harmonic series shows that an = 1
n

is too slow.
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Some convergence tests

Sad Fact. For most convergent series there will not be a simple formula for the sum.

(Similar sad facts hold for most integrals - though you have a few more tools available).

So we reduce our aims: we will become good at deciding whether a series converges or not.

Also when the exact sum it becomes more important to estimate the the speed that the

partial sums Sn converge, so that we know how to approximate the exact sum efficiently.

When all the terms an of the series
∑∞

n=1 an are non-negative, we have a simple criterion

for convergence, as follows.

Theorem. Boundedness criterion. Suppose that an ≥ 0 for all n ≥ 1. Then

the series
∑∞

n=1 an converges if and only if the associated sequence of partial sums Sn =∑n
k=1 ak is bounded.

Proof. Suppose first that the sequence (Sn : n ≥ 1) is bounded. Since all the terms an of

the series are non-negative, it follows that Sn is increasing. Therefore, by Weierstrass’s

Criterion the sequence (Sn : n ≥ 1) must converge - this is the definition that the series∑∞
n=1 an converges.

Conversely, suppose that the series
∑∞

n=1 an converges. Then the sequence of partial sums

(Sn : n ≥ 1) is convergent, and therefore bounded.

This implies a hugely useful criterion for convergence in the case when the series have

non-negative terms: compare the series with one you already know converges. This won’t

help us find the sum, but it will help us show the series is convergent.

Theorem. Comparison Test for Series. Suppose that 0 ≤ an ≤ bn for all n ≥ 1.

(i) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges and
∑∞

n=1 an ≤
∑∞

n=1 bn .

(ii) If
∑∞

n=1 an diverges to infinity, then
∑∞

n=1 bn diverges to infinity.

Proof. (i) Suppose B =
∑∞

n=1 bn. Then

n∑
k=1

ak ≤
n∑
k=1

bk ≤ B.

Hence
∑∞

n=1 an is convergent by the Boundedness Criterion above. Moreover

∞∑
n=1

an = lim
n→∞

n∑
k=1

ak ≤ B.
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For part (ii) note that since an ≥ 0 the partial sums Sn are increasing and the only way∑∞
n=1 an to diverge is if it diverges to infinity. Then part (ii) is just the contrapositive of

part (i) (check!).

Example.

(i)
∞∑
n=1

3n + 7n

2n + 10n
converges. (ii)

∞∑
n=1

1√
n

diverges. (iii)
∞∑
n=1

1

n2
converges.

Proof. (i) We note that, for all n ≥ 1 we have

0 ≤ 3n + 7n

2n + 10n
≤ 3n + 7n

10n
=

(
3

10

)n
+

(
7

10

)n
.

Since 3
10
∈ (0, 1) and 7

10
∈ (0, 1), it follows that

∑∞
n=1(

3
10

)n and
∑∞

n=1(
7
10

)n converge. By

the sum rule
∑∞

n=1[(
3
10

)n + ( 7
10

)n] converges. By the Comparison Test we deduce that∑∞
n=1

3n+7n

2n+10n
converges.

(ii) We know that 1√
n
≥ 1

n
for all n ≥ 1 and that the series

∑∞
n=1

1
n

diverges (the

harmonic series example). Hence, by the Comparison Test the series
∑∞

n=1
1√
n

diverges.

(iii) I claim 1
n2 ≤ 2

n(n+1)
- please check by cross multiplying. But we saw that∑∞

n=1
1

n(n+1)
converges (it was a telescoping series). So

∑∞
n=1

2
n(n+1)

also converges and by

the Comparison Test we now know that
∑∞

n=1
1
n2 converges.

Rather delicate comparisons can be made using our skills with integration. We used

these ideas in week one when discussing Stirling’s formula.

Lemma. Integral Bounds

Suppose that the function f : (0,∞)→ R is decreasing (i.e. f(x) ≤ f(y) for all x ≥ y).

Then for all 1 ≤ m < n,∫ n+1

m

f(x) dx ≤
n∑

k=m

f(k) ≤
∫ n

m−1
f(x) dx . (3)

Proof. Two pictures say it all:
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↑***
The area of all the blocks is

∑n
k=m f(k). This is greater than the area under the curve

between m and n+ 1.

!↳·.Ftee
The area of all the blocks is again

∑n
k=m f(k). This is less than the area under the curve

between m− 1 and n.

Example. Let p > 0. The series
∑∞

n=1
1
np converges if p > 1 and diverges if 0 < p ≤ 1.

Proof. We consider the function f : (0,∞) → R given by f(x) = 1
xp

. Note that f is

non-negative and decreasing.
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For p ∈ (0, 1) we use the lemma to see that

SN =
N∑
n=1

1

np
≥
∫ N+1

1

1

xp
dx =

x1−p

1− p

∣∣∣∣N+1

1

=
(N + 1)1−p − 1

1− p
.

Since 1−p > 0 the term (N+1)1−p diverges to infinity as N →∞. Thus the partial sums

SN also diverge to∞ (by Comparison Lemma for sequences) showing that
∑∞

n=1
1
np =∞.

For p > 1 we use the lemma to see that

N∑
n=2

1

np
≤
∫ N

1

1

xp
dx =

x1−p

1− p

∣∣∣∣N
1

=
N1−p − 1

1− p
=

1−N1−p

p− 1
≤ 1

p− 1
.

(Why did we start at n = 2 here?) So the partial sums SN =
∑N

n=1
1
np are bounded above

by 1 + 1
p−1 , and this implies that

∑∞
n=1

1
np converges.

We already know the answer for p = 1, by the beautiful blocking argument earlier,

but it would follow using the integral bounds as well - please check.

The easiest comparison is to compare to a geometric series. The Ratio Test below is

commonly used recipe that makes this comparison quick to do.

Theorem. Ratio test.

Suppose that (an : n ≥ 1) is a sequence with an > 0 for all n ≥ 1 and so that an+1

an
→ `.

Then
∑∞

n=1 an converges if 0 ≤ ` < 1 and diverges if ` > 1.

Proof. I’ll write the proof somewhat backwards to make it clear that we are just comparing

with a geometric series.

If we knew

for some γ < 1 the terms an ≤ Cγn for all n

we could directly apply the Comparison Test for Series and conclude that
∑∞

n=1 an con-

verges by comparison with the geometric series C
∑∞

n=1 γ
n = Cγ/(1− γ).

If we knew

for some γ < 1 the terms an ≤ Cγn for all n ≥ N (?)

we could directly apply the Comparison Test for Series and conclude that
∑∞

n=N an con-

verges by comparison with the geometric series C
∑∞

n=N γ
n = CγN/(1− γ). But adding

on the first N−1 terms
∑N−1

n=1 an cannot change the convergence and we can still conclude

that
∑∞

n=1 an converges.
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If we knew

for some γ < 1 the ratios an+1

an
≤ γ for all n ≥ N (??)

then we get aN+1 ≤ aNγ, aN+2 ≤ aNγ
2, ..., and in general aN+n ≤ aNγ

n = aNγ
−Nγn+N

for all n ≥ 1. But this implies the condition (?) above by taking C = aNγ
−N . So we

again conclude that
∑∞

n=1 an converges.

Finally, if we knew

the ratios an+1

an
→ l < 1 as n→∞

then we can pick ε = (1− l)/2 and conclude that there exists N so that

for all n ≥ N we have an+1

an
≤ l + ε = 1+l

2

which is the condition (??) with γ = 1+l
2
< 1. We conclude that that

∑∞
n=1 an converges.

Next suppose that ` > 1. Note that then 1 < 1+`
2

< `. We want to use the limit
an+1

an
→ ` to see there exists N so that for n ≥ N

an+1

an
>

1 + `

2
.

What ε have I picked? It must be ε = `− 1+`
2

= `−1
2
> 0. Now we find

aN+1 >
1 + `

2
aN , aN+2 >

(
1 + `

2

)2

aN , aN+3 >

(
1 + `

2

)3

aN , . . . .

In general aN+n >
(
1+`
2

)n
aN , so the terms in the series diverge to infinity. We saw that

there is then no hope that the series
∑
an converges.

Example. The series
∑∞

n=1
1
n!

converges.

Proof. Let an = 1
n!

. Then an+1

an
= 1

n+1
→ 0. Hence, the series

∑∞
n=1

1
n!

converges by the

ratio test.

Example. The series
∑∞

n=1
n2

2n
converges.

Proof. Let an = n2

2n
. We compute

an+1

an
=

(n+1)2

2n+1

n2

2n

=
1

2
· (n+ 1)2

n2
→ 1

2
.

By the ratio test, it follows that the series
∑∞

n=1
n2

2n
converges.

Example. What if an+1

an
→ 1 as n → ∞? We get no conclusion - it is possible that∑∞

n=1 an converges and possible that
∑∞

n=1 an diverges. For example if an = 1
n

, the series

diverges, while if an = 1
n2 , the series converges. In both cases an+1

an
→ 1.
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Absolute convergence

Series with both positive and negative terms are harder - there will be some cancelation

that may help the series to converge. If we replace the terms an by their absolute values

|an| this will eliminate all cancelation, and should make it more likely that the series

diverges. This is indeed true, as the next result shows.

Theorem. Absolute Convergence Theorem

If the series
∑∞

n=1 |an| converges, then the series
∑∞

n=1 an converges.

Remark. To prove this, we need to show that the partial sums Sn =
∑n

k=1 ak converge.

But these will not be increasing so we cannot use the Weierstrass Criterion. You will not

be surprised that we will use the Cauchy Criterion.

Proof. Define the sequences of partial sums

Sn =
n∑
k=1

ak, Tn =
n∑
k=1

|ak| .

By assumption,
∑∞

n=1 |an| is convergent, so the sequence Tn is convergent. In particular,

by the Cauchy Criterion, (Tn : n ≥ 1) is a Cauchy sequence. Therefore, given ε > 0, there

exists N ≥ 1 such that |Tn − Tm| < ε whenever m,n ≥ N .

We may assume, without loss of generality, that m > n. By the triangle inequality,

for m > n ≥ N ,

|Sm − Sn| =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| = Tm − Tn = |Tm − Tn| < ε.

But this shows that (Sn : n ≥ 1) is Cauchy and therefore convergent by the Cauchy

Criterion again. Hence,
∑∞

n=1 an converges.

This gives us a way of establishing convergence for series with both positive and

negative terms: apply the ideas from the previous section to show
∑∞

n=1 |an| converges,

and the Absolute Convergence Theorem implies that
∑∞

n=1 an converges.

Example. The series
∑∞

n=1
cos(n)
n2 converges.

Proof. We note that for all n ≥ 1 we have∣∣∣∣cos(n)

n2

∣∣∣∣ ≤ 1

n2
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Since we know the series
∑∞

n=1
1
n2 converges, we obtain by the Comparisons Test for Series

that
∑∞

n=1

∣∣∣ cos(n)n2

∣∣∣ converges. Then the Absolute Convergence Theorem guarantees that∑∞
n=1

cos(n)
n2 converges.

Corollary. Improved Ratio Test Suppose that (an : n ≥ 1) is a sequence such that

an 6= 0 for all n ≥ 1 and such that |an+1|
|an| → `. Then

∑∞
n=1 an converges if 0 ≤ ` < 1 and

diverges if ` > 1.

Proof. Suppose first that 0 ≤ ` < 1. Then by the Ratio Test (for positive series) it follows

that
∑∞

n=1 |an| converges. By the Absolute Convergence Theorem we deduce that the

series
∑∞

n=1 an converges.

Suppose now that ` > 1. In this case, in the proof of Ratio Test for the positive series∑∞
n=1 |an| we showed that |an| → ∞ as n→∞. So an 6→ 0 and the series

∑∞
n=1 an cannot

converge.

You will make use of the Ratio Test frequently in term 2 when you study power series.

Example. Determine for which values of x ∈ R the series
∑∞

n=1
xn

n
is convergent.

Proof. We observe that the series converges for x = 0. In what follows, we consider the

case when x 6= 0. For n ≥ 1, let an = xn

n
. In particular an 6= 0 for all n ≥ 1.

We compute the ratio

|an+1|
|an|

=

|x|n+1

n+1

|x|n
n

=
n

n+ 1
· |x| → |x| .

By the Ratio Test the series
∑∞

n=1
xn

n
is convergent when |x| < 1 and is divergent when

|x| > 1. We need to see what happens when |x| = 1, i.e. when x = 1 and x = −1. For

x = 1, we obtain the series
∑∞

n=1
1
n

which is divergent. When x = −1, we obtain the

series
∑∞

n=1
(−1)n
n

and we are stuck - none of our results so far apply. (In the next few

pages we will see that it is indeed convergent.)

Example. Let’s look at the example from the introductory chapter

J0(x) :=
∞∑
n=0

(−1)nx2n

22n(n!)2
.

For each x ∈ R we are trying to define the function J0 at the point x by an infinite series.

We can fix x and use the Ratio Test to see if the series converges: we see

|an+1|
|an|

=

|x|2(n+1)

22(n+1)((n+1)!)2

|x|2n
22n(n!)2

=
|x|2

22(n+ 1)2
.
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Note that taking the absolute values has removed the factors (−1)n and turned x2n into

|x|2n. Now we see that for any value of x we will get |an+1|
|an| → 0 and the Ratio Test tells

us the series converges. Thus J0(x) is properly defined for any value of x.

Are there series where
∑∞

n=1 an converges but
∑∞

n=1 |an| diverges? Yes - and these are

trickier. But there is one small class that we can treat quite easily.

Theorem. Alternating Series Theorem Suppose that a sequence (an : n ≥ 1)

satisfies both

(i) an → 0 as n→∞, and (ii) (an : n ≥ 1) is decreasing.

Then the series
∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + . . . (4)

converges to a limit A.

Moreover, we have the error bound describing the speed of convergence

|Sn − A| ≤ an+1 for all n.

Remark. We call a series of the form described here an alternating series since the

terms (−1)n+1an alternate in sign. Note we are asking that the size of the terms decreases.

The simplest example is

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

The Theorem guarantees this converges, and we know that without the minus signs it

would diverge. (We will show later that the sum is exactly calculable as log(2).)

Proof. The picture shows the key idea: that S2 ≤ S4 ≤ S6 ≤ . . . . . . ≤ S5 ≤ S3 ≤ S1.

We can check this by induction: the induction hypothesis is

S2 ≤ S4 ≤ . . . ≤ S2n ≤ S2n−1 ≤ . . . ≤ S3 ≤ S1.

This holds for n = 1 since S2 = S1 − a2 ≤ S1. To go from n to n + 1 we need to check

three inequalities: S2n ≤ S2n+2 ≤ S2n+1 ≤ S2n−1. Each of them is easy: S2n+2 − S2n =

a2n+1 − a2n+2 ≥ 0; S2n+2 − S2n+1 = −a2n+2 ≤ 0; S2n+1 − S2n−1 = −a2n + a2n+1 ≤ 0.
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Thus the subsequence (S2, S4, S6, . . .) is increasing and bounded above by S1 and so must

converge (by Weierstrass Criterion) to a limit L. Similarly the subsequence (S1, S3, S5, . . .)

is increasing and bounded below by S2 and must converge to a limit U . But

0 ≤ S2n+1 − S2n = a2n+1 → 0

so by the Sandwich Theorem U − L = 0, that is U and L are equal, and we call them A.

Now it won’t surprise you that the whole sequence Sn → A as n → ∞ and so the series∑∞
n=1(−1)n+1an converges.

The error bound stated in the Theorem is hidden in our calculations:

0 ≤ S2n+1 − A ≤ S2n+1 − S2n = a2n+1 and 0 ≤ A− S2n ≤ S2n−1 − S2n = a2n.

Example. In the introduction we mentioned the series

π2

12
= 1− 1

22
+

1

32
− . . . =

∞∑
n=1

(−1)n+1 1

n2
.

Can we say anything about this series? The Alternating Series Theorem applies and we

know it must converge. We cannot (yet) prove that the sum is π2

8
- for that you might

take some modules with complex variable integration or with Fourier series in year two.

But the error bound applies and if we sum the first 99 terms to get S99 =
∑∞

n=1(−1)n+1 1
n2

we know that we will be close to the infinite sum π2

8
- indeed we know∣∣∣∣S99 −

π2

8

∣∣∣∣ ≤ 1

1002
. Indeed I make S99 ≈ 0.8225175 and π2

8
≈ 0.8224670.
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A series for which
∑∞

n=1 an converges but
∑∞

n=1 |an| diverges is called conditionally

convergent, since they converge but the sum of their absolute values does not. The

cancelation between the positive and the negative terms manages to make the series

converge. These are the series that Riemann showed can behave strangely.

Theorem. Riemann’s Rearrangement Theorem.

Suppose the series
∑∞

n=1 an converges but the series
∑∞

n=1 |an| diverges. Then for any

total B there is a rearrangement of the series
∑∞

n=1 bn tat converge to B.

However if a series satisfies
∑∞

n=1 |an| converges, than any rearrangement will converge

to the same total as
∑∞

n=1 an.

A rearrangement means that the sequence (bn : n ≥ 1) contains all the terms of the

sequence (an : n ≥ 1) but in a different order.

A renowned Warwick maths professor once suggested we omit mentioning condition-

ally convergent series in first year analysis, as they aren’t that important. But the idea of

cancelling lots of positive numbers with lots of negative numbers to obtain an interesting

limit is important in several areas of analysis - not least in the construction of the stochas-

tic Ito integral used in financial modelling. The proof of the theorem was non-examinable

last year and I am happy to leave it so, but I may not be able to resist sketching the

proof in lectures - we have all the tools necessary. In the rest of this chapter we will give a

concrete example of a rearrangement with a different total to at least convince ourselves

that it really does happen.

The Harmonic Series Revisited. We can give some nice examples of exactly

summable series by re-examining the Harmonic series using the integral bounds tech-

nique. We set

Hn = 1 +
1

2
+

1

3
+ . . .+

1

n
.

I will mention a couple of problems (coupon collecting, quicksort) where the sums Hn

occur in their solution. We can get an accurate estimate of Hn by using the integral

bounds trick.
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Matching areas in the picture we see that

1

2
+

1

3
+ . . .+

1

n
=

∫ n

1

1

x
dx− E1 − E2 − . . .− En−1

where the left hand side is the sum of the blocks and the the area under the curve between

x = 1 and x = n with the small red shaded Ek ≥ 0 areas subtracted.

The blue shaded areas are copies of the red shaded areas translated over to lie in a

single column. They do not overlap and together they fill just part of the box 0 ≤ x ≤
1, 0 ≤ y ≤ 1. and we conclude that E1 + E2 + . . .+ En−1 ≤ 1.

Rearranging we find

Hn − log(n) = En.

where En = 1−E1−E2−. . .−En−1 ≥ 0 is decreasing and so must converge by Weierstrass’s

criterion. We have proved the following lemma.

Lemma. Harmonic Series Lemma

Hn = log(n) + En where lim
n→∞

En = γ.
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The constant γ is called Euler’s constant (or sometimes the Euler-Mascheroni con-

stant) and occasionally arises (for example describing the distribution of the primes in

Number Theory). It cropped up for me in a probability problem concerning polynomials

with random coefficients last year. You might come across it if you meet the integral∫∞
0

log(x)e−xdx whose value is exactly the value −γ. It’s value is about 0.57.... It is

unknown whether it is rational or not.

We can use it to resolve an example in the introductory chapter. Consider the series

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

The partial sum S2n of the first 2n terms will have n positive and n negative terms:

S2n =

(
1 +

1

3
+

1

5
+ . . .+

1

2n− 1

)
−
(

1

2
+

1

4
+

1

6
+ . . .+

1

2n

)
=

(
1 +

1

2
+

1

3
+ . . .+

1

2n

)
− 2

(
1

2
+

1

4
+

1

6
+ . . .+

1

2n

)
=

(
1 +

1

2
+

1

3
+ . . .+

1

2n

)
−
(

1 +
1

2
+

1

3
+ . . .+

1

n

)
= H2n −Hn

= (log(2n) + E2n)− (log(n) + En)

= log(2) + E2n − En
→ log(2) + γ − γ = log(2).

We have used the Harmonic Series Lemma in the last two steps. Since also S2n+1 =

S2n + 1
2n+1

→ log(2) you can check that the whole sequence Sn → log(2) and we have

identified the exact value of
∑∞

n=1(−1)n+1 1
n

as log(2).

The claim in the introduction was that we could add the terms in a different order

and get a different sum. We tried alternately adding two of the positive terms and then

one of the negative terms, that is

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . .

Consider the partial sum S3n, which will have the first 2n positive terms and the first n
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negative terms:

S3n =

(
1 +

1

3
+

1

5
+ . . .+

1

4n− 1

)
−
(

1

2
+

1

4
+

1

6
+ . . .+

1

2n

)
=

(
1 +

1

2
+

1

3
+ . . .+

1

4n

)
−
(

1

2
+

1

4
+

1

6
+ . . .+

1

4n

)
−
(

1

2
+

1

4
+

1

6
+ . . .+

1

2n

)
= H4n −

1

2
H2n −

1

2
Hn

= (log(4n) + E4n)− 1

2
(log(2n)− E2n)− 1

2
(log(n)− En)

=
3

2
log(2) + E4n −

1

2
E2n −

1

2
En

→ 3

2
log(2) + γ − 1

2
γ − 1

2
γ =

3

2
log(2).

You will be able now to check that the whole sequence (Sn : n ≥ 1) converges to 3
2

log(2)

verifying the claim. A concrete demonstration of Riemann’s Rearrangement theorem.
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Chapter 4. Continuous functions

This chapter is taken from the first chunk of last years term 2 module by Keith Ball, as

this chunk of material has been moved into our first term Calculus 1 module.

Continuity

We recall from Sets and Numbers some notation for functions. Given two sets A and B a

function f from A to B assigns an element of B to each element of A. Thus every function

comes “equipped” with two sets: A, the set of points where the function is defined, and

B, a set to which the values of the function belong. We can draw attention to these sets

by writing

f : A→ B.

The set A is called the domain of f ; B is called its codomain. For each element x of the

domain we write f(x) for the place to which x is sent: the image of x under f . The set

of values {f(x) : x ∈ A} is called the range of f .

An interval of the real line is a subset of R with the property that if x < y < z and x and

z both belong to the subset then so does y. So an interval contains all the points between

its ends, but the ends themselves may or may not be included. Examples are

{x : a ≤ x ≤ b} = [a, b] a closed interval

{x : a < x < b} = (a, b) an open interval

{x : a ≤ x < b} = [a, b) a half-open interval

{x : a ≤ x} = [a,∞) a half-infinite interval

For this course we shall be considering real valued functions whose domains are intervals

of the real line. We want to say what it means for such a function to be continuous. At

each point of the domain there are essentially three types of problem that can occur. In

each of the cases below, the function is discontinuous at 0 (but continuous elsewhere).
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÷-÷-
The first two are fairly straightforward. In the first case the function has a value at zero

that doesn’t “match” the rest of the function. In the second case, the function jumps in

value as we pass through 0.

-
In the third situation f(x) oscillates infinitely often over a wide range as x approaches 0.

We shall define what it means for a function to be continuous at a point in such a way as

to rule out these problems. Then we say that a function is continuous on an interval if it

is continuous at each point of the interval.

Definition (Continuity). A function f : I → R defined on an interval I containing

the number c is said to be continuous at c if for every ε > 0, there is a δ > 0 so that if

x ∈ I and |x− c| < δ then

|f(x)− f(c)| < ε.

The function is continuous on I if it is continuous at each point of I.

55



i⇔.

Fa
i

feel - E
i
:

Ii
c-8 c. cts

The picture shows the situation. The number ε specifies a band around the value f(c).

You want to be able to guarantee that f(x) falls into that band as long as x is close

enough to c.

Example (Continuity of x 7→ x). The function x 7→ x is continuous at every point of

the real line.

Proof If f(x) = x then we can always take δ = ε since if |x− c| < ε then

|f(x)− f(c)| = |x− c| < ε.

As an exercise, you can check that constant functions are continuous.

Example (A discontinuity). The function f given by

f(x) =

{
1 if x > 0

0 if x ≤ 0

is discontinuous at 0.

Proof We need to find a band around f(0) = 0 which we cannot guarantee to land in,

merely by starting near 0. A band of width ε = 1/2 will do because if x is positive,

however close to zero, f(x) = 1 and this is not within 1/2 of f(0).
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We will do one more example which will also follow from our later arguments but will

help to fix the ideas: the function x 7→ x2. The aim will be to show that if x− c is small

then so is x2 − c2. Now x2 − c2 = (x− c)(x+ c) so if |x− c| < δ then |x2 − c2| < δ|x+ c|
which looks good because the factor δ is small. But the second factor |x + c| might be

large (if c = 1, 000, 000 say). However, if x is close to c then x+ c is close to 2c which may

be large but is a fixed number. So we shall cook up δ to compensate: roughly we want

δ = ε/(2|c|). However we need to be a bit careful because x+ c isn’t actually equal to 2c.

Example (Continuity of x 7→ x2). The function x 7→ x2 is continuous at every point

of the real line.

Proof Let f(x) = x2, let c ∈ R and ε > 0. We want to guarantee that

|x2 − c2| < ε

by choosing x close enough to c. We know that |x2 − c2| = |x− c|.|x+ c|.
If we choose |x− c| < 1 then |x| cannot be larger than |c|+ 1 and so |x+ c| cannot be

larger than 2|c|+ 1. Then if we choose

|x− c| < ε

2|c|+ 1

we will get

|x2 − c2| = |x− c|.|x+ c| < ε

2|c|+ 1
(2|c|+ 1) = ε

which is what we wanted.

We end up needing two conditions on |x− c|: namely |x− c| < 1 and |x− c| < ε
2|c|+1

.

But that is not a problem. If we choose δ to be the smaller of 1 and ε
2|c|+1

the two

conditions will be satisfied simultaneously as long as |x− c| < δ.

We wish to check the continuity of functions such as polynomials, more complicated than

x 7→ x2. To do this we want a machine which allows us to build continuous functions from

simpler ones. We want to know that when you add or multiply continuous functions the

result is still continuous and also when you compose two continuous functions. There are

a number of ways to do this but in view of what you already know about limits there is

a particularly simple approach which depends upon rewriting the continuity property in

terms of limits of sequences.
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Theorem (Sequential continuity). Let f : I → R be defined on the interval I and

suppose that c ∈ I. Then f is continuous at c if and only if for every sequence (xn) of

points in I which converges to c,

f(xn)→ f(c) as n→∞.

Proof Suppose first that f is continuous at c and xn → c. Then, given ε > 0 we can find

δ > 0 so that if |x − c| < δ then |f(x) − f(c)| < ε. Now choose N so that if n > N ,

|xn − c| < δ. Then if n > N we have |f(xn)− f(c)| < ε. So f(xn)→ f(c).

On the other hand suppose f is not continuous at c and choose ε > 0 with the property

that whatever δ we pick there is a point x within δ of c for which

|f(x)− f(c)| ≥ ε.

Now build a sequence as follows. For each n choose a point xn with |xn − c| < 1/n but

|f(xn)− f(c)| ≥ ε. Then xn → c as n→∞ but f(xn) does not converge to f(c).

The sequential continuity theorem immediately gives us the algebra of continuous func-

tions.

Theorem (Algebra of continuous functions). Let f, g : I → R be defined on the

interval I and continuous at c ∈ I. Then

1. f + g is continuous at c

2. f.g is continuous at c

3. if g 6= 0 on I then f/g is continuous at c.

Proof The proofs of all 3 are essentially the same. We shall do the first. We wish to show

that if xn → c then (f + g)(xn) = f(xn) + g(xn)→ f(c) + g(c) as n→∞. But we know

that f(xn)→ f(c) and g(xn)→ g(c) so we can apply the properties of limits of sequences

to conclude that f(xn) + g(xn)→ f(c) + g(c).

From this we can immediately conclude that polynomials are continuous and that rational

functions are continuous except where the denominator is zero.

Corollary (Continuity of polynomials and rational functions). If p is a polynomial

then p is continuous at every point of R. If r = p/q is a ratio of two polynomials then it

is continuous at every point of R where q 6= 0.
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Proof This will be on an exercise sheet.

To complete the continuity machine we need to know that we can compose continuous

functions. The statement looks a bit complicated but the idea is as simple as for the

algebraic properties.

Theorem (Composition of continuous functions). Let f : I → R be defined on

the interval I, g : J → I be defined on the interval J . If g is continuous at c and f is

continuous at g(c) then the composition f ◦ g is continuous at c.

Proof Let (xn) be a sequence in J converging to c. Then g(xn) → g(c) in I and hence

f(g(xn))→ f(g(c)).

The Intermediate Value Theorem

This section is devoted to a principle which has many uses and which you may have met

at school. Roughly it says that if a continuous function crosses from below zero to above

zero then there must be a point where it is equal to zero: it cannot jump across zero.

Our intuition about continuous functions is that we can draw them without taking pen

from paper and therefore it should be “obvious” that a continuous function can’t skip a

value. However the proof is not quite so simple because we have defined continuity at each

point individually. We therefore have to find the point where the function is supposed

to take the correct value and then use continuity at that point. When we are trying

to demonstrate the existence of a particular real number we usually have to invoke the

completeness principle. The completeness principle is our way to finger a real number.

Theorem (Intermediate Value Theorem). Let f : [a, b] → R be continuous and

suppose that u lies between f(a) and f(b). Then there is a point c between a and b where

f(c) = u.

Proof Assume that f(a) < u < f(b) and let A be the set

{x ∈ [a, b] : f(x) ≤ u}.

This set is non-empty since it contains a and is bounded above by b. Let s be its least

upper bound. The aim is to show that f(s) = u.
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We shall eliminate the two other possibilities f(s) < u and f(s) > u separately.

Suppose that we have f(s) < u.

ii. "

⇔.⇔

u > fess

i
"
"

Note that that s 6= b because we know f(b) > u. If we put ε = u − f(s) then for some

δ > 0

|f(x)− f(s)| < ε

as long as |x − s| < δ. So in particular if x = s + δ/2 then f(x) < f(s) + ε = u. This
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means that s+ δ/2 ∈ A contradicting the fact that s is an upper bound for A.

Suppose on the other hand that f(s) > u.

'÷ "
""'
IMPOSSIBLE .

Note that s 6= a because f(a) < u. If we put ε = f(s)− u then for some δ > 0

|f(x)− f(s)| < ε

as long as |x− s| < δ. Therefore if s− δ < x ≤ s, f(x) > f(s)− ε = u and hence x is not

in A. This means that s− δ is an upper bound for A contradicting the fact that s is the

least upper bound.

Note that there were two things we had to check about the point s that we found: that

f(s) was not too small and that it was not too large. We used the two different properties

of the least upper bound respectively for these two checks. This is a common feature of

arguments using least upper bounds.

It is possible for a function to satisfy the intermediate value property without being

continuous but it has to be a rather nasty function. Note that the IVT says that if u

lies between f(a) and f(b) then there is a point c between a and b where f(c) = u. Try

drawing a function with this property that is not continuous and you will be forced to

wiggle a lot.

The IVT has many uses - in lectures I should have time to discuss some fo the following:
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The simplest application is just for showing the existence of roots, as follows.

Example (The existence of a solution to an equation). There is a solution of the

equation x3 + x− 1 = 0 between 0 and 1.

Proof If f(x) = x3 + x− 1 then f(0) = −1 < 0 while f(1) = 1 > 0. Apply IVT.

Whenever we have a continuous, strictly increasing function we expect to find an

inverse for it: just as y 7→ √y is the inverse of the function x 7→ x2 on [0,∞). In order

to make this precise we recall that the range of a function f : A→ B is the set of values

that f takes:

{f(x) : x ∈ A}.

Corollary (Continuous image of an interval). If f : I → R is continuous on the

interval I then its range is an interval.

Proof If x and y are in the range then by the IVT so is any point between x and y. So

the range is an interval.

Theorem (Existence of inverses). Let f : [a, b] → R be continuous and strictly in-

creasing. Then f has an inverse defined on its range and f−1 is continuous.
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The same holds if f is defined on an open interval or on the whole of R. The proofs are

essentially the same. The picture says it all. If you want to end up within ε of x = g(y)

then make sure you start between f(x− ε) and f(x+ ε).

i

i
'

y ÷÷:::

;÷
:
i

Proof Let f(a) = c and f(b) = d. Since f is increasing all its values lie between c and d.

So the range of f is exactly the interval [c, d].

For each y there is an unique number x with f(x) = y because f is strictly increasing,

so we may define the inverse g = f−1 by setting g(y) = x in each case. Clearly g is

strictly increasing. The final aim is to show that g is continuous. Suppose y lies in the

open interval (c, d), y = f(x) and ε > 0. We have f(x− ε) < y < f(x + ε). Hence there

is some δ > 0 with the property that

f(x− ε) < y − δ < y < y + δ < f(x+ ε).

For any z between y − δ and y + δ the fact that g is increasing ensures that

x− ε < g(z) < x+ ε

and so |g(z)− g(y)| < ε.

If y is one of the end points then the argument is the same but with one of f(x − ε)
and f(x+ ε) replaced by the corresponding end point of [c, d].
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Corollary (Existence of roots). For each positive x and natural number n there is an

unique positive nth root x1/n. The map

x 7→ x1/n

is continuous.

Example (A composition). Let f : R→ R be given by

f(x) =
√

1 + x2.

Then f is continuous on R.

Boundedness and attainment of bounds

A continuous function on an open interval such as (0, 1) may take arbitrarily large values.

For example the function x 7→ 1/x approaches ∞ as x approaches 0. This particular

problem can’t occur if the function is continuous on the closed interval [0, 1] since the

function is supposed to approach f(0) as x approaches 0. It turns out that indeed a

continuous function on a closed interval must be bounded.

Theorem (Boundedness of continuous functions). Let f : [a, b]→ R be continuous.

Then f is bounded.

The proof uses a method that used to be called rather appealingly “the condensation of

singularities”. The idea is that if the function is unbounded we can find a sequence of

points where it gets bigger and bigger. Using Bolzano-Weierstrass we find a subsequence

of these points which converges. So a sequence of bad points converges to a point which

we can conclude is so bad that it can’t exist.

Proof Suppose f is unbounded. For each n choose xn ∈ [a, b] where |f(xn)| ≥ n. Now

choose a subsequence xnk
which converges to x say. Since the interval [a, b] is closed we

must have x ∈ [a, b]. Then we know that f(xnk
)→ f(x) but this can’t happen since the

values f(xnk
) are becoming arbitrarily large.

At school you were often asked to find the maximum value of a function on some interval

but probably never addressed the question of whether a nice function (a continuous one

say) really must have a maximum. Obviously the previous example of 1/x shows that on

an open interval a function need not have a maximum but this is also true even if the

function is bounded. The function x 7→ x has no maximum on (0, 1). Its least upper

bound is 1 but there is no point in the interval where the function is equal to 1. Again,

this situation can’t happen on closed intervals.
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Theorem (Attainment of bounds). Let f : [a, b] → R be continuous. Then f has a

maximum and a minimum attained in the interval.

Proof Let M be the least upper bound of the set

{f(x) : x ∈ [a, b]}.

If there is no point in the interval where f(c) = M then the function g given by g(x) =

M − f(x) is strictly positive and continuous on the interval. Hence by the algebra of

continuous functions its reciprocal is continuous and therefore bounded. Let’s say

1

M − f(x)
≤ R

for all x ∈ [a, b]. Then 1/R ≤ M − f(x) and hence f(x) ≤ M − 1/R for all x in the

interval. This shows that M−1/R is an upper bound for the set of values and contradicts

the fact that M is the least upper bound.

A similar argument works for the minimum.

This theorem will form the main tool in a proof of the Mean Value Theorem which plays

a key role in many applications of the derivative and which is a highlight of Calculus 2.
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