
Methods of Mathematical Modelling 1

Björn Stinner
Mathematics Institute
University of Warwick

Last updated: Sat May 20 12:48:33 BST 2023



Acknowledgments

To a great extent, the notes for the module MA146 Methods of Mathematical Modelling 1 have
emerged from the predecessor module MA133 Differential Equations. Notes for that module had
been provided by David Wood and David McCormick, which in turn are strongly linked with
James Robinson’s book on differential equations. Novel parts are centred around modelling and
dimensional analysis, where some ideas have been discussed with Shreyas Mandre and Emma
Davis. I’d also like to thank students, TA’s and colleagues who helped to improve content and
form of these notes.

Björn Stinner

i



Contents

1 Mathematical modelling 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modelling cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Mathematical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Nondimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Nondimensionalising differential equations . . . . . . . . . . . . . . . . . . 21

2 First order equations 24
2.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Trivial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Autonomous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Stationary points and stability . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Solution techniques for linear equations . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Homogeneous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Inhomogeneous equations and integrating factor . . . . . . . . . . . . . . 35

2.6 Further solution techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.1 Separable equations, separation of variables . . . . . . . . . . . . . . . . . 39
2.6.2 Substitution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Higher order equations 42
3.1 Linear second order equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Homogeneous equation, complementary function . . . . . . . . . . . . . . 43
3.1.2 Inhomogeneous equation, particular integral . . . . . . . . . . . . . . . . . 46

3.2 Linear and second order with constant coefficients . . . . . . . . . . . . . . . . . 47
3.2.1 Auxiliary equation with two real roots . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Auxiliary equation with complex roots . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Auxiliary equation with one repeated root . . . . . . . . . . . . . . . . . . 50
3.2.4 Inhomogeneous equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.5 Example: RLC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Perturbed linear second order equations . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Nondimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ii



CONTENTS

4 Systems 60
4.1 Introduction to systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Relation to higher order equations . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Autonomous systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Phase portraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Linearisation and linear stability . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Homogeneous linear systems with constant coefficients . . . . . . . . . . . . . . . 68
4.3.1 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Distinct real eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Distinct complex eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.4 Other cases and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iii



Chapter 1

Mathematical modelling

1.1 Motivation

What motivates us to undertake mathematical modelling? This motivation ultimately can be
traced to the primal impulse in humans to use abstract concepts for explaining phenomena and
processes, usually with the aim of making predictions about them and controlling them. An
example is pre-school children realising that when two out of five apples are eaten, three remain,
and then are able to transfer such understanding to using up construction bricks or hiding
soft toys. More sophisticated examples are the concept of orthogonality, whether used to find
minimal distances or for separating features, or computing with probabilities, whether to assess
chances in a gamble or to inform decisions. In many cases, insight can simply be gained without
much abstraction by ’trying out’, i.e., performing suitable experiments. However, these might
be too expensive, too dangerous, or simply not feasible, and then reusing abstract, theoretical
ideas that turned out beneficial for describing similar phenomena may be the only way to gain
insight.

Generally, the purpose of mathematical modelling is gaining insight and expanding knowledge
by describing behaviours and trends in real-world problems, and by making predictions about
these. In the modelling process, assumptions are made that involve simplification and reduc-
tion to essential features, characteristics, or quantities of interest. Suitable state variables and
parameters for these are identified and then related in mathematical equations. This process
is guided by some principles and systematic procedures, and it hopefully leads to equations
that can be solved and further analysed. In fact, the choices made to formulate the model are
informed by available tools, methodology, and techniques for its study. Before we discuss the
modelling process in more detail, let us look at an example.

The following graph displays the Covid-19 infections in Wales for the first 75 days of the
pandemic, starting on 28/02/2020 (day 0 in the graph below):
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1.1. MOTIVATION

Suppose now we are 25 days into the outbreak and would like to make a prediction about the
number of infected people. For this purpose, we simply ’fit’ some curves to the data and use
their extensions for a prediction. So we only use data processing tools and completely ignore
background and context of the data. Let us first plot the data for the first 25 days to get an
idea of possible curves.

We observe that the numbers effectively increase, but there are many increasing functions that
could describe the trend. Writing t for the time measured in days, for instance, a quadratic
polynomial of the form p(t) = mt2 with a suitable number m > 0 or an exponential function
of the form f(t) = sect with parameters s, c > 0 can effectively capture the growth. For some
suitable parameters m, s, and c we indeed seem to be able to get good fits in that the curves
’nicely’ run through the data points for the first 25 days:

Let us now use these curves for a prediction. We plot the data and the curves for 75 days.
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1.1. MOTIVATION

This doesn’t look very good. The polynomial fit quickly runs away from the data points. The
exponential fit follows them at least for a while towards the spike. Both approaches are not able
to describe the fact that the infection numbers reach a maximum before decaying again. Of
course, for the fits we had chosen functions that increase, however this was inspired by the trend
in the data for the first 25 days. In order to recover the observed behaviour of the infections
numbers for the later days we need to combine the data with some additional knowledge about
what they mean and describe.

Mathematical models of infectious disease epidemiology track the infected individuals in a
population using assumptions about transmission and recovery of the disease. A classical ap-
proach is the SEIR model, on which many later, refined models are based. The population,
denoted by N , is assumed constant in time and split into susceptible individuals S(t), exposed
(but not yet infectious) individuals E(t), infected (and infectious) individuals I(t), and recov-
ered1 individuals R(t). As indicated, these population compartments depend on time tmeasured
here in days, but they have to sum up to the overall population at any time,

S(t) + E(t) + I(t) +R(t) = N ∀t.

Assumptions are then made about the changes of the compartments:

� Susceptible individuals get in contact with other people, and the chance that another
person is infectious is I(t)/N . We assume that they become exposed from such a contact
at a rate that is proportional to a factor β > 0.

� Exposed individuals become (ill and) infectious at a rate with a factor denoted by ϵ > 0.

� Individuals from the compartment I(t) recover at a rate with a factor denoted by γ > 0.

Denoting the change with a time derivative we obtain a set of differential equations, one equation
for each compartment:

dS

dt
(t) = −β

I(t)

N
S(t)

dE

dt
(t) = β

I(t)

N
S(t)− ϵE(t)

dI

dt
(t) = ϵE(t)− γI(t)

dR

dt
(t) = γI(t)

1At least in the best case. Somewhat cynically, the notation R(t) also allows for the interpretation as a removed
individual...
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1.1. MOTIVATION

Here is a typical solution to the ODE system, where we start with a hign number S(0), a small
number I(0), and E(0) = R(0) = 0:

The curve for I looks very promising, this is effectively the behaviour that our numbers display
and that we expect!

Getting back to our prediction problem, we choose parameters β, γ, ϵ and initial values such
that fairly good fit of the I(t) values with the infections in the first 25 days is obtained.

Let us now use these parameters or, respectively, the solution to the corresponding ODE system
to make a prediction. Below we plot the infection data and the numerically obtained I(t) values
for the first 75 days.

This looks quite good, the solution captures the trend in the data points with the increase and
the decay, even the maximum looks at a good position. So the mess of data is effectively fairly
well described by a couple of equations with very few parameters. Now, can we further extend
the prediction? Let us look into a year.
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1.2. MODELLING CYCLE
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Figure 1.1: Illustration of the modelling cycle.

Whilst the model can describe the first wave, the computed values for I(t) stay close to zero
after and the model fails to pick up the later waves, particularly the one early in 2021 caused
by a variant of the virus. For this purpose, more sophisticated models would be needed.

Improving the quality of models, such as by extending their range of applicability, is part of
the overall modelling process. The process can be illustrated with a so-called modelling cycle,
the aspects of which we study in the next section.

1.2 Modelling cycle

Figure 1.1 illustrates what we mean with a modelling cycle. Essentially this is a graph, here with
three vertices that are connected with directed edges (arrows) so that a closed loop is obtained.
These edges represent modelling stages. Before we discuss these let us briefly remark that the

5



1.2. MODELLING CYCLE

modelling cycle in Figure 1.1 is fairly general but also basic. One can find many others in the
literature with more detail, where some of its vertices and edges are broken down into sub-steps.

1.2.1 Model formulation

Mathematical models express knowledge, intuition, and assumptions about a real world phe-
nomenon or process in a mathematical language. This involves identifying suitable variables
that quantify aspects deemed of importance and of relevance in any description. These variables
then are related to each other by means of equations. In this module, we will almost exclusively
use differential equations for this purpose. In many applications, knowing the past and current
characteristics, expressed in terms of the variables, of a phenomenon or process and the laws
that govern their changes enables to make predictions about future characteristics, i.e., the val-
ues of the variables. Changes of the variables can be expressed in terms of their derivatives with
respect to time, so when expressing the laws in mathematical form then we obtain equations that
put the variables and their derivatives in a relation with each other. These ideas proved very
successful as they often resulted in mathematical problems that could be solved, and moreover
the solutions could be interpreted to yield insight into the phenomenon.

We have seen already that mathematical models always involve restrictions to aspects that
are deemed of importance, which is the essential reason why we have a modelling cycle instead
of something like a pipeline: when the model is analysed and we compare the results with
observations and measurements then we might not be satisfied and need to re-think the choice
of variables and their relations. In general, we are fairly free to define these relations and may
simply express in mathematical terms what we observe.

Example 1.1 (Vicsek model for flocks and swarms). A simple model for flocks and swarms
inspired by observations goes back to Tamas Vicsek and coworkers2. Assume a flock with N ∈ N
members. Each member has a position denoted by xi(t), i = 1, . . . , N , in the square Ω = [0, L]2

with edge length L > 0. The members move with the same constant velocity v0 > 0 but in an
individual direction given by an individual angle θi relative to the first coordinate axis. We can
express this by the differential equations

d

dt
xi(t) = v0

(
cos(θi)
sin(θi)

)
, i = 1, . . . , N.

The original Vicsek model is discrete in time, however. Given a small time step size τ > 0 we
introduce discrete times t(m) = mτ where m ∈ N ∪ {0} at which we want to track the positions.

We denote the position of member i at time t(m) with x
(m)
i and the orientation with θ

(m)
i . We

then move the points representing the swarm members according to

x
(m+1)
i = x

(m)
i + τv0

(
cos(θ

(m)
i )

sin(θ
(m)
i )

)
, i = 1, . . . , N.

Observations showed that the swarm members adjust the orientation of their movement depend-
ing on their neighbours. The assumption was made that the new orientation in each time step
is simply the average of the neighbours’ orientation plus some random fluctuations (noise),

θ
(m)
i =

〈
θ
(m−1)
j

〉
r
+ ηWi.

2Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet: Novel Type of Phase Tran-
sition in a System of Self-Driven Particles. Phys. Rev. Lett. 75, 1226 (1995).
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1.2. MODELLING CYCLE

Figure 1.2: Swarming simulation with the Vicsek model in Example 1.1. A solution is displayed
at the beginning and after 10, 30, 80, 160, 240 steps, starting at the upper left, from left to right
and after from top to bottom.
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1.2. MODELLING CYCLE

Here, ⟨·⟩r means the average of all swarm members in the ball of radius r > 0 around member i,
η > 0 is a factor determining the strength of the fluctuations, and Wi is a normally distributed
random variable.

Figure 1.2 gives an impression of a solution. Note that every solution is different as the
fluctuations are random. Researchers are interested in the average behaviour but also in the
emergence of swarming behaviour. Indeed, we can see in the figure that the swarm members join
up to form bigger and bigger groups, which then move together.

In some applications, principles can guide us to come up with a model. These may restrict
flexibility but maybe necessary to ensure that the model satisfies certain side conditions. They
often provide structure that can be exploited when analysing the model. As an example, we
look into chemical reactions, where a good model ensures that the total mass is conserved, as it
can be observed experimentally.

Example 1.2 (Principle guided modelling, chemical reaction kinetics and the law of mass
action). Chemical reaction are often expressed by graphs with vertices formed by (sums of)
reactants and arrows as edges indicating possible reactions, possibly with rate constants. For
instance,

A+B
k1
⇌
k2

C (1.1)

describes the reversible transformation of two reactants A and B into a reactant C.
The law of mass action is a fundamental principle for translating chemical reactions into sets

of differential equations, which are called rate equations. Consider a reactant R that is involved
in jR reactions and denote by r(t) its density3. The rate equation for R is of the form

d

dt
r(t) =

jR∑
k=1

(creation rate of R by reaction k)−
jR∑
k=1

(consumption rate of R by reaction k).

For the reactants A,B,C in the above example (1.1), we obtain

d

dt
a(t) = k2c(t)− k1a(t)b(t),

d

dt
b(t) = k2c(t)− k1a(t)b(t),

d

dt
c(t) = k1a(t)b(t)− k2c(t).

If several molecules of a reactant are involved in a reaction then we have to count each in the
creation rate and the consumption rate. Let us consider a more complicated example and assume
that nA molecules of A and nB molecules of B react to nC molecules of C and nD molecules of
D,

nAA+ nBB
k→ nCC + nDD.

The numbers nA, nB, nC , nD are called stoichiometries and feature as prefactors of the rate in

3In the literature, often, the word concentration is used, for instance, in [6].
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1.2. MODELLING CYCLE

the rate equations:

d

dt
a(t) = −nAka(t)

nAb(t)nB ,

d

dt
b(t) = −nBka(t)

nAb(t)nB ,

d

dt
c(t) = nCka(t)

nAb(t)nB ,

d

dt
d(t) = nDka(t)

nAb(t)nB .

The actual rate here is the same for all reactants and given by

1

nA

d

dt
a(t) =

1

nB

d

dt
b(t) = − 1

nC

d

dt
c(t) = − 1

nD

d

dt
d(t) = −ka(t)nAb(t)nB .

Note that then
d

dt

( 1

nA
a(t) +

1

nC
c(t)
)
= 0, (1.2)

and analogously for the time derivatives of the combinations 1
nA

a(t) + 1
nD

d(t), 1
nB

b(t) + 1
nC

c(t),

and 1
nB

b(t) + 1
nD

d(t). These are identities that express mass conservation, namely, that all
atoms (or, respectively, their masses) that are present before the reaction are also present after
the reaction, just bound in different molecules.

Mass conservation is a well established fact in many applications, and it is good if a model
satisfies this observation. However, it can also prove useful otherwise. From (1.2) we see that
1
nA

a(t) + 1
nC

c(t) = µ is a number that is independent of time t, and we may be able to work out
what that constant is, for instance, because we may know the densities at the start of the reaction.
If we then manage to work out a(t) then c(t) = nCµ− nC

nA
a(t) is immediately determined, too.

To be a bit more specific, let us consider an enzyme reaction. These protein molecules E act
on a substrate S to facilitate the generation of a product P but are not used up in this process.
An example is the enzyme reverse transcriptase used by viruses such as HIV to generate DNA
from their RNA. Leonor Michaelis and Maud Menten investigated such a the process and came
up with the following diagram

S + E
k1
⇌
k−1

C
k2→ P + E.

By the law of mass action the corresponding differential equations read

d

dt
s(t) = −k1s(t)e(t) + k−1c(t),

d

dt
c(t) = k1s(t)e(t)−

(
k−1 + k2

)
c(t),

d

dt
p(t) = k2c(t),

d

dt
e(t) = −k1s(t)e(t) +

(
k−1 + k2

)
c(t).

At the beginning of the reaction (say, at time t = 0) only the substrate and the enzyme are
present, e(0) = e0 ≥ 0 and s(0) = s0 ≥ 0 whilst c(0) = p(0) = 0. Noting that d

dt(e(t) + c(t)) = 0
we see that e(t) + c(t) = e(0) + c(0) = e0 at all times, hence

e(t) = e0 − c(t).

9



1.2. MODELLING CYCLE

Moreover, if we know c(t) then

p(t) =

∫ t

0
k2c(τ)dτ.

Effectively, the problem thus reduces to a system of two equations,

d

dt
s(t) = −k1s(t)e0 +

(
k1s(t) + k−1

)
c(t),

d

dt
c(t) = k1s(t)e0 −

(
k1s(t) + k−1 + k2

)
c(t),

with the additional conditions s(0) = s0, c(0) = 0.

In this module we focus on modelling with differential equations. There are not the only
way to formulate models, though. Arguably, all areas of mathematics provide tools to describe
phenomena or processes. A few examples are:

� The n-gon is a geometric object that can be physically constructed. The dihedral group
Dn is a model of some of its essential characteristics – the symmetries.

� Techniques from graph theory can be used to describe connections between participants
in a social network. Such approaches can underpin models for the dynamics of opinions.

� Games and gambling involve random events. Methods from probability theory can be used
to model these, usually with the aim of assessing and quantifying chances and risks.

1.2.2 Mathematical problems

The final outcome of the formulation stage is a mathematical problem, often also formulated
in the form of a mathematical question. As such, it is located in the upper right box of the
illustration of the modelling cycle in Figure 1.1. Whilst a mathematical model lists variables
and relations between these, the problem states which variable are assume known and which
variable one wishes to identify or find. These problems are the objects to which mathematical
methods, tools, and techniques are applied with the aim of solving it, making predictions, and
possibly also drawing other useful conclusions and thus getting insight.

There are three broad types of problems:

1. Forward problems, or evaluation questions. Given all needed information about a process
or phenomenon, an we quantitatively predict its other properties and how it will function?
Examples: What is the maximum attainable speed of this car? How quickly will this
disease spread through the population of this city?

2. Inverse problems, or detection questions. If some information about a phenomenon is not
directly available, can it be “reverse engineered” from observations?
Examples: How can we use data from CT scans to estimate the location of a tumour? Can
we determine the damping of an oscillating pendulum from the decay of its time series
height data?

3. Control problems, or design questions: Can we create a solution that best meets a specified
goal?
Examples: What shape is best for a paper airplane to make it fly furthest? How should a
pill be coated to release its drug at a constant rate over an entire day?

10



1.2. MODELLING CYCLE

L

R

C

Figure 1.3: Sketch of an RLC circuit consisting of a capacitor (C), an inductor (L), and a resistor
(R).

Example 1.3 (RLC circuit). Let us consider a serial electric circuit consisting of a capacitor,
an inductor, and a resistor as sketched in Figure 1.3. According to Kirchhoff’s law, the voltages
across all elements in a closed circuit sum up to zero,4

vi(t) + vr(t) + vc(t) = 0.

Across the inductor, the voltage is given by vi(t) = L d
dt i(t), where L > 0 is the inductance param-

eter and i(t) = d
dtq(t) is the electric current arising from the capacitor charging or decharging.

The voltage across the capacitor is given by vc(t) = q(t)/C, where C > 0 is the capacity, a
material parameter, and q(t) is the electric charge. Finally, across the resistor, the voltage is
vr(t) = Ri(t) with the electrical resistance R ≥ 0. Substituting the formulas for the voltages we
obtain the differential equation

L
d2

dt2
q(t) +R

d

dt
q(t) +

1

C
q(t) = 0 (1.3)

for the electric charge q(t). Let us now look at some mathematical problems centred around this
differential equation and classify these.

1. Suppose that, initially, a charged capacitor is connected to the otherwise charge and current
free elements. We want to know the charge of the capacitor at a later time.
This is a forward problem. Figure 1.4 displays some solutions for different regimes.

2. Suppose we obtain a measurement such as in Figure 1.4. Knowing the capacity C of the
capacitor, we are interested in the inductance L and the resistance R.
This is an inverse problem.

3. Let us add a ’battery’ to the circuit, where we assume that we can change the voltage over
time. We aim for steering the circuit into a state such that the charge of the capacitor
oscillates as in the undamped case (top in Figure 1.4).
This is a control problem.

1.2.3 Model validation

Generation of experimentally testable predictions is a hallmark of good mathematical modelling
attempts. Testing against observations can be of qualitative nature, by which we mean that

4Here and in the rest of this example, all terms are considered nondimensional. We will discuss dimensions of
this problem later on in Example 1.7.
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1.2. MODELLING CYCLE

Figure 1.4: Solutions to (1.3) modelling the electric charge of the capacitor in an RLC circuit as
in 1.3. The parameters are q0 = 1, C = 0.1, L = 2.5. For R we chose from top to bottom R = 0
(undamped), R = 0.4 (underdamped), R = 12 (overdamped), and R = 10 (critically damped).
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1.2. MODELLING CYCLE

typical features and properties of the phenomenon are reproduced by the model. If detailed
measurements and data are at hand then the model can be quantitatively validated by compar-
ison with the value produced by quantitatively solving the associated problem.

Example 1.4 (Population growth). Around 1800 the English economist Thomas Malthus was
interested in predicting the population and proposed that its growth is proportional to the present
size. Denoting by p(t) is the population as a function of time this means that d

dtp(t) = kp(t)
with some growth rate factor k > 0. The solutions to this differential equation are of the form
p(t) = cekt with some number c > 0, so the population grows exponentially fast without limits.
Given that the resources on the planet are limited, this seemed a bit of a stretch, and indeed
determining the growth rate factor k from early data seemed to consistently overestimate the
population at later times.

The Belgian mathematician Pierre Verhulst came up with the idea of limiting the population by
assuming that the growth decays again then a maximal population is approached. More precisely,
he proposed what is known today as the logistic equation and reads

d

dt
p(t) = kp(t)

(
1− p(t)

pm

)
where pm > 0 stands for the maximal population and k > 0 is the growth rate factor again. Note
that when p(t) is very small in comparison with pm then the 1− p

pm
≈ 1 and we recover Malhus’

model, the solution is then close to the exponential growth. However when p(t) approaches pm
then 1− p(t)

pm
becomes very small, so the growth d

dtp(t) becomes small.
If we know the population at a specific time t0, say p(t0) = p0 for a given number p0, then

there is a unique solution (we will later on see techniques to work it out):

p(t) =
pmp0e

k(t−t0)

(pm − p0) + p0ek(t−t0)
.

Let us now try to fit such a curve to the UK population and make a prediction. Census data
from the Uk government5 look like this:

We can see the impact of the two world wars but also notice a sharp drop shortly before the first
one. The population of Ireland is no longer included then. This highlights a typical problem in
dealing with data, but which we are not going to engage with in this module.

With fitting we mean the (inverse problem of) identifying parameters k, p0, and pm such that
the distance between the curve and the data points for specified times is minimal. If we use the
data from 1871-1900 (then t0 = 1871) then we obtain the following fit:

5Mid-1851 to Mid-2014 population estimates for the United Kingdom, published by the Office for National
Statistics in 2015.
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1.2. MODELLING CYCLE

This seems give a good fit until that drop due to neglecting the population of Ireland. From then
the population is overestimated. However, even if we included the data of the Republic of Ireland
(about 5 Mio in 2021) the fit would still significantly overestimate the population.

Interestingly, if we use the data from 1871-1890 for fitting then the population is significantly
underestimated, an increase of the growth rate around 1900 when the society was prospering is
not captured then:

To conclude, the model can give reasonable results for short time but a long time prediction
is delicate.

Once a mathematical problem is set up, its mathematical investigation usually is an important
step in understanding the original phenomenon. This is clearly true if the model does a good
job at predicting the observed behaviours (a positive outcome). When the model does not work
as expected (a negative result), it often still provides better insight and some understanding of
which effects have significant influence on the phenomenon’s behaviour, and possibly even how
to further improve its accuracy of the model. In any case, however, the model is an abstraction
and a restriction of reality, and it is important to keep in mind that:

Mathematical models have a limited range of validity!

Many scientists have expressed views about the limitations of models. Some notable examples
are:

� Mark Kac explained Models are, for the most part, caricatures of reality, but if they are
good, they portray some features of the real world.6

6M Kac: Some mathematical models in science. Science 166, 695–699 (1969).
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1.3. DIMENSIONAL ANALYSIS

� In one of his papers on developmental biology7 Alan Turing wrote This model will be a
simplification and an idealisation, and consequently a falsification. It is to be hoped that
the features retained for discussion are those of greatest importance ...

� In short, ...all models are wrong, but some are useful.8

1.3 Dimensional analysis

We have seen that modelling involves identifying and classifying quantities of interest. We
distinguish dependent variables, denoted by d = (d1, . . . , dN ), and independent variables i =
(i1, . . . iM ), which influence these. The outcome can be understood as the problem of having to
find an unknown function u that tells us the values of the dependent variables for any values of
the independent variables,

d = u(i) ⇔


d1
d2
...
dN

 =


u1(i1, . . . iM )
u2(i1, . . . iM )

...
uN (i1, . . . iM )

 (1.4)

This function u = (u1, . . . uN ) might be the solution to a set of differential equations depending
on time and some parameters, or it might be a function for which we have some data samples
and further knowledge, and that we would like to learn more about. However, finding u may be
very costly or complicated, particularly in the case of many independent variables.

Dimensional analysis is a technique to potentially significantly reduce the effort to solve the
problem. It is based on the premises that

� all quantities and variables have dimensions, which we measure in (possibly various) di-
mensional units9, and that

� the relations or laws between them do not alter when changing the units in which we
measure them.

The model equations then are transformed into a nondimensional form, which is kind of a
reference form. If the solution to the reference form is known then the solution to the original
problem is simply obtained by adding the dimensions again (i.e., by transforming back). There
are two essential benefits to this procedure:

1. The number of independent variables in the problem often is reduced as some variables
become a number (usually one) in nondimensional form. This makes it often easier to find
the solution.

2. Many specific problems reduce to the same nondimensional problem. From a mathematical
point of view it therefore suffices to analyse the nondimensional problem in depth. The
dimensional problems then automatically are covered, too.

Let us now explain these concepts and ideas and then apply them to some examples. For more
detail we refer to the book by Barenblatt [1].

7A M Turing: The chemical basis of morphogenesis. Phil Trans. R. Soc. Lond., Series B – Biol. Sci. 237(641),
37–72 (1952).

8G E P Box, N R Draper: Empirical Model-Building and Response Surfaces. Wiley, New York (1987).
9Note that the distinction between dimension and dimensional units sometimes is not (or not properly) made

in the literature, for instance, in [6].
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1.3. DIMENSIONAL ANALYSIS

1.3.1 Dimensions

Some fundamental dimensions that we will use in this module are contained in the following
table:

notation dimension possible units

T time seconds, days
L length nanometers, feet, lightyears
M mass micrograms, how about elephants?
A quantity head count, mol
Θ temperature kelvin, degrees fahrenheit
Q charge coulomb

The dimension of a variable v is denoted by [v]. Dimensions of compound variables can be
expressed in terms of the fundamental dimensions according to the rule that the dimension of
a product equals the product of the dimensions of its factors, in mathematical terms [v1v2] =
[v1][v2] for any two variables v1, v2. This then also helps to sort out the dimensions of derivatives
of quantities by recalling that these emerge as the limit fractions of small differences. Similarly
for integrals. Here are some examples:

� Consider a time dependent population p(t) of bacteria. Then its derivative ṗ(t) with
respect to time has the dimension

[ṗ(t)] =
[
lim
∆t→0

p(t+∆t)− p(t)

∆t

]
= lim

∆t→0

[p(t+∆t)− p(t)]

[∆t]
= lim

∆t→0

A

T
=

A

T
.

� Similarly, a velocity w stands for a (possibly instantaneous) change of a position x (which
is a length) in a given time interval. Hence

[w] =
[change of x]

[change of t]
=

L

T
.

� From physics you may remember that force equals mass times acceleration, f = ma. The
latter is the derivative of the velocity with respect to time. Therefore [a] = L/T 2 and then
[f ] = ML/T 2.

� The change of the electric charge q of a capacitor over a time interval ∆t equals the inflow,
which is the time integral of the electroc current i,

q(t) =

∫ t

t−∆t
i(s)ds ≈ i(t)∆t.

This approximation might be crude but is sufficient for working out the dimensions of the
electric current:

Q = [q(t)] = [i(t)∆t] = [i(t)][∆t] = [i]T ⇒ [i(t)] =
Q

T
.

The principle of dimensional homogeneity states that all terms that are summed to contribute
to an equation in a model have to have the same dimension. When we have formulated a model
this principle thus provides a first sanity check by making sure that all sums involve operands
with the same dimension. A further consequence is that all arguments of more complicated
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1.3. DIMENSIONAL ANALYSIS

functions such as ε or sin need to be nondimensional. An easy way to see this, for instance for
the exponential function, is to recall its series representation

exp(x) =

∞∑
n=0

1

n!
xn.

Now [xn] = [x]n, so if x was not nondimensional then each term in the sum would have a different
dimension.

1.3.2 Nondimensionalisation

Let us come back to the general problem d = u(i) in (1.4). The fact that the both dependent and
independent variables have dimensions restricts the possible function u. For instance, unless a
variable im is nondimensional, a term of the form sin(im) doesn’t make any sense. Similarly, the
function un(i1, . . . , iM ) for dn cannot contain the summand i1i2 unless its dimension coincides
with the dimension of dn, i.e., unless [i1i2] = [dn]. Dimensional analysis is a technique to
exploit this fact and to find the most general possible form for the function u, and to reduce its
complexity (usually at least), i.e., the number of independent variables. It follows the following
steps:

1. Write the dimensions of all variables in terms of fundamental dimensions.

2. Express all fundamental dimensions required for the dependent variables as a product of
suitable independent variables. The choice made for each fundamental dimension is called
a scale.
Note that, often, there are several ways to do so. For finding the general form of the
problem and reducing the complexity of the problem, the choice does not matter. However,
when we want to analyse the reduced problem then some choices might turn out better
than others. We will come back to this question in the context of scaling.

3. Nondimensionalise the variables.
Consider any dependent variable dn and let us write Dn = [dn] for its dimension. This
dimension is made up of fundamental dimensions. We have expressed these in terms
of the independent variables by defining suitable scales, hence Dn = [pn(i1, . . . , iM )] for
some product pn of some independent variables. This product is then called the scale
for the variable dn and usually denoted with a line of the letter in the following, dn =
pn(i1, . . . , iM ). Actually, it is then the scale for all variables with the same dimension. Let
now d̃n = dn/dn. This variable has no dimension because

[d̃n] =
[dn
dn

]
=

[dn]

[dn]
= 1.

We proceed similarly with the independent variables to obtain nondimensional variables
ĩm = im/im with suitable products for the im.

4. Write down the nondimensional problem and reduce it.
The nondimensional problem is to find an unknown function ũ = (ũ1, . . . , ũN ) with

d̃ = ũ(̃i) ⇔


d̃1
d̃2
...

d̃N

 =


ũ1(̃i1, . . . ĩM )

ũ2(̃i1, . . . ĩM )
...

ũN (̃i1, . . . ĩM )

 . (1.5)

17



1.3. DIMENSIONAL ANALYSIS

Some nondimensional independent variables {̃i1, . . . , ĩM} in fact might not be independent
any more, or they might have become a constant (typically one). We can then reduce the
number of variables of ũ until they are independent again.

5. Add the dimensions again by transforming the reduced equation back.
This yields the form that the solution necessarily has.

We remark that the so-called Buckingman-Pi Theorem guarantees that every problem can be
nondimensionalised provided that steps 3 works, i.e., all dimensions of the dependent variables
can be expressed in terms of the dimensions of the independent variables10. Let us now study
some examples.

Example 1.5 (Form of the solution to a differential equation). For a bacteria colony, the
growth is proportional to the bacteria population until lack of nutrient restrict it. Denoting the
population with p, time with t, and the initial population with p0 > 0, we obtain

ṗ(t) = αp(t), t > 0, p(0) = p0 (1.6)

where α > 0 is a growth rate factor. We assume that p0, and α are known and consider the
forward problem of predicting the population p over time.
We now want to use dimensional analysis to learn something about the possible forms of the
solution. The dependent variable here is p, and the independent variables t, α, and p0, so we
can write the problem abstractly in the form

p = u(t, α, p0).

Following the steps we first find the dimensions of the variables. We easily get that [p] = [p0] = A
and [t] = T . For α we recall that [ṗ] = A/T , hence, using the differential equation,

A

T
= [ṗ(t)] = [αp(t)] = [α][p(t)] = [α]A ⇔ [α] =

1

T
.

Next, we express the fundamental dimensions in terms of the independent variables. The initial
populaton p0 is the only independent variable that involves the dimension A, so we choose p = p0
as a scale for the fundamental dimension quantity, A. For the fundamental dimension time T
we can choose t or 1/α. Let us choose t = 1/α, the other case is discussed below.

Let us proceed with the next step and introduce nondimensional variables. We have to divide p
by a product of variable that yields the same dimension, which here is A. For this dimension we
had chosen the scale p = p0. Similarly for the initial population, so we obtain the nondimensional
population and the nondimensional initial population

p̃ =
p

p
=

p

p0
, p̃0 =

p0
p

=
p0
p0

= 1.

Note that the nondimensional initial population is just one, so we will not need to consider it
in the nondimensional problem. Regarding the other variables, recall that α has the dimension
of inverse time, for which 1/t then is a scale. So we obtain the nondimensional time and the
nondimensional growth rate factor

t̃ =
t

t
=

t

1/α
= αt, α̃ =

α

1/t
=

α

α
= 1.

10Proving it requires tools beyond the scope of this module.
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The nondimensional problem therefore is of the form

p̃ = ũ(t̃, α̃, p̃0),

however α̃ = 1 and p̃0 = 1, hence it reduces to

p̃ = ũ(t̃).

Transforming back by substituting the nondimensional variables with the dimensional ones again
yields that

p

p0
= p̃ = ũ(t̃) = ũ(αt).

Altogether, the dimensional analysis yields that the solution has to be the form

p = p0ũ(αt).

Or maybe not? We made a choice about how to express the fundamental dimensions in terms
of the independent variables. For instance, we could have chosen t = t instead of t = 1/α. In
that case, p̃ = p/p0 and p̃0 = 1 are as before, but we obtain

t̃ =
t

t
=

t

t
= 1, α̃ =

α

1/t
=

α

1/t
= αt

as 1/t then has dimension 1/T as it is required for the nondimensional growth rate factor. We
now obtain the nondimensional problem

p̃ = ũ(t̃, α̃, p̃0) = ũ(α̃).

However, if we transform back then we obtain the same form for the solution as before:

p

p0
= p̃ = ũ(α̃) = ũ(αt) ⇒ p = p0ũ(αt).

Now, in this case we can fairly easily find the solution to the initial value problem (1.6). It is
given by

p(t) = p0e
αt.

Observe that it is indeed of the required form that we have found. We see this by setting ũ() =
exp().

Often, it is not possible to simulate or duplicate a phenomenon in a laboratory, for instance,
because they are too expensive or too dangerous. Dimensional analysis can help to correctly
rescale or otherwise transform the phenomenon, and thus to make it accessible to experimental
measurements as the are required to develop and validate a model. Let us look at a specific
example.

Example 1.6 (Similitude). In 2012, NASA’s Mars rover Curiosity reached its destination.
During the decent, a parachute was used to bring down its velocity. This was possible because
Mars has an atmosphere, which is different from Earth’s, however. Experiments and rehearsals
on Mars were out of reach, so the engineers had to set them up on Earth. For this purpose
they had to make sure that the experience and data they collected were meaningful to ensure that
everything would work on Mars. As an example for one of the problems they had to solve we
look at the size of the parachute.
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We are interested in the diameter d of the (spherical) parachute canopy and assume that
it depends on the desired terminal velocity v of the probe, its mass m, the acceleration g by
gravity, and the atmospheric density ρ. The abstract problem, to which we will apply dimensional
analysis, reads

d = u(v,m, g, ρ).

The dimensions of the variable are

[d] = L, [v] =
L

T
, [m] = M, [g] =

L

T 2
, [ρ] =

M

L3
.

The fundamental dimensions L, T , M appear and, using the independent variable v, m, g, and
ρ can be expressed as

M = [m], L =
[(m

ρ

)1/3]
, T =

[v
g

]
.

With other words, for these, we use the scales

m = m, l =
(m
ρ

)1/3
, t =

v

g
.

Let us now use these combinations to nondimensionalise all variables. For d we obtain the scale
d = l = (m/ρ)1/3, for m we use m = m, and for ρ we get ρ = m/l

3
= m/((m/ρ)1/3)3 = ρ. The

corresponding nondimensional variables then are

d̃ =
d

d
=

d

(m/ρ)1/3
=
( ρ

m

)1/3
d, m̃ =

m

m
=

m

m
= 1, ρ̃ =

ρ

ρ
=

ρ

ρ
= 1.

From the expressions for the fundamental units we also deduce the scales v = l/t = (mρ )
1/3/(v/g)

for the velocity and g = l/t
2
= (mρ )

1/3/(v/g)2 for the acceleration. This yields that

ṽ =
v

v
=

v

(mρ )
1/3/(v/g)

=
( ρ

m

)1/3 v2
g
, g̃ =

g

g
=

g

(mρ )
1/3/(v/g)2

=
( ρ

m

)1/3 v2
g
.

Observe that these are the same and, thus, not independent! In the nondimensional problem
we therefore need to account for this variable only once. Also dropping the nondimensional
quantities that become one, the nondimensional problem reads and reduces to

d̃ = ũ(ṽ, m̃, g̃, ρ̃) = ũ(ṽ).

This equation can now be used both on Earth and on Mars. For both planets we know g and ρ,
and given m and v we can transform the nondimensional problem to

d =
(m
ρ

)1/3
d̃ =

(m
ρ

)1/3
ũ(ṽ) =

(m
ρ

)1/3
ũ
(( ρ

m

)1/3 v2
g

)
.

on each planet.
It remains to find the function ũ. For this purpose, we can now perform experiments and

measurements on Earth. Having found the function ũ we simply evaluate it with the atmospheric
data for Mars and then get the required canopy diameter d.
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1.3.3 Nondimensionalising differential equations

As we mainly work with differential equations in this module we have another look at their
nondimensionalisation. Generally, the procedure is the same as for any model and as described
in Section 1.3.2. We have also seen in Example 1.5 how the procedure is applied to a differential
equation. Recall that the outcome, i.e., the nondimensional problem, is not unique, in general,
because we can usually can choose different scales for the dimensions of relevance in the problem.
In Example 1.5 we looked into two cases. First, we chose scales such that the growth rate factor
became one, α̃ = 1. In the second scaling the time became one, t̃ = 1.

In the context of differential equation we aim for deriving nondimensional differential equa-
tions of the same structure. We want to keep derivatives with respect to independent variables.
We will therefore try to select scales with variables that act as parameters in the differential
equation, rather than with dependent or independent variable that feature in derivatives. For
instance, in the population growth model, the time appears in the derivative of the differential
equation, and we are interested in deriving a nondimensional differential equation for a function
of a nondimensional time. The first scaling discussed in Example 1.5 is therefore more natural
as it leads to a differential equation in the nondimensional time t̃.

Two principles provide guidance to nondimensionalise differential equations:

1. Select scales such that as many parameters as possible are normalised to become one.
With parameters we here mean independent variables that do not appear in any derivatives
of the differential equation. These can be prefactors or also initial values if the full problem
comes with information on an initial state.

2. Select scales such that all nondimensional parameters are ’small’ and do not become in-
finity when certain variables become small or big.
In the context of differential equations, the behaviour may be of interest as some param-
eters become small or big. The principle means that the scaling should be such that any
nondimensional parameters become small in that case.

We will now study another example with a differential equation but focus on the first principle.
The second one will be picked up later on.

Example 1.7 (Nondimensionaling the RLC circuit model). Recall the differential equation (1.3)
modelling the voltages across the elements of an electric circuit from Example 1.3:

L
d2

dt2
q(t) +R

d

dt
q(t) +

1

C
q(t) = 0.

We have denoted the inductance with L to distinguish it from the dimension length, which we
denoted with L.

Let us consider the problem centred around Figure 1.4: we connect a capacitor with an initial
charge q0 with the other elements and are interested in predicting its charge as a function of time.
Our goal is now to derive a nondimensional differential equation for the (nondimensional) charge
as a function of (nondimensional) time and then studying how changes of the (nondimensional)
resistance affect the solution.

Following the nondimensionalisation procedures and the first guidance we would now (try to)
write all fundamental dimensions in terms of the dimensions of the parameters L, R, C, and
q0. In practice, one often proceeds differently for differential equations.

Let q and t denote some scales for charge and time. These have dimensions [q] = Q and
[t] = T but are not determined yet in terms of the parameters, we will do that later. With these
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scales, q̃ = q/q and t̃ = t/t are a nondimensional charge and time, respectively. We now try
to derive a differential equation for q̃ as a function of the nondimensional time t̃. Starting with
q̃(t̃) = q(t)/q = q(t̃t)/q we note that

d

dt̃
q̃(t̃) =

1

q

d

dt̃
q(t̃t) =

1

q
q′(t̃t)t =

t

q

d

dt
q(t)

where we applied the chain rule. Similarly, d2

dt̃2
q̃(t̃) = t

2

q
d2

dt2
q(t). Substituting these into the

differential equation we obtain that

Lq

t
2

d2

dt̃2
q̃(t̃) +

Rq

t

d

dt̃
q̃(t̃) +

q

C
q̃(t̃) = 0. (1.7)

Initially, we have that q̃(0̃) = q(0)/q.
The initial value gives an idea how to choose the scale for the charge: q = q0. As we are

not intending to vary this parameter, we thus ensure that is becomes one in the nondimensional
problem. We initially now have that q̃(0̃) = 1. We still can choose the scale for the time and
possibly ’kill’ another parameter. We don’t want to do so with the resistance (the factor before
the first derivative) because we will want to vary it. However, we can try to make the factor
before the second derivative or the factor of q̃ become one. Let us do the former and, for this

purpose, divide the equation by Lq

t
2 . This yields

d2

dt̃2
q̃(t̃) +

Rt

L

d

dt̃
q̃(t̃) +

t
2

LC
q̃(t̃) = 0.

The factor in from of q̃ becomes one if we choose t =
√
LC, and then the nondimensional

differential equation becomes

d2

dt̃2
q̃(t̃) +R

√
C

L

d

dt̃
q̃(t̃) + q̃(t̃) = 0.

A couple of remarks:

1. A nondimensional resistance R̃ = R
√
C/L indeed is present, and we can now try to solve

the problem and study its dependence on R̃.

2. We could have divided by q/C in (1.7). We then would have got the prefactor LC/t
2

in front of d2

dt̃2
q̃(t̃). We see that it becomes one with the same choice of the time scale

t =
√
LC.

3. Actually, is t a time scale? Let us briefly check.
Voltages are measured in volt = joule / coloumb and have the dimension of energy per

charge, ML2/(T 2Q) in fundamental units. As [ ddtq] = Q/T and [ d
2

dt2
q] = Q/T 2 we see that

the parameters have dimensions

[L] =
ML2

Q2
, [R] =

ML2

Q2T
, [C] =

Q2T 2

ML2
, [q0] = Q.

We see that [LC] = T 2 so that t indeed is a time scale, and one can also work out that R̃
indeed is nondimensional.
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4. We advocated choosing scales such that parameters become one in the nondimensional
differential equation problem. This it no necessary, though, any constants are fine. Indeed,
in Figure 1.4 the nondimensional values for the inductance and capacity are L = 2.5 and
C = 0.1, respectively (note that dimensions are not discussed in Example 1.3, consider
everything as nondimensional there).
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Chapter 2

First order equations

Because of their fundamental importance and success as a modelling approach in many fields,
differential equations have become a field within the mathematical sciences and are an integral
part of training in mathematics. One fundamental question is whether a differential equation has
solutions and, if so, whether the solution is unique. We will see some counterexamples showing
that this is not always the case but have to delay deeper results on this questions because they
require sophisticated analytical tools that we don’t have to our disposition yet.

If one can show that there is a solution, a natural question is whether we can find an explicit
formula for it. We will study some techniques that enable us to do so for some simple differential
equations. However, in general, this is not the case, and for this reason computational methods
have been developed that approximate the solution. We will occasionally make use of the
computer but the in-depth study of such methods is left to future modules.

Even if we cannot find an explicit solution formula, we still may be able to make some qualita-
tive predictions about the behaviour of the solution. For time dependent problems this comprises
the long-term behaviour, for instance, whether the solution grows, or remains bounded, or os-
cillates, or converges to an equilibrium state. We will also look a bit into so-called stability
properties, i.e., how this qualitative behaviour changes if data or parameters in the differential
equation change. Such questions will also be picked up in follow-up modules.

There are a couple of more aspects around differential equations that are not covered in this
module but for which there are modules in later study years. Most notably, we will focus on
forward problems and rarely consider inverse or control problems.

2.1 General concepts

General scalar differential equations can be written in the form

F
(
t, x(t), x′(t), x′′(t), . . . , x(k−1)(t), x(k)(t)

)
= 0 (2.1)

for some given function F : (α, β) × Rk+1 → R with an interval (α, β) ⊂ R. We here use the
notation

x(l)(t) =
dl

dtl
x(t)

for the l-th derivative of a function x : (α, β) → R. In the general form (2.1) we make the
implicit assumption that the highest derivative x(k) occurs in the equation (otherwise we could
consider a function F that does not depend on this argument). We will focus on equations where
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we can the equation for x(k) and write it in the form

x(k)(t) = ϕ
(
t, x(t), . . . , x(k−1)(t)

)
(2.2)

for some function ϕ : (α, β)× Rk → R.
The equation is expressed in terms of the variables t (independent) and x (dependent). The

variables are kind of placeholders and used to express the differential equation. We could have
used other letters, for instance,

z(k)(θ) = ϕ
(
θ, z(θ), . . . , z(k−1)(θ)

)
and y(k)(x) = ϕ

(
x, y(x), . . . , y(k−1)(x)

)
express the same differential equation (2.2). Note that x stands for the independent variable in
the last reformulation.

In the literature, the variable t is often stands for time and x, y, z are spatial variables.
Derivatives with respect to time are often denotes using dots,

d

dt
z(t) = ż(t),

d2

dt2
z(t) = z̈(t), . . .

Spatial derivatives often use dashes,

d

dx
y(x) = y′(x),

d2

dt2
y(x) = y′′(x), . . .

Definition 2.1. For a differential equation of the form (2.1) we define:

1. The order of a differential equation is the order of its highest derivative.

2. The differential equation is autonomous if F does not explicitly depend on the independent
variable, so F : Rk+1 → R, and the differential equation reads

F
(
x(t), x′(t), . . . , x(k)(t)

)
= 0.

3. The differential equation is linear if F can be written in the form

F
(
t, x(t), x′(t), . . . , x(k)(t)

)
= s(t) +

k∑
i=0

ai(t)x
(i)(t) (2.3)

with some functions s, ai : (α, β) → R, i = 0, . . . , k.

4. Let s be the function obtained if x(t) = x′(t) = x(k)(t) = 0 in (2.1),

s(t) = F(t, 0, . . . , 0), t ∈ (α, β).

The equation (2.1) is called homogeneous if s = 0.
Otherwise, it is called inhomogeneous.

A couple of remarks on the above formal definitions:

� Note that the functions s defined in the last two items coincide if F is linear (which also
explains the same notation).

� If the differential equation is autonomous then s cannot depend on the independent variable
t but can be a constant, so the equation still can be inhomogeneous.
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� (PDEs and ODEs) There are even more general differential equations, in particular for
functions of several variables. For instance, the equation

∂2

∂t2
u(y, t)− ∂2

∂y2
u(y, t) = 0

is a simple model for the propogation of waves. Such equations that involve partial deriva-
tives with respect to multiple (more than one) independent variable are called partial
differential equations (PDE).

In this module, we focus on differential equations for functions of one independent variable
only. These are called ordinary differential equations (ODE).

Example. Let us briefly classify some of the differential equations:

1. Recall population growth from the introduction:

ṗ(t) = kp(t)
(
1− p(t)

pm

)
.

We can write it in the form (2.1) with

F(p(t), ṗ(t)) = ṗ(t)− kp(t)
(
1− p(t)

pm

)
.

Its order is one as only the first derivative occurs. The independent variable is t, and the
dependent variable p is the only function that depends on it. Therefore, the equation is
autonomous. On the right-hand-side the quadratic term p(t)2 occurs, so the equation is
non-linear. It is homogeneous as there is no additive constant.

2. In the introduction we have also seen an equation for an electric circuit (1.3):

L
d2

dt2
q(t) +R

d

dt
q(t) +

1

C
q(t) = S sin(ωt),

where we have added a term on the right-hand-side with a number S ̸= 0 and a frequency
ω ̸= 0. This additional term may model the effect of an oscillating voltage source. Writing
it in the form (2.1) is fairly straightforward using the function

F(t, q(t), q̇(t), q̈(t)) = Lq̈(t) +Rq̇(t) +
1

C
q(t)− S sin(ωt).

We see that the second derivative is the highest, so the equation is of order two. The inde-
pendent variable is t and explicitly appears in the term on the right-hand-side. Therefore,
the equation is non-autonomous. We can write

F(t, q(t), q̇(t), q̈(t)) = s(t) +

2∑
i=0

ai(t)
di

dti
q(t)

with a2 = L, a1 = R, a0 =
1
C , and s(t) = −S sin(ωt). The equation therefore is linear. As

s(t) = F(t, 0, 0, 0) = −S sin(ωt) does not always vanish the equation is inhomogeneous.

Definition 2.2. A function x : (α, β) → R is called a solution to the differential equation (2.1)
if it satisfies the equation.
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2.2. TRIVIAL DIFFERENTIAL EQUATIONS

� The solution is called an explicit solution, if the dependent variable is given in terms of the
independent variable as a combination of algebraic expressions or elementary functions.

� An implicit form of the solution is an equation that relates the dependent and independent
variables and involves no derivatives.

Example. The function x(t) = 12e−2t is an explicit solution to the differential equation d
dtx(t) =

−2x(t).
The expression

log(x)− x+ 4 log(t)− 2t+ 4 = 0 (2.4)

relates x and t but cannot be algebraically resolved for x as a function of t. However, assuming
that x = x(t) ̸= 0 is a differentiable function, then differentiating the expression (2.4) with
respect to t yields that( 1

x(t)
− 1
) d

dt
x(t) = 2− 4

1

t
⇒ d

dt
x(t) =

x(t)

1− x(t)

(
2− 4

1

t

)
,

and (2.4) is an implicit solution to this differential equation.

This distinction of a variable to formulate a differential equation from a solution might look a
bit nit-picky but is similar to the careful distinction between a function, say g, and the expression
g(y), which is the value of g in a point y. In practice (and in the following), however, this
distinction often is not made. In a slight abuse of notation, x(t) sometimes is just a dependent
variable used to formulate a differential equation such as (2.1), and sometimes it denotes a
solution, depending on the context.

In the remainder of this chapter we study differential equations for scalar functions that
involve first derivatives. The differential equations are of the form

d

dt
x(t) = f

(
x(t), t

)
, t ∈ (α, β), (2.5)

where f : R× (α, β) → R with an interval (α, β) ⊂ R is a given function.

2.2 Trivial differential equations

One can regard solving a differential equation of the form (2.5) as the opposite to differentiating
a given function. In differentiation calculus, we are given the function and want to find the
derivative, or slope of the graph of the function. In differential equations, we know these slopes
and want to find (graphs of) functions that fit them. In the literature, solving differential
equations is therefore often called integrating differential equations.

This connection is easiest seen when considering the case that the given function f in (2.5) is
independent of x(t) so that the differential equation reads

d

dt
x(t) = f(t), t ∈ (α, β). (2.6)

This case is called trivial for the following reason. Recall this fundamental result from analysis:

Theorem 2.3 (Fundamental Theorem of Calculus). Suppose g : [a, b] → R is continuous and
let

G(x) :=

∫ x

a
g(x̂)dx̂, x ∈ [a, b].
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2.2. TRIVIAL DIFFERENTIAL EQUATIONS

Then G is an anti-derivative of g, i.e., it satisfies

d

dx
G(x) = g(x), x ∈ (a, b).

Moreover, if G̃ is any other anti-derivative of g then∫ b

a
g(x̂)dx̂ = G̃(b)− G̃(a),

and the two anti-derivatives of g differ by a constant only, so for some c ∈ R

G̃(x) = G(x) + c, x ∈ [a, b].

We see that solving (2.6) amounts to finding any anti-derivative of f . Denoting if by F , the
theorem says that then F + c for any c ∈ R is an anti-derivative and, thus, a solution again.

Definition 2.4 (General solution, particular solution). The general solution to the trivial dif-
ferential equation (2.6) is given by

x(t) = F (t) + c, t ∈ (α, β)

where F is an anti-derivative of f and c ∈ R is any number.
For a specific number c, x(t) = F (t) + c is a particular solution.

So the general solution in fact is a whole family of solutions parametrised by c whilst the
particular solution is a unique function. To single out a solution (or to determine a number
c), an additional condition is required. In evolution problems where t stands for time an initial
condition can be imposed.

Definition 2.5 (Initial value problem). The initial value problem consists of finding a function
x : (α, β) → R such that the differential equation (2.5) and the initial condition

x(t0) = x0 (2.7)

for some t0 ∈ [α, β] and some given number x0 ∈ R are satisfied.

For the differential equation (2.6) with such an initial condition (2.7) the anti-derivative

x(t) = x0 +

∫ t

t0

f(τ)dτ (2.8)

then is the solution: indeed, as x0 does not depend on t, it satisfies the differential equation
because

d

dt
x(t) =

d

dt

(∫ t

t0

f(τ)dτ
)
= f(t)

by the Fundamental Theorem of Calculus, and it also satisfies the initial condition because

x(t0) = x0 +

∫ t0

t0

f(τ)dτ︸ ︷︷ ︸
=0

= x0.

Note that there is no unknown constant c any more in the solution, this is a particular solution.
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2.2. TRIVIAL DIFFERENTIAL EQUATIONS

Example (Spacecraft). For a spacecraft landing on a planet (or moon) Newton’s equations of
the two-body problem can be simplified by neglecting the motion of the planet. We only consider
the spacecraft’s height h(t) and its vertical velocity v(t) = ḣ(t), both depending on time t. We
assume that the spacecraft is propelled by rockets, their thrust is another force acting on it.
Newton’s law that mass times acceleration equals the force then can be written in the form

Mv̇(t) = −gM + u(t) ⇔ v̇(t) = −g + 1
M u(t)

where M > 0 is the mass (assumed constant here), g > 0 is the gravitation constant, and u(t) is
a given function modelling the thrust by the spacecraft’s rockets. We here assume for simplicity
that u(t) = ū ∈ R is constant.

Assume now that, initially at time t = t0 = 0, the velocity is known and given by v0 < 0. We
want to find out when the spacecraft comes to rest. In mathematical terms, we want to find a
time t∗ > 0 such that the solution to the initial value problem satisfies v(t∗) = 0.

Using the above result (2.8), the solution is given by

v(t) = v0 +

∫ t

t0

(
− g + 1

M u(τ)
)
dτ = v0 +

∫ t

0

(
− g + 1

M ū
)
dτ = v0 +

(
− g + 1

M ū
)
t.

The spacecraft comes to rest if 0 = v(t∗) = v0 + (−g + 1
M ū)t∗, which is the case if and only if

t∗ =
v0

g − 1
M ū

.

We want that t∗ is positive. As v0 < 0 this requires that g − 1
M ū < 0, or the thrust ū > Mg has

to be big enough. Poor spacecraft otherwise...
We may ask at which height the spacecraft comes to rest (assuming it does so). To formulate

this questions in mathematical terms, let us assume that the initial height at time t = 0 is
h(0) = h0 > 0, and we are interested in the value of h(t∗) where h satisfies the differential
equation ḣ(t) = v(t). As we know v already this is again an initial value problem with a trivial
differential equation. Its solution is given by

h(t) = h0 +

∫ t

t0

v(τ)dτ = h0 +

∫ t

0

(
v0 +

(
− g + 1

M ū
)
τ
)
dτ = h0 + v0t+

1

2

(
− g + 1

M ū
)
t2.

At time t∗ = v0

g− 1
M ū

the height then is

h(t∗) = h0 +
v20

g − 1
M ū

+
1

2

(−g + 1
M ū)v20

(g − 1
M ū)2

= h0 +
1

2

v20
g − 1

M ū
.

We may also want that the spacecraft touches down at this time, i.e., h(t∗) = 0. We see that
this is the case if and only if

2h0 =
v20

1
M ū− g

⇔ ū = M
(
g +

v20
2h0

)
.

This is the thrust required for a smooth landing.
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2.3 Autonomous equations

Let us now consider the special case that the given function f in (2.5) is independent of t so
that the differential equation reads

d

dt
x(t) = f(x(t)), t ∈ (α, β). (2.9)

Note that this is now an autonomous equation. These equations can be very challenging to
integrate, and no method might produce an explicit solution. However, there are tools that give
us some insight into the qualitative behaviour of solutions.

2.3.1 Stationary points and stability

First, observe that zeros of f yield constant solutions to (2.9). Indeed, if f(x∗) = 0 then x(t) = x∗

for all t is a solution. Such solutions are called stationary or equilibrium points. An interesting
question now is whether x∗ is a stable point. For that the following investigation makes sense
we assume that β = ∞.

Definition 2.6. A stationary point x∗ of an autonomous differential equation of the form (2.9) is
called stable if nearby solutions remain close as the independent variable grows. In mathematical
terms, the distance dist(x(t), x∗)1 remains bounded as t → ∞.

Consider first the case that f(x) < 0 if x < x∗ and that f(x) > 0 if x > x∗, where x are points
near the x∗, say, x ∈ [x∗ − ε, x∗ + ε] for some small ε > 0. Suppose now that x is a solution to
(2.9) that starts at a point x(t0) < x∗. Then ẋ(t0) = f(x(t0)) < 0, so the solution will decay
and move further away from x∗. Using the same argument, this will continue for t > t0 as long
as x(t) ∈ [x∗ − ε, x], and ultimately x(t) will leave the small interval. Similarly, if x(t0) > x∗.
Then ẋ(t0) = f(x(t0)) > 0, so the solution will increase and move away from x∗ and finally end
up outside of [x∗ − ε, x∗ + ε]. We call such a stationary point unstable.

Consider now the opposite case that f(x) > 0 if x < x∗ and that f(x) < 0 if x > x∗,
x ∈ [x∗−ε, x∗+ε] for some small ε > 0. Then solutions to (2.9) that start at x(t0) < x∗ increase
as t increases, whilst those that start at x(t0) > x∗ will decay, so the solutions will move towards
x∗. In this case, the stationary point x∗ is called stable.

If the function f in (2.9) is differentiable then the sign of f ′(x∗) can be used as a criterion
to decide on the stability of the point. If f ′(x∗) > 0 then f is increasing locally around x∗, i.e.,
there is small ε > 0 such that f(x) > f(x∗) for all x ∈ (x∗, x∗ + ε] and f(x) < f(x∗) for all
x ∈ [x∗−ε, x∗)). As f(x∗) = 0 the conditions for instability are satisfied. Similarly, if f ′(x∗) < 0
then f is decreasing locally around x∗ (there is a small ε > 0 such that f(x) < f(x∗) for all
x ∈ (x∗, x∗ + ε] and f(x) > f(x∗) for all x ∈ [x∗ − ε, x∗)), and we see that x∗ then is stable. In
summary:

f(x∗) = 0, f ′(x∗) > 0 : x∗ is unstable,

f(x∗) = 0, f ′(x∗) < 0 : x∗ is stable.

The connection with the derivative will later on be studied again in greater detail in the context
of linearisation around stationary points of systems of differential equations (see Section 4.2.3).

A phase line is a popular way to illustrate the dynamics of an automonous differential equation
such as (2.9). This is a (usually horizontal) line for the points x ∈ R with a couple of arrows to

1There are multiple ways to measure the distance, for instance, we can take the absolute value of the difference,
|x(t)− x∗|.
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2.3. AUTONOMOUS EQUATIONS

Figure 2.1: Phase line for the population growth equation in Example 2.7. The parameters are
k = 1 and pm = 4, and the blue arrows indicate the sign and magnitude of f(p). A graph of the
function f(p) is included, too.

the left or right that indicate the direction of the evolution and are proportional to the value of
f(x). Figure 2.1 gives an impression of a phase line for the following example. The phase line
is a topic that we will discuss later on in the context of systems of differential equations (then
called phase diagram or phase portrait, see Section 4.2.2).

Example 2.7 (Population growth model). Recall the equation

ṗ(t) = kp(t)
(
1− p(t)

pm

)
from the introduction. We are typically interested in the dynamics with initial populations p0 ∈
(0, pm) at any time t0 ∈ R (for simplicity, assume that t0 = 0).
Here, f(p) = kp(1 − p/pm) has two zeros at p∗1 = 0 and p∗2 = pm. For all these initial values
p0 ∈ (p∗1, p

∗
2) we have that f(p0) > 0, so solutions will increase and move towards p∗2. We

conclude that p∗2 is stable whilst p∗1 is unstable. Figure 2.1 displays the phase line with arrows
for the direction of the dynamics.
Note that f is differentiable with f ′(p) = k(1 − 2p/pm). Using the criterion involving the
derivative we can also conclude that

f(p∗1) = 0, f ′(p∗1) = k > 0 ⇒ p∗1 is unstable,

and
f(p∗2) = 0, f ′(p∗2) = −k < 0 ⇒ p∗2 is stable.

In this case one can actually explicitly work out the solution (we will see suitable techniques later
on in Section 2.6.1). It is given by

p(t) =
p0pm

(pm − p0)e−kt + p0
.

The function indeed increases and converges to p∗2 = pm as t → ∞, so this is the stable point
that attracts nearby solutions.
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2.4 Well-posedness

A natural question is as to whether any differential equation of the form (2.5) has a unique
solution. We have seen already in the case of a trivial differential equation that we need to
impose an additional condition to single out a particular solution. However, this is not sufficient.
Consider the following examples:

Example (non-existence). Consider the initial value problem

d

dt
x(t) =

−x(t)2

t2
, x(0) = x0 ∈ R.

The right-hand-side function f(x, t) = −x2/t2 is not defined at t = 0. Intuitively, imposing a
condition at time t = 0 seems problematic. Indeed, if we rewrite the differential equation in
the form x(t)2 + t2 d

dtx(t) = 0 then evaluating at t = 0 yields that x(0)2 = 0. The condition
x(0) = x0 ∈ R therefore cannot be satisfied if x0 ̸= 0, and the initial value problem has no
solution then.

Example (non-uniqueness). Consider the initial value problem

d

dt
x(t) =

√
x(t), x(0) = 0.

The function x(t) = 0 for all t obviously is a solution. However, it is not the only one. For any
c > 0 the function

xc(t) =

{
0 if t ≤ c,
(t−c)2

4 otherwise

also is a solution. Indeed, if t > c then

x′c(t) =
d

dt

((t− c)2

4

)
=

t− c

2
=

√
(t− c)2

4
=
√
xc(t),

if t < c then
x′c(t) = 0 =

√
xc(t),

and we note that in the point t = c the limits of the derivatives from both sides exist and coincide
(both are zero), so that the derivative exists, too.

Whilst these results are discouraging, one actually can ensure that there is a unique solution
to (2.5) with (2.7) if the function f is sufficiently smooth, or ’nice’ enough. We will now specify
here what this means as we are lacking the tools to prove these results as this stage. This
problem is picked up and addressed in detail in later modules.

Assumption 2.8. For the remainder of this chapter,

f is assumed to be ’nice’ unless stated otherwise.

As a final remark, a problem is well-posed if is has a unique solution that ’nicely’ depends on
the data, more precisely

well-posedness = existence + uniqueness + stability.

With data we mean parameters in f such as the growth factors in the infectious disease model
in the introduction but also initial values such as x0 in (2.7), and stability means that solutions
for different data are not too far away from each other if the data points are close. Investigating
stability requires the ability to measure distances between functions (the solutions). Suitable
concepts will be introduced in later modules in great depth.
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2.5 Solution techniques for linear equations

Let us now start to explicitly solve some non-trivial cases where the function f in (2.5) depends
on x. Probably the simplest case is if f is linear in x,

f(x, t) = r(t)x+ s(t)

with some functions r, s : (α, β) → R. This is consistent with the defnition or linearity in (2.3)
in Definition 2.1 with a1 = 1 and a0 = r(t), noting that the independent variable is denoted by
t. Note also that f(x, t) is ’nice’ in the sense of Assumption 2.8 if r and s are ’nice’.

2.5.1 Homogeneous equations

We first consider the case s = 0 of a homogeneous differential equation. The initial value problem
then reads

d

dt
x(t) = r(t)x(t), t ∈ (α, β), x(t0) = x0. (2.10)

If r(t) = r̄ is constant then this means we are searching for a function such that its derivative
is proportional to itself. We know of such functions: the exponential functions satisfy this
property. Substituting thus informed guess (also called an ansatz ) x(t) = eλt we obtain

0 =
d

dt
x(t)− r̄x(t) = λeλt − r̄eλt,

and we see that x(t) = er̄t is a solution. Actually, any multiple

xc(t) = cer̄t, c ∈ R,

is a solution, too, so we have found a general solution again. The initial condition singles out a
particular solution by fixing c. The function

x(t) = x0e
r̄(t−t0) (2.11)

satisfies x(t0) = x0 and thus the initial value problem (2.10) with r(t) = r̄, and the specific
parameter is c = x0e

−r̄t0 in the general solution.
Consider now the case that r depends on the independent variable t. Let us try a similar

ansatz,
x(t) = ceR(t)

with c ∈ R and with a suitable function R : (α, β) → R. Substituting this approach in the
differential equation we see that R has to be such that

Ṙ(t)ceR(t) =
d

dt
x(t) = r(t)x(t) = r(t)ceR(t).

We see that R then has to satisfy Ṙ = r, so R has to be an anti-derivative of r. If we choose

R(t) =

∫ t

t0

r(τ)dτ

then R(t0) = 0. The initial condition then implies that

x0 = x(t0) = ceR(t0) = c,
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so the solution of (2.10) is given by

x(t) = x0e
R(t) with R(t) =

∫ t

t0

r(τ)dτ. (2.12)

All the previous operations seem fine from a mathematical points of view. However, we
have to bear in mind that, in general, all variables have dimensions. Recall that the principle
of dimensional homogeneity implies that functions such as e(·) can take nondimensional argu-
ments. Obviously, if the differential equation have been nondimensionalised then also R(t) is
nondimensional. However, even in the dimensional case there is no problem in (2.12):

Lemma 2.9. The initial value problem (2.10) satisfies the principle of dimensional homogeneity
if and only if [r(t)] = 1/[t] and [x0] = [x(t)].
If so, then R(t) =

∫ t
t0
r(τ)dτ is nondimensional. In particular, eR(t) is well-defined.

Proof. For the differential equation, the principle of dimensional homogeneity is satisfied if and
only if both terms d

dtx(t) and r(t)x(t) have the same dimension. Now

[x(t)]

[t]
=
[ d
dt
x(t)

]
= [r(t)x(t)] = [r(t)][x(t)] ⇔ [r(t)] =

1

[t]
,

so the differential equation satisfies the principle if and only if [r(t)] = 1/[t]. Similarly, the initial
condition satisfied the principle if and only if [x(t)] = [x(t0)] = [x0].
If this is the case then indeed

[R(t)] =
[ ∫ t

t0

r(τ)dτ
]
= [r(t)][t] = 1.

Example. Let us use the above ideas to solve the (nondimensional) initial value problem

d

dt
x(t) + 2tx(t) = 0, x(10) = 3.

So here t0 = 10 and x0 = 3. Note that r(t) = −2t. According to (2.12) we need to compute

R(t) =

∫ t

t0

r(τ)dτ =

∫ t

10
−2τdτ = −τ2

∣∣∣t
10

= −t2 + 100.

Then the solution is given by
x(t) = x0e

R(t) = 3e100−t2 .

Example (Mixing problem). Consider a tank containing v0 = 1000l of a mixture of water
and chlorine. To reduce the amount of chlorine, fresh water is pumped into the tank at a rate
of i = 6l/s. The mixture is well-stirred and pumped out at a rate of ω = 8l/s. The initial
concentration of chlorine is c0 = 0.02g/l.
We want to find the total amount (=mass) of chlorine in the tank as a function of time.

Let us denote the chlorine mass by q(t) as a function of time t, and the volume in the tank by
v(t). The change of the chlorine mass is equal to minus the outflow times ω the concentration
q(t)/v(t), hence

d

dt
q(t) = − ω

v(t)
q(t)
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which comes with the initial condition q(0) = c0v0. The volume of the water / chlorine mixture
changes with the net outflow i− ω, i.e.,

d

dt
v(t) = i− ω ⇒ v(t) = v0 + (i− ω)t

where we used the initial condition v(0) = v0. Note that this is only true as long as the tank it
not empty. With i − ω = −2l/s and v0 = 1000l this is the case if t = 500s as then v(500s) =
v0 − (i− ω)t = 1000l − 2 l

s × 500s = 0l. Altogether we obtain the initial value problem

d

dt
q(t) = − ω

v0 + (i− ω)t
q(t), t ∈ (0s, 500s), q(0) = c0v0 = 0.02

g

l
× 1000l = 20g.

The differential equation is of the form q̇(t) = r(t)q(t) with r(t) = −ω/(v0+(i−ω)t). Before we
proceed, let us check whether the principle of dimensional homogeneity is satisfied. We have that
[ω] = [8l/s] = L3/T and similarly [i] = L3/T . For the volume we have that [v0] = L3. Therefore

[r(t)] =
[
− ω

v0 + (i− ω)t

]
=

[ω]

[v0] + [i− ω][t]
=

L3/T

L3 + (L3/T )T
=

1

T
=

1

[t]
.

Moreover, [c0v0] = [c0][v0] = (M/L3)L3 = M = [q(t)]. By Lemma 2.9 the initial value problem
thus satisfies the principle. With this and t0 = 0s

R(t) =

∫ t

t0

r(τ)dτ

=

∫ t

0
− ω

v0 + (i− ω)τ
dτ

= − ω

v0

∫ t

0

1

1 + ((i− ω)/v0)τ
dτ

= − ω

v0

v0
i− ω

(
log(1 + ((i− ω)/v0)t)− log(1)

)
=

ω

ω − i
log
(v0 + (i− ω)t

v0

)
,

where we note that the logarithm’s arguments always are nondimensional. Finally,

q(t) = q(t0)e
R(t) = c0v0

(v0 + (i− ω)t

v0

) ω
ω−i

.

Substituting the value of the parameters we get

q(t) = 20g
(1000l + (6l/s− 8l/s)t

1000l

) 8l/s
8l/s−6l/s

= 20g
(1000l − 2l/s× t

1000l

)4
.

2.5.2 Inhomogeneous equations and integrating factor

Consider now the case s ̸= 0. The differential equation then reads

d

dt
x(t) = r(t)x(t) + s(t), t ∈ (α, β). (2.13)

The exponential function from the previous section will prove quite useful in this case. Recall
that, by Lemma 2.9, it is well-defined subject to the assumption that the differential equation
satisfies the principle of dimensional homogeneity.
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Definition 2.10. The function
I(t) = e−R(t) (2.14)

where R(t) =
∫
r(τ)dτ is an anti-derivative of r, is called an integrating factor for the differential

equation (2.13). If an initial condition of the form x(t0) = x0 as in (2.7) is imposed then a
specific anti-derivative is chosen, namely

R(t) =

∫ t

t0

r(τ)dτ.

Note that
d

dt
I(t) =

d

dt
e−R(t) =

(
− d

dt
R(t)

)
e−R(t) = −r(t)I(t) (2.15)

Let us multiply the differential equation (2.13) with I(t) so that

I(t)
d

dt
x(t)− I(t)r(t)x(t) = I(t)s(t).

Then, using (2.15),

I(t)
d

dt
x(t)− I(t)r(t)x(t) = I(t)

d

dt
x(t) + x(t)

d

dt
I(t) =

d

dt

(
I(t)x(t)

)
and we obtain

d

dt

(
I(t)x(t)

)
= I(t)s(t). (2.16)

This is a trivial differential equation for I(t)x(t), and such a transformation is exactly behind
the idea of the integrating factor2.

The initial condition for (2.16) reads I(t0)x(t0) = I(t0)x0. Recalling the solution formula for
such problems (2.8) (or just integrating with respect to t), we obtain that

I(t)x(t) = I(t0)x0 +

∫ t

t0

I(τ)s(τ)dτ.

Substituting the integrating factor (2.14) we end up with the following result:

x(t) =
1

I(t)
x0 +

∫ t

t0

I(τ)

I(t)
s(τ)dτ = eR(t)x0 +

∫ t

t0

eR(t)−R(τ)s(τ)dτ.

In summary:

Lemma 2.11. The solution to the initial value problem (2.13), (2.7) is given by

x(t) = eR(t)x0 +

∫ t

t0

eR(t)−R(τ)s(τ)dτ with R(t) =

∫ t

t0

r(τ)dτ. (2.17)

Recipe 2.12. A ’recipe’ to solve (2.13), (2.7) with an integrating factor is as follows:
first, find an anti-derivative of r,

R(t) =

∫ t

t0

r(τ)dτ.

2More generally, so-called exact equations are obtained after transformation, but which are beyond the scope
of this module. See [4], Sec 10 for more detail.
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2.5. SOLUTION TECHNIQUES FOR LINEAR EQUATIONS

Then, work out the integral

xs(t) =

∫ t

t0

eR(t)−R(τ)s(τ)dτ.

The solution is then given by (2.17),

x(t) = eR(t)x0 + xs(t).

Observe that the integrating factor (2.14) featured as a tool in the derivation but does not have
to be explicitly computed.

Remark 2.13. This recipe is aligned with the solution formula (2.17). There are other recipes
to produce the solution with an integrating factor. These are fine when we have to solve a single
problem.
The significant advantage of solution formulas such as (2.17) is of analytical nature. The formula
tells us, how variable and parameter enter the solution and influence it. We can therefore
analyse, how small perturbations such a due to measurement uncertainty can affect the solution.
In other words, we can nicely investigate the stability properties of the problem.
As an example, let x01 ̸= x02 be two different initial values and let x1(t) and x2(t) denote the
respective solutions, i.e., x1 and x2 solve the differential equation (2.13) with initial conditions
x1(t0) = x01 and x2(t0) = x20 (the other data r, s, and t0 are assumed to be the same).
Assume furthermore that r is nonnegative and bounded so that there is a number b.0 such that
0 ≤ r(t) ≤ B for all t. Note that then 0 ≤ R(t) =

∫ t
t0
r(τ)dτ ≤

∫ t
t0
Bdτ = B(t − t0). Using the

solution formula (2.17) we obtain that

|x1(t)− x2(t)| =
∣∣∣eR(t)x01 +

∫ t

t0

eR(t)−R(τ)s(τ)dτ − eR(t)x02 −
∫ t

t0

eR(t)−R(τ)s(τ)dτ
∣∣∣

=
∣∣eR(t)(x01 − x02)

∣∣ ≤ eB(t−t0)|x01 − x02|.

This is true for all t. We thus have estimated the distance between the solutions at any time
t (here measure with the absolute value of the difference) in terms of the distance between the
initial data points. Such type of estimates are called stability estimates.

Example. In forensic science, Newton’s law of cooling can be used to determine the time of a
body’s death. Newton’s law states that the temperature change of the body is porportional to the
difference between its temperature and the surrounding temperature. Assuming the latter to be
constant and denoting it by T̄ , a mathematical formulation of the law reads

d

dt
T (t) = −k

(
T (t)− T̄

)
for a constant k > 0. Note that the negative sign in front of k ensures the right direction of the
evolution. For instance, d

dtT (t) < 0 if T (t) > T̄ , so the body’s temperature decays if it is warmer
than the surroundings, and the other way round. If we know the solution then we can trace it
backward in time and find the time t∗ at which it was the value of a living body, T ∗ = 37◦C. In
practice, k is not known, however. The idea to identify it is to take temperature measurements
at two different times.

The differential equation is of the form (2.13) with both r(t) = −k and s(t) = kT̄ constant.
Following the recipe we first compute

R(t) =

∫ t

t0

r(τ)dτ =

∫ t

t0

(−k)dτ = −k(t− t0).
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Then

xs(t) =

∫ t

t0

eR(t)−R(τ)s(τ)dτ

=

∫ t

t0

e−k(t−t0)+k(τ−t0)kT̄dτ

= T̄

∫ t

t0

kek(τ−t)dτ

= T̄
(
ek(τ−t)

)∣∣τ=t

τ=t0

= T̄
(
1− ek(t0−t)

)
.

Finally, with x0 = T (t0),

T (t) = eR(t)x0 + xs(t) = e−k(t−t0)T (t0) + T̄
(
1− ek(t0−t)

)
=
(
T (t0)− T̄

)
e−k(t−t0) + T̄

Suppose now that we have measured the temperature at time t0, denoting it by T0 = T (t0),
and that there is a second measurement T1 = T (t1) at a later time t1 > t0. Using the solution
formula yields that

T1 = T (t1) =
(
T (t0)− T̄

)
e−k(t1−t0) + T̄ = (T0 − T̄ )e−k(t1−t0) + T̄

so that

e−k(t1−t0) =
T1 − T̄

T0 − T̄
⇔ k = − log

(T1 − T̄

T0 − T̄

)/
(t1 − t0).

With the thus computed number k we can now try to find t∗. It is such that

T ∗ = (T0 − T̄ )e−k(t∗−t0) + T̄

⇔ e−k(t∗−t0) =
T ∗ − T̄

T0 − T̄

⇔ − k(t∗ − t0) = log
(T ∗ − T̄

T0 − T̄

)
⇔ t∗ = t0 −

1

k
log
(T ∗ − T̄

T0 − T̄

)
= t0 + (t1 − t0) log

(T ∗ − T̄

T0 − T̄

)/
log
(T1 − T̄

T0 − T̄

)
.

Let us consider some specific values. Assume that at t0 = 8am we measured T0 = 28◦C and at
t1 = 9am we measured T1 = 27◦C, and that the ambient room temperature is T̄ = 22◦C. Then
the temperature decay factor is k = − log(56)/(9− 8) = log(65), and the (likely) time of death is

t∗ = 8 + (9− 8) log
(
15
6

)/
log
(
5
6

)
≈ 2.97 (which is around 3am).

Suppose now that we made a small error when measuring at 9am and obtained a values of
T1 = 27.2◦C. Then the result is t∗ ≈ 1.59, which is a round half past 1am and thus significantly
earlier. So the solutions sensitively depends on the data in the sense that small errors in the
data lead to significant deviations in the solution.
In practice, this issue is dealt with by taking some more measurements and fitting a solution
curve to these. Suppose there is another measurements at time t2 = 10am of T2 = 26.5 ◦ C.
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The solution for the initial conditions T (ti) = Ti with some given time ti but some unknown
temperature Ti reads

T (t, k, Ti) =
(
Ti − T̄

)
e−k(t−t0) + T̄ .

Note that we have written it as a function of t, k, Ti as k and Ti here also are treated as unknown
parameters (we assume that we are confident about the values of T̄ , though). Fitting this curve to
the measurements now means to minimise a function that penalises the distance |T (tm, k, Ti)−
Tm| between the function at the times tm and the corresponding measured temperature values
Tm. For instance,

L(k, Ti) =
2∑

m=0

(
T (tm, k, Ti)− Tm

)2
is a so-called least squares function that models such a penalisation3.
If we do this with the original values T0 = 28◦C, T1 = 27◦C, T2 = 26.5◦C and then proceed as
before to determine the time of death then we obtain that t∗ ≈ 1.73. If we do the same with
T1 = 27.2◦C then t∗ ≈ 1.63. We notice that not only is this result fairly close to the previous
value of 1.59 obtained before from two data points, but also the error in T1 has a much less
impact on the solution.

2.6 Further solution techniques

2.6.1 Separable equations, separation of variables

Let us now investigate the case where the function f in (2.5) is a product such that the dependent
and independent variables are separated:

f(x, t) = ξ(x)τ(t)

with some functions ξ : R → R and τ : (α, β) → R. We will assume these to be ’nice’ so that
the initial values problem

d

dt
x(t) = ξ(x(t))τ(t), t ∈ (α, β), x(t0) = x0, (2.18)

has a unique solution.

Lemma 2.14. If x0 is a zero of ξ then the constant function x(t) = x0, t ∈ (α, β), is the solution
to (2.18).
If ξ(x0) ̸= 0 then the solution x to (2.18) is such that ξ(x(t)) ̸= 0 for all t ∈ (α, β).

Proof. If x0 is a zero of ξ then the constant function x(t) = x0 satisfies both d
dtx(t) = 0 and

ξ(x(t))τ(t) = ξ(x0)τ(t) = 0 for all t, and thus the initial value problem (2.18).
Consider now the case ξ(x0) ̸= 0 and let x denote the corresponding solution to (2.18).

Assume that there is a time t1 ∈ (α, β) such that ξ(x(t1)) = 0. Let y now denote the solution to
(2.18) but with the initial condition y(t1) = x(t1) at the point t1. Recall that the initial point in
(2.18) is arbitrary, and that the solution is unique. As x satisfies the differential equation and the
initial condition we conclude that y = x. However, as ξ(y(t1)) = ξ(x(t1)) = 0, our previous result
yields that the unique solution is also given by the constant function y(t) = x(t1), t ∈ (α, β).
But then ξ(y(t0)) = 0 ̸= ξ(x(t0)), which contradicts y = x. Therefore, ξ(x(t)) ̸= 0 at all times
t ∈ (α, β).

3We will not discuss how to minimise functions of several variables here, such problems will be addressed in
follow-up modules

39



2.6. FURTHER SOLUTION TECHNIQUES

Let us now study the second case in more detail. If ξ(x(t)) ̸= 0 for all t we can divide the
differential equation by ξ(t) and obtain

1

ξ(x(t))

d

dt
x(t) = τ(t).

Suppose now that H(x) is an anti-derivative of 1/ξ(x), so that H ′(x) = 1
ξ(x) . By the chain rule

d

dt
H(x(t)) = H ′(x(t))

d

dt
x(t) =

1

ξ(x(t))

d

dt
x(t).

Substituting this we get that
d

dt
H(x(t)) = τ(t).

We see that we have transformed the differential equation into a trivial differential equation for
H(x). Integrating with respect to t and using the initial condition yields that

H(x(t))−H(x0) =

∫ t

t0

τ(t̂)dt̂. (2.19)

This is an implicit solution. If we can resolve fo x(t) then we can even obtain an explicit solution.

Recipe 2.15. A popular recipe to solve (2.18) consists of ’multiplying the differential equation
with dt’ so that

dx = ξ(x)τ(t)dt,

then to divide by ξ,
1

ξ(x)
dx = τ(t)dt,

and finally to integrate, ∫ x(t)

x0

1

ξ(x̂)
dx̂ =

∫ t

t0

τ(t̂)dt̂,

which is (2.19) as H ′ = 1/ξ.

Example. Let us use separation of variables to solve the initial value problem

d

dt
x(t) = 3t2e−x(t), x(0) = 1.

Here ξ(x) = ex and τ(t) = 3t2. Using Recipe 2.15 first obtain

exdx = 3t2dt

and then, with t0 = 0 and x0 = 1, ∫ x(t)

1
ex̂dx̂ =

∫ t

0
3t̂2dt̂.

Therefore
ex(t) − e1 = t3 ⇒ x(t) = log

(
t3 + e

)
.
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2.6.2 Substitution methods

Occasionally, differential equations can be simplified by formulating them in a different de-
pendent variable. Writing t and x = x(t) for the independent and the dependent variable,
respectively, a new dependent variable u(t, x(t)) may be considered. The challenge is to identify
a suitable variable. There is no general ’recipe’ other than studying the equation to potentially
’see’ something, or trying with approaches that proved beneficial for similar equations. Below
we consider two examples.

Example 2.16 (Bernoulli equations). Differential equations of the form

d

dt
x(t) = −p(t)x(t) + q(t)xn(t), t ∈ (α, β) ⊂ R,

with n ∈ N\{0, 1} and p, q given functions are named after Bernoulli and, for instance, feature
in mechanical problems where linear drag forces are insufficient.

Let us consider the variable u = x1−n. If x(t) now denotes a solution then

d

dt
u(t) = (1− n)x−n(t)

d

dt
x(t)

= (1− n)x−n(t)
(
− p(t)x(t) + q(t)xn(t)

)
= (1− n)(−p(t))x1−n(t) + (1− n)q(t)

= (n− 1)p(t)u(t) + (1− n)q(t),

so u solves a linear, inhomogeneous equation. This can be solved with an integrating factor and
then can help us to work out x.

Example 2.17 (Another substitution). Consider now the differential equation

d

dt
x(t) = 1 +

x(t)

t
+

x(t)2

t2
.

Here, we may consider the new variable u = x
t . Assuming again that x(t) is a solution we then

have that x(t) = tu(t), and differentiating yields that

d

dt
x(t) = u(t) + t

d

dt
u(t).

The differential equation therefore becomes

u(t) + t
d

dt
u(t) = 1 + u(t) + u(t)2 ⇒ d

dt
u(t) =

1

t

(
1 + u(t)2

)
.

This is a separable equation. With an initial condition of the form u(t0) = u0 (equivalent to
x(t0) = u0t0) we may follow the recipe in Remark 2.15 to obtain that∫ u(t)

u0

1

1 + ũ2
dũ =

∫ t

t0

1

t̂
dt̂

and then (assuming t > t0 for simplicity, the other case is left as an exercise)

atan(u(t))− atan(u0) = log(t/t0).

Reverting the substitution yields that

x(t) = t tan
(
log(t/t0) + atan(x(t0)/t0)

)
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Chapter 3

Higher order equations

We first look into linear differential equations with F of the form (2.3), however we confine
ourselves mostly to second order equations. The essential difficulties and ideas to overcome
them can be explained for second order equations already, though there are some technical
subtleties if the order is higher. Moreover, second order equations are of importance in many
applications and can describe oscillatory behaviour. We briefly also study a nonlinear second
order equation, which turns out to be a perturbed linear equation, and we discuss corrections
to the solution of the linearised equations.

3.1 Linear second order equations

In this section we consider differential equations of the form

a(t)
d2

dt2
x(t) + b(t)

d

dt
x(t) + c(t)x(t) = s(t) (3.1)

with given functions a(t) ̸= 0, b(t), c(t), and s(t), t ∈ (α, β). First, a brief observation. A special
case is (a(t) = 1, b(t) = c(t) = s(t) = 0)

d2

dt2
x(t) = 0.

Integrating twice we obtain that
x(t) = C1t+ C0

with two integration constants C1, C0 ∈ R. We see that, in order to identify a specific solution
we need to impose two conditions. This motivates the following initial value problem:

Definition 3.1. The initial value problem for linear second order equations consists of finding
a function x : (α, β) → R such that the differential equation (3.1) and the initial conditions

x(t0) = x0,
d

dt
x(t0) = v0 (3.2)

for some t0 ∈ [α, β] and some given numbers x0, v0 ∈ R are satisfied.

Assumption 3.2. Throughout this chapter and unless stated otherwise we assume that the data
a, b, c, and s are ’nice’ enough so that the initial value problem in Definition 3.1 has a unique
solution.
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There are abstract results that address this problem. However, these results usually do not
produce explicit solutions. Our strategy for this purpose is to exploit the linearity as follows:

1. We first study the homogeneous equation (s = 0 in (3.1)). Thanks to linearity this will
require solving two problems. The outcome will be a general solution called complementary
function with two parameters. These enable us to account for two initial conditions (3.2).

2. The inhomogeneous case then requires finding a specific solution called particular integral
of (3.1). Thanks to linearity again, we can then use the results for the homogeneous case
to account for the initial condition.

3.1.1 Homogeneous equation, complementary function

We consider now the case of a homogeneous equation with s = 0 in (3.1), i.e.,

a(t)
d2

dt2
x(t) + b(t)

d

dt
x(t) + c(t)x(t) = 0, (3.3)

and aim for describing the set of solutions. The following lemma can be generalised to higher
order in a straightforward way.

Lemma 3.3. Assume that x1 and x2 are two solutions of (3.3). Then so is linear combination

x(t) = l1x1(t) + l2x2(t), t ∈ (α, β),

for all l1, l2 ∈ R.

Proof. Substituting x in (3.3) we see that indeed

a(t)
d2

dt2
x(t) + b(t)

d

dt
x(t) + c(t)x(t)

= a(t)
d2

dt2
(
l1x1(t) + l2x2(t)

)
+ b(t)

d

dt

(
l1x1(t) + l2x2(t)

)
+ c(t)

(
l1x1(t) + l2x2(t)

)
= l1a(t)

d2

dt2
x1(t) + l2a(t)

d2

dt2
x2(t) + l1b(t)

d

dt
x1(t) + l2b(t)

d

dt
x2(t) + l1c(t)x1(t) + l2c(t)x2(t)

= l1
(
a(t)

d2

dt2
x1(t) + b(t)

d

dt
x1(t) + c(t)x1(t)

)
+ l2

(
a(t)

d2

dt2
x2(t) + b(t)

d

dt
x2(t) + c(t)x2(t)

)
= l1 × 0 + l2 × 0 = 0.

Definition 3.4 (Linearly independent functions). Two functions x1, x2 on an interval (α, β)
are linearly independent1 if the only solution to the problem of finding l1, l2 ∈ R such that

l1x1(t) + l2x2(t) = 0 for all t ∈ (α, β)

is given by l1 = l2 = 0.

Note that linear independence implies that x1 ̸= 0 and x2 ̸= 0 (as whole functions, at some
points t their value is permitted to be zero).

1The concept of linear independence might be known from linear algebra. Here, the vector space is that of
functions, which can be pointwise added and multiplied with a scalar.
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Theorem 3.5. Given any two linearly independent solutions x1, x2, all solutions of (3.3) are
of the form

x(t) = l1x1(t) + l2x2(t), t ∈ (α, β),

for some l1, l2 ∈ R.

Proof. In the following, we write ẏ = d
dty(t) for the derivative to keep the presentation a bit

neater.
Assume that x is a solution to (3.3) and, for some t0 ∈ (α, β) let x0 = x(t0) and v0 = ẋ(t0). If
we can write x in the form l1x1 + l2x2 then then the coefficients l1 and l2 have to be such that

x0 = l1x1(t0) + l2x2(t0),

v0 = l1ẋ1(t0) + l2ẋ2(t0).
(3.4)

This is a 2× 2 system of linear equations. Suppose that the matrix is singular or, equivalently,
that the determinant2 is zero. This means that

0 = det

(
x1(t0) x2(t0)
ẋ1(t0) ẋ2(t0)

)
= x1(t0)ẋ2(t0)− x2(t0)ẋ1(t0).

Assume for simplicity that x2(t0) ̸= 0 and ẋ2(t0) ̸= 0 (we will omit the discussion of the other
cases, which involves changing the roles of x1 and x2 in the following but don’t require any new
ideas). We then obtain that

x1(t0)

x2(t0)
=

ẋ1(t0)

ẋ2(t0)
=: c̄ ∈ R.

Therefore
x1(t0) = c̄x2(t0), ẋ1(t0) = c̄ẋ2(t0).

Now, by linearity (i.e., Lemma 3.3) the function z(t) = c̄x2(t) is a solution of (3.3). As z(t0) =
c̄x2(t0) = x1(t0) and ż(t0) = c̄ẋ2(t0) = ẋ1(t0) it satisfies the same initial conditions as x1. The
solution to the initial value problem is unique by Assumption 3.2. Therefore, the two functions
have to coincide. This means that x1(t) = z(t) = c̄x2(t) for all t, so the functions x1 and x2 are
not linearly independent as assumed.

Consequently, the matrix in the system (3.5) is regular, and the coefficients l1 and l2 can be
uniquely determined. We know from Lemma 3.3 that l1x1 + l2x2 is a solution to the differential
equation (3.3) for any l1, l2 and therefore also solves the initial value problem from Def 3.1 (the
differential equation (3.3) is a special case of (3.1)). But x also solves this problem. Hence, by
Assumption 3.2 on the uniqueness, the two functions have to coincide, x(t) = l1x1(t) + l2x2(t)
for all t ∈ (α, β), and we see that x indeed can be written as claimed.

Definition 3.6 (Complementary function). Given any two linearly independent solutions x1, x2
of the linear, homogeneous, second order differential equation (3.3), the general solution (or set
of solutions) {

l1x1(t) + l2x2(t)
∣∣ t ∈ (α, β), l1, l2 ∈ R

}
is called complementary function.

Corollary 3.7. Assume that x1 and x2 are two linearly independent solutions of (3.10). Then
the solution to the initial value problem (3.10) with (3.2) is given by

x(t) = l1x1(t) + l2x2(t), t ∈ (α, β),

2This determinant is known as the Wronskian.
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where l1, l2 are such that

x0 = l1x1(t0) + l2x2(t0),

v0 = l1
d

dt
x1(t0) + l2

d

dt
x2(t0).

(3.5)

Proof. This follows directly from Theorem 3.5 and the discussion around (3.4) regarding the
regularity of the system matrix.

We now derive a specific set of solutions to (3.3) that makes it convenient to account for initial
conditions of the form (3.2). Let xd(t) denote the solution with initial conditions

xd(t0) = 1, ẋd(t0) = 0, (3.6)

and xn(t) the solution with initial condition

xn(t0) = 0, ẋn(t0) = 1. (3.7)

By the Assumption 3.2 these solutions exist and are unique.

Lemma 3.8. For the solutions xd and xn we have the following results:

1. The functions xd and xn are linearly independent.

2. The solution to (3.3) and (3.2) is given by

x(t) = x0xd(t) + v0xn(t).

Proof. 1. If this was not the case then one function would be the multiple of another function.
Now, xd cannot be a multiple of xn because xn(t0) = 0 but xd(t0) = 1. In turn, if xn was
a multiple of xd then, again because of their values at t0 we see that xn = 0 × xd. But
then xn = 0 everywhere, and could not satisfy ẋn(t0) = 1.

2. By Assumption 3.2 the solution is unique, so we only have to show that x solves the initial
value problem. By Lemma 3.3, x is a solution to the differential equation (3.1) (with
s = 0). Moreover, using the properties of xd and xn,

x(t0) = x0 xd(t0)︸ ︷︷ ︸
=1

+v0 xn(t0)︸ ︷︷ ︸
=0

= x0

and
ẋ(t0) = x0 ẋd(t0)︸ ︷︷ ︸

=0

+v0 ẋn(t0)︸ ︷︷ ︸
=1

= v0,

so x also satisfies the initial conditions.
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3.1.2 Inhomogeneous equation, particular integral

Let us now assume that s ̸= 0 in (3.1). A usual objective then is to find a solution xp that
satisfies

xp(t0) = 0,
d

dt
xp(t0) = 0. (3.8)

Such functions are called particular integrals, and they are convenient for the following reason:

Lemma 3.9. With xd, xn from the previous section, the function

x(t) = xp(t) + x0xd(t) + v0xn(t), t ∈ (α, β),

is the solution to (3.1) with initial condition (3.2).

Proof. By the Assumption 3.2 we know that the solution is unique and thus only have to show
that x solves the equation and the conditions. Regarding the initial conditions,

x(t0) = xp(t0)︸ ︷︷ ︸
=0

+x0 xd(t0)︸ ︷︷ ︸
=1

+v0 xn(t0)︸ ︷︷ ︸
=0

= x0

and
ẋ(t0) = ẋp(t0)︸ ︷︷ ︸

=0

+x0 ẋd(t0)︸ ︷︷ ︸
=0

+v0 ẋn(t0)︸ ︷︷ ︸
=1

= v0.

Furthermore, also the inhomogeneous differential equation is satisfied:

a(t)
d2

dt2
x(t) + b(t)

d

dt
x(t) + c(t)x(t)

= a(t)
d2

dt2
(
xp(t) + x0xd(t) + v0xn(t)

)
+ b(t)

d

dt

(
xp(t) + x0xd(t) + v0xn(t)

)
+ c(t)

(
xp(t) + x0xd(t) + v0xn(t)

)
= a(t)

d2

dt2
xp(t) + b(t)

d

dt
xp(t) + c(t)xp(t)

+ x0

(
a(t)

d2

dt2
xd(t) + b(t)

d

dt
xd(t) + c(t)xd(t)

)
+ v0

(
a(t)

d2

dt2
xn(t) + b(t)

d

dt
xn(t) + c(t)xn(t)

)
= s(t) + x0 × 0 + v0 × 0 = s(t),

where we used that xd and xn solve the homogeneous equation.

The idea of building solutions as linear combinations of elementary solutions is known as
superposition principle. Here, we build it from a particular integral (satisfying homogeneous
initial conditions (3.8)) and from solutions to the homogeneous differential equation that enable
us to account for arbitrary initial values.

Remark 3.10. In practice, finding xp can be challenging. But note that the initial conditions
(3.8) do not have to be satisfied. In fact, if xp(t0) ̸= 0 and ẋp(t0) ̸= 0 then it is easy to show
that the solution to (3.1), (3.2) is given by

x(t) = xp(t) +
(
x0 − xp(t0)

)
xd(t) +

(
v0 − ẋp(t0)

)
xn(t).

In the next section, we look into applying these ideas around the superposition principle to
the specific case of constant coefficients.
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3.2 Linear and second order with constant coefficients

To illustrate how the procedure outlined in the previous section works let us investigate the case
of an equation (3.1) with constant coefficients,

a
d2

dt2
x(t) + b

d

dt
x(t) + cx(t) = s(t), (3.9)

where we assume that a ̸= 0 (otherwise the order of the differential equation would be less than
two).

We first need to find the solutions to the homogeneous equation, so assume that s = 0 and
study

a
d2

dt2
x(t) + b

d

dt
x(t) + cx(t) = 0, (3.10)

We have seen that function of the form eλt solved the linear first order equations with constant
coefficients, so let us try this form. Substituting it in the differential equation (3.10) yields that

0 = aλ2eλt + bλeλt + ceλt =
(
aλ2 + bλ+ c

)
eλt.

Definition 3.11 (Auxiliary equation). The equation

aλ2 + bλ+ c = 0

is called the auxiliary equation or characteristic equation of the differential equation (3.10).

So if λ is a solution to the auxiliary equation then eλt solves the differential equation. The
solutions to this quadratic equation are given by

λ1,2 = − b

2a
± 1

2a

√
b2 − 4ac.

We have to distinguish several cases, depending on the sign of b2 − 4ac.

3.2.1 Auxiliary equation with two real roots

If b2 − 4ac > 0 then λ1 ̸= λ2 are two real roots of the auxiliary equation. The functions

x1(t) = eλ1t, x2(t) = eλ2t

then are two linearly independent solutions of (3.10). Let us now find the solutions xd(t) and
xn(t). For simplicity, let us assume that

t0 = 0.

Otherwise replace t with t− t0 in the following computations.
We proceed as explained around (3.5). Starting with

xd(t) = l1dx1(t) + l2dx2(t) = l1de
λ1t + l2de

λ2t,

the initial conditions (3.6) yield that

1 = xd(0) = l1dx1(0) + l2dx2(0) = l1d + l2d,

0 = ẋd(0) = l1dẋ1(0) + l2dẋ2(0) = l1dλ1 + l2dλ2.
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Solving this system (eg by substituting l2d = 1 − l1d in the second equation and resolving for
l1d) yields that

l1d =
λ2

λ2 − λ1
, l2d =

λ1

λ1 − λ2

and thus the solution

xd(t) =
λ2

λ2 − λ1
eλ1t +

λ1

λ1 − λ2
eλ2t.

For xn we start with

xn(t) = l1nx1(t) + l2nx2(t) = l1ne
λ1t + l2ne

λ2t.

The initial conditions (3.7) yield that

0 = xn(0) = l1nx1(0) + l2nx2(0) = l1n + l2n,

1 = ẋn(0) = l1nẋ1(0) + l2nẋ2(0) = l1nλ1 + l2nλ2.

The solution is given by

l1n =
1

λ1 − λ2
, l2n =

1

λ2 − λ1

and then

xn(t) =
1

λ1 − λ2
eλ1t +

1

λ2 − λ1
eλ2t.

Example 3.12. Consider the initial value problem

d2

dt2
x(t) +

d

dt
x(t)− 6x(t) = 0, x(0) = 5,

d

dt
x(0) = 0.

We know from Lemma 3.8 that the solution then is given by

x(t) = x0xd(t) + v0xn(t) = 5xd(t).

The auxiliary equation reads
λ2 + λ− 6 = 0

and has the solutions

λ1,2 = −1

2
± 1

2

√
1 + 24 =

1

2

(
1± 5

)
, ⇒ λ1 = 2, λ2 = −3,

so λ1 − λ2 = 5 and

x(t) = 5
( λ2

λ2 − λ1
eλ1t +

λ1

λ1 − λ2
eλ2t

)
= 3e2t + 2e−3t.

In the example, one could alternatively proceed directly as outlined around (3.5), starting
with

x(t) = l1x1(t) + l2x2(t)

and identifying l1, l2 by solving

5 = x(0) = l1x1(0) + l2x2(0) = l1 + l2,

0 = ẋ(0) = l1ẋ1(0) + l2ẋ2(0) = l1λ1 + l2λ2.

This procedure usually is faster than computing xd and xn first. However, the latter is useful if
solutions for different initial conditions have to be computed.
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3.2.2 Auxiliary equation with complex roots

If b2 − 4ac < 0 then

λ1,2 = p± iq where p = − b

2a
, q =

√
4ac− b2

2a
.

The functions
x̃1(t) = e(p+iq)t, x̃2(t) = e(p−iq)t

are linearly independent but complex-valued solutions to the differential equation (3.10). We
are interested in two linearly independent real-valued solutions. For this purpose, we first note
that the arguments in Lemma 3.3 still go through if l1, l2 ∈ C. Second, by Euler’s formula

e±iqt = cos(qt)± i sin(qt).

The functions

x1(t) =
1

2

(
x̃1(t) + x̃2(t)

)
= ept cos(qt),

x2(t) =
1

2i

(
x̃1(t)− x̃2(t)

)
= ept sin(qt),

therefore are solutions to (3.10), are real-valued, and it is not difficult to see that they are
linearly independent.

Let us again assume that t0 = 0 but skip the computation of xd and xn but solve an example
directly, following the lines around (3.5)

Example 3.13. Consider the initial value problem

d2

dt2
x(t)− 2

d

dt
x(t) + 26x(t) = 0, x(0) = 3,

d

dt
x(0) = −12.

Then a = 1, b = −2, c = 26, and then

p = − b

2a
= 1, q =

√
4ca− b2

2a
=

√
104− 4

2
= 5,

so we obtain that
x1(t) = et cos(5t), x2(t) = et sin(5t).

The general solution thus is

x(t) = l1x1(t) + l2x2(t) = l1e
t cos(5t) + l2e

t sin(5t), l1, l2 ∈ R.

Note that
d

dt
x(t) = l1

(
et cos(5t)− 5et sin(5t)

)
+ l2

(
et sin(5t) + 5et cos(5t)

)
.

To satisfy the initial conditions we have to solve

3 = l1x1(0) + l2x2(0) = l1,

−12 = l1ẋ1(0) + l2ẋ2(0) = l1 + 5l2.

Substituting the result for l1 into the second equation yields l2 = −3. Hence,

x(t) = 3et
(
cos(5t)− sin(5t)

)
.
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3.2.3 Auxiliary equation with one repeated root

In the case b2 − 4ac = 0 the auxiliary equation has only one root

λ := λ1,2 = − b

2a
.

Then x̃1(t) = eλt is only one solution. A convenient second, linearly independent solution is
given by3

x̃2(t) = teλt.

To see that this indeed is a solution, note that

b

a
= −2λ

and

b2 − 4ac = 0 ⇒ c =
b2

4a
⇒ c

a
=

1

4

b2

a2
= λ2.

Now

d

dt
x̃2(t) = eλt + λteλt,

d2

dt2
x̃2(t) = 2λeλt + λ2teλt.

Altogether,

d2

dt2
x̃2(t) +

b

a

d

dt
x̃2(t) +

c

a
x̃2(t)

= 2λeλt + λ2teλt − 2λ
(
eλt + λteλt

)
+ λ2teλt = eλt

(
2λ+ λ2t− 2λ− 2λ2t+ λ2t

)
= 0,

so x̃2(t) indeed solves (3.10).
To account for initial data at any time t0 ̸= 0 let us ’shift in time’ and consider

x1(t) = eλ(t−t0), x2(t) = (t− t0)e
λ(t−t0).

Note that x1(t) = x̃1(t)e
−λt0 is just a multiple of x̃1 and thus a solution again, and

x2(t) = x̃2(t)e
−λt0 − t0x1(t)

is a linear combination of solutions and thus solves (3.10), too.
To find the solution satisfying (3.6) we start as usual with a linear combination

xd(t) = l1dx1(t) + l2dx2(t) = l1de
λ(t−t0) + l2d(t− t0)e

λ(t−t0), l1d, l2d ∈ R.

Noting that
d

dt
xd(t) = λl1de

λ(t−t0) + l2d
(
1 + λ(t− t0)

)
eλ(t−t0)

3This second solution drops out of the blue here. It is fairly natural, though, but deriving it requires some
tools from Linear Algebra, namely the Jordan Canonical Form and the Matrix Exponential. Details are left for
future modules, interested readers may resort to [5], Sec 3.3.

50



3.2. LINEAR AND SECOND ORDER WITH CONSTANT COEFFICIENTS

we see that x1(t0) = 1, x2(t0) = 0, ẋ1(t0) = λ, and ẋ2(t0) = 1 we obtain the system

1 = xd(t0) = l1dx1(t0) + l2dx2(t0) = l1d,

0 = ẋd(t0) = l1dẋ1(t0) + l2dẋ2(t0) = l1dλ+ l2d

for the coefficients and then the solution

xd(t) = x1(t)− λx2(t) = eλ(t−t0) − λ(t− t0)e
λ(t−t0).

Regarding the solution satisfying (3.7), we have already discovered and used that x2(t0) = 0
and ẋ2(t0) = 1, so we have that

xn(t) = x2(t) = (t− t0)e
λ(t−t0).

Example 3.14. Consider the initial value problem

d2

dt2
x(t) + 6

d

dt
x(t) + 9x(t) = 0, x(−1) = 2,

d

dt
x(−1) = −5.

Then a = 1, b = 6, c = 9, and indeed b2 − 4ac = 0. Noting that λ = −b/2a = −3, t0 = −1,
x0 = 2, and v0 = −5 we obtain from Lemma 3.8 that the solution is given by

x(t) = x0xd(t) + v0xn(t) = 2
(
e−3(t+1) + 3(t+ 1)e−3(t+1)

)
− 5(t+ 1)e−3(t+1) =

(
3 + t

)
e−3(t+1).

3.2.4 Inhomogeneous equation

Let us now assume that s ̸= 0 and investigate the inhomogeneous equation (3.9). As discussed
around Lemma 3.9 we may try to find a particular integral xp. However, there is no general
technique to do so, other than by the method of ’inspired guesswork’. Let us consider two
examples:

Example 3.15. Let us try to find the solutions to

d2

dt2
x(t) +

d

dt
x(t)− 2x(t) = t2.

The solutions to the homogeneous equation can be found using the methods in the previous
sections and are given in terms of

xd(t) =
2

3
et +

1

3
e−2t, xn(t) =

1

3
et − 1

3
e−2t.

As s(t) is a polynomial we may try to find a particular integral in the form of a polynomial, too.
Choosing the same degree let us try the ansatz

xp(t) = p2t
2 + p1t+ p0, with some pi ∈ R.

Substituting this and its derivatives in the differential equation yields that

t2 =
d2

dt2
xp(t) +

d

dt
xp(t)− 2xp(t) = 2p2 + (2p2t+ p1)− 2(p2t

2 + p1t+ p0).

Equating coefficients of the various powers of t yields the equations

−2p2 = 1, 2p2 − 2p1 = 0, 2p2 + p1 − 2p0 = 0.
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We see that p2 = −1/2, then p1 = p2 = −1/2 and finally p0 = p2 + p1/2 = −3/4 so that

xp(t) = −1

2
t2 − 1

2
t− 3

4
.

This function does not satisfy the initial conditions (3.8), so to find the solution for any initial
condition of the form x(0) = x0, ẋ(0) = v0 we use Remark 3.10. With xp(0) = −3/4 and
ẋp(0) = −1/2 we obtain the solution

x(t) = xp(t) +
(
x0 − xp(t0)

)
xd(t) +

(
v0 − ẋp(t0)

)
xn(t)

= −1

2
t2 − 1

2
t− 3

4
+
(
x0 +

3

4

)(2
3
et +

1

3
e−2t

)
+
(
v0 +

1

2

)(1
3
et − 1

3
e−2t

)
.

Example 3.16. Let us investigate the same equation but with s(t) = e−t,

d2

dt2
x(t) +

d

dt
x(t)− 2x(t) = e−t.

In this case we may try with an exponential function for the particular integral, too. Substituting

xp(t) = ke−t, k ∈ R,

into the differential equation yields

e−t = ke−t − ke−t − 2ke−t = −2ke−t,

and we see that k = −1/2 yields that particular integral

xp(t) = −1

2
e−t.

Again, the initial conditions (3.8) are not satisfied but Remark 3.10 tells us how to incorporate
any initial conditions.
Note that x1(t) = et and x2(t) = e−2t are solutions to the homogeneous equation. So if, say,

s(t) = e−2t

then the ansatz xp(t) = ke−2t will not work. Remembering what we did in the case of repeated
roots of the auxiliary equation we may try with xp(t) = p(t)e−2t where p(t) is a polynomial. In
this specific case, xp = −1

3 te
−2t turns out to work.

3.2.5 Example: RLC circuit

Recall from Example 1.3 in the introduction the model for an electric circuit displayed in Figure
1.3,

L
d2

dt2
Q(t) +R

d

dt
Q(t) +

1

C
Q(t) = 0,

where L > 0 is the inductance of an inductor, R > 0 is the resistance or a resistor, and C > 0
is the capacity of a capacitor. If initially a charged capacitor with charge q0 is connected to the
otherwise charge and current free elements then we can express this with the initial conditions

q(0) = q0,
d

dt
q(0) = 0. (3.11)
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In Example 1.7 the equation was nondimensionalised, which lead to the nondimensional equation

d2

dt̃2
q̃(t̃) + R̃

d

dt̃
q̃(t̃) + q̃(t̃) = 0, (3.12)

where R̃ = R
√

C
L , with nondimensional initial conditions

q̃(0) = q̃0 = 1,
d

dt̃
q̃(0) = 0. (3.13)

The above differential equation is of the form (3.10) with a = 1, b = R̃, and c = 1. The auxiliary
equation then reads

λ2 + R̃λ+ 1 = 0

and has the solutions

λ1,2 = −R̃

2
± 1

2

√
R̃2 − 4.

Depending on the parameters we have the following solution regimes:

� underdamped case:
If R̃2 − 4 < 0 then Section 3.2.2 gives us the linearly independent solutions

q̃1(t̃) = ept̃ cos(ωt̃), q̃2(t̃) = ept̃ sin(ωt̃),

of the differential equation, where p = −R̃/2 and ω = 1
2

√
4− R̃2. Starting with q̃(t̃) =

l1q̃1(t̃) + l2q̃2(t̃), l1, l2 ∈ R, and accounting for the initial conditions (3.13) we obtain the
solution

q̃(t̃) = q̃0e
pt̃
(
cos(ωt̃)− p

ω
sin(ωt̃)

)
.

We expect an oscillatory behaviour in time with exponentially fast decay of the extrema.
Note that if R̃ = 0 then p = 0 and ω = 1, so we then have perfect oscillations. Figure 3.1
confirms these expectations.

� overdamped case:
If R̃2 − 4 > 0 then Section 3.2.1 yields the linearly independent solutions

q̃d(t̃) =
λ2

λ2 − λ1
eλ1 t̃ +

λ1

λ1 − λ2
eλ2 t̃, q̃n(t̃) =

1

λ1 − λ2
eλ1 t̃ +

1

λ2 − λ1
eλ2 t̃,

which satisfy

q̃d(0) = 1,
d

dt̃
q̃d(0) = 0, q̃n(0) = 0,

d

dt̃
q̃n(0) = 1.

Accounting for the initial conditions the solution of initial value problem (3.12), (3.13) is
given by

q̃(t̃) = q̃0q̃d(t̃) =
λ2

λ2 − λ1
eλ1 t̃ +

λ1

λ1 − λ2
eλ2 t̃.

Note that 0 > λ1 > λ2 because 1
2

√
R̃2 − 4 < R̃/2, so q̃(t̃) decays exponentially fast in

time. This can indeed be observed in Figure 3.1.
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Figure 3.1: Solutions to the initial value problem (3.12), (3.13) modelling the electric charge
in an RLC circuit as in Figure 1.3. For the nondimensional resistance R̃ we chose R̃ = 0
(undamped), R̃ = 0.15 (underdamped), R̃ = 7.5 (overdamped), and R̃ = 2 (critically damped).

� critically damped case:
If R̃2 − 4 = 0 then R̃ = 2 and we have repeated eigenvalues λ = −R̃/2 = −1. Following
the arguments in Section 3.2.3 one can fairly easily work out the solution to the initial
value problem (3.12), (3.13):

q̃(t̃) = (1 + t̃)e−t̃.

Let us briefly check this: We clearly have that q̃(0) = 1. With

d

dt̃
q̃(t̃) = e−t̃ − (1 + t̃)e−t̃ = −t̃e−t̃

we also obtain that q̃′(0) = 0. Finally, regarding the differential equation, with

d2

dt̃2
q̃(t̃) = −e−t̃ + t̃e−t̃

we see that indeed

d2

dt̃2
q̃(t̃) + R̃

d

dt̃
q̃(t̃) + q̃(t̃) = −e−t̃ + t̃e−t̃ − 2t̃e−t̃ + (1 + t̃)e−t̃ = 0.

The function is illustrated in Figure 3.1. It looks similar to the overdamped case. However,
the tiniest deviations in the data such that R̃2−4 becomes negative will lead to oscillations.
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3.3. PERTURBED LINEAR SECOND ORDER EQUATIONS

3.3 Perturbed linear second order equations

We consider now a case of a nonlinear differential equation that is ’close’ to a linear equation
in the sense that the term that makes it nonlinear scales with a small parameter. The idea is
to expand the problem and the solution as a series in terms of the small parameter, which then
leads to subsequent linear problems. The presentation is centred around a specific example,
however the concepts and ideas have turned out very successful in many other applications.

The specific example is that of a projectile that is launched vertically from the Earth with
initial speed v. Newton’s law of gravitation yields that the height y(t) then satisfies (until it
drops to the ground again) the differential equation

d2

dt2
y(t) = − g

(1 + y(t)/R)2

where g ≈ 9.81m/s2 is the gravity constant and R ≈ 6.4×106m is the Earth’s radius. At launch
y satisfies the initial conditions

y(0) = 0 and
d

dt
y(0) = v.

3.3.1 Nondimensionalisation

There are several possibilities to choose the scales for a nondimensionalisation. Before discussing
these we establish some identities that are useful for all choices. Let t̃ = t/t denote a nondimen-
sional time for some time scale t, and ỹ(t̃) = y(t)/l a nondimensional height with some scale l.
Then by the chain rule (see Example 1.7 around equation (1.7) for a similar calculation)

d

dt̃
ỹ(t̃) =

t

l

d

dt
y(t),

d2

dt̃2
ỹ(t̃) =

t
2

l

d2

dt2
y(t).

The differential equation then becomes (l/t
2
) d2

dt̃2
ỹ(t̃) = g/(1+ ỹ(t̃) l/R)2 and the initial condition

for the velocity (l/t) d
dt̃
ỹ(t̃) = v. Rewriting these we obtain that

l

gt
2

d2

dt̃2
ỹ(t̃) = − 1

(1 + ỹ(t̃) l/R)2
= 0, ỹ(0) = 0,

d

dt̃
ỹ(t̃) =

t

l
v.

We note that the dimensions of the parameters are [v] = L/T , [g] = L/T 2, [R] = L. Therefore,
the parameters in the nondimensional equation

l

gt
2 ,

l

R
,

tv

l

indeed are nondimensional.
With two scales t and l at our disposal we can ensure that two parameters become one, and

there are three options on how to do so. We use the nondimensional variable ε = v2/(gR) to
express the results in the following.

1. l/(gt
2
) = 1 and l/R = 1 is achieved when l = R and t =

√
R/g. In this case tv/l =√

R/gv/R =
√
ε and the initial value problem becomes

d2

dt̃2
ỹ(t̃) = − 1

(1 + ỹ(t̃))2
, ỹ(0) = 0,

d

dt̃
ỹ(0) =

√
ε.
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2. l/R = 1 and tv/l = 1 is achieved when l = R and t = R/v. Then l/(gt
2
) = ε, and we

obtain the problem

ε
d2

dt̃2
ỹ(t̃) = − 1

(1 + ỹ(t̃))2
, ỹ(0) = 0,

d

dt̃
ỹ(0) = 1.

3. l/(gt
2
) = 1 and tv/l = 1 is achieved if l = v2/g and t = v/g. Then l/R = ε and the initial

value problem reads

d2

dt̃2
ỹ(t̃) = − 1

(1 + εỹ(t̃))2
, ỹ(0) = 0,

d

dt̃
ỹ(0) = 1.

Which nondimensionalisation is a sensible one? When throwing something the velocity may be
in the range of v = 10m/s. Then ε = v2/(gR) ≈ 1.6 × 10−6 is very small. Any terms that
comes with ε as a factor in the initial value problem therefore barely have any influence. This
motivates to set ε = 0 and study the thus reduced problems in the above three cases.

1. If ε = 0 then we obtain

d2

dt̃2
ỹ(t̃) = − 1

(1 + ỹ(t̃))2
, ỹ(0) = 0,

d

dt̃
ỹ(0) = 0.

Without any initial velocity, the projectile remains on Earth (recall that the differential
equation is only valid as long as the projectile is in the air). In others words, nothing
happens. To interpret this result, note that l = R = 6.4×106m = 6400km. Choosing such
a length scale is sensible if displacements in the same range are of interest, but throws of
a couple of meters are barely noticeable. Similarly, the time scale t =

√
R/g ≈ 807.7s is

not quite appropriate for events taking place a few seconds only. So choosing these scales
is not very suitable for the problem at hand.

2. In this case we obtain the initial value problem

0 = − 1

(1 + ỹ(t̃))2
, ỹ(0) = 0,

d

dt̃
ỹ(0) = 1.

This problem is not well-posed, there is no value ỹ(t̃) to satisfy the first equation (let
alone also the initial conditions). The scales are l = 6.4 × 106m again for the length and
t = 6.4× 105s for the time. As in the case before, these scales are not appropriate for the
problem data.

3. If we here set ε = 0 then we get

d2

dt̃2
ỹ(t̃) = −1, ỹ(0) = 0,

d

dt̃
ỹ(0) = 1.

This is a nice problem that has the well-known parabola ỹ(t̃) = t− 1
2 t

2 for a solution. The
scales here are l ≈ 10.19m and t ≈ 1.019s, which indeed seem very reasonable for this
problem.

Recall the objectives when nondimensionalising differential equations:

1. Ensuring that as many parameters as possible are one.
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2. Any remaining parameters should be ’small’.

Whilst the first objective simply serves to reduce the number of parameters in the system, the
second can help to identify a good choice of scales if several options are available. If a well-posed
mathematical problem is obtained when setting the small parameter to zero then the choice
probably is good. There still is a need to validate the solution, though, by comparing with what
can be observed in experiments (or simply with what one would expect to happen).

3.3.2 Asymptotic expansions

Upon choosing suitable scales, the nondimensionalisation has lead to the initial value problem
(for simplicity, we drop the tildas ·̃)

d2

dt2
y(t) = − 1

(1 + εy(t))2
, y(0) = 0,

d

dt
y(0) = 1. (3.14)

When setting ε = 0 then a linear differential equation is obtained. The above differential
equation therefore can be considered as a perturbed linear differential equation.

The solution for ε = 0 (let us denote it with y0(t)) can give a good idea of the effective
dynamics for the perturbed problem. However, if ε is not that small then the solution yε(t) to
the perturbed problem can significantly deviate from y0(t). In this case, we may want to find a
first order correction y1(t) such that

yε(t) ≈ y0(t) + εy1(t) (3.15)

yields a better approximation. The question is then what is a good problem for y1(t).
First, note that then

d2

dt2
yε(t) ≈

d2

dt2
y0(t) + ε

d2

dt2
y1(t).

For the right-hand-side of the equation we use the following approximation: for any differentiable
function f(x) and a small h

f ′(x) ≈ f(x+ h)− f(x)

h
⇒ f(x+ h) ≈ f(x) + hf ′(x).

Applying this to f(x) = −1/(1+x)2, which as the derivative f ′(x) = 2/(1+x)3 with x = 1 and
h = εyε(t) yields that

− 1

(1 + εyε(t))2
≈ −1 + 2εyε(t) ≈ −1 + 2εy0(t) + 2ε2y1(t).

Substituting this and the approximation y ≈ y0(t) + εy1(t) in the initial value problem (3.14)
we obtain that

d2

dt2
y0(t) + ε

d2

dt2
y1(t) ≈ −1 + 2εy0(t) + 2ε2y1(t),

with the initial conditions

y0(0) + εy1(0) ≈ 0,
d

dt
y0(0) +

d

dt
y1(0) ≈ 1.

The idea is now to equate all terms that have a factor of the same power in ε. For a given
power p, these terms then are called to scale with εp. The terms scaling with ε0 yield that

d2

dt2
y0(t) = −1, y0(0) = 0,

d

dt
y0(0) = 1.
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This is the problem that we had obtained from (3.14) by simply setting ε to zero. The solution
y0(t) = t− 1

2 t
2 is called leading order solution or zeroth order solution. The terms scaling with

ε1 yield a problem for the first order correction, or first order solution:

d2

dt2
y1(t) = 2y0(t) = 2t− t2, y1(0) = 0,

d

dt
y1(0) = 0.

As y0 is known we can easily compute the solution to this trivial differential equation, which is

y1(t) =
1

3
t3 − 1

12
t4.

There is even a term scaling ε2, which yields 0 = 2y1(t). This contradicts what we had obtained
for y1 before. For the moment, let s simply get rid of this issue with the argument that ε2 is
much smaller than ε, and we may therefore drop all terms scaling with ε2. Altogether, we then
obtain

yε(t) ≈ t− 1

2
t2 + ε

(1
3
t3 − 1

12
t4
)
.

In Figure 3.2 the solution y of (3.14) for ε = 0.24 together with the approximations to zeroth
order y0 as well as to first order y0 + εy1 are displayed. We notice that y0 is quite a bit way
from y, however with the first order correction a much better approximation is obtained.

Finally, let us briefly come back to the issue of the ε2 term. We could augment (3.15) with
terms of higher powers in ε,

yε(t) ≈ y0(t) + εy1(t) + ε2y2(t) + ε3y3(t) + . . .

The right-hand-side function −1/((1 + εy)2) then also should yield an expansion as an ε series.
For this purpose, a Taylor expansions at ε = 0 is appropriate, however such tools as the question
of convergence of these expansions is beyond the scope of this module.

4This value corresponds to a projectile velocity about 3544m/s. High-performance guns used for assessing
shields of satellites against micrometeorites and space debris achieve such velocities.
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3.3. PERTURBED LINEAR SECOND ORDER EQUATIONS

Figure 3.2: For ε = 0.2, solution y(t) to (3.14) (blue, numerically approximated) and approxi-
mations y0(t) to zeroth order (orange) and y0(t)+ εy1(t) to first order (green). See Section 3.3.2
for more detail.
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Chapter 4

Systems

So far, we have studied one-dimensional, or scalar differential equations for one dependent
variable. Many applications involve several species or objects that motivate models using several
dependent variables. For instance, the infectious disease dynamics and the two-body problem
that were mentioned in the introduction. In this section we will study such systems involving
differential equations of first order. We will focus on 2 × 2 systems and note that many ideas
and concepts generalise in a fairly generic way to n× n systems, n ∈ N.

4.1 Introduction to systems

4.1.1 Notation

In this chapter we study 2× 2 systems of first-order equations of the form

d

dt
x1(t) = f1

(
x1(t), x2(t), t

)
,

d

dt
x2(t) = f2

(
x1(t), x2(t), t

)
,

t ∈ (α, β) (4.1)

with some given functions fi : R2 × (α, β) → R, i = 1, 2. So the 2× 2 stands for two equations
for two independent variables x1(t), x2(t). We can write (4.1) in vector form

d

dt
x(t) = f

(
x(t), t

)
(4.2)

where f = (f1, f2) : R2 × (α, β) → R2.
The most general form of systems of first order equations is

F
(
t,x(t),

d

dt
x(t)

)
= 01 (4.3)

for some known function F : (α, β)× (R2)2 → R2, however we restrict our attention mostly to
the specific form (4.1) or (4.2), which is obtained if we can resolve the equations in (4.3) for
d
dtx(t).

1Properly, we should write (0, 0) instead of 0 as this is a system of two equations. However, the notation 0
is common in the literature if it is clear from the context whether the scalar zero or a vector containing zeros is
meant.
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The initial value problem the consists of finding a solution to the differential equation together
with an initial condition imposed at some time t0 ∈ [α, β], which is of the form

x(t0) = x0 for some given x0 ∈ R2. (4.4)

Note that for the differential equation we assume that t belongs to the open interval (α, β). If
t0 = α or t0 = β then we implicitly assume that we can extend the solution to these boundary
points.

Subject to suitable assumptions on the right-hand-side functions fi one can prove that there
is a unique solution to the initial value problem2. For this module we make the following
assumption:

Assumption 4.1. Unless stated otherwise, we assume that the functions fi, i = 1, 2, in (4.1)
are sufficiently ’nice’ such that there is a unique solution of the system of differential equations
(4.1) (or, equivalently, (4.2)) with an initial condition of the form (4.4).

4.1.2 Relation to higher order equations

Lemma 4.2. Any (scalar) second order differential equation can be written as a 2 × 2 system
of first order equations.

Proof. Recalling the definition (2.1) of a general scalar differential equation, let

F(t, x(t), x′(t), x′′(t)) = 0

be any second order equation. Let now η(t) = x′(t). Then η′(t) = x′′(t) and we can reformulate
the equation in the form

x′(t)− η(t) = 0,

F(t, x(t), η(t), η′(t)) = 0.

This is a 2× 2 system of the most general form (4.3).

Remark. The above concepts for 2× 2 systems can be generalised to n× n systems for n ∈ N
in a straightforward way, including rewriting higher order equations of nth order as a system.

Example. Consider the second order equation

d2

dt2
x+ cos(t)

d

dt
x− x2 = 0.

Writing x1(t) = x(t) and x2(t) =
d
dtx1(t) we obtain the system

d

dt
x1 − x2 = 0,

d

dt
x2 + cos(t)x2 − x21 = 0.

As we can rewrite the second order equation as a system this raises the question whether we
can do so the other way round as well. In general, this is not possible, however sometimes we
can do so.

2Well-posedness of initial value problems is a key topic of second year modules on differential equations.
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Example 4.3. Consider the system

d

dt
x1 = x1 + x2,

d

dt
x2 = 4x1 − 2x2 + 4e−2t.

Rearranging the first equation we see that

x2 =
d

dt
x1 − x1 ⇒ d

dt
x2 =

d2

dt2
x1 −

d

dt
x1.

Therefore, using the second equation,

d2

dt2
x1 −

d

dt
x1 =

d

dt
x2 = 4x1 − 2x2 + 4e−2t = 4x1 − 2

( d

dt
x1 − x1

)
+ 4e−2t.

Rearranging yields the second order equation

d2

dt2
x1 +

d

dt
x1 − 6x1 = 4e−2t.

4.2 Autonomous systems

4.2.1 Notation

In this section we present some ideas to establish some qualitative results for autonomous sys-
tems, specifically related to their long-time behaviour. These are of the form

d

dt
x1(t) = f1

(
x1(t), x2(t)

)
,

d

dt
x2(t) = f2

(
x1(t), x2(t)

)
,

t ∈ (α, β) (4.5)

with some given functions f1, f2 : R2 → R, i = 1, 2, so in contrast to (4.1) these functions fi do
not depend on the independent variable t.

Of particular interest are stationary solutions and their stability. Suppose (x̄1, x̄2) ∈ R2 is a
point such that f1(x̄1, x̄2) = 0 and f2(x̄1, x̄2) = 0. Then we easily see that (x1(t), x2(t)) = (x̄1, x̄2)
is a stationary solution of (4.5). The stationary solution (or point) of (4.5) is called stable if
solutions (x1(t), x2(t)) that start nearby remain close as time t increases.3

4.2.2 Phase portraits

A popular method to visualise solutions, to qualitatively predict their behaviour as time t
increases, and to get an idea whether a stationary point is stable is the combine direction fields
with phase portraits.

Definition 4.4. 1. A direction field for (4.5) is the attachment of an arrow proportional to
(f1(x1, x2), f2(x1, x2)) at each point (x1, x2) ∈ R2.

2. A phase portrait (also called phase diagram) of (4.5) is the set of curves in the x1-x2-
plane that are parametrised by solutions to (4.5). These curves traced out by solutions are
so-called trajectories.

3This is rather a notion. A precise definition of stability will be given in follow-up modules once measuring
distances and limits will have been discussed in greater depth.
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Figure 4.1: Direction field and phase portrait for the system (4.6).

In practice, a finite set of points in a bounded part of the plane is selected to illustrate a
direction field. Similarly, a few solutions, usually around the stationary points, often suffice to
give an idea of the phase portrait. If direction field and phase portrait are displayed together
then the solution curves they are ’aligned’ with the direction field in the sense that the arrows
are tangential to the curves. The arrows then also indicate the direction of evolution as the
independent variable increases.

Example. Consider the system

d

dt
x1 = f1(x1, x2) = x2,

d

dt
x2 = f2(x1, x2) = 3x21 − 1.

(4.6)

Stationary points (x̄2, x̄1) have to satisfy 0 = f1(x̄1.x̄2) = x̄2 and 0 = f2(x̄1, x̄2) = 3x̄21 − 1, so
the set of stationary points if given by {(

√
1/3, 0), (−

√
1/3, 0)}.

A couple of function values for f(x1, x2) = (f1(x1, x2), f2(x1, x2)) are given by

1 (1, 2) (1− 1) (12)

0 (0, 2) (0,−1) (0, 2)

−1 (−1, 2) (−1,−1) (−1, 2)

x2/x1 −1 0 1

In Figure 4.1 on the left, arrows proportional to f(x1, x2) are displayed in these points. In
addition, the trajectory starting at x(0) = (0, 0) is displayed. Is also goes throug the point
(−1, 0). Both in this point and the initial point we see that the arrow of the direction field is
tangential to the curve. On the right, Figure 4.1 gives a more complete impression of the phase
portrait.

We notice that the solutions around the stationary point (−
√

1/3, 0) form closed curves. In
particular, they stay nearby. We conclude that this stationary point is stable. In turn, solutions
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Figure 4.2: Phase portraits for the predator-prey model (4.7) and solutions for several initial
points (N(0), P (0)) = (N0, P0). The parameters are a = 2.5, b = 1, c = 1, d = 1.6. On the left,
e = 0.0 (a stationary point is (N̄ , P̄ ) = (1.6, 2.5)), on the right, e = 0.15 (a stationary point is
(N̄ , P̄ ) = (1.6, 2.26)).

starting to the right of the other stationary point (
√
1/3, 0) drift off to the upper right and don’t

stay nearby, so this point is unstable.

Example 4.5. Let us consider a Lotka-Volterra system modelling predator-prey interaction of
the form

d

dt
N(t) = N(t)

(
a− (bP (t) + eN(t))

)
,

d

dt
P (t) = P (t)

(
cN(t)− d

)
,

t ∈ R, (4.7)

with given parameters a, b, c, d > 0 and e ≥ 0. Here, N stands for a prey population and P
for a predator population. Note that if b = 0 was permitted then the equation for N would be
the population growth equation seen in the introduction. If predators are present then there is a
negative impact on the growth given by −bN(t)P (t). In turn, the predator population can only
grow if prey is present, which is modelled by the term cN(t)P (t). Otherwise, they die with a
rate of −d. All variables are assumed nondimensional already.

Stationary points (N̄ , P̄ ) have to satisfy

N̄
(
a− (bP̄ + eN̄)

)
= 0, P̄

(
cN̄ − d

)
= 0.

The second equation is satisfied if P̄ = 0 or N̄ = d/c. If P̄ = 0 then the first equation is
satisfied if N̄ = 0 or N̄ = a/e (if e ̸= 0). If N̄ = d/c then the first equation is satisfied if
P̄ = (ca− ed)/(cb). Altogether, the solutions to these equations are (the last only if e ̸= 0)

(N̄ , P̄ ) ∈
{
(0, 0),

(d
c
,
ca− ed

cb

)
,
(a
e
, 0
)}

.
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Figure 4.2 displays two phase portraits, one with e = 0 and one with e = 0.15 (the other
parameters are the same, see the figure caption for further detail). Some solutions are also
displayed. The stationary points with P̄ ̸= 0 are (1.6, 2.5) if e = 0 and (1.6, 2.26) if e = 0.15.

In the case e = 0 we can derive implicit solutions. Assuming that N(t), P (t) > 0 we note that

−cN(t)− d

N(t)

d

dt
N(t)+

a− bP (t)

P (t)

d

dt
P (t) = −(cN(t)− d)(a− bP (t))+ (a− bP (t))(cN(t)− d) = 0.

Re-writing the terms on the left-hand-side, this is equivalent to

d

dt

(
− cN(t) + d log(N(t)) + a log(P (t))− bP (t)

)
= 0.

Integrating with respect to time we obtain that

−cN(t) + d log(N(t)) + a log(P (t))− bP (t) = constant.

Therefore, the closed solutions displayed in Figure 4.2 on the left are level sets of the function

L(N,P ) = −cN + d log(N) + a log(P )− bP.

If e > 0 then we observe that the solution spirals inwards towards the stationary point (N̄ , P̄ ) =
(1.6, 2.26) (recall from the definition that the arrows indicate the direction of the evolution). The
stationary point therefore seems stable.

4.2.3 Linearisation and linear stability

Let (x̄1, x̄2) denote a stationary solution (or point) of (4.5). In order to get some more insight
into whether (x̄1, x̄2) is stable we study solutions of the form

(x1(t), x2(t)) = (x̄1 + ξ1(t), x̄2 + ξ2(t))

where (ξ1(t), ξ2(t)) is a ’small’ deviation from the stationary point. First, note that then
d
dt(x1(t), x2(t)) =

d
dt(ξ1(t), ξ2(t)) so that the system for (ξ1(t), ξ2(t)) becomes

d

dt
ξ1(t) = f1

(
x̄1 + ξ1(t), x̄2 + ξ2(t)

)
,

d

dt
ξ2(t) = f2

(
x̄1 + ξ1(t), x̄2 + ξ2(t)

)
,

t ∈ (α, β).

Now, we approximate the right-hand-side by4

f1
(
x̄1 + ξ1(t), x̄2 + ξ2(t)

)
≈ ∂

∂x1
f1(x̄1, x̄2)ξ1(t) +

∂

∂x2
f1(x̄1, x̄2)ξ2(t),

f2
(
x̄1 + ξ1(t), x̄2 + ξ2(t)

)
≈ ∂

∂x1
f2(x̄1, x̄2)ξ1(t) +

∂

∂x2
f2(x̄1, x̄2)ξ2(t).

(4.8)

Here, the partial derivatives ∂
∂x1

and ∂
∂x2

with respect to the first and second argument of the
functions f1 and f2 appear. There are defined by differentiating with respect to one argument
whilst keeping the other fixed, for instance,

∂

∂x2
f1(x1, x2) = lim

∆x2→0

f1(x1, x2 +∆x2)− f1(x1, x2)

∆x2
.

4Those who know about Taylor-expansions will recognise these approximations as the first-order expansions.
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The idea in the above approximation (4.8) simply is to drop the limit and keep the difference on
the left-hand-side in the definition of the partial derivative. This is justified by the assumption
that ξ1(t) and ξ2(t) are ’small’ deviations. With this approximation we obtain the following
system for (ξ1(t), ξ2(t)):

d

dt
ξ1(t) =

∂

∂x1
f1(x̄1, x̄2)ξ1(t) +

∂

∂x2
f1(x̄1, x̄2)ξ2(t),

d

dt
ξ2(t) =

∂

∂x1
f2(x̄1, x̄2)ξ1(t) +

∂

∂x2
f2(x̄1, x̄2)ξ2(t),

t ∈ (α, β). (4.9)

This system is linear in (ξ1(t), ξ2(t)). We therefore talk about a linearisation of (4.5) around
the stationary solution (x̄1, x̄2). In particular, the coefficients ∂

∂x2
f1(x̄1, x̄2) etc are constant,

and in that case we can find explicit solutions.
The principle of linearised stability now relates the stability properties of the original system

(4.5) around the stationary point (x̄1, x̄2) to the stability properties of the linearised system (4.9)
around (0, 0). Roughly, the stationary point is stable if and only if the linearised systems is stable
around the origin. We will not precisely formulate the principle in this module. It is known
as Hartman-Grobman theorem in the literature, see [4], Sec 32, for more detail and further
references. We use it here as a motivation to study linear systems of differential equations.
Before doing so, let us look at some examples of linearisations.

Example. Recall the system (4.6),

d

dt
x1 = f1(x1, x2) = x2,

d

dt
x2 = f2(x1, x2) = 3x21 − 1

which we had shown to have the stationary points {(
√
1/3, 0), (−

√
1/3, 0)}. We have that

∂

∂x1
f1(x1, x2) = 0,

∂

∂x2
f1(x1, x2) = 1,

∂

∂x1
f2(x1, x2) = 6x1,

∂

∂x2
f1(x1, x2) = 0.

The linearised system around the point (x̄1, x̄2) = (
√

1/3, 0) therefore reads

d

dt
ξ1(t) =

∂

∂x1
f1(x̄1, x̄2)ξ1(t) +

∂

∂x2
f1(x̄1, x̄2)ξ2(t) = ξ2(t),

d

dt
ξ2(t) =

∂

∂x1
f2(x̄1, x̄2)ξ1(t) +

∂

∂x2
f2(x̄1, x̄2)ξ2(t) =

√
12ξ1(t),

and around the point (x̄1, x̄2) = (−
√
1/3, 0) we obtain

d

dt
ξ1(t) =

∂

∂x1
f1(x̄1, x̄2)ξ1(t) +

∂

∂x2
f1(x̄1, x̄2)ξ2(t) = ξ2(t),

d

dt
ξ2(t) =

∂

∂x1
f2(x̄1, x̄2)ξ1(t) +

∂

∂x2
f2(x̄1, x̄2)ξ2(t) = −

√
12ξ1(t).
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Figure 4.3: A solution (N(t), P (t) of (4.7) together with the linearised solution (N̄+n(t), P̄+p(t))
starting in the same initial point (N0, P0) = (1.5, 1.5). The parameters are a = 2.5, b = 1, c = 1,
d = 1.6. On the left, e = 0.0, on the right, e = 0.15.

Example 4.6. Let us linearise the predator-prey model (4.7) around the stationary point (N̄ , P̄ ) =
(dc ,

ca−ed
cb ). We have that

fN (N,P ) = N(a− (bP + eN)) ⇒ ∂

∂N
fN (N,P ) = a− bP − 2eN,

∂

∂P
fN (N,P ) = −bN,

fP (N,P ) = P (cN − d) ⇒ ∂

∂N
fP (N,P ) = cP,

∂

∂P
fP (N,P ) = cN − d.

In the point (N̄ , P̄ ) we then obtain

∂

∂N
fN (N̄ , P̄ ) = a− b ca−ed

cb − 2edc = − ed
c ,

∂

∂P
fN (N̄ , P̄ ) = − bd

c ,

∂

∂N
fP (N̄ , P̄ ) = ca−ed

b ,
∂

∂P
fP (N̄ , P̄ ) = cdc − d = 0.

Let us denote small deviations by (n(t), p(t)). The linearised system corresponding to (4.9) now
reads

d

dt
n(t) =

∂

∂N
fN (N̄ , P̄ )n(t) +

∂

∂P
fN (N̄ , P̄ )p(t) = − ed

c n(t)−
bd
c p(t),

d

dt
p(t) =

∂

∂N
fP (N̄ , P̄ )n(t) +

∂

∂P
fP (N̄ , P̄ )p(t) = ca−ed

b n(t).

We can write it in matrix-vector form

d

dt

(
n(t)
p(t)

)
=

(
− ed

c − bd
c

ca−ed
b 0

)(
n(t)
p(t)

)
.

Figure 4.3 displays solutions of the original system (N(t), P (t)) and the linearised system
(N̄ + n(t), P̄ + p(t)). Recall that the case e = 0 features solutions in the form of closed curves.
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This is also the case for the linearised solutions, but which here are ellipses, and the shapes
differ. Similarly, in the case e = 0.15 both solutions show the same qualitative behaviour of
spiralling into the stationary point, however the shapes are different.

4.3 Homogeneous linear systems with constant coefficients

The linearisation motivates to study linear systems of differential equations with constant coef-
ficients, so let us look into linear systems of the form

d

dt
x1(t) = a1,1x1(t) + a1,2x2(t),

d

dt
x2(t) = a2,1x1(t) + a2,2x2(t),

t ∈ R,

where the ai,j now are independent of t. These can be formulated in the matrix-vector form

d

dt
x(t) = Ax(t), A =

(
a1,1 a1,2
a2,1 a2,2

)
∈ R2×2, x(t) =

(
x1(t)
x2(t)

)
. (4.10)

We found that exponential functions have been working well with the linear equations that
we saw so far, so let us try to find a solution in the form

x(t) = eλtv with v =

(
v1
v2

)
∈ R2 and λ ∈ R.

Substituting this approach in the system yields

λeλtv =
d

dt
x(t) = Ax(t) = eλtAv.

Using that eλt ̸= 0 we obtain that
λv = Av. (4.11)

So x(t) = eλtv is a solution if v is an eigenvector of A with corresponding eigenvalue λ. These
eigenvalues might be complex, though, so we should extend the above approach to the case that

v =

(
v1
v2

)
∈ C2 and λ ∈ C,

and investigate whether we can find derive real-valued solutions.
In general, the 2×2 matrix A has two distinct eigenvalues. Assuming this is the case we denote

them by λ1, λ2 and corresponding eigenvectors by v(1),v(2). Note that these eigenvectors are
linearly independent5. The functions x(1)(t) = eλ1tv(1) and x(2)(t) = eλ1tv(2) then are solutions
of (4.10) and, moreover, are linearly independent (easy to see, if we evaluate them at t = 0 we
obtain the v(i), which are linearly independent). One can show that6 all solutions of (4.10) are
of the form of the complementary function,

x(t) = l1x
(1)(t) + l2x

(2)(t) = l1e
λ1tv(1) + l2e

λ2tv(2), l1, l2 ∈ C,

and the unique solution to the initial value problem consisting of (4.10) and (4.4) is obtained
by solving the 2× 2 system

x0 = l1x
(1)(t0) + l2x

(2)(t0).

Some natural questions are:

5this will be proved in Linear Algebra
6The proof is similar to the one for second order linear equations.
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� Can we guarantee real-valued solutions?

� Is the stationary solution (0, 0) stable?

Before we answer these questions for some (arguably, most) cases we recall some properties
of eigenvalues and eigenvectors.

4.3.1 Eigenvalues and eigenvectors

The eigenvalues of a matrix A ∈ R2×2 are given as the roots to its characteristic polynomial. So
with I denoting the identity matrix they satisfy the equation

0 = det(λI −A)

= det

(
λ− a1,1 −a1,2
−a2,1 λ− a2,2

)
= (λ− a1,1)(λ− a2,2)− a2,1a1,2

= λ2 − (a1,1 + a2,2)λ+ a1,1a2,2 − a2,1a1,2

= λ2 − trace (A)λ+ det(A).

Note that, equivalently, we may consider the equation 0 = det(A − λI). Let us denote the
solutions by

λ1,2 =
trace (A)

2
± 1

2

√
(trace (A))2 − 4 det(A)

=
a1,1 + a2,2

2
± 1

2

√
(a1,1 + a2,2)2 − 4(a1,1a2,2 − a2,1a1,2)

=
a1,1 + a2,2

2
± 1

2

√
(a1,1 − a2,2)2 + 4a2,1a1,2.

Corresponding eigenvectors then are the solutions v(i) ∈ C2, v(i) ̸= (0, 0), of

(λiI −A)v(i) = 0, i = 1, 2.

There are two equations, and if v(i) is an eigevector then also every multiple cv(i), c ∈ C, is an
eigenvector again. In practice, it is sufficient to consider only one of the two equations.

Example 4.7. Let us consider some examples and compute the eigenvalues and some corre-
sponding eigenvectors of the following matrices.

1. Consider the matrix

A =

(
1 2
1 0

)
.

In this case trace (A) = 1 and det(A) = −2 so that

λ1,2 =
trace (A)

2
± 1

2

√
(trace (A))2 − 4 det(A) =

1

2
± 1

2

√
1− 4 ∗ (−2) =

1

2
± 3

2
= {2,−1}.

An eigenvector v(1) = (v
(1)
1 , v

(1)
2 ) corresponding to λ1 satisfies

0 = (λ1I −A)v =

(
2− 1 −2
−1 2− 0

)(
v
(1)
1

v
(1)
2

)
=

(
v
(1)
1 − 2v

(1)
2

−v
(1)
1 + 2v

(1)
2

)
.
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We see that a solution is given by v(1) = (2, 1). Let us briefly check that this is an
eigenvalue for λ1:

Av(1) =

(
1 2
1 0

)(
2
1

)
=

(
4
2

)
= 2

(
2
1

)
= λ1v

(1).

Regarding λ2, a corresponding eigenvector v(2) = (v
(2)
1 , v

(2)
2 ) satisfies

0 = (λ2I −A)v =

(
−1− 1 −2
−1 −1− 0

)(
v
(2)
1

v
(2)
2

)
=

(
−2v

(2)
1 − 2v

(2)
2

−v
(2)
1 − v

(2)
2

)
.

A solution to these equations is v(2) = (1,−1), and it can be checked similarly.

2. Let now

A =

(
2 5
−2 0

)
.

In this case trace (A) = 2 and det(A) = 10 so that

λ1,2 =
trace (A)

2
± 1

2

√
(trace (A))2 − 4 det(A) = 1± 1

2

√
4− 4 ∗ 10 = 1± i3.

Starting with λ1 = 1 + i3, the system for a corresponding eigenvector v(1) = (v
(1)
1 , v

(1)
2 )

reads

0 = (λ1I −A)v(1) =

(
1 + i3− 2 −5

2 1 + i3− 0

)(
v
(1)
1

v
(1)
2

)
=

(
(−1 + i3)v

(1)
1 − 5v

(1)
2

2v
(1)
1 + (1 + i3)v

(1)
2

)
.

If we choose v(1) = (5,−1 + i3) then clearly the first equation is satisfied. The second one
as well because it is a multiple of the first one, but let us briefly check as this is may note
be immediately clear here:

2v
(1)
1 +(1+i3)v

(1)
2 = 2∗5+(1+i3)∗(−1+i3) = 10+(−1+i3−i3+i29) = 10+(−1−9) = 0.

Note that λ2 = 1 − i3 = λ1 are complex conjugates of each other. Because the matrix A
has real entries this is also true for the corresponding eigenvectors. So here v(2) = v(1) =
(5,−1− i3) is an eigenvector of A with eigenvalue λ2. Let us briefly check this:

Av(2) =

(
2 5
−2 0

)(
5

−1− i3

)
=

(
10− 5− i15

−10

)
=

(
(1− i3) ∗ 5

(1− i3) ∗ (−1− i3)

)
= (1− i3)

(
5

−1− i3

)
= λ2v

(2),

where we used that

(1− i3) ∗ (−1− i3) = −1− i3 + i3 + i29 = −1− 9 = −10.

3. Finally, let us consider

A =

(
5 −4
1 1

)
.
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Figure 4.4: Direction fields and phase portraits for systems discussed in Example 4.8 (left) and
Example 4.9 (right). Solutions start at points (0, p) where p = 2.4, 1.4, 0.4,−0.6,−1.6.

In this case, trace (A) = 6 and det(A) = 9 are such that (trace (A))2−4 det(A) = 36−4∗9 =
0 so that the matrix only has one eigenvalue,

λ1,2 =
trace (A)

2
± 1

2

√
(trace (A))2 − 4 det(A) = 3± 0.

We can only expect to find one corresponding eigenvector (or, rather, eigendirection, recall
that multiples of eigenvectors are eigenvectors again), and a short calculation shows that
v = (2, 1) is such an eigenvector. Finding two linearly independent solutions x(1)(t),x(2)(t)
of (4.10) is a bit more involved.

4.3.2 Distinct real eigenvalues

If (a1,1−a2,2)
2+4a2,1a1,2 > 0 or, equivalently, (trace (A))2−4 det(A) > 0 then the two eigenvalues

are real and distinct. The corresponding eigenspaces then are distinct and we find linearly
independent corresponding eigenvectors v(1),v(2) ∈ R2. The functions

x(1)(t) = eλ1tv(1), x(2)(t) = eλ2tv(2)

are then are linearly independent solutions, and at time t0 the equations

x0 = x(t0) = l1e
λ1t0v(1) + l2e

λ2t0v(2)

have a unique solution that determine l1, l2 ∈ R.
Note that x(i)(t) remains bounded if λi ≤ 0, i = 1, 2, because the prefactors eλit either are

1 (if λi = 0) or decrease to zero (if λi < 0). So if both eigenvalues are non-positive then the
stationary solution (0, 0) is stable. In turn, if one of the eigenvalues is positive, say λ1, then
eλ1t keeps on increasing as t increases. The corresponding solution x(1)(t) = eλ1tv(1) then moves
away from (0, 0), so the stationary points is unstable.
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Example 4.8. Consider (4.10) with an initial condition of the form (4.4) where t0 = 0 and

A =

(
2 6
−2 −5

)
, x0 =

(
1
0

)
.

As trace (A) = −3 and det(A) = 2 the eigenvalues of A satisfy λ2 + 3λ+ 2 = 0 and are

λ1,2 = −3

2
± 1

2

√
32 − 4 ∗ 2 = {−1,−2}.

An eigenvector v(1) has to satisfy

0 = (λ1I −A)v(1) =

(
−3 −6
2 4

)
v(1).

A possible choice is v(1) = (−2, 1). Proceeding similarly for λ2 we find that a corresponding
eigenvector is given by v(2) = (−3, 2). A general solution to the differential equations is thus
given by

x(t) = l1e
λ1tv(1) + l2e

λ2tv(2) = l1e
−t

(
−2
1

)
+ l2e

−2t

(
−3
2

)
, l1, l2 ∈ R.

The initial condition is satisfied if

x0 = x(0) = l1v
(1) + l2v

(2) ⇔
(
1
0

)
= l1

(
−2
1

)
+ l2

(
−3
2

)
.

The solution to this 2×2 systems is l1 = −2, l2 = 1, so the unique solution of (4.10), (4.4) with
the above data is

x(t) = −2e−t

(
−2
1

)
+ e−2t

(
−3
2

)
.

As λ2 < λ1 < 0 the solution converges to (0, 0) as t → ∞. In particular, it remains close to the
stationary solution. This is actually true for any initial point, so the stationary point is stable.
Figure 4.4 (left) give an impression of the direction field and the behaviour of solutions starting
at different points. In particular, the convergence to (0, 0) is visible.

4.3.3 Distinct complex eigenvalues

If (a1,1−a2,2)
2+4a2,1a1,2 < 0 or, equivalently, (trace (A))2−4 det(A) > 0 then the two eigenvalues

are complex and satisfy

λ2 = λ1 =
a1,1 + a2,2

2
− i

2

√
4a2,1a1,2 − (a1,1 − a2,2)2 =

trace (A)

2
− i

2

√
4 det(A)− (trace (A))2.

Moreover v(1) ∈ C2 is an eigenvector corresponding to λ1 if and only if its conjugate v(1) is an
eigenvector corresponding to λ2 = λ1. Writing v(2) = v(1) we then also obtain that

eλ1tv(1) = eλ2tv(2).

Recall that any linear combinations

l1e
λ1tv(1) + l2e

λ2tv(2), l1, l2 ∈ C,
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are solutions to the system of differential equations. So let us consider the real and the imaginary
parts of eλ1tv(1), which are such linear combinations with suitable li:

x(1)(t) = Re
[
eλ1tv(1)

]
=

1

2

(
eλ1tv(1) + eλ1tv(1)

)
=

1

2
eλ1tv(1) +

1

2
eλ2tv(2) = Re

[
eλ2tv(2)

]
,

x(2)(t) = Im
[
eλ1tv(1)

]
=

1

2i

(
eλ1tv(1) − eλ1tv(1)

)
=

1

2i
eλ1tv(1) − 1

2i
eλ2tv(2) = −Im

[
eλ2tv(2)

]
.

To identify and further work out real and imaginary parts let us write

λ1 = p+ iω with p, ω ∈ R, and v(1) = r + ib with r, b ∈ R2.

Note that ω = 1
2

√
4 det(A)− (trace (A))2 ̸= 0, and one can show that r ̸= (0, 0) and b ̸= (0, 0).

Then
eλ1t = ept(cos(ωt) + i sin(ωt)),

and consequently

eλ1tv(1) = ept
(
cos(ωt) + i sin(ωt)

)
(r + ib)

= ept
(
cos(ωt)r − sin(ωt)b

)
+ iept

(
sin(ωt)r + cos(ωt)b

)
.

Two linearly independent real-valued solutions therefore are

x(1)(t) = ept
(
cos(ωt)r − sin(ωt)b

)
, x(2)(t) = ept

(
sin(ωt)r + cos(ωt)b

)
.

We obtain a general (real-valued) solution of the form

x(t) = l1x
(1)(t) + l2x

(2)(t)

= l1e
pt
(
cos(ωt)r − sin(ωt)b

)
+ l2e

pt
(
sin(ωt)r + cos(ωt)b

)
, l1, l2 ∈ R. (4.12)

Any initial condition of the form (4.4) with t0 = 0 (this is for simplicity, otherwise, we ’shift in
time’ by replacing t with t− t0 in the general solution) then becomes

x0 = x(0) = l1r + l2b.

If p = Re(λ1) = Re(λ2) = trace (A)/2 < 0 then ept decreases to zero as t increases, and if p = 0
then ept = 1 is bounded. We see that if p ≤ 0 then also x(t) is bounded or even approaches
(0, 0), hence, the stationary point (0, 0) is stable then. In turn, if p > 0 then ept increases as t
increases, and solutions move away from (0, 0). The stationary point then is unstable.

Example 4.9. Consider (4.10) with an initial condition of the form (4.4) where t0 = 0 and

A =

(
1 5
−1 −3

)
, x0 =

(
20
0

)
.

As trace (A) = −2 and det(A) = 2 the eigenvalues of A satisfy λ2 + 2λ+ 2 = 0 and are

λ1,2 = −2

2
± 1

2

√
22 − 4 ∗ 2 = −1± i, so p = −1, ω = 1.

An eigenvector corresponding to λ1 can be worked out to be

v(1) =

(
5

−2 + i

)
, so r =

(
5
−2

)
, b =

(
0
1

)
.
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A general solution to the differential equations is thus given by

x(t) = l1e
pt
(
cos(ωt)r − sin(ωt)b

)
+ l2e

pt
(
sin(ωt)r + cos(ωt)b

)
= l1e

−t cos(t)

(
5
−2

)
− l1e

−t sin(t)

(
0
1

)
+ l2e

−t sin(t)

(
5
−2

)
+ l2e

−t cos(t)

(
0
1

)
= l1e

−t

(
5 cos(t)

−2 cos(t)− sin(t)

)
+ l2e

−t

(
5 sin(t)

−2 sin(t) + cos(t)

)
.

The initial condition is satisfied if

x0 = l1r + l2b ⇔
(
20
0

)
= l1

(
5
−2

)
+ l2

(
0
1

)
.

Hence l1 = 4 and l2 = 8, and the unique solution of (4.10), (4.4) with the above data is

x(t) = e−t

(
20 cos(t)

−8 cos(t)− 4 sin(t)

)
+ e−t

(
40 sin(t)

−16 sin(t) + 8 cos(t)

)
= e−t

(
20 cos(t) + 40 sin(t)

−20 sin(t)

)
.

As e−t → 0 as t → ∞ the solution converges to (0, 0) as t → ∞. In particular, it remains
close to the stationary solution. This is actually true for any initial point, so the stationary
point is stable. Figure 4.4 (right) give an impression of the direction field and the behaviour of
solutions starting at different points. In particular, the convergence to (0, 0) is visible. Notice the
difference to the other example (left figure): the solutions ’spiral’ into the origin (right) rather
than ’hitting’ it directly (left).

4.3.4 Other cases and summary

It can happen that the two eigenvalues of A coincide, namely if (a1,1 − a2,2)
2 + 4a2,1a1,2 = 0.

We will not discuss this ’critical’ case here. For a complete characterisation of solutions to
homogeneous 2×2 systems with constants coefficients including sketches of phase diagrams wee
Chap 31 of [4].
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