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CHAPTER 1

CURVES

We are all familiar with the concept of functions from school. In fact, you would have

already mastered calculus techniques (differentiation and integration) for real-valued

functions. You will remember that practice was the key to success. However, you may

not have been taught why and when you can differentiate and integrate functions.

So what’s calculus like at university?

• In MA139 Analysis II, you will relearn differentiation of real-valued functions. This

time, with (i.e. not based on pictures, but logic). You will learn

precisely what it means for a function to be differentiable.

• In MA144 Methods of Mathematical Modelling II, you will learn calculus techniques

for vector-valued functions. We won’t necessarily go deeply into why and when

you can differentiation or integrate multivariable functions. is

important.

• Towards the end of MA139 you will relearn integration of functions - this time more

rigorously. In Year-2 Analysis III You will also study calculus for complex-valued

functions.

• In Year-2 Multivariable Analysis. you will revisit the content of this course - this

time more rigorously, and prove MA144 theorems using a more abstract language.

I guess what I’m saying is, this module is easy and fun, so let’s go!
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4 CHAPTER 1. CURVES

Definition. A function r is said to be if it maps a number

t ∈ R to a vector r(t) ∈ Rn, where n = 2, 3, 4 . . .

We usually use the letter t as the independent variable (often thought of as “time”).

A vector–valued function can also be viewed in terms of its component functions:

r(t) =

where each component function ri(t) is a real-valued function. Another way to say

“real-valued” is “ ” (i.e. the opposite of vector-valued).

In this module, we will primarily be interested in the case n = 2 or 3. We sometimes

write r(t) = (x(t), y(t), z(t)) rather than (x1(t), x2(t), x3(t)).

You should already be familiar with the standard unit vectors i = (1, 0, 0), j = (0, 1, 0),

and k = (0, 0, 1). Thus, we can also write

r(t) =

Sometimes, where there is no confusion from mixing row and column vectors, we will

write vectors vertically to save space and avoid commas.

1.1 Parametric curves

Definition. Consider the function r : I → Rn, where I ⊆ R is an interval. Then the set

of image points

C =

is called a curve in Rn. The function r is called a of the curve C.

Think of r(t) as the position of a particle at time t. Its trajectory traces out the

curve C.
A curve can have many parametrisations, so we have to be careful what we say.

Question. Which of the following sentences makes more sense?

� “A curve is parametrised by r(t) =. . . ”

� “The curve r(t) = . . .”
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Example 1. A line in R3 can be parametrised by r(t) = where a 6= 0

and b are constant vectors in R3 and t ∈ R. The vector determines the direction

of the line.

Example 2. (Line joining two points) Let a and b be the position vectors of points A

and B. Write down a parametrisation of the line, beginning at A and ending at B, using

the following parameters: a) t ∈ [0, 1] b) u ∈ [0, 2π] c) v ∈ [−1, 1].

Are your answers unique?

Example 3. (Parabolas) a) Write down a parametrisation of the curve y = ax2 + bx+ c.

b) Consider the curve parametrised by r(t) = (2t2, t) where t ∈ [−2, 2]. Find its Cartesian

equation and sketch the curve. Include an arrow to indicate increasing t.

c) Sketch the curve parametrised by r(t) =
(
2 sin2 t, sin t

)
where t ∈ [0, 2π].
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Example 4. (Curve defined piecewise) The curve shown below starts at A and ends at

B. Write down a parametrisation of the curve using parameter t ∈ [−1, 1].

y=x2

A(1,1)

B(1, -0.5)

Example 5. (Circle) Write down two parametrisations of the semi-circle x2 + y2 = 2

and y ≥ 0, traversed in the anti-clockwise direction.

Example 6. ( ) a) Find the Cartesian equation of the curve parametrised

by r(t) = (3 cos t, 2 sin t), where t ∈ [0, 2π]. Sketch the curve.

b) Sketch curve parametrised by r(t) = (3 sin t− 3, 2 cos t+ 2) where t ∈ [0, π].
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Example 7. ( ) a) Find the Cartesian equation of the curve parametrised

by r(t) = (2 sinh t, cosh t), where t ∈ R. Sketch the curve.

b) Find a parametrisation for the curve x2 − 4y2 = 1, where x > 0. Sketch the curve.

Example 8. ( ) Sketch the curves in R3 parametrised by

r(t) = (cos t, sin t, t) , where t ∈ [0, 2π].
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Example 9. (Polar curves) Sketch these polar curves (where θ ∈ [0, 2π]). Assume r ≥ 0.

a) r(θ) = 1− cos θ,

b) r(θ) = 3 sin 2θ.

Example 10. Sketch the curve parametrised by r(t) = (et + 1, t2), t ∈ R.

Tip: Think about the behaviour at t = 0 and at t→ ±∞.

Example 11. On the same set of axes, sketch the curves parametrised by

r(t) = (cosn t, sinn t) ,

where n = 1 and 2, and t ∈ [0, π/2]. (Also think about n = 3. See Quiz 1.)
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1.2 Plotting curves on a computer

There are lots of online tools to help you visualise parametric curves in R2 and R3. These

include Desmos, GeoGebra and math3d.org. These tools are very intuitive and don’t

require you to be an expert in special syntaxes.

Python can also produce beautiful, interactive graphics in R2 and R3. This will

require a bit of coding, and you need to learn Python commands. But the skills you gain

from being able to produce Python visualisation are much more beneficial in the long run

compared to quick online tools. Python fluency stands out on your CV, and any future

work you do on data analysis will require these visualisation skills. I strongly encourage

you to use Python throughout this course to help you visualise curves and surfaces, and

to verify answers that you’ve worked out by hand. But remember: you won’t have access

to the computer during the exams, so don’t become overly dependent on it.

Here are Python code snippets for plotting curves in R2 and R3. I have given two

of several possible coding variations to plot a parametric curve in R3. Both require the

keyword argument projection=’3d’.

Plotting parametric curves in R2 and R3

Create array t ∈ [0, 2π] (50 values)

Plot r(t) = (cos t, sin t)

(a circle)

Plot r(t) = (cos t, sin t, t)

(a helix)

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(0, 2*np.pi)

plt.plot(np.cos(t), np.sin(t))

ax = plt.axes(projection='3d')

ax.plot(np.cos(t), np.sin(t), t)

plt.show()

# OR

fig = plt.figure()

ax= fig.add_subplot(projection='3d')

ax.plot(np.cos(t), np.sin(t), t)

plt.show()
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Polar coordinates

Recall that polar coordinates (r, θ) are related to Cartesian coordinates (x, y) by

x = , y = , where r ≥ 0.

To plot a polar curve r = f(θ) in Python, use either of the following methods

Plotting a curve in polar coordinates

Create array θ ∈ [0, 2π] (100 values)

r = 3 sin 2θ

Method I: Convert to Cartesian

and use θ as the parameter

Method II: Plot on polar axes

import numpy as np

import matplotlib.pyplot as plt

theta = np.linspace(0, 2*np.pi, 100)

r = 3*np.sin(2*theta)

# Method I

plt.plot(r*np.cos(theta),

r*np.sin(theta))

plt.show()

# Method II

ax = plt.axes(projection='polar')

ax.plot(theta, r)

plt.show()

Both methods allow the possibility that r < 0, but Method II displays the curve in an

unconventional way when r < 0 (try it), so Method I is usually preferred. To exclude the part

r < 0 when using Method I, insert r = r.clip(min=0) before plotting.

Example 12. Plot the following famous curves using Python.

(a) Lemniscate of Bernoulli

r(t) =

(
cos t

1 + sin2 t
,

cos t sin t

1 + sin2 t

)
, t ∈ [0, 2π].

(b) Viviani’s curve

r(t) =

(
1 + cos t, sin t, 2 sin

t

2

)
, t ∈ [−2π, 2π].

(c) Conchoid

r = 3 + 1 sec θ.

(Watch out where cos θ is small. The answer has two pieces: a curve plus a loop)
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1.3 Discussions

• In this course we will assume that r(t) is a continuous vector-valued function. This

means that each component is a continuous function. Furthermore, we will assume

that each component function can be differentiated infinitely many times. When

this happens, we say that the curve parametrised by r(t) is a

curve. If the curve is defined piecewise, we assume that each piece is smooth.

But what does it really mean for a function to be continuous or differentiable?

These questions are answered in Analysis I and II.

• In this course, a curve C usually comes with a direction in which the curve is traced

out (i.e. “start from A and end at B”, or “traversed in an anti-clockwise direction”).

We say that the curve C has an . We can also say that C is an

curve.

• A curve that does not intersect itself is said to be a curve, or an

curve.

Observation: Suppose that the function r satisfies the property

r(t1) = r(t2) =⇒ t1 = t2

(i.e. r is ) on the interval (a, b). Then r(t) is clearly a simple

curve. We allow the possibility that r(a) = r(b).

• A curve parametrised by r(t) where t ∈ [a, b] is said to be if

r(a) = r(b).

Example 13. In each case, draw a rough sketch of a curve Ci in R2 with the stated

properties.

a) C1 is a simple closed curve b) C2 is closed but not simple

c) C3 is simple but not closed d) C4 is neither closed nor simple.
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1.4 Can-do checklist

� Given the Cartesian equation of a curve, find a parametrisation for it.

� Given a parametrisation of a curve, sketch it and find its Cartesian equation.

� Be very familiar with parametric and Cartesian equations of straight lines and

, i.e. parabolae, hyperbolae, circles and ellipses.

� Plot polar curves and parametric curves in R2 and R3 using Python.

� Understand what it means for a curve to be smooth, oriented, closed and simple.



CHAPTER 2

DIFFERENTIATION AND ARC LENGTH

2.1 Vector differentiation and the tangent vector

Let f be a scalar-valued function. Recall that the derivative of f at x = c can be defined

as a limit:

f ′(c) = lim
∆x→0

The value f ′(c) is the slope of the to the curve at x = c.

Let r be a vector-valued function. The derivative of r at t = c can be similarly defined:

r′(c) = lim
∆t→0

This simply means that to differentiate a vector function, we just differentiate each

component in the usual way. The geometric meaning of the derivative of a vector-valued

function is also analogous to the usual derivative:

The vector r′(c) is a to the curve at t = c.

13
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Example 1. Sketch the curve parametrised by r(t) = (cos t, 2 sin t) where t ∈ [0, 2π].

Find the unit tangent to the curve at t = 0 and at t = π/4. Include them on your sketch.

[Note: the standard symbol for the unit tangent is T(t).]

Example 2. Find the unit tangent to the helix r(t) = (cos t, sin t, t) at t = 0.

2.2 Regular curves

Definition. Consider a curve C parametrised by r(t) where t ∈ I. r is said to be a regular

parametrisation if (or, equivalently, ) at all points on

the curve

Definition. A curve is said to be if it has a regular parametrisation.

Curves defined in segments can also be described as piecewise regular.

We have already seen examples of regular curves.

Example 3. Show that the curve with equation
(
x
a

)2
+
(
y
b

)2
= 1 (where a and b are

nonzero) is a regular curve.
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Example 4. Find a regular and a non-regular parametrisation for the line y = x.

Just because a curve “looks nice” doesn’t guarantee that its parametrisation is regular.

See Quiz 2.

It’s useful to study regular curves because they are guaranteed to have a special

parametrisation which will greatly simplify equations and proofs in vector calculus. More

about this soon.

2.3 Differentiation rules for vectors

Let u(t) and v(t) be differentiable vector functions. The following identities follow from

those of their real-valued components. Try proving them by writing everything out in

component form.

I. For all λ ∈ R, d
dt

[u(t) + λv(t)] =

II. Let f(t) be a differentiable real-valued function, then

d

dt
[f(t)u(t)] =

III. d
dt

[u(t) · v(t)] =

IV. d
dt

[u(t)× v(t)] =

V. d
dt

[u (f(t))] =

When working with vector functions and the arguments (t) start to get in the way of

your working, you may tastefully omit them with the understanding that all vectors are

treated as functions of t.

Example 5. Prove property III.
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Example 6. Find the derivative of f(t) = |r(t)| (assuming that f(t) 6= 0).

The following result is simple to prove, yet it is one of the most useful results in

vector calculus, so I’ve labelled it as a Lemma.

Lemma 2.1. Let r(t) be a vector-valued function such that |r(t)| = constant. Then r(t)

and r′(t) are orthogonal.

Proof:

2.4 Arc length

Given a curve parametrised by r(t), how long is the curve measured between two given t

values?

Here is a sketch of the argument. Let ∆s be the arc-length element of the curve

between two parameter values t and t+ ∆t.
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Lemma 2.2. The arc length of the curve parametrised by r(t) between t = t0 and t = t1

is given by

s = (2.1)

We always have t1 > t0 to ensure that the arc length s is always positive.

Definition. The arc-length function is defined as

s(t) = for some constant t0 (2.2)

Important: (2.1) is a number, but (2.2) is a function.

If we think about r(t) physically as the trajectory (displacement) of a particle. Then

the vector r′(t) is its , and the magnitude |r′(t)| is its .

The vector r′′(t) is its .

Example 7.

(a) Calculate the length of the helix r(t) = (cos t, sin t, t) where t ∈ [0, 2π].

(b) Obtain the arc-length function, s(t), with t = 0 at the starting point.

(c) Write down the parametrisation of the helix using s instead of t. Find the speed of

the curve in this parametrisation.
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Definition. The arc-length parametrisation of r(t) is denoted r(s), where s is the

(with some initial parameter value t0).

Lemma 2.3. Let r(s) be the arc-length parametrisation of a curve parametrised by r(t).

Suppose that |r′(t)| 6= 0, then r(s) has unit speed.

Proof :

This means that every regular curve has a unit-speed parametrisation.

Example 8. Find the arc-length parametrisation of the semicircle radius R > 0:

{(x, y) : x2 + y2 = R2, y > 0}.

It’s always good to check that the range of s is from 0 to the entire length of the curve.

Example 9. Find the arc-length parametrisation of the ellipse:

r(t) = (cos t, 2 sin t), t ∈ [0, 2π].
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The moral of the story: it’s often not possible to find the arc-length parametrisation

explicitly. Most of the time we won’t need to know the explicit form of the arc-length

parametrisation, s(t), but just the fact that it exists is enough to simplify many proofs.

Finally, Lemma 2.3 says that an arc-length parametrisation has unit speed. But does

a unit-speed parametrisation have to be an arc-length parametrisation? See if you can

deduce the answer from the following result.

Example 10. Let r(s) and r(u) be two unit-speed parametrisations of a curve. Find a

relation between u and s.

2.5 Can-do checklist

� Find the (unit) tangent vector for a parametric curve.

� Show that a curve is regular. Show that a given parametrisation is regular.

� Differentiate vector equations containing dot and cross products.

� Calculate the speed of a parametrised curve.

� Find the arc length of a curve.

� Find the arc-length parametrisation of a curve explicitly where possible.
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Example 11. Let t ∈ (0, π/2). Consider the curves with the following parametrisations.

r1(t) =
(
sin2 t, 2 cos2 t

)
, r2(t) =

(
sin t, 2 sin2 t

)
.

i) Sketch the curves. ii) Are these curves regular? iii) Calculate their arc lengths.

Hint: Here is a useful integral that you should prove once in your life. Let α > 0.∫ √
1 + α2x2 dx =

x

2

√
1 + α2x2 +

1

2α
sinh−1 αx+ C.

x



CHAPTER 3

PARTIAL DIFFERENTIATION AND APPLICATIONS

Suppose we want to define a function, T , that tells us about the temperature at each

point in this lecture theatre, what type of function would this be?

Well, this function would need to map each point (x, y, z) to a number T (x, y, z). If

we let U ⊆ R3 be the set of all points in this lecture theatre, then T : U → is a

function, (sometimes called a scalar field). In this chapter, we

will learn to differentiate this kind of multivariable scalar-valued function.

Example 1. Here’s an example of a familiar multivariable function. Consider f : R2 → R
defined by

f(x, y) =
√
x2 + y2.

Can you think of two ways to represent this function visually?

On your visual representations, indicate the point where (x, y) = (3, 4)

.

21
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Definition. Let f : U ⊆ R2 → R. The of f is the set of points in R3 such

that

=

A graph is a surface in R3. Think of z as the height associated with each point (x, y).

Example 2. Describe the surface of the unit hemisphere (centred at the origin) as a

graph z = f(x, y) where z ≥ 0. Write down the domain of f .

Example 3. a) Sketch the surface z = f(x, y) = 6− 3x− 2y where x, y ≥ 0.

b) Locate all points on the domain that are mapped by f to 0, 3 and 6.

These are called the of f .

Example 4. a) Sketch z = f(x, y) = 1 − x2 − y2 where (x, y) ∈ R2. How would you

name this surface? b) On R2, locate all points that are mapped by f to 1, 0 and −1.
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Example 5. Let T : R3 → R be a function defined by T (x, y, z) = x2 + y2 + z2.

Describe all points that are mapped by T on to 0, 1 and 2. These are called the

of T .

Definition. The level sets of a function f : U ⊂ Rn → R are the sets of points:

for each constant k in the range of f .

When n = 2, the level sets are called contours. When n = 3, the level sets are called

isosurfaces. See Quiz 3 for visualisations of interesting level sets.

3.1 Partial differentiation

Suppose that the temperature at the point (x, y) on a football pitch is given by f(x, y).

If you stand at a point P with coordinates (a, b), how would you measure the rate of

change of the temperature at P?

Of course you will want to measure the temperature at nearby points, but where?

Since the football pitch is a two-dimensional world, we probably need two derivatives

to completely describe the rate of change at P : one along the x and one along the y

direction. So perhaps we can measure the following numbers (where h > 0 is a tiny step).
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Definition. The partial derivatives of f : U ⊂ R2 → R at the point (a, b) are defined by

∂f

∂x
(a, b) = lim

h→0

Another way to write
∂f

∂x
(a, b) is

Sometimes we leave the partial derivatives as functions of (x, y), just like when leave

the usual derivative of f as f ′(x). In other words, partial derivatives can be expressed as

functions of (x, y). We then substitute (x, y) = (a, b) to obtain numerical values of the

partial derivatives if required.

We will seldom need to use the limit definition to calculate partial derivatives. All

we need is our usual differentiation techniques, but pretend that all variables, except

the one we’re differentiating with respect to, are constant.

Example 6. Suppose the temperature at point (x, y) on the football pitch is given by

f(x, y) = 10x− x2y, and point P has coordinates (1, 1).

a) Find the temperature at P , b) Evaluate the partial derivatives of f at P .

Example 7. Let f(x, y, z) = 2xy − ln(1 + y) + 3 sin(y + 3z).

Find all first-order partial derivatives of f . Evaluate them at the origin.
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Example 8. Let g(u, v) = euv +
√
u+ 3v. Find all first and second-order partial

derivatives of g.

Note: In this course, you can assume that mixed second derivatives are symmetric, i.e.

the partial differentiation can be done in any order. Thus we can use the notation ∂2g
∂u∂v

without ambiguity about which variable is differentiated first. (Proof next year.)

Strong warning: If a function depends on more than one variable, say f(x, y), then

you must not write df
dx or df

dy because these quantities don’t make sense.

Equally, if a function depends on one variable, say f(x), then you should write df
dx and

not ∂f
∂x . Using the wrong d or ∂ will result in loss of marks!

3.2 The chain rule for partial differentiation

Almost all differentiation rules you know for one-variable functions can be applied

(carefully) to multivariable functions. For instance, the product rule certainly follows

trivially. Let f and g be functions of (x, y, z), then

∂

∂x
(fg) =

This holds because we are just treating y and z as constants.
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What about the Chain Rule for partial differentiation? Recall the one-variable version

d

dt
f (x(t)) =

Consider the function f(x, y) where x and y are themselves functions of t. Then it’s

possible to consider f as a function of one variable t. This means that we can calculate

the derivative of f with respect to t, denoted .

The result is the following. (Tip: draw a diagram to keep track of variables.)

df

dt
= (3.1)

Similarly, consider g(x, y, z) where x, y, z are themselves functions of t, then

dg

dt
= (3.2)

The proof of these results will need a bit more knowledge of analysis and will be

discussed next year. For now it is more important to get the hang of applying the Chain

Rule to perform simple calculations.

Top tip: Draw a diagram. Go via all possible paths towards the independent variable.

Example 9. Let f(x, y) = 3− x− y, where x = cos t, y = sin t. Calculate df
dt

in 2 ways.

Interpret what df
dt

means given the following figure.
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Example 10. Let w = xey/z, where x = t2, y = 1− t, z = 1 + 2t

Find an expression for dw/dt. Hence, evaluate it at t = 1.

Example 11. Let w = xy + yz + zx, where x = r cos θ, y = r sin θ, z = rθ

Find
∂w

∂r
using the Chain Rule.

[Hint: The partial derivative we want implicitly assumes that we are viewing w as a function of

(r, θ). So your final expression should contain only r and θ, not x, y, z.]

3.3 The grad operator and directional derivatives

Definition. Let f : U ⊂ Rn → R. The of f , denoted ∇f or

is defined as the vector

∇f =

In other words ∇f (read “grad f”) is a vector containing all the information about the

rates of change of f along all the coordinate directions. Here are some examples.

Example 12. a) Let f(x, y) = x sinh y + 1. Find ∇f .

b) Let g(x, y, z) = ln(5xyz). Find ∇g.
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Example 13. Consider f : R3 → R and g : R → R defined by g(t) = f(r(t)), where

r : R→ R3 is a parametrised curve in R3. Show that g′(t) = ∇f · r′(t).

We can also regard ∇f as the result of an operator ∇ acting on a scalar-valued

function f . For example, in R3, we identify the as

∇ := (3.3)

This is analogous to saying that df
dx

is the result of the differential operator d
dx

acting on

a function f . The operator needs an input (a function) to make sense.

The grad operator acts on a scalar/vector, and returns a scalar/vector. It is extremely

important that you are confident which objects are scalar and which are vectors.

The grad operator ∇ takes a and returns a .

We will meet the operator ∇ again in various guises the weeks to come.

Let’s study one application of the grad operator. How fast does the temperature

at a point on the football pitch change if we were to walk in a given direction u (not

necessary a coordinate direction)?

Definition. Define f : U ⊂ R3 → R and let u be a unit vector. The

of f in the direction of u, denoted Duf , is defined as

= lim
h→0

Note that the directional derivative is a scalar (a number, telling us how fast the

temperature changes). The direction u must be a unit vector. If not, you must

first normalise it. We use the hat symbol û to emphasise the fact that it is a unit vector.

In practice, we don’t usually need the limit definition to evaluate direction derivatives.

Use this result instead.
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Theorem 3.1. Duf(x) = ∇f · u
Proof:

The above result shows that the direction derivative of f is simply ∇f
in the direction of u.

Also note that if u = i, then Duf reduce to as expected.

Example 14. a) In Example 6 (temperature on the football pitch), what is the rate of

change of the temperature at P if you walk in the direction of u = i + j?

b) Find the directional derivative of f(x, y, z) = x sin(yz) at the point (1, 3, 0) in the

direction of v = (1, 2,−1).

3.4 Discussions

• Practice to gain confidence. We have just taken a first glimpse into the world

of multivariable calculus. This is a topic that requires a lot of practice to gain

confidence, much more than these notes and the Quizzes can give you. Do find

additional practice in the recommended textbooks.
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• Subscript notation. The notation
∂

∂x
can get quite clunky and burdensome.

Just as we abbreviate
df

dx
by f ′(x), we can use the subscript notation to save time

and make our working cleaner:

fx means
∂f

∂x
.

Similarly, we can write to mean
∂f

∂y
, to mean

∂2f

∂x2
, and

to mean
∂2f

∂x∂y
.

You are not obliged to use this notation. In fact, I would recommend you use it

only when you are very confident with partial derivatives (e.g. done > 100 partial

derivatives).

• Are mixed derivatives always equal? See Counterexamples in Analysis by

Gelbaum and Olmsted.

3.5 Can-do checklist

� Identify the level sets of a given scalar-valued multivariable function (including

sketching of contours in R2, and identifying isosurfaces in R3).

� Sketching simple surfaces of the form z = f(x, y) (a ‘graph’).

� Define and calculate partial derivatives of a given multivariable function. Intuitive

understanding of what partial derivatives mean.

� Use the Chain Rule to differentiate a given multivariable function. Use the correct

d or ∂. Use a diagram to help formulate the correct Chain Rule.

� Calculate the gradient ∇f for a given f . Define the grad operator ∇.

� Define and calculate the directional derivative of f in a given direction u. Intuitive

understanding of what the directional derivative means.



CHAPTER 4

GEOMETRY AND APPLICATIONS

Let’s study 3 applications of partial differentiation to the geometry of surfaces in R3,

a) finding linear approximations, b) finding normal vectors, c) classifying critical points.

4.1 Linear approximations and tangent planes

Recall the Taylor expansion of the function f(x) around x = a. To linear order:

f(x) ≈ c0 + c1(x− a). (4.1)

To find the constant c0, we substitute x = a in (4.1) to obtain c0 = .

To find c1, we differentiate wrt x then substitute x = a.

Thus we obtain the linear approximation of f(x) for x near a:

f(x) ≈ (4.2)

The meaning of this equation is that as we zoom in towards the curve y = f(x)

around x = a, the function is well approximated by a with equation (4.2).

Now let’s use the same technique to find a linear approximation for the two-variable

function f(x, y) near (a, b).

31
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The meaning of the above equation is that as we zoom in towards the surface

z = f(x, y) around (x, y) = (a, b), the function is well approximated by a .

For a function f(x, y, z), the same linearisation process yields the approximation near

(a, b, c):

You can see that a similar technique will also yield the linear approximation of an

n-variable function f(x) near x0. Writing the linear approximation in vector notation,

we have the following result.

Lemma 4.1. The linear approximation of a function f : Rn → R defined by f(x) near

x0 is given by

Example 1. Find the linear approximation of f(x, y) =
√

1− x2 − y2 near (x, y) = (0, 0).

Interpret this result graphically.
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When we obtain the tangent plane in the form Ax+By + Cz = D, as a bonus, we

also get the vector (A,B,C) which is to the plane (and also to the surface).

Example 2. Find the linear approximation of f(x, y) = 2x2 + y2 near (x, y) = (1, 1).

Hence, find the outward-pointing unit normal to the surface at (x, y) = (1, 1).

Note that the normal to a surface is not a unique vector, so it’s helpful to determine

whether the normal we obtain points upwards, downwards, outwards or into a surface

(and whether it’s a unit vector). This is going to be an important skill later when we

come to integration over a surface.

Lemma 4.2. Consider the surface defined by z = f(x, y) (a ). The vector

(∂f
∂x
, ∂f
∂y
,−1) is normal to each point (x0, y0, z0) on the surface.

[Do not memorise this Lemma! We’ll see why later.]
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4.2 Normal to a surface

Lemma 4.2 gives us one way to find normal vectors to a given surface of the form

z = f(x, y). Let’s study a more general method. Note that from now on I’m going to

occasionally use the subscript notation for partial derivatives to reduce clutter.

Theorem 4.3. Consider the functions F : R2 → R and G : R3 → R.

a) The vector ∇F = (Fx, Fy) is normal to the curve F = constant.

b) The vector ∇G = (Gx, Gy, Gz) is normal to the surface G = constant.

Proof : Consider a point (x0, y0) on the curve F (x, y) = constant (a contour, or a level

curve). Clearly the constant equals .

Suppose we use the variable t to parametrise this level curve so that

F (x(t), y(t)) = F (x0, y0),

and let (x0, y0) correspond to where t = 0. Differentiating the above equation with

respect to t and using the Chain Rule, we find

(4.3)

Now let’s evaluate this expression at (x0, y0). Recall that the vector t = (x′(0), y′(0)) is

tangent to the curve at (x0, y0). Eq. 4.3 can then be expressed as the dot product:

= (4.4)

In other words, ∇F is perpendicular to the tangent of the curve F = constant at (x0, y0).

This proves (a).

For part (b), we start by considering any parametrised curve on the isosurface G =

constant, passing through (x0, y0, z0) where t = 0. Proceeding identically, we come to the

conclusion that ∇G is perpendicular to all possible tangent vectors at (x0, y0, z0). All

such tangent vectors lie on the tangent plane at (x0, y0, z0), hence we conclude that ∇G
is normal to the surface G = constant. This proves (b).

Example 3. Use Theorem 4.3(b) to deduce Lemma 4.2.
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Example 4. Let F (x, y) := x + 2 sin(x + y). Find the equation of the straight line

normal to the (level) curve F (x, y) = 0 at the origin.

Example 5. Consider the surface defined by z = x+ 2 sin(x+ y).

Find the upward-pointing unit normal to the surface at the origin.

Hence write down the equation of the tangent plane to the surface at the origin.

(More about the figure below on the next page.)
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The visualisations of Examples 4 and 5 are shown at the bottom of the previous

page. The right-hand panel shows colour-coded contour lines corresponding to F (x, y) =

constant, with the (red) dot at the origin lying on the contour F (x, y) = 0. The red

vector points along the normal line found in Example 4.

The unit normal to the surface found in Example 5 is shown as the (red) arrow on the

left panel. The projection of this arrow on the x-y plane is shown on the right panel. The

ipynb file for making this figure ( and also useful for plotting contours) is on Moodle.

Example 6. Consider the surface defined by the equation

x2 + y2 − z2 = 1.

This surface is called a .

a) Sketch the surface.

b) Sketch the level curves on the x-y plane.

c) Find the equation of the tangent plane at the point (1, 1, 1).
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4.3 Critical points and their classification

Recall that the critical point of a function defined by f(x) is where the derivative df
dx

= 0.

Each critical point (say x = a) may be classified as a local maximum point or local

minimum point using the second-derivative test. Can you remember how this test goes?

Important: Either say x = a is a local maximum point, or f(a) is a local maximum.

These terms are not interchangeable!

Let’s see how we can do something similar for a two-variable function.

Definition. A point (a, b) is said to be a critical point of f : R2 → R if:

OR, equivalently,

Each critical point can be classified using the 2nd-derivative test for 2-variable functions.

Theorem 4.4. Suppose f(x, y) has a critical point at (a, b). Let D = detH where

H =

then

(a) If and at (a, b), then (a, b) is a local minimum point.

(b) If and at (a, b), then (a, b) is a local maximum point.

(c) If D < 0 at (a, b), then (a, b) is a .

(d) If D = 0 then

The (symmetric) matrix H is called the of f . It is named after the

German mathematician Otto Hesse (1811-1874).

Question. Can we replace fxx by fyy in (a) and (b)?
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A saddle point is a point on a surface z = f(x, y) such that it is a local minimum point

in one direction, but a local maximum point in another, as the picture below illustrates.

In this sense, a saddle point is simply a 3D generalisation of a point of inflection for a

2D curve. Around a saddle point, the surface looks like a Pringles chip (see Discussions

for a more precise definition). Note how we draw contour lines around a saddle point.

A nice proof of Theorem 4.4 uses quadratic forms which appear in more advanced

linear algebra. You’ll study this proof next year (for a non-linear algebra proof, see page

1016 of the Stewart textbook). For now, you need to be able to use this test confidently.

Example 7. Find and classify the critical points of f(x, y) = 3y2 − 2y3 − 3x2 + 6xy.

If x, y > 0, obtain the maximum possible value of f(x, y).
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4.4 Discussions

• Definitions of maximum/minimum/saddle points Let’s state the precise

definitions of these terms here. Exercise: Fill in each blank with either ∃ or ∀.
Then try to interpret what these statements mean in words.

Let c denote a critical point of a function f : U ⊆ R2 → R, then:

(a) c is a local minimum point if, δ > 0, such that

x ∈ U such that |x− c| < δ =⇒ f(x) ≥ f(c).

(b) c is a local maximum point if, δ > 0, such that

x ∈ U such that |x− c| < δ =⇒ f(x) ≤ f(c).

(c) c is a saddle point if, δ > 0,

x1,x2 ∈ the δ-neighbourhood of c such that f(x1) < f(c) < f(x2).

• Steepest descent In real-world applications (e.g. physics, engineering, data

science, machine learning), the local extrema of a multivariable function are not

usually obtained by differentiation or the second derivative test, because the form

of the function f(x, y) may not be known explicitly. Instead, a numerical method

called steepest ascent/descent is employed. We describe it briefly here.

Take a function given by f(x, y). Recall the definition of the directional derivative.

Dûf = ∇f · û = |∇f | cos θ,

where θ ∈ [0, π] is the angle between ∇f and the unit vector û. From this simple

observation, we can deduce that

– The directional derivative is maximised when θ = 0, so f is increasing the

fastest when we walk in the direction û = ∇f/|∇f | (normal to the contour

line f = constant). This is called the direction of steepest ascent.
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– Similarly, in the direction û = −∇f/|∇f |, f decreases the fastest. This is

called the direction steepest descent.

Therefore, to quickly search for a local maximum/minimum point of f(x, y), one

simply keeps walking in the (x, y) plane along the direction of ∇f (perpendicular

to the contour lines), until (x, y) converges to the top of the hill or the bottom of a

valley. More about this in a topic called optimisation.

In summary:

Lemma 4.5. The direction of steepest descent for a function f(x) is .

• Normal vectors and computer graphics Light reflects off objects at an angle

which can be determined from the normal vectors on the surface. Thus, normal

vectors play a key role in rendering realistic 3D graphics in computer games and

cinematic animations. In such applications, paths of light rays are traced between

the camera and light sources in a scene, reflecting off intervening surfaces where

the normal ∇F is determined numerically. This is a somewhat crude description of

the highly sophisticated technique of raytracing, which can now be done in real

time on home computers and game consoles.

4.5 Can-do checklist

� Find the linear approximation of a function f : Rn → R at a given point x0.

� Find the equation of the tangent plane to a surface at a given point.

� Find the normal vectors to a surface at a given point (does your normal point

up/down?). Derive and apply the mantra “∇f is normal to f = constant”.

� Find and classify the nature of critical points of a surface z = f(x, y) using the

second derivative test.

� Find the direction of steepest descent for a function f : Rn → R at a given point

x0.
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INTEGRATION I: CARTESIAN COORDINATES

5.1 Double integrals

Question. Find the area under the curve y = f(x) from x = a to b.

These steps are probably along the line of what you were taught in school.

(a) Divide the interval [a, b] into n tiny intervals of size ∆x.

(b) In each subinterval [xi, xi+1], we sample a point x∗i (say, the midpoint). Form a

thin strip of height f(x∗i ) over the interval.

(c) The area is the limit of the sum of the area of the strips as ∆x→ 0, i.e.

= lim
∑

(5.1)

Here’s an alternative way to express the area under the graph. Instead of summing

over strips, let’s sum the area of tiny rectangles.

(a) Divide the area into tiny rectangles of area ∆A. Let each rectangle have width

∆x = xi+1 − xi and height ∆y = yj+1 − yj, so that ∆A =

(b) The area is the limit of the double sum of the area of rectangles as both ∆x and

∆y go to 0, i.e.

= lim
∆x→0

lim
∆y→0

n−1∑
i=0

mi−1∑
j=0

(5.2)

41
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The integrals (5.1) and (5.2) give the same answer. You can see this by evaluating

inner ( dy) integral of (5.2), treating x as a constant.

This means that we can now express area in R2 as a double integral. The secret to

success with multiple integration is to spend time carefully working out the integration

limits. Use the recipe below to help you.

(a) Find the range of all possible x values for the tiny rectangles. The answer must be

numbers and not functions.

(b) While a tiny rectangle is moving back and forth between the limits in step (a),

freeze it at a random position (there should be nothing special about this random

position at all). What y values must the rectangle then sweep out to generate the

area?

(c) Use the previous answers to fill in the integration limits.

CHECK that the outermost limits are numbers.

Once you have the integrals, work from inside out (i.e. do the innermost integral first).

Example 1. Write down the area between the curve y = x2 and y = 2x as a double

integral and evaluate it.

Tip: A sketch is always helpful when it comes to multiple integrals.
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It’s possible to swap the role of x and y in the recipe!

Example 2. Redo the previous example by switching the order or integration.

Important: The order of integration is determined by the ordering of your dx and dy

at the end of the integral. If it helps, you can write something like
∫ b
x=a

∫ d
y=c

dy dx.

Example 3. Sketch (and shade) the area of integration represented by these double

integrals. Switch the integration order in each case.

a)

∫ 2

0

∫ 1

−1

dy dx b)

∫ 1

0

∫ 3

3x

dy dx c)

∫ 1

0

∫ 2−y

y

dx dy

Tip: There is often one integration order which is easier than the other(s). Identifying a good

order of integration comes with practice and experience.

Example 4. Write down the two double integrals representing the sector of a unit circle

shown below.
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Now that we can translate between the area of a region in R2 and a double integral,

we can do some really powerful integrations. For area calculation, integrand equals 1,

but it doesn’t have to be! In fact, we can insert any scalar-valued function f(x, y).

Example 5. Evaluate the following integrals.

a)

∫ 2

1

∫ 2

0

(3x2y − xy2) dy dx b)

∫ π/2

0

∫ y

0

y cosx dx dy

c)

∫
R

e−y
2

dA, where R = {(x, y)
∣∣ 0 ≤ x ≤ 1, x ≤ y ≤ 1}.

Let’s interpret the integrals above. Consider the surface z = f(x, y) over R ⊆ R2.

Each tiny rectangle in R with area ∆A = ∆x∆y can be associated with height

z∗ = f(x∗, y∗), where (x∗, y∗) is a point sampled from the rectangle (say, the centroid).

Therefore, z∗∆A represents the of a tall pillar with rectangular base.

Thus, the integrand

∫ ∫
R

z dA = lim
∆x→0

lim
∆y→0

∑∑
z∗∆x∆y represents the. . .
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5.2 Triple integrals

Recap: The area under the curve y = f(x) can be expressed as either:

a) A single integral
∫
f(x) dx (summing up area of thin ).

b) A double integral
∫∫

dA (summing up area of tiny ).

Similarly, the volume under the surface z = f(x, y) can be expressed as either:

a) A double integral
∫∫

f(x, y) dA (summing up area of thin ).

b) A triple integral
∫∫∫

dV (summing up area of tiny ).

Here’s a recipe for working out the limits of triple integrals.

(a) Start by working out the limits of the double integral describing the region R ⊆ R2

over which the volume occupies (use the previous recipe.)

(b) Add one more integral in dz as the innermost integral. This (usually) has the

most complicated limits which are typically functions of x and y.

(c) To work out the limits in (b), freeze a cuboid at a random potion in R. What z

values must the cuboid sweep out to generate the volume?

(d) CHECK that the outermost limits are always numbers. All variables must be

integrated away into a number as you work from inside out.

As with the previous recipe, the roles of x, y, and z can change in the above recipe.

Example 6. Write down a triple integral representing the volume of a tetrahedron with

vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). How many ways are there to do this?

Compute the volume.
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Example 7. Calculate the volume of a solid in the first octant bounded by the surfaces

y + z = 1 and y = x2. Do this in two ways.

When the integrand f(x, y, z) of the triple integral equals 1, we get a volume. In

mechanics, we often need to evaluate triple integrals with integrands that are not unity,

Example 8. Evaluate

∫∫∫
Ω

xy dV where Ω is the volume under the plane z = 1 + x+ y

and above the region on the x-y plane bounded by the curves y =
√
x, y = 0 and x = 1.

[NB: This integral arises in the calculation of the moment of inertia of a solid.]
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Example 9. Suppose that a solid occupying a region Ω ⊂ R3 has density ρ(x, y, z) which

varies with position. Derive the expression for the total mass M of the solid.

Example 10. Consider a solid occupying a region Ω ⊂ R3 with density ρ(x, y, z) and

total mass M . The coordinates of its centre of mass (also called centroid), (x, y, z), are

x =
1

M

∫∫∫
Ω

ρx dV, y =

Calculate the z-coordinate of the centre of mass of the tetrahedron in Example 6, assuming

that it has uniform density ρ = 1. (Maybe guess what the answer should be.)

[Using the same formula, we can also find the centre of mass (x, y) of a thin lamina in 2D. For

derivation, see §15.4 in Stewart.]
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So far we have done everything in Cartesian coordinates, which are good for squarish,

boxy areas and volumes with some straight edges or pointy corners. What about these?

Example 11. Express each of the following as an integral in Cartesian coordinates (no

need to evaluate). Do they seem easy to evaluate?

a) The area of the circle x2 + y2 = R2.

b) The area in the first quadrant bounded by the polar curve r = 1 + cos θ.

c) The volume of a solid bounded by z = 4− x2 − y2 and the x-y plane.

d) The volume of the sphere x2 + y2 + z2 = R2 in the first octant.
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5.3 Discussions

• Fubini’s Theorem In this course, we can assume that that we can switch the

order of integration in
∫∫

R
f(x, y) dA without penalty (just adjust the limits). This

is allowed as long as the function f(x, y) is continuous on the domain R (where

continuity in Rn will be defined next year). The theorem that legitimises this

switching is known as Fubini’s Theorem after the Italian mathematician Guido

Fubini (1879-1943).

• An integration trick (non-examinable) Let’s calculate this seemingly impossible

integral

I =

∫ ∞
0

sinx

x
dx.

I don’t think we can make much progress with this integral using just the integration

skills you’ve learnt in school. But here’s a lovely trick which is a fun application of

Fubini’s Theorem. We turn it into a double integral !

This trick is based on the following simple observation:∫ ∞
0

e−xy sinx dy = ,

(where x is held constant in the integral). Therefore, we can write

I =

∫ ∞
0

∫ ∞
0

e−xy sinx dy dx.

Now apply Fubini’s theorem to switch the integration order. You would most

likely have come across the integral
∫∞

0
e−xy sinx dx as an exercise in integration

by parts with the use of a reduction formula (i.e. integrate by part twice and spot

the original integral in the answer). Using this technique, you should verify that:∫ ∞
0

e−xy sinx dx =
1

1 + y2
.

Returning to the original integral, we then find:

I =

∫ ∞
0

dy

1 + y2
=
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5.4 Can-do checklist

� Express area of a region R in R2 as a double integral (in Cartesian coordinates).

Conversely, given a double integral
∫∫

R
dA, sketch the area R.

� Express volume of a region Ω in R3 as a triple integral (in Cartesian coordinates).

Conversely, given a triple integral
∫∫∫

Ω
dV , sketch the volume Ω.

� Switch the order of integration.

� Apply multiple integrals (in Cartesian coordinates) to calculate area, volume, mass

and coordinates of centre of mass.
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INTEGRATION II: SPECIAL COORDINATES

Recall that a double integral in Cartesian coordinates is of the form
∫∫

R
f(x, y) dA where

dA =

And for a triple integral, we have
∫∫∫

Ω
f(x, y, z) dV where

dV =

Depending on the integrand and the symmetry of the domain of integration, Cartesian

coordinates may not be the best choice. This chapter is all about how we can exploit the

symmetry of the problem to facilitate calculations. In particular, we want to obtain new

expressions for dA and dV in special coordinates that exploit these symmetries.

6.1 Polar coordinates

In R2, the Cartesian (x, y) and polar coordinates (r, θ) are related by:

x = y =

In the double integral
∫∫

R
f(x, y) dA, if the boundary of R can be described by a simple

polar curve, or when the integrand can be expressed as a simple function of r and θ, it is

51
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natural to perform the integration using polar coordinates. Let’s work out how dA looks

like in this case.

In the figure above, on the left, we divide R into polar grids (ri, θj) where i = 0, 1 . . . n

and j = 0, 1, . . .m. The grid lines are curves of constant r and θ, with uniform subdivisions

of length ∆r and ∆θ respectively.

On the right, we zoom in on one such area element. If we sample a point (r∗, θ∗)

within this area element, say, the midpoint where

r∗ = θ∗ =

Polar coordinates: dA =

Example 1. Find the area in the first quadrant bounded by the polar curve r = 1+cos θ.

Tip: Most of the time we do
∫

dθ in the outermost integral.
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Example 2. In A-level textbooks, one finds the formula for the area bounded by a polar

curve written as

Area =

But where does this formula come from?

You will probably not be told explicitly to change coordinates. You must judge the

symmetry of the integrand and the domain of integration, then take your own initiative.

Example 3. Calculate
∫∫

R
xy2 dx dy where R is the region in the first quadrant bounded

by concentric circles radius 1 and 2, centred at the origin.

Write down the answer if the phrase “the first quadrant” is replaced by R2.
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6.2 Cylindrical coordinates

Now let’s consider the triple integral
∫∫∫

Ω
f dV where Ω ⊆ R3. Suppose Ω has a rotational

symmetry about the z axis (like a cylinder, or any solids with circular horizontal slices),

then, instead of using Cartesian coordinates (x, y, z), we might consider using cylindrical

coordinates (r, θ, z), where r and θ are the usual polar coordinates on the x-y plane. The

figure below explains this setup.

x = y = z =

Volume element: dV =

In short: cylindrical coordinates =

Example 4. Find the volume of

a) a cylinder base radius a, height h, b) a cone with base radius a, height h.
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Cylindrical coordinates are particularly good for problems that have rotational

symmetry about the z axis (e.g. when a 2D region is revolved around the z axis to form

a solid). One way to spot this symmetry is when you see occurrences of

in the integrand or in the equations defining the integration domain. Can you see what’s

special about this combination?

Example 5. Find the coordinates of the centre of mass of the solid bounded by the

paraboloid z = 1− x2 − y2 and the x-y plane. Assume that the density ρ is constant.
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Example 6. Evaluate
∫∫∫

Ω
(x2 + y2) dV where the domain Ω is the volume bounded by

the surfaces x2 + y2 = 1, z = 2− x, and z = 0.
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6.3 Spherical coordinates

In R3, cylindrical coordinates do a good job of exploiting the rotational symmetry about

the z axis. But what if we have even more rotational symmetries, say, about the x or y

axis? (e.g. a sphere).

One idea is to replace the Cartesian z coordinate by a polar-like angle, , measured

from the positive z axis (i.e. set φ = 0 along the z axis). This gives us a new set of

coordinates (r, θ, φ) called spherical coordinates. From the figure below, let’s work out

the relationship between spherical and Cartesian coordinates.

x =

y =

z =

Volume element: dV =

Example 7. Find the volume of a sphere radius a.
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Spherical coordinates are particularly good for problems that have sphere-like sym-

metries about the origin. One way to spot this symmetry is when you see occurrences of

in the integrand or in the equations defining the integration domain.

What’s special about this combination?

Warning: a) Some books use ρ instead of r for spherical coordinates. Why?

b) Some people/books/modules swap the definitions of θ and φ (especially in physics).

Example 8. Evaluate
∫∫∫

Ω
z2 dV where Ω is the volume lying between the spheres

radius 1 and 2, centred at the origin. Hence, write down
∫∫∫

Ω
x2 dV and

∫∫∫
Ω
y2 dV .

Example 9. Evaluate
∫∫∫

B
exp (x2 + y2 + z2)3/2 dV where B is the volume within the

surface x2 + y2 + z2 = 1.
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6.4 Discussions

• A Gaussian integral and a trick (non-examinable) Here is a neat integration

trick to evaluate

I =

∫ ∞
−∞

e−x
2

dx.

Since we can also write I =
∫∞
−∞ e

−y2 dy, we can multiply the two expressions for I

and, assuming that we can move terms around (appealing to Fubini’s theorem), we

have

I2 =

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy =

∫∫
R2

e−(x2+y2) dx dy.

Note that the domain in the final integral is the whole of R2. We can evaluate this

integral in polar coordinates (r, θ). We have:

I2 =

∫ 2π

θ=0

∫ ∞
r=0

re−r
2

dr dθ = =⇒ I = .

This kind of integral, known as a Gaussian integral, occurs frequently in university

mathematics, especially in probability and statistics (you may recognise that the

integrand is the distribution). However, note that if we change

the integration limits to
∫ b
a
e−x

2
dx for arbitrary real numbers a, b, then there are

no elementary expressions for the answer.

6.5 Can-do checklist

� Evaluate a double integral in polar coordinates.

� Define cylindrical coordinates and use them to evaluate triple integrals.

� Define spherical coordinates and use them to evaluate triple integrals.

� Judging from the domain of integration and the integrand, decide which coordinates

are most suitable for evaluating a given double/triple integral.
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Example 10 (Extra practice - adapted from Stewart Ex.15.8). In each case, sketch the

domain of integration in R3 and evaluate the integral.

a)

∫ π/6

0

∫ 2π

0

∫ 3

0

r2 sinφ dr dθ dφ b)

∫ π/4

0

∫ 2π

0

∫ secφ

0

r2 sinφ dr dθ dφ



CHAPTER 7

CALCULUS OF MULTIVARIABLE FUNCTIONS

We will now revisit this calculation of dA and dV using a method that can be applied

to coordinate transformations more generally.

From this point onwards, the distinction between scalar and vector quantities will be

even more crucial, so please make sure you distinguish how you write x and .

7.1 Change of variable for multiple integrals

The coordinate transformation from (x, y) (Cartesian coordinates) to (r, θ) (polar coor-

dinates) can be represented by a bijective coordinate transformation F : U ⊆ R2 → R2

where F(r, θ) = (x(r, θ), y(r, θ)) = (r cos θ, r sin θ). Let’s sketch the domain and the

image of F.

We are interested in calculating the area element in the image plane. We used a fairly

geometrical argument to derive dA = r dr dθ. We will rederive this result in this section.

More generally, let F(u, v) = (x(u, v), y(u, v)) be a bijective coordinate transformation

from (u, v) to (x, y). Let’s obtain an expression for the area element dA in the x-y plane.

61



Thus we have proved the following:

Theorem 7.1. Let F : U ⊆ R2 → R2 defined by F(u, v) = (x, y) be a bijection which

represents a coordinate transformation x = x(u, v) and y = y(u, v). Then, the integral of

f : R ⊆ R2 → R can be expressed as∫∫
R

f(x, y) dx dy =

∫∫
S

f(u, v) |det DF(u, v)| du dv.

where S = F−1(R) is the corresponding region in the (u, v) plane. In this above equation,

the matrix DF(u, v), called the , is defined by
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The Jacobian matrix is named after the mathematician Carl Gustav Jacob Jacobi

(1804-1851). Try to write down a triple-integral version of Theorem 7.1.

Theorem 7.1 (for double and triple integrals) essentially says:

dA = dx dy =

dV = dx dy dz =

Example 1 (Polar coordinates). Calculate the Jacobian matrix and its determinant for

the mapping F defined by F(r, θ) = (r cos θ, r sin θ).

Example 2 (Cylindrical coordinates). Calculate the Jacobian matrix and its determinant

for the mapping F defined by F(r, θ, z) =

Example 3 (Spherical coordinates). Calculate the Jacobian matrix and its determinant

for the transformation F defined by
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Example 4. Evaluate I =

∫∫
R

x− 2y

3x− y
dA where R is the parallelogram enclosed by the

lines y = x/2, y = x/2− 2, y = 3x− 1 and y = 3x− 8.

Study the examples of coordinate transformations in Quiz 7 carefully. Further remarks:

• Some modules/books (including the textbook) define the “Jacobian” as the deter-

minant of DF. To avoid this kind of confusion, always say “Jacobian matrix” or

“Jacobian determinant”.

• Some books define the Jacobian matrix as the transpose of our DF.

• Alternative notations that are commonly used for DF(u, v) include or
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7.2 Vector fields

Recall from the previous chapter that that f :⊆ Rn → R is called a scalar-valued function,

also known as a scalar field. It assigns a number to every point in Rn.

In the previous section, we saw functions of the form F : U ⊆ R2 → R2. Such a

function is called a . It assigns a vector in Rn to every point in Rn.

Question. What are some examples of vector fields in real life?

We often represent vector fields by plotting some representative vectors (arrows) in

R2 or R3. The above figure shows the vector field F(x, y) = (−y, x) produced in Python

using the quiver function. We plot the arrows at integer grid points in [−3, 3]× [−3, 3].

Longer arrows = larger magnitude.

Plotting a vector field in R2

Create array of 7 integer points in [-3,3]

Build a 2D grid

u(x, y) = −y
v(x, y) = x

Plot a vector field F = (u, v)

Adjust arrow size (optional)

Sample points = arrow midpoints

import numpy as np

import matplotlib.pyplot as plt

grid = np.linspace(-3,3,7)

x, y = np.meshgrid(grid,grid)

u = lambda x,y: -y

v = lambda x,y: x

fig, ax = plt.subplots()

ax.quiver(x, y, u(x,y), v(x,y),

units='xy', scale=3,

pivot = 'mid')

plt.show()
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See our Moodle page for a Python code for plotting vector fields in R3.

Example 5. Sketch the vector fields:

a) F(x, y) = (x, 0) b) F(x, y) = (x, y) c) F(x, y) = (y, x)

Actually, there’s a vector field we’ve met before, namely, F(x, y) = ∇f(x, y) for some

scalar-valued f . F is a vector field whose flow is to f= constant.

A vector field F which can be expressed as ∇f is called a field.

Question. Are the vector fields in Example 5 conservative?

7.3 Div and curl

Recall the grad operator ∇ which acts on a scalar/vector and returns a scalar/vector.

Let’s define two more differential operators.

Definition. Let F : U ⊆ R3 → R3. The of F is, denoted ∇ · F or

is defined by

div F =

Definition. Let F : U ⊆ R3 → R3. The of F is, denoted ∇ × F or

is defined by

curl F =
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The div operator takes a and returns a .

The curl operator takes a and returns a .

Example 6. Calculate ∇ · F and ∇× F where F is defined by:

a) (yz, xz, xy) b) (2xz, z + 2 cos y, 2z3).

Example 7. Find the div and curl of vector fields (x, y) and (−y, x)

Example 8. Prove that if F(x, y, z) is a conservative field, then curl F = 0.

Is this consistent with the result in Example 6(a)?
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See Quiz 7 for further examples, plus a mega drill on grad, div and curl.

7.4 Discussions

• In multivariable calculus, the Jacobian determinant plays an analogous role to the

derivative in one-variable calculus. In particular, we have the following multivariable

version of a result from Analysis.

Theorem 7.2. [Inverse Function Theorem] Let F : Rn → Rn be a smooth function.

If the Jacobian determinant is nonzero at a point x0 in the domain, then there

exists a neighbourhood U of F(x0) such that F−1 exists and is smooth on U .

The proof of this result will be studied in multivariable analysis.

• Therefore, to ensure that the coordinate transformation in Theorem 7.1 is bijective,

we need the Jacobian determinant to be nonzero, and so the domain of the map F

has to be restricted to ensure this. It’s not a major concern in this course, but this

will be very important in future courses (e.g. differential geometry).

7.5 Can-do checklist

� Define the Jacobian matrix of a mapping from Rn to Rn (n = 2 or 3). Explain the

significance of the Jacabian determinant.

� Calculate the area or volume element ( dA or dV ) for a new coordinate system

defined by a transformation of another coordinate system.

� Compute the div and curl of a vector field. Use grad, div and curl in combination.
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GREEN’S AND STOKES’ THEOREM

8.1 Line integrals

A line integral is of the form ∫
C

F · dr, (8.1)

where F : Rn → Rn is a vector field and C is a curve parametrised by r(t) with t ∈ [a, b].

In practice, we evaluate the line integral by writing it as

(8.2)

Note that since r′(t) is the tangent vector along C, the line integral essentially quantifies

the tendency of the vector field F to point in the same direction as C.

Here is a physical interpretation of the line integral (8.2). If F represents a force

acting on an object, then (8.2) represents the energy spent in moving it along the curve

C from t = a to t = b. In physics, this is called the on the object by F.

Example 1. Calculate the line integral of F(x, y) = (x2,−xy) along the quarter circle

shown below, where the circle is traversed a) from (0, 1) to (1, 0), b) from (1, 0) to (0, 1).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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It’s clear from the expression
∫
C

F · dr that the line integral does not depend on the

specific parametrisation of the curve C.

Example 2. Find the work done by F = (2y2, z2, x2) on a particle along the line segment

from (0,0,1) to (2,1,0).

Example 3. Calculate the line integral of F = (y, x, 2) around the closed curve r(t) =

(5 cos t, 5 sin t, 1), t ∈ [0, 2π]. Note: a line integral around a closed curve is denoted
∮

dr.

Example 4. Prove that if F(x, y, z) is a conservative field, then the line integral of F is

independent of the path joining the end points of C. (This explains the significance of

the word conservative.) Is this consistent with the result in Example 3?
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The proof in the last Example gives a good indication of what’s to come in the rest

of this course. We will study 3 integral theorems that look like the FTC:

n-dimensional integral of a differential quantity = dimensional integral.

At our disposal are: line integrals (1D), area integrals (2D) and volume integrals

(3D). The differential quantities will involve partial derivatives, grad, div and curl.

8.2 Green’s Theorem

Our first theorem reduces an area integral to a line integral. This theorem works in R2.

A curve C in R2 is said to be if it is traversed anti-clockwise.

Green’s Theorem in the plane Let C be a positively oriented, simple closed

curve and D the region bounded by C. For any two-variable functions P , Q that

have continuous partial derivatives on D, we have:∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
C

(P dx+Q dy) (8.3)

The proof is in Quiz 8. More about the mathematician George Green in the Discussion.

The weird notation on the RHS is simply
∮

F· dr where F = and r = (x, y).

We can then insert our favourite parametrisation r(t) if necessary.

Example 5. Use Green’s theorem to evaluate
∫
C

(−y dx + x dy) where C is the circle

x2 + y2 = 9 traversed anticlockwise.

Example 6. Let C be the ellipse
(
x
a

)2
+
(
y
b

)2
= 1. Using Green’s Theorem with P = −y

and Q = x, calculate the area of the ellipse.
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The previous example shows us a neat application of Green’s Theorem in turning

an area enclosed by C into a line integral along C. This is the principle behind the

planimeter (a device that, when used to trace the boundary of a region, tells us its area).

Example 7. Evaluate I =

∮
C

(y2 dx+ xy dy) where C is the triangle OAB with vertices

at O(0, 0), A(1, 0), B(1, 2). Do this a) directly, and b) using Green’s Theorem.

Example 8. Use Green’s Theorem to evaluate

∮
C

(
−y3 dx+ x3 dy

)
, where C is the unit

circle x2 + y2 = 1, traversed anti-clockwise.
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8.3 Circulation

We introduced the curl operator in Chapter 7. Here is a physical intuition of

what it means. For mathematical details of the following paragraph, see Quiz 8.

Think of F(x, y, z) as the velocity of a fluid at a given point (x, y, z). We would like

to quantify the rotation of the fluid at P . This ‘pointwise’ rotation can be characterised

by 2 properties: the speed of the rotation, and the orientation of the rotation plane. It

turns out that the vector ∇×F completely captures these characteristics. Its magnitude

is proportional to the rotation speed, and its direction is normal to the rotation plane.

If P also lies on a surface S with unit normal n̂, we might also ask, how much is the

fluid circulating around n̂? This quantity is called the pointwise

Pointwise circulation =

The circulation is curl F in the direction of n̂. It is a number whose sign

tells us about the direction in which the fluid is locally rotating around n̂. . .

Make a thumbs-up gesture with your right hand, and align the thumb in the direction

of n̂. If curl F · n̂ > 0, then the direction in which the fluid locally rotates around n̂ is

the direction in which your other fingers curl. If curl F · n̂ < 0 , the fluid rotates in the

opposite direction to your fingers. This is sometimes called the right-hand rule.

As a rule of thumb (literally), we always choose n̂ (the thumb) to be the

This isn’t strictly necessary, but this convention helps us avoid sign errors.

Since we now have a numerical measure of circulation at a point on a surface. It is

natural to find the net circulation by summing the pointwise circulation over the entire

surface S, i.e.

Net circulation =

Another weird notation: Many books use the symbol dS to mean n̂ dS.
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8.4 Stokes’ Theorem

The next theorem is a generalisation of Green’s Theorem to 3D curves and surfaces.

Theorem 8.1. (Stokes’ Theorem) Let F(x, y, z) be a vector field. Let S be a

surface with unit normal n̂ and boundary curve C oriented positively. Then,

The positive orientation of C is now determined by the outward-pointing unit normal n̂.

The theorem will be proved properly in next year’s multivariable analysis. An

accessible proof for a simplified setup (using Green’s Theorem) can be found in Stewart

§16.8. Here is a pictorial summary of Stokes’ Theorem which also helps us work out the

correct orientation of the boundary curve.

Example 9. Obtain Green’s Theorem from Stokes’ Theorem.
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The amazing thing about Stokes’ Theorem is that it holds for all smooth surfaces

with boundary C. If we think of C as the rim of a , then Stokes’

Theorem holds regardless of the shape of the net. Here is an example.

Example 10. Calculate the integral

∫∫
S

∇× F · dS where F = (y, 2z, x2) and S is the

surface z = 4− x2 − y2 where 0 ≤ z ≤ 4.

Let’s explore 2 methods: a) Use Stokes’ Theorem , b) Evaluate the net circulation on

a simpler surface with the same ‘rim’.
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8.5 Discussions

• George Green Stokes’ Theorem takes its name from George Stokes (1819-1903),

an Irish mathematician and physicist who made profound contributions particularly

in fluid dynamics. Stokes’ theorem, however, was not Stokes’ own, but his name

stuck because of his habit of setting it as an exam question at Cambridge. The

theorem was probably first discovered by George Green (1793-1841).

Green was a remarkable English mathematician who, having taught himself math-

ematics at a library in Nottingham in his 30s, entered Cambridge University as

an undergraduate at almost 40 years old. His name lives on today most notably

in Green’s Theorem and Green’s function, an indispensable tool in solving partial

differential equations.

• Stokes’ Theorem in physics There are many manifestations of Stokes’ Theorem

in physics, particularly in electromagnetism, e.g. Faraday’s law and Ampère’s

Law, which are themselves part of the four Maxwell’s equations. The other two

are Gauss’s Laws for electricity and magnetism, which are consequences of the

Divergence Theorem (the subject of the next Chapter).

8.6 Can-do checklist

� Calculate line integral of a given vector field along an oriented curve (which you

may have to parametrise yourself).

� State Green’s Theorem (not given in exam, but see Example 9) and use it to

evaluate a line integral or an area integral (proof not examinable).

� Explain the uses of the right-hand (grip) rule, especially for determining the positive

orientation of the curve bounding a surface.

� Use Stokes’ Theorem (given in exam) to evaluate a line integral or a surface integral

on an appropriate open surface (bounded by the ‘rim of the butterfly net’).
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THE DIVERGENCE THEOREM

9.1 Parametric surfaces

Recall that we parametrised a curve C in R3 using a one-variable function r : [a, b]→ R3,

such that r(t) = (x(t), y(t), z(t)). Similarly, a surface S in R3 can be parametrised using

a two-variable function r :

Example 1. a) Find a parametrisation r(u, v) for the unit disc in R2 defined by

D = {(x, y) : x2 + y2 ≤ 1}.

b) Sketch curves of constant u and v. c) Is this parametrisation unique?
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Example 2. a) Find a parametric equation of the plane Π with equation x+ y + z = 4.

b) Find a parametrization for the surface S defined by

S = {(x, y, z) : x+ y + z = 4 and x2 + y2 ≤ 1}.
c) Write down a parametrization r(t) for the curve bounding the surface S.

Example 3. Write down a trigonometric parametrisation r(u, v) for each of the following

surfaces in R3. Assume a > 0. a) x2 + y2 = a2 b) x2 + y2 + z2 = a2.

Find the outward-pointing unit normal on each surface in terms of (u, v).
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Example 4. a) Sketch the surfaces with equation

z = (x2 + y2 + k)1/2, where k = 0, 1,−1.

b) Write down a vector parametrisation r(u, v) for each surface.

c) Write down the outward-pointing unit normal on each surface in terms of u and v.

x
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To find the normal to a surface, we could use the mantra “∇f is normal to the surface

f = constant”. Another way is to note that at each point on the surface r(u, v) where

(u, v) = (u0, v0), the partial derivatives ru(u0, v0) and rv(u0, v0) are two distinct families

of tangent vectors. The tangent plane at r(u, v) is by these vectors.

Thus, the vector , evaluated at (u0, v0),is normal to the tangent plane.

Lemma 9.1. Let r(u, v) be the parametrisation of a surface S. The unit normal at the

point P on S is given by

n̂ = (9.1)

evaluated at the point P .

In most applications for this module, we will require n̂ to be outward -pointing, and

you will have to deduce from the geometry yourself which sign to choose.

Example 5. Use formula (9.1) to find the outward pointing unit normal to the cone

z =
√
x2 + y2.
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9.2 Surface area

From the proof of Theorem 7.1, we have obtained the element dS on a surface S
parametrised by r(u, v).

dS =

Thus, the surface area of S for a given parameter domain (u, v) ∈ Ω is

Surface area =

∫∫
Ω

Top Tip: In the integrand, note that we need the length of a cross product rather

than the vector itself. As far as you can, avoid performing the cross product (which

is a common source of error). The first check to do is to see if ru · rv = 0. If so,

|ru × rv| = . This is so much simpler to calculate!

Example 6. Calculate the surface area of a sphere radius a.
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It is useful to collect results about the sphere together in one convenient place. You

can use these info in the exams (except when asked to derive volume or surface area).

Sphere radius a

Cartesian equation:

Paremetrisation of points within the volume:

r(r, θ, φ) =

Volume =

Parametrisation of points on the surface:

r(θ, φ) =

Surface area =

9.3 The Divergence Theorem

We will now study the Divergence Theorem - another FTC like theorem. It has wide

ranging applications in physics, particularly in fluid mechanics and electromagnetism.

The proof is very similar to that of Green’s Theorem - see Stuart page 1201 for details.

Below we give an intuitive discussion of why it holds.

Start with a closed container with volume V containing fluid that flows outward

through its surface S. At each point P (x, y, z) on the surface, suppose that the fluid

velocity is v(x, y, z) with unit m s−1, and the density at P is ρ(x, y, z) with unit kg m−3.

Note that the vector F = ρv has unit kg m−2 s−1, meaning that it quantifies the rate at

which the fluid flows through a small element dS containing the point P .

The vector F is called the flux. Furthermore, we can work out the total mass of fluid

emptying from V per unit time by integrating the flux over the entire surface S, i.e.

Total flux across S = (9.2)

where n̂ is the outward-pointing unit normal at each point on S.

On the other hand, consider a volume element dV = dx dy dz within V . Let us write
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the flux vector as F = (F1, F2, F3). In Quiz 9, you will show that the rate at which the

fluid flows out of this volume element is given by(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dx dy dz =

Therefore, total mass of fluid emptying from the entire volume per unit time can be

obtained by integrating over the entire volume:

Rate of outflow from V = (9.3)

Eqs. 9.2 and 9.3 are the same quantity calculated in two ways. Therefore, we have the

following grand conclusion.

Theorem 9.2. (The Divergence Theorem) Let F : R3 → R3 be a differentiable

vector field. Let V be a finite volume in R3 and S its (closed) surface. Then

=

where n̂ is the outward-pointing unit normal to the surface S.

The name of the theorem refers to the div operator on the LHS. Discovered by

Lagrange in 1764, the Divergence Theorem was proved decades later by Gauss and also

by the Russian mathematician Mikhail V. Ostrogradsky (1801-1862). In some texts, the

Divergence Theorem is called the Gauss or Gauss-Ostrogradsky theorem.

We see that the Divergence Theorem looks like the FTC. Like Stokes’ Theorem, the

dimensionality of a multiple integral is reduced thanks local cancellations, resulting in

only the contribution from the boundary.

The flux integral (the RHS) is sometimes written
∫∫

S
F · dS where

dS = n̂ dS (9.4)

= n̂|ru × rv| du dv (9.5)

= ±(ru × rv) du dv, (9.6)

where you have to choose the correct sign to ensure the normal points outwards. Use

whichever expression for dS that’s the most convenient for the situation.
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Another weird notation: The boundary surface of a volume V is often denoted .

Example 7. Let V be the volume bounded by the unit sphere x2 + y2 + z2 = 1 and let

F(x, y, z) = (z, y, x). Calculate the net flux

∫∫
∂V

F · n̂ dS. Let’s do this in two ways:

a) Using the Divergence Theorem, b) Direct calculation.

x
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Example 8. Let V = (−2,−2x,−1). Calculate
∫∫

S
V · dS where S is the open surface

z = 4− x2 − y2, where z ≥ 0. Do this in two ways.

(Note: This gives us two more ways to solve Example 10 in Chapter 8.)

x
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9.4 Discussions

• Divergence Theorem in physics Here are some examples of physical laws that

are manifestations of the Divergence Theorem: Gauss’s Law in electromagnetism,

Poisson’s Equation in the theory of gravitation, the Continuity Equation in fluid

mechanics. You’re very likely to meet these results in physics options.

• What is a surface? The formal definition of surfaces is quite technical. Why?

Well, as an analogy, we can easily understand what a function does, but it takes

a bit of work to define them formally. With the formal definition, we were able

to understand why, for instance, the circle is not a function, but is actually two

functions that can be patched together. For completeness, I have given below the

formal definition of a surface (non-examinable).

Definition. A subset S ⊂ R3 is called a surface if, ∀p ∈ S, there exists an open

set U ⊆ R2, and an open set V ⊆ R3 containing p, such that U is homeomorphic

to S ∩ V .

A homeomorphism can be thought of as stretch and bending (as the saying goes, a

coffee mug is homeomorphic to a ). The definition formalises the

following idea: a surface is locally a piece of a 2D plane that has been stretched

and bent.

• Another way to avoid the cross product In calculating the area element

|ru × rv|, one can also use the following identity

|ru × rv| =
√
EG− F 2 (9.7)

where E = ru · ru, F = ru · rv, G = rv · rv. The RHS is free from cross-products and

is generally easier to evaluate. You can prove this result using the vector identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c), and substituting a = c = ru and

b = d = rv.
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• Unifying Green’s, Stokes’ and Divergence Theorems In year 3 or 4 (or

graduate courses in differential geometry or manifolds), you would be pleasantly

surprised to discover that Green’s, Divergence and Stokes’ Theorems can in fact be

elegantly unified into a single equation. In this unified version, called generalised

Stokes’ Theorem, we have the equation∫
Ω

dω =

∫
∂Ω

ω,

where ω is a differential form, d is the exterior derivative, Ω is a manifold and ∂Ω

its boundary. These technical terms are simply higher-dimensional generalisations

of vector-calculus concepts such as partial derivatives, curves and surfaces. Not

surprisingly, this equation also looks like the FTC.

9.5 Can-do checklist

� Identify standard quadric surfaces including the cylinder, cone, hyperboloid of 1

sheet and 2 sheets, paraboloid, hyperbolic paraboloid (saddle), ellipsoid and sphere.

� Obtain a vector parametrisation of a surface described by a Cartesian equation

(and vice versa).

� Calculate the normal to a parametrised surface. Obtain the outward-pointing unit

normal where required (the normal can simply be written down if obvious from the

geometry).

� Given a parametrised surface, calculate the area element dS (scalar form) or dS

(vector form).

� Calculate the surface area of a parametrised surface.

� Use the Divergence Theorem (given in exam) to evaluate a surface integral, or

recast it as a volume integral.



REVISION ON INTEGRAL THEOREMS

1. Prove that the formula of the area of the surface z = f(x, y) (where (x, y) ∈ R ⊆ R2

is given by

Surface area =

∫∫
R

√
1 + f 2

x + f 2
y dx dy.

Hence calculate the area of the surface z = x2 − y2 contained within x2 + y2 = 1.

2. Find the surface area of the portion of the sphere z =
√
a2 − x2 − y2 where

a) z1 ≤ z ≤ z2, b) θ1 ≤ θ ≤ θ2 (where θ is the polar angle).

Repeat the calculations for the cylinder x2 +y2 = a2, 0 ≤ z ≤ a. Make a conjecture.
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Questions on verifying Green’s, Stokes’ or Divergence Theorems are really useful for

revision because they help us revise techniques in calculating line/surface/volume

integrals. Plus, you get the same answer in 2 ways, which is good assurance.

Some of these questions are from the recommended textbooks. Where the answers

are given in brackets, they are given at the back of the books. Great for practice!

3. (From Stewart) Let F = (x2y2, xy). Let C be the curve shown below (traversed

anti-clockwise). Verify Green’s Theorem.

4. (From Thomas’ Calculus) Calculate
∫∫

S
curl F· dS where F = (3y, 5−2x, z2−2) and

S is the surface parametrised by r(u, v) = (
√

3 cosu sin v,
√

3 sinu sin v,
√

3 cos v),

with 0 ≤ u ≤ 2π and 0 ≤ v ≤ π/2.

Do this in two ways: a) directly and b) using Stokes’ Theorem. (Ans: −15π)

5. (2021 MA134 Exam) Let R > 0 and let D = D1 ∩D2 ∩D3 where

D1 = {(x, y, z) ∈ R3 | z ≥ −R},

D2 = {(x, y, z) ∈ R3 | x2 + y2 ≤ R2},

D3 = {(x, y, z) ∈ R3 | z ≤
√
R2 − x2 − y2}.

Let v(x, y, z) = (2x, 2y, 0). Verify the Divergence Theorem. (12 marks)
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If the question doesn’t say ‘verify’, the method that involves the fewest components

is usually easier (but not always). Think about which integral is easier in each of

the previous 3 questions.

6. (From Boas) Calculate
∫
C

((y2 − x2) dx+ (2xy + 3) dy) where C comprises a line

segment from (0, 0) to (
√

5, 0), and a circular arc from (
√

5, 0) to (1, 2). (Ans: 29/3)

7. (From Schaum’s) Let F = (y + z, −xz, y2). Let S be the surface above the x-y

plane and bounded by 2x+z = 6, y = 2, y = 0 and x = 0. Calculate
∫∫

S
curl F · dS.

(Ans: −6)

8. (From Stewart) Let F = (y2z3, 2yz, 4z2). Let S be the surface bounded by

z = x2 + y2 and z = 4. Calculate
∫∫

S
F · dS.
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