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1 Vector Spaces

1 Vector Spaces

You have met the idea of vectors in 2 or 3 dimensions. We can add them and multiply them by
numbers. The same is true for collections of functions or matrices. It turns out to be useful to
identify carefully what properties these collections have in common so that we can apply the
intuition we get from ordinary space to these less geometric collections. Among other things
we want to have a clear understanding of dimension.

1.1 Foreword

The three modules MA148 Vectors and Matrices, MA149 Linear Algebra and MA150 Algebra–2
will start with the same lecture notes that were written for the start of the term. They will
develop in slightly different directions. So follow your module.

In particular, these notes are too long: some of the material in them will be cut. The cut material
may differ in different modules.

1.2 Scalars

1.2.1 Field

From now on, let F be a field. A field is a non-zero commutative ring, where every non-zero
element has a multiplicative inverse. You will get full marks in this module, if you know only
the following two fields.

The real numbers R. These are the numbers which can be expressed as decimals.

The complex numbers C = {x + iy | x, y ∈ R}, where i2 = −1.

1.2.2 Axioms for number systems

For completeness, we give the complete list of the axioms of a field. A field is a set F together
� �
�

with two special elements 0 6= 1 ∈ F, and two binary operations F× F → F, called addition
(x, y) 7→ x + y and multiplication (x, y) 7→ xy, satisfying the following axioms.

A1. Commutativity of Addition: α + β = β + α for all α, β ∈ F.

A2. Associativity of Addition: (α + β) + γ = α + (β + γ) for all α, β, γ ∈ F.

A3. Additive Unity: There exists 0 ∈ F such that α + 0 = 0 + α = α for all α ∈ F.

A4. Additive Inverse: For each α ∈ F there exists −α ∈ F such that α + (−α) = (−α) + α = 0.

M1. Commutativity of Multiplication: αβ = βα for all α, β ∈ F.

M2. Associativity of Multiplication: (αβ)γ = α(βγ) for all α, β, γ ∈ F.
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1 Vector Spaces

M3. Multiplicative Unity: There is 1 ∈ F such that α1 = 1α = α for all α ∈ F.

M4. Multiplicative Inverse: For each number α ∈ F with α 6= 0, there exists α−1 ∈ F such that
αα−1 = α−1α = 1.

D. Distributivity: (α + β)γ = αγ + βγ for all α, β, γ ∈ F.

1.2.3 Field of real numbers

We will use F and R (and once C) in these notes. We use F for the results that hold over any
field, although in all our examples (and the exam) F = R. We use R when we need to use the
special properties of the real numbers:

• The order α ≥ β such that α2 ≥ 0 for all α ∈ R.

• Each α ∈ R such that α ≥ 0 admits a square root
√

α ∈ R with
√

α ≥ 0.

• Each polynomial of positive degree f (x) with coefficients in R admits a real root α ∈ R or
a pair of complex roots α, ᾱ ∈ C \R.

1.3 Vector spaces

Recall that the abelian group structure on V is a binary operation of addition that satisfies
axioms A1, A2, A3 and A4.

Definition 1.3.1. A vector space is an abelian group V with an additional binary operation
F×V → V, called scalar multiplication (α, v) 7→ αv, satisfying the following axioms:

1. α(u + v) = αu + αv,

2. (α + β)v = αv + βv,

3. (αβ)v = α(βv),

4. 1v = v.

Elements of the field F will be called scalars. We will use the greek letters for them. We will use
boldface letters like v to denote vectors, elements of V. The zero vector in V will be written as
0V , or usually just 0. This is different from the zero scalar 0 = 0F ∈ F.
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1 Vector Spaces

1.3.1 Examples of vector spaces

1. The standard vector space is the space of column vectors Fn = {


α1
α2

...
αn

 | αi ∈ F}. Addition

and scalar multiplication are defined by the obvious rules:α1
...

αn

+

β1
...

βn

 =

α1 + β1
...

αn + βn

 , λ

α1
...

αn

 =

λα1
...

λαn

 .

The most familiar examples are

R2 = {
(

α
β

)
| α, β ∈ R} and R3 = {

α
β
γ

 | α, β, γ ∈ R},

which are the points in an ordinary 2- and 3-dimensional space, equipped with a coordinate
system.

Vectors in R2 and R3 can also be thought of as directed lines joining the origin to the points
with the corresponding coordinates:

0 =

(
0
0

)
���

���
���

���:

(
α
β

)

Addition of vectors is then given by the parallelogram law.

0 �
���

���
���

���
�:

�
�
�
��

��
��

�
��

�
��

�
��

�
�*

v1
v2

v1 + v2

���
���

���
���

��

�
�
�
�

Note that F1 is essentially the same as F itself and F1 is the zero vector spaces {0}.

2. Let F[x] be the set of polynomials in an indeterminate x with coefficients in the field F. That
is,

F[x] = {α0 + α1x + · · ·+ αnxn | αi ∈ F}.
Then F[x] is a vector space over F.

3. Fix n ≥ 0. Let F[x]≤n be the set of polynomials over F of degree at most n (where we agree
that the degree of the zero polynomial is −1). Then F[x]≤n is also a vector space over F; in fact
it is a subspace of F[x] (see Definition 1.3.3 ).
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1 Vector Spaces

Note that the polynomials of degree exactly n do not form a vector space. (Why?)

4. Let F = R and let V be the set of n-times differentiable functions f : R → R which are
solutions of the differential equation

λ0
dn f
dxn + λ1

dn−1 f
dxn−1 + · · ·+ λn−1

d f
dx

+ λn f = 0.

for fixed λ0, λ1, . . . , λn ∈ R. Then V is a vector space over R, for if f (x) and g(x) are both
solutions of this equation, then so are f (x) + g(x) and α f (x) for all α ∈ R.

5. The previous example is a space of functions. There are many such examples that are
important in Analysis. For example, the set Ck((0, 1), R) (of all functions f : (0, 1) → R such
that the k-th derivative f (k) exists and is continuous) is a vector space over R with the usual
pointwise definitions of addition and scalar multiplication of functions.

1.3.2 Axiomatic approach

Facing such a variety of vector spaces, a mathematician wants to derive useful methods of
handling all these vector spaces. If we do it on a single example, say R8, how can we be certain
that our methods are correct? It is only possible with the axiomatic approach to developing
mathematics. We must use only arguments based on the vector space axioms. We have to avoid
making any other assumptions. This ensures that everything we prove is valid for all vector
spaces, not just the familiar ones like R3.

Try deducing the following easy properties from the axioms.

Lemma 1.3.2. 1. α0 = 0 for all α ∈ F,

2. 0v = 0 and (−1)v = −v for all v ∈ V.

3. −(αv) = (−α)v = α(−v), for all α ∈ F and v ∈ V.

1.3.3 Subspaces

Let V be a vector space over the field F.

Definition 1.3.3. A subspace of V is a non-empty subset W ⊆ V such that

u, v ∈W ⇒ u + v ∈W and v ∈W, α ∈ F⇒ αv ∈W.

These two conditions can be replaced with a single condition

u, v ∈W, α, β ∈ F⇒ αu + βv ∈W.

A subspace W is itself a vector space over F under the operations of vector addition and scalar
multiplication in V. Notice that all vector space axioms of W hold automatically. (They are
inherited from V.)
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1 Vector Spaces

For any vector space V, V is always a subspace of itself. Subspaces other than V are sometimes
called proper subspaces. We also always have a subspace {0} consisting of the zero vector alone.
This is called the trivial subspace.

Proposition 1.3.4. If W1 and W2 are subspaces of V then so is W1 ∩W2.

Proof. Let u, v ∈ W1 ∩W2 and α ∈ F. Then u + v ∈ W1 (because W1 is a subspace) and
u+ v ∈W2 (because W2 is a subspace). Hence u+ v ∈W1 ∩W2. Similarly, we get αv ∈W1 ∩W2,
so W1 ∩W2 is a subspace of V.

Warning! It is not necessarily true that W1 ∪W2 is a subspace.

Example. Let V = R2, let W1 = {
(

α
0

)
| α ∈ R} and W2 = {

(
0
α

)
| α ∈ R}. Then W1, W2 are

subspaces of V, but W1∪W2 is not a subspace, because
(

1
0

)
,
(

0
1

)
∈W1∪W2, but

(
1
0

)
+

(
0
1

)
=(

1
1

)
6∈W1 ∪W2.

Note that any subspace of V that contains W1 and W2 has to contain all vectors of the form
u + v for u ∈W1, v ∈W2.

Definition 1.3.5. Let W1, W2 be subspaces of the vector space V. Then W1 + W2 is defined to be
the set of vectors v ∈ V such that v = w1 + w2 for some w1 ∈W1, w2 ∈W2. Or, if you prefer,
W1 + W2 = {w1 + w2 |w1 ∈W1, w2 ∈W2}.

Do not confuse W1 + W2 with W1 ∪W2!

Proposition 1.3.6. If W1, W2 are subspaces of V then so is W1 + W2. In fact, it is the smallest (with
respect to the order ⊆) subspace that contains both W1 and W2.

Proof. Let u, v ∈ W1 + W2. Then u = u1 + u2 for some u1 ∈ W1, u2 ∈ W2 and v = v1 + v2 for
some v1 ∈ W1, v2 ∈ W2. Then u + v = (u1 + v1) + (u2 + v2) ∈ W1 + W2. Similarly, if α ∈ F

then αv = αv1 + αv2 ∈W1 + W2. Thus W1 + W2 is a subspace of V.

Any subspace of V that contains both W1 and W2 must contain W1 + W2, so it is the smallest
such subspace.

Examples. 1. As above, let V = R2, W1 = {
(

α
0

)
| α ∈ R} and W2 = {

(
0
α

)
| α ∈ R}. Then

W1 + W2 = V.

2. Let V = R2, let W1 = {
(

α
α

)
| α ∈ R} and W2 = {

(
−α

α

)
| α ∈ R}. Then W1 + W2 = V.
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1 Vector Spaces

1.4 Linear independence, spanning and bases

By a vector sequence we understand a finite sequence v1, v2, . . . vn of elements of a vector space V.
Vectors of the form α1v1 + α2v2 + · · ·+ αnvn for α1, α2, . . . , αn ∈ F are called linear combinations
of v1, v2, . . . vn.

1.4.1 Linear dependence and independence

Definition 1.4.1. Let V be a vector space over the field F. The vector sequence v1, v2, . . . vn is
called linearly dependent if there exist scalars α1, α2, . . . , αn ∈ F, not all zero, such that

α1v1 + α2v2 + · · ·+ αnvn = 0.

The sequence v1, v2, . . . vnis called linearly independent if they are not linearly dependent. In
other words, it is linearly independent if the only scalars α1, α2, . . . , αn ∈ F that satisfy the above
equation are α1 = 0, α2 = 0, . . . , αn = 0.

Examples. 1. Let V = R2, v1 =

(
1
3

)
, v2 =

(
2
5

)
.

Then α1v1 + α2v2 = (α1 + 2α2, 3α1 + 5α2), which is equal to 0 = (0, 0) if and only if α1 + 2α2 = 0
and 3α1 + 5α2 = 0. Thus, we have a pair of simultaneous equations in α1, α2 and the only
solution is α1 = α2 = 0, so v1, v2 is linearly independent.

2. Let V = R2, v1 =

(
1
3

)
, v2 =

(
2
6

)
.

This time the equations are α1 + 2α2 = 0 and 3α1 + 6α2 = 0, and there are non-zero solutions,
such as α1 = −2, α2 = 1, and so the vector sequence v1, v2 is linearly dependent.

Lemma 1.4.2. The following statements about a vector sequence v1, . . . , vn ∈ V are equivalent.

1. It is linearly dependent.

2. v1 = 0 or, for some r, vr is a linear combination of v1, . . . , vr−1.

Proof. If v1 = 0 then by putting α1 = 1 and αi = 0 for i > 1 we get α1v1 + · · ·+ αnvn = 0, so
v1, v2, . . . , vn ∈ V is linearly dependent.

If vr is a linear combination of v1, . . . , vr−1, then vr = α1v1 + · · ·+ αr−1vr−1 for some α1, . . . , αr−1 ∈
F and so we get α1v1 + · · ·+ αr−1vr−1 − 1 · vr = 0 and again v1, v2, . . . , vn ∈ V is linearly de-
pendent.

Conversely, suppose that v1, v2, . . . , vn ∈ V is linearly dependent, and αi are scalars, not all
zero, satisfying α1v1 + α2v2 + · · ·+ αnvn = 0. Let r be maximal with αr 6= 0; then α1v1 + α2v2 +
· · ·+ αrvr = 0. If r = 1 then α1v1 = 0 which is only possible if v1 = 0. Otherwise, we get

vr = −
α1

αr
v1 − · · · −

αr−1

αr
vr−1.

In other words, vr is a linear combination of v1, . . . , vr−1.

9
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1.4.2 Spanning vectors

The proof of the next fact is routine. Try it yourself!

Proposition 1.4.3. Let v1, . . . , vn be a vector sequence. Then the set of all linear combinations α1v1 +
α2v2 + · · ·+ αnvn of v1, . . . , vn forms a subspace of V.

The subspace in this proposition is known as the span of the sequence v1, . . . , vn.

Definition 1.4.4. The sequence v1, . . . , vn spans V if the span of the sequence is V.

In other words, this means that every vector v ∈ V is a linear combination α1v1 + α2v2 + · · ·+
αnvn of v1, . . . , vn.

1.4.3 Bases of vector spaces

Definition 1.4.5. The vector sequence v1, . . . , vn in V forms a basis of V if it is linearly indepen-
dent and spans V.

Proposition 1.4.6. The vector sequence v1, . . . , vn forms a basis of V if and only if every v ∈ V can
be written uniquely as v = α1v1 + α2v2 + · · ·+ αnvn; that is, the coefficients α1, . . . , αn are uniquely
determined by the vector v.

Proof. Suppose that v1, . . . , vn forms a basis of V. Then it spans V, so certainly every v ∈ V can
be written as v = α1v1 + α2v2 + · · ·+ αnvn. Suppose that we also had v = β1v1 + β2v2 + · · ·+
βnvn for some other scalars βi ∈ F. Then we have

0 = v− v = (α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αn − βn)vn

and so
(α1 − β1) = (α2 − β2) = · · · = (αn − βn) = 0

by linear independence of v1, . . . , vn. Hence αi = βi for all i, which means that the αi are
uniquely determined.

Conversely, suppose that every v ∈ V can be written uniquely as v = α1v1 + α2v2 + · · ·+ αnvn.
Then v1, . . . , vn certainly spans V. If α1v1 + α2v2 + · · ·+ αnvn = 0, then

α1v1 + α2v2 + · · ·+ αnvn = 0v1 + 0v2 + · · ·+ 0vn

and so the uniqueness assumption implies that α1 = α2 = · · · = αn = 0, and v1, . . . , vn are
linearly independent. Hence the sequence forms a basis of V.

Examples. 1. e1 =

(
1
0

)
and e2 =

(
0
1

)
is a basis of F2. This follows from Proposition 1.4.6,

because each element
(

α1
α2

)
∈ F2 can be written as α1e1 + α2e2, and this expression is clearly

unique.

10
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2. More generally, e1 =

1
0
0

, e2 =

0
1
0

, e3 =

0
0
1

 form a basis of F3, e1 =


1
0
0
0

, e2 =


0
1
0
0

,

e3 =


0
0
1
0

, e4 =


0
0
0
1

 form a basis of F4 and so on. This is called the standard basis of Fn for

n ∈N.

(To be precise, the standard basis of Fn is e1, . . . , en, where ei is the vector with a 1 in the i-th
position and a 0 in all other positions.)

3. There are many other bases of Fn. For example,
(

1
0

)
,
(

1
1

)
form a basis of F2, because(

α1
α2

)
= (α1 − α2)

(
1
0

)
+ α2

(
1
1

)
, and this expression is unique. In fact, any two non-zero

vectors such that one is not a scalar multiple of the other form a basis for F2.

4. Since we defined a basis as a finite vector sequence (with additional properties, of course),
not every vector space has a basis. For example, let F[x] be the space of polynomials in
x with coefficients in F. Let p1(x), p2(x), . . . , pn(x) be a finite sequence of polynomials in
F[x]. Then if d is the maximum degree of p1(x), p2(x), . . . , pn(x), any linear combination of
p1(x), p2(x), . . . , pn(x) has degree at most d, and so p1(x), p2(x), . . . , pn(x) cannot span F[x].

It is customary in Maths to allow infinite bases as well: then the infinite sequence of vectors
1, x, x2, x3, . . . , xn, . . . is a basis of F[x]. A vector space with a finite basis is called finite dimensional.
In fact, all of this course will be about finite-dimensional spaces, but it is important to remember
that these are not the only examples. The spaces of functions mentioned in Example 5 of
Section 1.3 typically have uncountably infinite dimension: so they are even less well-behaved
than F[x] as heir bases are not even sequences.

Theorem 1.4.7. (The basis theorem.) Suppose that v1, . . . , vm and w1, . . . , wn are both finite bases of
the vector space V. Then m = n. In other words, all finite bases of V contain the same number of vectors.

The proof of this theorem requires sifting and will be done in the next section.

Definition 1.4.8. The number n of vectors in a basis of the finite-dimensional vector space V is
called the dimension of V and we write dim(V) = n.

Thus, as we might expect, Fn has dimension n. F[x] is infinite-dimensional, but the space
F[x]≤n of polynomials of degree at most n has basis 1, x, x2, . . . , xn, so its dimension is n + 1
(not n).

11
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1.4.4 Sifting

Lemma 1.4.9. Suppose that the vector sequence v1, v2, . . . , vn, w spans V and that w is a linear
combination of v1, . . . , vn. Then v1, . . . , vn spans V.

Proof. Since v1, v2, . . . , vn, w spans V, any vector v ∈ V can be written as

v = α1v1 + · · ·+ αnvn + βw,

But w is a linear combination of v1, . . . , vn, so w = γ1v1 + · · ·+ γnvn for some scalars γi, and
hence

v = (α1 + βγ1)v1 + · · ·+ (αn + βγn)vn

is a linear combination of v1, . . . , vn, which therefore spans V.

There is an important process, which we shall call sifting, which can be applied to any sequence
of vectors v1, v2, . . . , vn in a vector space V. We consider each vector vi in turn. If it is zero, or a
linear combination of the preceding vectors v1, . . . , vi−1, then we remove it from the list. The
output of the sifting is a new linearly independent vectors sequence with the same span as the
original one.

Example. Let us sift the following sequence of vectors in R3.

v1 =

0
0
0

 , v2 =

1
1
1

 , v3 =

2
2
2

 , v4 =

1
0
0

 , v5 =

3
2
2

 , v6 =

0
0
0

 , v7 =

1
1
0

 , v8 =

0
0
1

 .

v1 = 0, so we remove it. v2 is non-zero so it stays. v3 = 2v2 so it is removed. v4 is clearly not a
linear combination of v2, so it stays.

We have to decide next whether v5 is a linear combination of v2, v4. If so, then

3
2
2

 =

α1

1
1
1

+ α2

1
0
0

, which (fairly obviously) has the solution α1 = 2, α2 = 1, so remove v5. Then

v6 = 0 so that is removed too.

Next we try v7 =

1
1
0

 = α1

1
1
1

+ α2

1
0
0

, and looking at the three components, this reduces

to the three equations
1 = α1 + α2; 1 = α1; 0 = α1.

The second and third of these equations contradict each other, and so there is no solution. Hence
v7 is not a linear combination of v2, v4, and it stays.

12
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Finally, we need to try

v8 =

0
0
1

 = α1

1
1
1

+ α2

1
0
0

+ α3

1
1
0


leading to the three equations

0 = α1 + α2 + α3 0 = α1 + α3; 1 = α1

and solving these in the normal way, we find a solution α1 = 1, α2 = 0, α3 = −1. Thus we delete
v8 and we are left with just v2, v4, v7.

Of course, the vectors that are removed during the sifting process depend very much on the
order of the list of vectors. For example, if v8 had come at the beginning of the list rather than
at the end, then we would have kept it.

Applying sifting, we can now prove the Basis Theorem 1.4.7. It follows from the next proposi-
tion.

Proposition 1.4.10. (Exchange Lemma) Suppose that vector sequence v1, . . . , vn spans V and that the
vector sequence w1, . . . , wm ∈ V is linearly independent. Then m ≤ n.

Proof. The idea is to place the wi one by one in front of the sequence v1, . . . , vn, sifting each
time.

Since v1, . . . , vn spans V, w1, v1, . . . , vn is linearly dependent, so when we sift, at least one vj is
deleted. We then place w2 in front of the resulting sequence and sift again. Then we put w3 in
from of the result, and sift again, and carry on doing this for each wi in turn. Since w1, . . . , wm
are linearly independent none of them are ever deleted. Each time we place a vector in front of
a sequence which spans V, and so the extended sequence is linearly dependent, and hence at
least one vj gets eliminated each time.

But in total, we append m vectors wi, and each time at least one vj is eliminated, so we must
have m ≤ n.

1.4.5 Existence of a basis

Let us address the fundamental question. Does a vector space admit a basis?

Theorem 1.4.11. Suppose that the vector sequence v1, . . . , vr spans the vector space V. Then there is a
subsequence of v1, . . . , vr which forms a basis of V.

Proof. We sift the vectors v1, . . . , vr. The vectors that we remove are linear combinations of the
preceding vectors, and so by Lemma 1.4.9, the remaining vectors still span V. After sifting, no
vector is zero or a linear combination of the preceding vectors (or it would have been removed),
so by Lemma 1.4.2, the remaining vector sequence is linearly independent. Hence, it is a basis
of V.

13
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Corollary 1.4.12. If a vector space V is spanned by a finite sequence, then it admits a basis.

In fact, if you allow infinite bases, any vector space V admits a basis. A proof of this requires
would lead us too deep into axiomatic Set Theory: it is carried out in year 3 in both Set Theory
and Rings and Modules.

Corollary 1.4.13. Let V be a vector space of dimension n over F. Then any sequence of n vectors which
spans V is a basis of V, and no n− 1 vectors can span V.

Proof. After sifting a spanning sequence, the remaining vectors form a basis, so by Theorem 1.4.7,
there must be precisely n = dim(V) vectors remaining. The result is now clear.

Theorem 1.4.11 is not flexible enough for future proofs. We will need the next theorem.

Theorem 1.4.14. Let V be a finite-dimensional vector space over F, and suppose that the vector sequence
v1, . . . , vr is linearly independent in V. Then we can extend the sequence to a basis v1, . . . , vn of V,
where n ≥ r.

Proof. Suppose that dim(V) = n and let w1, . . . , wn be any basis of V. We sift the combined
sequence

v1, . . . , vr, w1, . . . , wn.

Since w1, . . . , wn spans V, the result is a basis of V by Theorem 1.4.11. Since v1, . . . , vr is linearly
independent, none of them can be a linear combination of the preceding vectors, and hence
none of the vi are deleted in the sifting process. Thus the resulting basis contains v1, . . . , vr.

Corollary 1.4.15. Let V be a vector space of dimension n over F. Then any n linearly independent
vectors form a basis of V and no n + 1 vectors can be linearly independent.

(Remark for the observant reader: Notice that this corollary shows that a vector space V cannot
have both a finite and an infinite basis.)

Example. The vectors v1 =


1
2
0
2

 , v2 =


0
1
0
2

 are linearly independent in R4. Let us extend

them to a basis of R4. The easiest thing is to append the standard basis of R4, giving the
combined vector sequence

v1 =


1
2
0
2

 , v2 =


0
1
0
2

 , e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1

 ,
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which we shall sift. We find that


1
0
0
0

 = α1


1
2
0
2

 + α2


0
1
0
2

 has no solution, so e1 stays.

However, e2 = v1 − v2 − e1 so e2 is deleted. It is clear that e3 is not a linear combination of
v1, v2, e1, because all of those have a 0 in their third component. Hence e3 remains. Now we
have four linearly independent vectors, so must have a basis at this stage, and we can stop the
sifting early. The resulting basis is

v1 =


1
2
0
2

 , v2 =


0
1
0
2

 , e1 =


1
0
0
0

 , e3 =


0
0
1
0

 .
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2 Linear Transformations

2 Linear Transformations

When you study sets the notion of function is extremely important. There is little to say about a
single isolated set while functions allow you to link different sets. Similarly in Linear Algebra,
a single isolated vector space is not the end of the story. We have to connect different vector
spaces by functions. However, a function having little regard to the vector space operations
may be of little value.

2.1 Basic properties

2.1.1 Definition

Definition 2.1.1. Let U, V be two vector spaces over the same field F. A linear transformation or
linear map T from U to V is a function T : U → V such that

(i) T(u1 + u2) = T(u1) + T(u2) for all u1, u2 ∈ U;

(ii) T(αu) = αT(u) for all α ∈ F and u ∈ U.

We shall usually call these linear maps (because this is shorter), although linear transformation
is the standard name. Notice that the two conditions for linearity are equivalent to a single
condition

T(αu1 + βu2) = αT(u1) + βT(u2) for all u1, u2 ∈ U, α, β ∈ F.

First a couple of trivial consequences of the definition:

Lemma 2.1.2. Let T : U → V be a linear map. Then

(i) T(0U) = 0V ;

(ii) T(−u) = −T(u) for all u ∈ U.

Proof. (i) T(0U) = T(0U + 0U) = T(0U) + T(0U), so T(0U) = 0V .
(ii) Just put α = −1 in the definition of linear map.

The key property is that linear maps are uniquely determined by their action on a basis.

Proposition 2.1.3. Let U, V be vector spaces over F, let u1, . . . , un be a basis of U and let v1, . . . , vn
be any sequence of n vectors in V. Then there is a unique linear map T : U → V with T(ui) = vi for
1 ≤ i ≤ n.

Proof. Let u ∈ U. Then, since u1, . . . , un is a basis of U, by Proposition 1.4.6, there exist uniquely
determined α1, . . . , αn ∈ F with u = α1u1 + · · ·+ αnun. Hence, if T exists at all, then we must
have

T(u) = T(α1u1 + · · ·+ αnun) = α1v1 + · · ·+ αnvn,
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and so T is uniquely determined.

On the other hand, it is routine to check that the map T : U → V defined by the above equation
is indeed a linear map, so T does exist and is unique.

2.1.2 Examples

Many familiar geometrical transformations, such as projections, rotations, reflections and
magnifications are linear maps, and the first three examples below are of this kind. Note,
however, that a nontrivial translation is not a linear map, because it does not satisfy T(0U) = 0V .

1. Let U = R3, V = R2 and define T : U → V by T

α
β
γ

 =

(
α
β

)
. Then T is a linear map. This

type of map is known as a projection, because of the geometrical interpretation.

0 XXXXXX
��

��
�

z

x

y








�

-

v

T(v)

2. Let U = V = R2. We interpret v in R2 as a directed line vector from 0 to v (see the examples in
Section 1.3), and let T(v) be the vector obtained by rotating v through an angle θ anti-clockwise
about the origin.

0
��

��
���1

�
�
�
�
�
���

v

T(v)

θ

It is easy to see geometrically that T(u1 + u2) = T(u1) + T(u2) and T(αu) = αT(u) (because
everything is simply rotated about the origin), and so T is a linear map. By considering the unit
vectors, we have

T
(

1
0

)
=

(
cos θ
sin θ

)
, T
(

0
1

)
=

(
− sin θ

cos θ

)
and so T

(
α
β

)
= αT

(
1
0

)
+ βT

(
0
1

)
=

(
α cos θ − β sin θ
α sin θ + β cos θ

)
.

3. Let U = V = R2 again. Now let T(v) be the vector resulting from reflecting v through a line
through the origin that makes an angle θ/2 with the x-axis.
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0
�
�
�
�
�
�
�
�
�
�
�J

J
J
J
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v

T(v)

θ/2

This is again a linear map. We find that

T
(

1
0

)
=

(
cos θ
sin θ

)
, T
(

0
1

)
=

(
sin θ

− cos θ)

)
and so T

(
α
β

)
= αT

(
1
0

)
+ βT

(
0
1

)
=

(
α cos θ + β sin θ
α sin θ − β cos θ

)
.

4. Let U = V = R[x], the set of polynomials over R, and let T be differentiation, i.e., T(p(x)) =
p′(x) for p ∈ R[x]. This is easily seen to be a linear map.

5. Let U = F[x], the set of polynomials over F. Every α ∈ F gives rise to two linear maps, shift
Sα : U → U, Sα( f (x)) = f (x− α) and evaluation Eα : U → F, Eα( f (x)) = f (α).

The next two examples seem dull but are important!

6. For any vector space V, we define the identity map IV : V → V by IV(v) = v for all v ∈ V.
This is a linear map.

7. For any vector spaces U, V over the field F, we define the zero map 0U,V : U → V by
0U,V(u) = 0V for all u ∈ U. This is also a linear map.

2.1.3 Operations on linear maps

We define the operations of addition, scalar multiplication, and composition on linear maps.

Let T1 : U → V and T2 : U → V be two linear maps, and let α ∈ F be a scalar.

Addition: We define a map T1 + T2 : U → V by the rule (T1 + T2)(u) = T1(u) + T2(u) for
u ∈ U.

Scalar multiplication: We define a map αT1 : U → V by the rule (αT1)(u) = αT1(u) for u ∈ U.

Now let T1 : U → V and T2 : V →W be two linear maps.

Composition: We define a map T2T1 : U → W by (T2T1)(u) = T2(T1(u)) for u ∈ U. In
particular, we define T2 = TT and Ti+1 = TiT for i > 2.

It is routine to check that T1 + T2, αT1 and T2T1 are themselves all linear maps.

Furthermore, for fixed vector spaces U and V over F, the operations of addition and scalar
multiplication on the set HomF(U, V) of all linear maps from U to V makes HomF(U, V) into a
vector space over F.
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2.2 Dimension properties of linear maps

2.2.1 Kernels and images

Definition 2.2.1. Let T : U → V be a linear map. The image of T, written as im(T) is defined to
be the set of vectors v ∈ V such that v = T(u) for some u ∈ U.

The kernel of T, written as ker(T) is defined to be the set of vectors u ∈ U such that T(u) = 0V .
Or, if you prefer:

im(T) = {T(u) | u ∈ U}; ker(T) = {u ∈ U | T(u) = 0V}.

Examples. Let us consider the examples from Section 2.1.2.

In 1., ker(T) = {

0
0
γ

 | γ ∈ R}, and im(T) = R2.

In 2. and 3., ker(T) = {0} and im(T) = R2.
In 4., ker(T) is the set of all constant polynomials (i.e. those of degree 0), and im(T) = R[x].
In 5., ker(Sα) = {0}, and im(Sα) = F[x], while ker(Eα) is the set of all polynomials divisible by
x− α, and im(Eα) = F.
In 6., ker(IV) = {0} and im(T) = V.
In 7., ker(0U,V) = U and im(0U,V) = {0}.

Proposition 2.2.2. (i) im(T) is a subspace of V; (ii) ker(T) is a subspace of U; (iii) T is injective if and
only if ker(T) = {0}

Proof. (i) We must show that im(T) is closed under addition and scalar multiplication. Let
v1, v2 ∈ im(T). Then v1 = T(u1), v2 = T(u2) for some u1, u2 ∈ U. Then

v1 + v2 = T(u1) + T(u2) = T(u1 + u2) ∈ im(T); αv1 = αT(u1) = T(αu1) ∈ im(T),

so im(T) is a subspace of V.

(ii) Similarly, we must show that ker(T) is closed under addition and scalar multiplication. Let
u1, u2 ∈ ker(T). Then

T(u1 + u2) = T(0U + 0U) = T(0U) = 0V ; T(αu1) = αT(u1) = α0V = 0V ,

so u1 + u2, αu1 ∈ ker(T) and ker(T) is a subspace of U.

(iii) The “only if” is obvious since ker(T) = T−1(0). To prove the “if”, suppose ker(T) = {0}
and T(u) = T(v). Then T(u− v) = T(u)− T(v) = 0, so u− v ∈ ker(T), then u− v = 0 and
u = v.

2.2.2 Dimension formula

We go back to the study of subspaces as this helps the understanding of kernels and images.
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Theorem 2.2.3. (Dimension Formula) Let V be a finite-dimensional vector space, and let W1, W2 be
subspaces of V. Then

dim(W1 + W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

Proof. First note that any subspace W of V is finite-dimensional. This follows from Corol-
lary 1.4.15, because a largest linearly independent sequence W contains at most dim(V) vectors,
and such a sequence must be a basis of W.

Let dim(W1 ∩W2) = r and let e1, . . . , er be a basis of W1 ∩W2. Then e1, . . . , er is a lin-
early independent sequence of vectors, so by Theorem 1.4.14 it can be extended to a ba-
sis e1, . . . , er,f1, . . . , fs of W1 where dim(W1) = r + s, and it can also be extended to a basis
e1, . . . , er, g1, . . . , gt of W2, where dim(W2) = r + t.

To prove the theorem, we need to show that dim(W1 + W2) = r + s + t, and to do this, we shall
show that

e1, . . . , er, f1, . . . , fs, g1, . . . , gt

is a basis of W1 + W2. Certainly, they all lie in W1 + W2.

First we show that they span W1 + W2. Any v ∈ W1 + W2 is equal to w1 + w2 for some
w1 ∈W1, w2 ∈W2. So we can write

w1 = α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs

for some scalars αi, β j ∈ F, and

w2 = γ1e1 + · · ·+ γrer + δ1g1 + · · ·+ δtgt

for some scalars γi, δj ∈ F. Then

v = (α1 + γ1)e1 + · · ·+ (αr + γr)er + β1f1 + · · ·+ βsfs + δ1g1 + · · ·+ δtgt

and so the sequence e1, . . . , er, f1, . . . , fs, g1, . . . , gt spans W1 + W2.

Finally, we have to show that e1, . . . , er, f1, . . . , fs, g1, . . . , gt is linearly independent. Suppose
that

α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs + δ1g1 + · · ·+ δtgt = 0

for some scalars αi, β j, δk ∈ F. Then

α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs = −δ1g1 − · · · − δtgt (∗)

The left-hand-side of this equation lies in W1 and the right-hand-side of this equation lies in
W2. Since the two sides are equal, both must in fact lie in W1 ∩W2. Since e1, . . . , er is a basis of
W1 ∩W2, we can write

−δ1g1 − · · · − δtgt = γ1e1 + · · ·+ γrer

for some γi ∈ F, and so

γ1e1 + · · ·+ γrer + δ1g1 + · · ·+ δtgt = 0.
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But e1, . . . , er, g1, . . . , gt form a basis of W2, so they are linearly independent, and hence γi = 0
for 1 ≤ i ≤ r and δi = 0 for 1 ≤ i ≤ t. But now, from the equation (∗) above, we get

α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs = 0.

Now e1, . . . , er, f1, . . . , fs form a basis of W1, so they are linearly independent, and hence αi = 0
for 1 ≤ i ≤ r and βi = 0 for 1 ≤ i ≤ s. Thus e1, . . . , er, f1, . . . , fs, g1, . . . , gt are linearly
independent, which completes the proof that they form a basis of W1 + W2.

Hence

dim(W1 + W2) = r + s + t = (r + s) + (r + t)− r = dim(W1) + dim(W2)− dim(W1 ∩W2).

Definition 2.2.4. Two subspaces W1, W2 of V are called complementary if W1 ∩W2 = {0} and
W1 + W2 = V. In this case, we say that V is a direct sum of the subspaces W1 and W2 and we
denote it V = W1 ⊕W2.

Corollary 2.2.5. If V = W1 ⊕W2 is a finite-dimensional vector space, then dim(V) = dim(W1) +
dim(W2).

2.2.3 Rank and nullity

Definition 2.2.6. (i) dim(im(T)) is called the rank of T;

(ii) dim(ker(T)) is called the nullity of T.

Theorem 2.2.7. (Rank-Nullity Formula) Let U, V be vector spaces over F with U finite-dimensional,
and let T : U → V be a linear map. Then

dim(im(T)) + dim(ker(T)) = dim(U); i.e., rank(T) + nullity(T) = dim(U).

Proof. Choose a subspace of U, say W such that U = W ⊕ ker(T). This can be done by
Theorem 1.4.14: let v1, . . . , vr be a basis of ker(T); extend it to a basis v1, . . . , vn of V; let W be
the span of vr+1, . . . , vn.

Consider the linear map T′ : W → im(T) defined by T′(v) = T(v). The map T′ is injective
by Proposition 2.2.2 because ker(T′) = W ∩ ker(T) = {0}. The map T′ is surjective: pick
x ∈ im(T), then x = T(u) for some u ∈ U, but u = v + w for some v ∈W and w ∈ ker(T), so
that x = T(v + w) = T(v) + T(w) = T(v) = T′(v). Hence, T′ is bijective.

Clearly, if u1, . . . , uk is a basis of W, then T′(u1), . . . , T′(uk) is a basis of im(T). It follows that
dim(W) = dim(im(T)). By Corollary 2.2.5, dim(U) = dim(W)+dim(ker(T)) = dim(im(T))+
dim(ker(T)).
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Examples. Once again, we consider the examples from Section 2.1.2. To deal with finite-
dimensional spaces we restrict to an n + 1-dimensional space F[x]≤n in Examples 4 and 5,
that is, we consider T : R[x]≤n → R[x]≤n, Sα : F[x]≤n → F[x]≤n, and Eα : F[x]≤n → F

correspondingly. Let n = dim(U) = dim(V) in Examples 6 and 7.

Example rank(T) nullity(T) dim(U)
1. 2 1 3
2. 2 0 2
3. 2 0 2
4. n 1 n + 1

Example rank(T) nullity(T) dim(U)
5. Sα n + 1 0 n + 1
5. Eα 1 n n + 1
6. n 0 n
7. 0 n n

Corollary 2.2.8. Let T : U → V be a linear map, where dim(U) = dim(V) = n. Then the following
properties of T are equivalent:

(i) T is surjective;

(ii) rank(T) = n;

(iii) nullity(T) = 0;

(iv) T is injective;

(v) T is bijective;

Proof. T is surjective⇔ im(T) = V, so clearly (i)⇒ (ii). But if rank(T) = n, then dim(im(T)) =
dim(V) so (by Corollary 1.4.15) a basis of im(T) is a basis of V, and hence im(T) = V. Thus (i)
⇔ (ii).

(ii)⇔ (iii) follows directly from Theorem 2.2.7.

(iii)⇔ (iv) is part (iii) of Proposition 2.2.2.

Finally, (v) is equivalent to (i) and (iv), which are equivalent to each other.

Definition 2.2.9. If the conditions in the above corollary are met, then T is called a non-singular
linear map. Otherwise, T is called singular.

(But normally the terms singular and non-singular are only used for linear maps T : U → V for
which U and V have the same dimension.)

2.3 Matrices

Let F be a field and m, n ∈ N. An m × n matrix A over F is an m × n rectangular array of
numbers (i.e., scalars) in F. The entry in row i and column j is usually written αij. (We use the
corresponding Greek letter.) We write A = (αij) to make things clear.
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For example, we could take

F = R, m = 3, n = 4, A =

 2 −1 −π 0
3 −3/2 0 6
−1.23 0 1010 0

 ,

and then α13 = −π, α33 = 1010, α34 = 0, etc.

2.3.1 Matrices as linear transformations

A matrix A ∈ Fm,n yields a linear map between the standard vector spaces

LA : Fn → Fm, v 7→ LA(v) = Av . (1)

Let us see how this plays out on the first three examples from Section 2.1.2.

1. The matrix
(

1 0 0
0 1 0

)
yields the projection T : R3 → R2.

2. The matrix
(

cos θ − sin θ
sin θ cos θ

)
yields the rotation T : R2 → R2.

3. The matrix
(

cos θ sin θ
sin θ − cos θ

)
yields the reflection T : R2 → R2.

2.3.2 Matrix operations

The material in this section must be familiar to you already.
� �
�

Addition of matrices. Let A = (αij) and B = (βij) be two m× n matrices over F. We define
A + B to be the m× n matrix C = (γij), where γij = αij + βij for all i, j. For example,(

1 3
0 2

)
+

(
−2 −3

1 −4

)
=

(
−1 −0

1 −2

)
.

Scalar multiplication. Let A = (αij) be an m× n matrix over F and let β ∈ F be a scalar. We
define the scalar multiple βA to be the m× n matrix C = (γij), where γij = βαij for all i, j.

Multiplication of matrices. Let A = (αij) be an l ×m matrix over F and let B = (βij) be an
m× n matrix over F. The product AB is an l × n matrix C = (γij) where, for 1 ≤ i ≤ l and
1 ≤ j ≤ n,

γij =
m

∑
k=1

αikβkj = αi1β1j + αi2β2j + · · ·+ αimβmj.
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It is essential that the number m of columns of A is equal to the number of rows of B. Otherwise
AB makes no sense. If you are familiar with scalar products of vectors, note also that γij is the
scalar product of the i-th row of A with the j-th column of B.

For example, let

A =

(
2 3 4
1 6 2

)
, B =

 2 6
3 2
1 9

 .

Then

AB =

(
2× 2 + 3× 3 + 4× 1 2× 6 + 3× 2 + 4× 9
1× 2 + 6× 3 + 2× 1 1× 6 + 6× 2 + 2× 9

)
=

(
17 54
22 36

)
,

BA =

 10 42 20
8 21 16

11 57 22

 .

Let C =

(
2 3 1
6 2 9

)
. Then AC and CA are not defined.

Let D =

(
1 2
0 1

)
. Then AD is not defined, but DA =

(
4 15 8
1 6 2

)
.

Proposition 2.3.1. Matrices satisfy the following laws whenever the sums and products involved are
defined:

(i) A + B = B + A;

(ii) (A + B)C = AC + BC;

(iii) C(A + B) = CA + CB;

(iv) (λA)B = λ(AB) = A(λB);

(v) (AB)C = A(BC).

Proof. These are all routine checks that the entries of the left-hand-sides are equal to the corre-
sponding entries on the right-hand-side. Let us do (v) as an example.

Let A, B and C be l ×m, m× n and n× p matrices, respectively. Then AB = D = (δij) is an
l × n matrix with δij = ∑m

s=1 αisβsj, and BC = E = (ε ij) is an m× p matrix with ε ij = ∑n
t=1 βitγtj.

Then (AB)C = DC and A(BC) = AE are both l × p matrices, and we have to show that their
coefficients are equal. The (i, j)-coefficient of DC is

n

∑
t=1

δitγtj =
n

∑
t=1

(
m

∑
s=1

αisβst)γtj =
m

∑
s=1

αis(
n

∑
t=1

βstγtj) =
m

∑
s=1

αisεsj

which is the (i, j)-coefficient of AE. Hence (AB)C = A(BC).
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The zero and identity matrices. The m × n zero matrix 0mn over any field F has all of its
entries equal to 0.

The n× n identity matrix In = (αij) over any field F has αii = 1 for 1 ≤ i ≤ n, but αij = 0 when
i 6= j. For example,

I1 = (1), I2 =

(
1 0
0 1

)
, I3 =

 1 0 0
0 1 0
0 0 1

 .

Note that In A = A for any n×m matrix A and AIn = A for any m× n matrix A.

Transposition. Let A = (αij) ∈ Fn,k. Its transposed matrix is AT = (αji) ∈ Fk,n. For example,
if

A =

(
2 3 4
1 6 8

)
then AT =

 2 1
3 6
4 8

 .

The transposition is a linear map Fn,k → Fk,n such that (XY)T = YTXT (check this).

The inverse. Consider A = (αij) ∈ Fn,n. If the linear operator LA from (1), satisfies Corol-
lary 2.2.8, we say that A is invertible and it admits a unique inverse matrix A−1, representing
the inverse bijection L−1

A .

Row and column vectors. The set of all m× n matrices over F will be denoted by Fm,n. Note
that Fm,n is itself a vector space over F using the operations of addition and scalar multiplication
defined above, and it has dimension mn. (This should be obvious - is it?)

A 1× n matrix is called a row vector.

A n× 1 matrix is called a column vector. We regard Fn,1 as being the same as Fn.
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3 From Linear Transformations to Matrices

In this section we learn to represent a vector by a column, then a linear map by a matrix. Let V
be a vector space with a basis f1, . . . , fn. For each v ∈ V there exist unique α1, . . . , αn ∈ F such
that v = α1f1 + . . . + αnfn. Then the row

v =

α1
...

αn

 ∈ Fn

is the coordinate vector of v. We will this underlined notation consistently: v will always be the
coordinate vector of v in some basis.

We first address how to find the coordinate expressions in practice.

Example. Let v = x3 − 1 ∈ F[x]≤3 and f1 = x3 − x, f2 = (x + 1)2, f3 = x + 3, f4 = x + 1 be a
basis. Then

x3 − 1 = (x3 − x) + 2(x + 1)− (x + 3) = 1 · f1 + 0 · f2 + (−1) · f3 + 2 · f4

so that v =


1
0
−1

2

 ∈ Fn.

Remark for the inquisitive reader: Many online sources and books have a slightly different
definition of a basis. Instead of vector sequences, they talk about subsets. One disatvantage they
have is that they need to order their “basis” first to be able to write coordinates and matrices.

3.1 Case of standard vector space

Consider an example V = R2 with a basis f1 =

(
−1

2

)
, f2 =

(
0
1

)
. To write an arbitrary vector

v =

(
α
β

)
as a linear combination of the basis, we need to solve the system of linear equations

v = xf1 + yf2 or, equivalently,

{
−1 · x + 0 · y = α

2 · x + 1 · y = β

that we can easily solve: x = −α and y = β− 2x = β + 2α. It follows that

v =

(
−α

2α + β

)
= Pv where P =

(
−1 0

2 1

)
.

The latest matrix P is called the change of basis matrix. See also Section 4.
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3.1.1 Change of bases matrix

Definition 3.1.1. Let f1, . . . , fn be a basis of Fn. Write each element of the standard basis
e1, . . . , en in this basis. The change of basis matrix is the matrix P = (e1, . . . , en) ∈ Fn,n.

Example. Let U = R3, and f1 =

0
2
1

, f2 =

1
1
0

, f3 =

1
0
0

. Then e1 = f3, e2 = f2 − f3 and

e3 = f1 − 2f2 + 2f3 so that

e1 =

0
0
1

 , e2 =

 0
1
−1

 , f3 =

 1
−2

2

 and P =

0 0 1
0 1 −2
1 −1 2

 .

Proposition 3.1.2. With the above notation, let v ∈ Fn. Then Pv = v.

Proof. Let us set the notation for the main protagonists as

P = (σij), v =


λ1
λ2
...

λn

 and v =


α1
α2
...

αn

 ,

so that v = ∑n
i=1 λiei and v = ∑n

j=1 αjfj. By definition of P, ej = ∑n
i=1 σijfi for 1 ≤ j ≤ n. Using

this, we get

v =
n

∑
j=1

λjej =
n

∑
j=1

λj

n

∑
i=1

σijfi =
n

∑
i=1

n

∑
j=1

σijλjfi

and then comparing coefficients of fi in the expansions for v gives αi = ∑n
j=1 σijλj for 1 ≤ i ≤ n.

That is, v = Pv.

In the example above, if v =

x
y
z

, then v = Pv =

 z
y− 2z

x− y + 2z

.

3.2 Case of euclidean spaces

We are used to thinking about R2 in the realm of Euclidean Geometry. Let us lie the foundation
of such geometry on a general vector space.

Throughout Section 3.2, V is a vector space over R.

3.2.1 Euclidean space

Definition 3.2.1. A euclidean form on V is a map τ : V ×V → R such that
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(i) τ(α1v1 + α2v2, w) = α1τ(v1, w) + α2τ(v2, w) for all v1, v2, w ∈ V and α1, α2 ∈ R,

(ii) τ(v, w) = τ(w, v) for all v, w ∈ V,

(iii) τ(v, v) > 0 for all v ∈ V \ {0}.

Notice that τ is not a linear map. However, if you fix v ∈ V, then the map w 7→ τ(v, w) is linear.
Such maps τ are called “bilinear”.

Definition 3.2.2. A euclidean space is a pair (V, τ) where V is a vector space over R and τ is a
euclidean form in V.

Examples. 1. Let V = Rn, τ – the usual dot-product. In other words,

τ( (αi) , (βi) ) = (αi) • (βi) =
n

∑
j=1

αjβ j .

We call this the standard euclidean space and denote it Rn rather than (Rn, •).

2. Let V = R2. Suppose f (x) = ax2 + 2bx + c ∈ R[x] is a quadratic polynomial such that
f (x) > 0 for all x ∈ R. This holds if a > 0 and the discriminant is negative. It defines a
euclidean form

τ(

(
α1
α2

)
,
(

β1
β2

)
) = aα1β1 + bα1β2 + bα2β1 + cα2β2 .

3. Let V = R[x]≤n and a < b ∈ R. Suppose f (x) ∈ R[x] is a non-zero polynomial such that
f (x) ≥ 0 for all x ∈ (a, b). It defines a euclidean form

τ(g(x), h(x)) =
∫ b

a
f (x)g(x)h(x)dx .

3.2.2 Length and angle in euclidean space

Let (V, τ) be a euclidean space. For v ∈ V, we define its length by ‖v‖ =
√

τ(v, v).

Proposition 3.2.3. (Cauchy-Schwarz Inequality) Suppose v, w ∈ (V, τ). Then

|τ(v, w)| ≤ ‖v‖ · ‖w‖ .

Proof. Fix v, w and consider the function f (x) : R → R, given by f (x) = ‖v + xw‖2. Notice
that it is a quadratic polynomial

f (x) = τ(v + xw, v + xw) = τ(w, w)x2 + 2τ(v, w)x + τ(v, v) .

It follows from part (iii) of Definition 3.2.1 that f (x) ≥ 0. Thus, its discriminant is not positive:

(2τ(v, w))2 − 4τ(w, w)τ(v, v) ≤ 0 .
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It follows that

τ(v, w)2 ≤ τ(w, w)τ(v, v) and |τ(v, w)| =
√

τ(v, w)2 ≤ ‖v‖ · ‖w‖ .

Proposition 3.2.3 allows use to define the angle ϕ between any two non-zero vectors v and w by

τ(v, w) = ‖v‖ · ‖w‖ · cos ϕ or ϕ = arccos
τ(v, w)

‖v‖ · ‖w‖ .

3.2.3 Orthonormal basis

Definition 3.2.4. A vector sequence v1, . . . , vn of a euclidean space (V, τ) is called orthonormal, if
‖vi‖ = 1 for all i and the angle between each vi and vj with i 6= j is equal to π/2. An orthonormal
basis is a basis, which is an orthonormal sequence.

In other words, the sequence v1, . . . , vn is orthonormal if and only if

τ(vi, vj) = δij, where δij =

{
1 if i = j,
0 if i 6= j.

The orthonormal bases are easier to deal with because of the following property.

Lemma 3.2.5. Suppose v1, . . . , vn is an orthonormal sequence in a euclidean space (V, τ).

1. If v = α1v1 + . . . + αnvn, then αi = τ(v, vi).

2. The sequence v1, . . . , vn is linearly independent.

Proof. If v = α1v1 + . . . + αnvn, then

τ(v, vi) = τ(α1v1 + . . . + αnvn, vi) = α1τ(v1, vi) + . . . + αnτ(vn, vi) = αiτ(vi, vi) = αi .

The second statement follows immediately: if α1v1 + . . . + αnvn = 0 is a linear dependency,
then all αi = 0 by the first statement.

Examples. 1. On the standard euclidean space V = R2, let us rotate the standard basis by the

angle θ: v1 =

(
cos θ
sin θ

)
, v2 =

(
− sin θ

cos θ

)
is an orthonormal basis. If v =

(
x
y

)
, then

v =

(
v • v1
v • v2

)
=

(
x cos θ + y sin θ
−x sin θ + y cos θ

)
=

(
cos θ sin θ
− sin θ cos θ

)
v .

It is instructive to check that

(v1 • v)v1 + (v2 • v)v2 = (x cos θ + y sin θ)

(
cos θ
sin θ

)
+ (−x sin θ + y cos θ)

(
− sin θ

cos θ

)
=
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=

(
(x cos θ + y sin θ) cos θ + (x sin θ − y cos θ) sin θ
(x cos θ + y sin θ) sin θ − (x sin θ − y cos θ) cos θ

)
=

(
x(cos2 θ + sin2 θ)
y(sin2 θ + cos2 θ)

)
= v .

2. On the standard euclidean space V = R4, the vector sequence

v1 =
1
2


1
1
1
1

 , v2 =
1
2


1
−1
−1

1

 , v3 =
1
2


1
1
−1
−1

 , v4 =
1
2


1
−1

1
−1


is an orthonormal basis. Hence,

v =
1
2


w
x
y
z

 ⇒ v =


v • v1
v • v2
v • v3
v • v4

 =
1
2


w + x + y + z
w− x− y + z
w + x− y− z
w− x + y− z

 =


1/2 1/2 1/2 1/2
1/2 −1/2 −1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2

 v .

3.2.4 Existence of orthonormal basis
� �
�

Theorem 3.2.6 (Gram-Schmidt process). Let V be a euclidean space of dimension n. Suppose that,
for some r with 0 ≤ r ≤ n, f1, . . . , fr is an orthonormal sequence. Then f1, . . . , fr can be extended to an
orthonormal basis f1, . . . , fn of V.

Proof. The proof of the theorem will be by induction on n− r. We can start the induction with
the case n− r = 0, when r = n, and there is nothing to prove.

Assume that n− r > 0. Then r < n. By Theorem 1.4.14, we can extend the sequence to a basis
f1, . . . , fr, gr+1, . . . , gn of V, containing the fi. The Gram-Schmidt process trick is to define

f′r+1 = gr+1 −
r

∑
i=1

τ(fi, gr+1)fi.

Apply the scalar product of τ(fj, ) to this equation for some 1 ≤ j ≤ r and use orthogonality:

τ(fj, f′r+1) = τ(fj, gr+1)−
r

∑
i=1

τ(fi, gr+1)τ(fj, fi)τ(fj, gr+1)− τ(fj, gr+1) = 0.

The vector f′r+1 is non-zero by linear independence of the basis, and if we define fr+1 =
f′r+1/‖f′r+1‖, then we still have τ(fj, fr+1) = 0 for 1 ≤ j ≤ r, and we also have ‖fr+1‖ = 1.
Hence f1, . . . , fr+1 is an orthonrmal sequence. The result follows by inductive hypothesis.

3.3 Correspondence between linear transformations and matrices

We shall see in this section that, for fixed choice of bases, there is a very natural one-one
correspondence between linear maps and matrices, such that the operations on linear maps and
matrices defined in Chapters 2 and 2.3 also correspond to each other. This is perhaps the most
important idea in linear algebra, because it enables us to use matrices to compute with linear
maps.
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3 From Linear Transformations to Matrices

3.3.1 Setting up the correspondence

Let T : U → V be a linear map, where dim(U) = n, dim(V) = m. Choose a basis e1, . . . , en of
U and a basis f1, . . . , fm of V. For each 1 ≤ j ≤ n, T(ej) ∈ V, so T(ej) can be written uniquely
as a linear combination of f1, . . . , fm. Let

T(e1) = α11f1 + α21f2 + · · ·+ αm1fm

T(e2) = α12f1 + α22f2 + · · ·+ αm2fm

· · ·
T(en) = α1nf1 + α2nf2 + · · ·+ αmnfm

where the coefficients αij ∈ F (for 1 ≤ i ≤ m, 1 ≤ j ≤ n) are uniquely determined. In other
words,

T(ej) =
m

∑
i=1

αijfi for 1 ≤ j ≤ n.

The coefficients αij form an m× n matrix

A =


α11 α12 . . . α1n
α21 α22 . . . α2n

. . .
αm1 αm2 . . . αmn


over F. Then A is called the matrix of the linear map T with respect to the chosen bases of U
and V. In general, different choice of bases gives different matrices.

Proposition 3.3.1. Let T : U → V be a linear map with matrix A = (αij). Then T(u) = v if and only
if Au = v.

Proof. We have

T(u) = T(
n

∑
j=1

λjej) =
n

∑
j=1

λjT(ej) =
n

∑
j=1

λj(
m

∑
i=1

αijfi) =
m

∑
i=1

(
n

∑
j=1

αijλj)fi =
m

∑
i=1

µifi,

where µi = ∑n
j=1 αijλj is the entry in the i-th row of the column vector Au. This proves the

result.

In particular, notice the role of the individual columns in A. The j-th column of A is T(ej) (in
the basis f1, . . . , fm).

3.3.2 Examples

Once again, we consider our examples from Section 2.
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3 From Linear Transformations to Matrices

1. T : R3 → R2, T

α
β
γ

 =

(
α
β

)
. Usually, we choose the standard bases of Fm and Fn, which in

this case are

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 , f1 =

(
1
0

)
, f2 =

(
0
1

)
.

We have T(e1) = f1, T(e2) = f2, T(e3) = 0, and the matrix is

A =

(
1 0 0
0 1 0

)
.

But suppose we choose a different basis, say

e′1 =

1
1
1

 , e′2 =

0
1
1

 , e′3 =

1
0
1

 , f′1 =

(
0
1

)
, f′2 =

(
1
1

)
.

Then we have

T(e′1) =
(

1
1

)
= f′2, T(e′2) =

(
0
1

)
= f′1, T(e′3) =

(
1
0

)
= −f′1 + f′2

and the matrix of T in these basis is

B =

(
0 1 −1
1 0 1

)
.

2. T : R2 → R2, T is a rotation by θ anti-clockwise about the origin. We saw that in the standard
bases

T(e1) =

(
cos θ
sin θ

)
, T(e2) =

(
− sin θ

cos θ

)
and A =

(
cos θ − sin θ
sin θ cos θ

)
.

3. T : R2 → R2, T is a reflection through the line through the origin making an angle θ/2 with
the x-axis. We saw that in the standard bases

T(e1) =

(
cos θ
sin θ

)
, T(e2) =

(
sin θ

− cos θ

)
and A =

(
cos θ sin θ
sin θ − cos θ

)
.

Let us do something unusual and change the basis in the range to f1 = T(e1), f2 = T(e1). Then
the matrix of T in the basis e1, e2 and f1, f2 is

A =

(
1 0
0 1

)
.

See Section 3.3.3 for more.
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3 From Linear Transformations to Matrices

4. This time we take the differentiation map T from R[x]≤n to R[x]≤n−1. Then, with respect to
the bases 1, x, x2, . . . , xn and 1, x, x2, . . . , xn−1 of R[x]≤n and R[x]≤n−1, respectively, the matrix
of T is 

0 1 0 . . . 0
0 0 2 . . . 0
0 0 0 3 . . . 0
0 0 0 . . . n− 1 0
0 0 0 . . . n

 .

5. Let Sα : F[x]≤n → F[x]≤n be the shift. With respect to the basis 1, x, x2, . . . , xn of F[x]≤n, we
calculate Sα(xn) = (x− α)n. The binomial formula gives the matrix of Sα,

1 −α α2 . . . (−1)nαn

0 1 −2α . . . (−1)n−1nαn−1

0 0 1 3 . . . (−1)n−2 n(n−1)
2 αn−2

...
...

0 0 0 . . . 1 −nα
0 0 0 . . . 1


.

In the same basis of F[x]≤n and the basis 1 of F, Eα(xn) = αn. The matrix of Eα is

1
α
α2

...
αn−1

αn


.

6. T : V → V is the identity map. Notice that U = V in this example, and in that case we can
(but we do not have to – See Section 3.3.3) choose the same basis for U and V. The matrix of T
is the n× n identity matrix In.

7. T : U → V is the zero map. The matrix of T is the m× n zero matrix 0mn.

3.3.3 Maps, operators and four key problems

Given a linear map T : U → V between finite dimensional vector spaces, can we choose the
bases, where the matrix of T looks “the best”? A more scientific term for “the best” is “the
normal form”. This problem has 4 different variations and “the normal form” will be different
in each of them.

LT: Linear Transformation Problem: Choose bases of U and V such that the matrix of T looks
“the best”.

If U = V, the linear map T is also called a linear operator on the space U. In this case, we have
good reasons just to choose one basis (see examples 3 an 6 in Section 3.3.2).
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3 From Linear Transformations to Matrices

LO: Linear Operator Problem: Suppose U = V. Choose a basis of U such that the matrix of
T looks “the best”.

If U is a euclidean space, then not all bases are “equal”. As we saw already, the orthonormal
bases are special. We often insist on using orthonormal bases.

ET: Euclidean Transformation Problem. Suppose U and V are euclidean spaces. Choose
orthonormal bases of U and V such that the matrix of T looks “the best”.

EO: Euclidean Operator Problem. Suppose U = V is a euclidean space. Choose an orthonor-
mal basis of U such that the matrix of T looks “the best”.

3.4 Properties of the correspondence

Let U, V and W be vector spaces over the same field F, let dim(U) = n, dim(V) = m,
dim(W) = l, and choose fixed bases e1, . . . , en of U and f1, . . . , fm of V, and g1, . . . , gl of W. All
matrices of linear maps between these spaces will be written with respect to these bases.

Bijection.

Theorem 3.4.1. There is a one-one correspondence between the set HomF(U, V) of linear maps U → V
and the set Fm,n of m× n matrices over F.

Proof. As we saw above, any linear map T : U → V determines an m× n matrix A over F.

Conversely, let A = (αij) be an m × n matrix over F. Then, by Proposition 2.1.3, there is
just one linear T : U → V with T(ej) = ∑m

i=1 αijfi for 1 ≤ j ≤ n, so we have a one-one
correspondence.

Addition. Let T1, T2 : U → V be linear maps with m× n matrices A, B respectively. Then it is
routine to check that the matrix of T1 + T2 is A + B.

Scalar multiplication. Let T : U → V be a linear map with m× n matrices A and let λ ∈ F be
a scalar. Then again it is routine to check that the matrix of λT is λA.

Note that the above two properties imply that the correspondence between linear maps and
matrices in Theorem 3.4.1 is actually itself a linear map from HomF(U, V) to Fm,n.

Composition of linear maps and matrix multiplication. This time the correspondence is less
obvious, and we state it as a theorem.
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3 From Linear Transformations to Matrices

Theorem 3.4.2. Let T1 : V →W be a linear map with l ×m matrix A = (αij) and let T2 : U → V be
a linear map with m× n matrix B = (βij). Then the matrix of the composite map T1T2 : U → W is
AB.

Proof. Let AB be the l× n matrix (γij). Then by the definition of matrix multiplication, we have
γik = ∑m

j=1 αijβ jk for 1 ≤ i ≤ l, 1 ≤ k ≤ n.

Let us calculate the matrix of T1T2. We have

T1T2(ek) = T1(
m

∑
j=1

β jkfj) =
m

∑
j=1

β jkT1(fj) =
m

∑
j=1

β jk

l

∑
i=1

αijgi =
l

∑
i=1

(
m

∑
j=1

αijβ jk)gi =
l

∑
i=1

γikgi,

so the matrix of T1T2 is (γik) = AB as claimed.

Examples.

1. Let Rθ : R2 → R2 be a rotation through an angle θ anti-clockwise about the origin. We have

seen that the matrix of Rθ (using the standard basis) is
(

cos θ − sin θ
sin θ cos θ

)
. Now clearly Rθ

followed by Rφ is equal to Rθ+φ. In other words, RφRθ = Rθ+φ. This can be checked by a matrix
calculation:(

cos φ − sin φ
sin φ cos φ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos φ cos θ − sin φ sin θ − cos φ sin θ − sin φ cos θ
sin φ cos θ + cos φ sin θ − sin φ sin θ + cos φ cos θ

)

=

(
cos(φ + θ) − sin(φ + θ)
sin(φ + θ) cos(φ + θ)

)
.

2. Let Rθ be as in Example 1, and let Mθ : R2 → R2 be a reflection through a line through the

origin at an angle θ/2 to the x-axis. We have seen that the matrix of Mθ is
(

cos θ sin θ
sin θ − cos θ

)
.

What is the effect of doing first Rθ and then Mφ? In this case, it might be easier (for some people)
to work it out using the matrix multiplication! We have(

cos φ sin φ
sin φ − cos φ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos φ cos θ + sin φ sin θ − cos φ sin θ + sin φ cos θ
sin φ cos θ − cos φ sin θ − sin φ sin θ − cos φ cos θ

)

=

(
cos(φ− θ) sin(φ− θ)
sin(φ− θ) − cos(φ− θ)

)
,

which is the matrix of Mφ−θ . Thus, MφRθ = Mφ−θ .

We get a different result if we do first Mφ and then Rθ . Check yourself that Rθ Mφ = Mφ+θ and
Mφ Mθ = Rθ+φ.
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4 Change of Bases

4 Change of Bases

Let T : U → V be a linear map represented by two matrices A and B in the two possibly
different pairs of bases.

P ↓ ↓ Q

U V

Matrix A

Matrix B

T -

h1, h2, . . . , hn

h′1, h′2, . . . , h′n

f1, f2, . . . , fm

f′1, f′2, . . . , f′m

The goal of this chapter is to learn how to handle this situation.

4.1 General theory

4.1.1 Change of bases matrix, revisited

This is a slight generalisation of Section 3.1.1. We consider a vector space V with two bases: the
“old” basis h1, . . . , hn and the “new” basis f1, . . . , fn. Recall the Theorem 1.4.7 ensures that they
have the same number of elements.

Definition 4.1.1. Write each element of the old basis h1, . . . , hn in the new basis. The change of
basis matrix is the matrix P = (h1, . . . , hn) ∈ Fn,n.

The following fact is really Proposition 3.1.2, extended to this situation.

Proposition 4.1.2. Let v ∈ V, v˜ ∈ Fn its coordinate vector in the old basis, v ∈ Fn its coordinate
vector in the new basis. Then Pv˜ = v.

Proof. The proof is verbatim to the proof of Proposition 3.1.2. We have

P = (σij), v˜ =

 λ1
...

λn

 and v =

 α1
...

αn

 ,

so that v = ∑n
i=1 λihi = ∑n

j=1 αjfj. By definition of P, hj = ∑n
i=1 σijfi for 1 ≤ j ≤ n. Using this,

we get

v =
n

∑
j=1

λjhj =
n

∑
j=1

λj

n

∑
i=1

σijfi =
n

∑
i=1

n

∑
j=1

σijλjfi

and then comparing coefficients of fi in the expansions for v gives αi = ∑n
j=1 σijλj for 1 ≤ i ≤ n.

That is, v = Pv˜.
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4 Change of Bases

Corollary 4.1.3. The change of basis matrix is invertible. More precisely, if P is the change of basis
matrix from the basis of hi-s to the basis of fi-s and Q is the change of basis matrix from the basis of fi-s
to the basis of hi-s then P = Q−1.

Proof. By Proposition 4.1.2, Pv˜ = v and Qv = v˜ for all v ∈ V. It follows that PQu = u and
QPu = u for all u ∈ Fn. Hence, In = QP = PQ.

Example. Let U = R3, e1, e2, e3 be the standard basis and

f1 =

0
2
1

 , f2 =

1
1
0

 , f3 =

1
0
0

 so that e1 = f3, e2 = f2 − f3, e3 = f1 − 2f2 + 2f3 .

The latter calculation gives Q, while the matrix P is formed by the vectors fi. Check yourself
that PQ = I3 where

P =

 0 0 1
0 1 −2
1 −1 2

 and Q =

 0 1 1
2 1 0
1 0 0

 .

4.1.2 Main theorem

Let us set up all notation to state the main theorem. Let T : U → V be a linear map, where
dim(U) = n, dim(V) = m. Choose an “old” basis h1, . . . , hn of U and an “old” basis f1, . . . , fm
of V. Let A be the matrix of T in these bases.

Now choose new bases h′1, . . . , h′n of U and f′1, . . . , f′m of V. Let B be the matrix of T in these
bases.

Finally, let the n× n matrix P be the basis change matrix from {hi} to {h′i}, and let the m×m
matrix Q be the basis change matrix from {fi} to {f′i}.

Theorem 4.1.4. With the above notation, we have QA = BP, or equivalently B = QAP−1.

Proof. Fix u ∈ U. Let, v = T(u). By Proposition 3.3.1, we have Au˜ = v˜ and Bu = v. By
Proposition 4.1.2, Pu˜ = u and Qv˜ = v. Hence,

QAu˜ = Qv˜ = v = Bu = BPu˜.

Since this is true for all column vectors u˜ ∈ Fn,1, this implies that QA = BP. We know that P is
invertible from Corollary 4.1.3, so multiplying on the right by P−1 gives B = QAP−1.

Example. Let us re-examine Example 1 in Section 3.3.2. To compute Q, we need to express the
old basis in the new one:

f1 = −f′1 + f′2, f2 = f′1 so that Q =

(
−1 1
1 0

)
.
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The matrix P−1 is formed by the h′i:

P−1 =

 1 0 1
1 1 0
1 1 1

 .

Theorem 4.1.4 tells us that B = QAP−1, does it not?

QAP−1 =

(
−1 1
1 0

)
·
(

1 0 0
0 1 0

)
·

 1 0 1
1 1 0
1 1 1

 =

(
−1 1
1 0

)
·
(

1 0 1
1 1 0

)
=

(
0 1 −1
1 0 1

)
.

4.1.3 Commutative squares

A commutative square is a collection of 4 vector spaces and 4 linear maps forming a diagram

U1
T−−−→ V1

S

y yQ

U2
P−−−→ V2

such that QT = PS. This may seem like a gimmick at this point but it is a rather deep, useful
notion. We use it visualise all the change of basis phenomena. Notice that a basis h1, . . . hn
of a vector space U determines a linear map R = R(h1, . . . hn) : U → Fn via R(u) = u. Now
Proposition 3.3.1 is saying that

the square

U T−−−→ V

R

y yR

Fn A−−−→ Fm

is commutative.

Similarly Theorem 3.4.2 can be interpreted as a row concatenation of such squares for T1 and T2
to obtain the square for T1T2.

U T2−−−→ V
T1−−−→ W

R

y yR

yR

Fn TB−−−→ Fm TA−−−→ Fl

 

U
T2T1−−−→ W

R

y yR

Fn BA−−−→ Fl

This is not merely an interpretation: it is a complete proof!

The two bases determine two linear maps Rold = R(h1, . . . hn), Rnew = R(h′1, . . . h′n) : U → Fn.
Employing the language of commutative squares, Proposition 3.1.2 is saying that the following
is a commutative square.

the squares

U
IU−−−→ UyRnew

yRold

Fn P−1

−−−→ Fn

and

V
IV−−−→ VyRold

yRnew

Fm Q−−−→ Fm

are commutative.
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In this language, Theorem 3.4.2 can be proved (or just interpreted) by observing that the
concatenation of the three commutative squares is still a commutative square

U
IU−−−→ U T−−−→ V

IV−−−→ VyRnew

yRold

yRold Rnew

y
Fn P−1

−−−→ Fn A−−−→ Fn Q−−−→ Fn

 

U T−−−→ VyRnew

yRnew

Fn QAP−1

−−−−→ Fm

4.2 Orthogonal change of basis

4.2.1 Orthogonal operator

If we’re working with a euclidean space V, we know what the “length” of a vector in V means,
and what the “angle” between vectors is; so we might want to consider transformations from V
to itself that preserve lengths and angles – they preserve the geometry of the space.

Definition 4.2.1. A linear operator T:V → V is said to be orthogonal if it preserves the scalar
product on V. That is, if τ(T(v), T(w)) = τ(v, w) for all v, w ∈ V.

Since length and angle can be defined in terms of the scalar product, an orthogonal linear
map preserves distance and angle, so geometrically it is a rigid map. In R2, for example, an
orthogonal map is either rotation about the origin, or a reflection about a line through the origin.
Let us prove the following two easy statements.

Proposition 4.2.2. An orthogonal linear operator T is invertible.

Proof. By Corollary 2.2.8, it suffices to show that ker(T) = 0. Pick v ∈ ker(T). Then ‖v‖ =
‖T(v)‖ = ‖0‖ = 0 and v = 0.

Proposition 4.2.3. Let h1, . . . , hn be an orthonormal basis of V. A linear operator T is orthogonal if
and only if T(h1), . . . , T(hn) is an orthonormal basis of V.

Proof. If T is orthogonal, then τ(T(hi), T(hj)) = τ(hi, hj) = δij for all i and j. Thus, T(h1), . . . , T(hn)
is an orthonormal sequence of length dim(V). Thus, it must be a basis.

Assume that T(h1), . . . , T(hn) is an orthonormal basis of V. Pick v, w ∈ V. Write them v =

∑i αihi and w = ∑i βihi. Then τ(v, w) = ∑i,j αiβ jτ(hi, hj) = ∑i αiβi and so is τ(T(v), T(w)) =

∑i,j αiβ jτ(T(hi), T(hj)) = ∑i αiβi.

4.2.2 Orthogonal matrix

The next definition makes sense over any field F but we will use it only over R.
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Definition 4.2.4. A matrix A ∈ Fn,n is called orthogonal if AT A = In.

Example. For any θ ∈ R, let A =

(
cos θ − sin θ
sin θ cos θ

)
represent a counterclockwise rotation by an

angle θ. It is easily checked that AT A = AAT = I2.

Proposition 4.2.5. A linear operator T : V → V on a euclidean space is orthogonal if and only if its
matrix A (with respect to an orthonormal basis of V) is orthogonal.

Proof. Let c1, c2, . . . , cn be the columns of the matrix A. Then cT
1 , . . . , cT

n are the rows of AT.
Hence, the (i, j)-th entry of AT A is cT

i cj = ci • cj.

Let h1, h2, . . . , hn be an orthonormal basis. The ci = T(hi) and everything follows from Propo-
sition 4.2.3: T is orthogonal if and only if T(h1), . . . , T(hn) is an orthonormal sequence if and
only if c1, . . . , cn is an orthonormal sequence if and only if A is orthogonal.

Let h1, . . . , hn be an orthonormal basis of V, f1, . . . , fn another basis.

Proposition 4.2.6. The following conditions are equivalent.

1. The basis f1, . . . , fn is orthonormal.

2. The change of basis matrix P from f1, . . . , fn to h1, . . . , hn is orthogonal.

3. The change of basis matrix Q from h1, . . . , hn to f1, . . . , fn is orthogonal.

Proof. The first and the third statements are equivalent because the columns of Q are fi, written
in the orthonormal basis hi. Indeed, since the basis hi-s is orthonormal, in this basis we have

τ(x, y) = x • y for all x, y ∈ V.

Thus, the basis fi-s is orthonormal if and only if the basis fi-s of the standard euclidean space
Rn is orthonormal if and only if the matrix Q is orthogonal.

Note that (P−1)T = (PT)−1. Thus, PTP = I if and only if P−1(P−1)T = (PTP)−1 = I. Thus,
P is orthogonal if and only if P−1 is orthogonal. Since Q = P−1, the last two statements are
equivalent.

4.2.3 Four key problems, revisited

It is time to revisit Section 3.3.3. Let us represent a linear map T : U → V by a matrix A. We can
make the following observations.

LT: Linear Transformation Problem: A, B ∈ Fn,k represent the same linear map (written in
different bases) if and only if there exist invertible Q ∈ Fn,n and P ∈ Fk,k such that B = QAP−1.
We call such A and B equivalent.
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LO: Linear Operator Problem: A, B ∈ Fn,n represent the same linear operator (written in
different bases) if and only if there exists invertible P ∈ Fn,n such that B = PAP−1. We call such
A and B similar.

ET: Euclidean Transformation Problem. A, B ∈ Rn,k represent the same linear map between
euclidean spaces (written in different orthonormal bases) if and only if there exist orthogonal
Q ∈ Rn,n and P ∈ Rk,k such that B = QAP−1 (note that B = QAPT since P−1 = PT). We call
such A and B orthogonally equivalent.

EO: Euclidean Operator Problem. A, B ∈ Rn,n represent the same linear operator on a
euclidean space (written in different orthonormal bases) if and only if there exists orthogonal
P ∈ Rn,n such that B = PAP−1 (or B = PAPT). We call such A and B orthogonally similar.

4.3 Elementary change of basis

Let h1, . . . , hn be a basis of V. The following three bases changes are your friends! Our goal
is to observe their effect on the matrix A of a linear map, which we represent using columns

A = (c1, c2, . . .) and rows A =

r1
r2

...

.

4.3.1 Basis multipication

Pick i ∈ {1, . . . , n} and α ∈ F \ {0}. The new basis is

fj = hj if j 6= i, fi = αhi .

Since hi = α−1fi, the change of basis matrix P and its inverse are

P = E(n)3
α−1,i , P−1 = E(n)3

α,i

where E(n)3
λ,i is the n × n identity matrix with its (i, i) entry replaced by λ, so called the

elementary matrix of the third kind. The effect of this on the matrix A depends on whether V is a
domain (then the operation is the elementary column operation C3) or a range (the elementary
row operationR3). In both cases we only show what changes in the matrix A:

C3 : A
ci→αci−−−→ AP−1 = (. . . , αci, . . .), R3 : A

ri→α−1ri−−−−→ PA =


...

α−1ri
...


Example. Let n = 3 and f3 = 2h3. Then

P = E(3)3
1/2,3 =

 1 0 0
0 1 0
0 0 1/2

 and P−1 = E(3)3
2,3 =

 1 0 0
0 1 0
0 0 2


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and the corresponding row and column operations are

C3 :

 1 3 5
6 7 8
0 2 4

 c3→2c3−−−−→

 1 3 10
6 7 16
0 2 8

 , R3 :

 1 3 5
6 7 8
0 2 4

 r3→ 1
2 r3−−−−→

 1 3 5
6 7 8
0 1 2

 .

4.3.2 Basis swap

Pick i 6= j. The new basis is

fk = hk if k 6∈ {i, j}, fi = hj , fj = hi .

Since hi = fj and hj = fi, the change of basis matrix P and its inverse are

P = P−1 = E(n)2
i,j

where E(n)2
i,j is the n× n identity matrix with its i-th and j-th rows interchanged, so called the

elementary matrix of the second kind. The effect of this on the matrix A depends on whether V is a
domain (then the operation is the elementary column operation C2) or a range (the elementary
row operationR2). In both cases we assume i < j and only show what changes in the matrix A:

C2 : A
ci↔cj−−−→ AP−1 = (. . . , cj, . . . , ci, . . .), R2 : A

ri↔rj−−−→ PA =



...
rj
...

ri
...


Example. Let n = 3 and f3 = h1, f1 = h3. Then

P = P−1 = E(2)3
1,3 =

 0 0 1
0 1 0
1 0 0


and the corresponding row and column operations are

C2 :

 1 3 5
6 7 8
0 2 4

 c1↔c3−−−→

 5 3 1
8 7 6
4 2 0

 , R2 :

 1 3 5
6 7 8
0 2 4

 r1↔r3−−−→

 0 2 4
6 7 8
1 3 5

 .

4.3.3 Basis addition

Pick i 6= j and α ∈ F. The new basis is

fk = hk if k 6= i, fi = hi + αhj .
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Since hi = fi − αfj, the change of basis matrix P and its inverse are

P = E(n)1
−α,j,i , P−1 = E(n)1

α,j,i

where E(n)1
λ,i,j (where i 6= j) is the an n× n matrix equal to the identity, but with an additional

non-zero entry λ in the (i, j) position, so called the elementary matrix of the first kind. The effect of
this on the matrix A depends on whether V is a domain (then the operation is the elementary
column operation C1) or a range (the elementary row operation R1). In both cases we only
show what changes in the matrix A:

C1 : A
cj→ci+αcj−−−−−→ AP−1 = (. . . , ci + αcj, . . .), R1 : A

rj→rj−αri−−−−−→ PA =


...

rj − αri
...


Example. Let n = 3 and f2 = h2 − 4h3. Then

P = E(3)1
4,3,2 =

 1 0 0
0 1 0
0 4 1

 and P−1 = E(3)1
−4,3,2 =

 1 0 0
0 1 0
0 −4 1


and the corresponding row and column operations are

C1 :

 1 3 5
6 7 8
0 2 4

 c2→c2−4c3−−−−−−→

 1 −17 5
6 −25 8
0 −14 4

 , R1 :

 1 3 5
6 7 8
0 2 4

 r3→r3+4r2−−−−−−→

 1 3 5
6 7 8

24 30 36


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5 Elementary Transformations and Their Applications

We have introduced the elementary row and column transformations in the last section. It is
time to put them into good use.

5.1 Solving LT

Now we solve the first key problem LT from Section 3.3.3

5.1.1 Smith’s normal form

Theorem 5.1.1. By applying elementary row and column operations, a matrix A ∈ Fm×n can be
brought into the block form (

Is 0s,n−s
0m−s,s 0m−s,n−s

)
,

where, as in Section 2.3, Is denotes the s× s identity matrix, and 0kl the k× l zero matrix.

Proof. The proof is an algorithm whose steps contain elementary row and column operations.
For a completely formal proof, we have to show that

1. after termination the resulting matrix has the required form,

2. the algorithm terminates after finitely many steps.

Both these statements are clear from the nature of the algorithm. Make sure that you understand
why they are clear!

At any stage of the procedure, we are looking at the entry αii in a particular position (i, i) of the
matrix. (i, i) is called the pivot position, and αii the pivot entry. We start with (i, i) = (1, 1) and
proceed as follows.

1. If αii = 1 and all entries below it (in its column) and to the right (in its row) are zero (i.e. if
αki = αik = 0 for all k ≥ i), then move the pivot one place to (i + 1, i + 1) and go to Step 1.
Terminate if out of the matrix (i + 1 > min(m, n)). Go to Step 2.

2. If αii = 0 but αkj 6= 0 for some k ≥ i and k ≥ j then applyR2 and C2 to move the non-zero
entry into the pivot position. Go to Step 3.

3. At this stage αii 6= 0. If αii 6= 1, then applyR3 or C3 to make αii = 1. Go to Step 4.

4. At this stage αii = 1. Kill all entries below it (in its column) and to the right (in its row):
for any k 6= i, αki 6= 0 or αik 6= 0, applyR1 or C1. Go to Step 1.

Definition 5.1.2. The matrix in Theorem 5.1.1 is said to be in Smith normal form (sometimes it is
called row and column echelon form).
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Example. Let us run it on the matrix A =


0 0 1 2 1
2 4 2 −4 2
3 6 3 6 3
1 2 3 3 3

 keeping track of bases. To

avoid propagation of unnecessary notation, we use h1, h2, h3, h4, h5 for the basis of the domain
and f1, f2, f3, f4 for the basis of the range at each step. It starts with hi = ei and fj = e′j, the
standard bases of both spaces. The last column records only the basis elements that changed.

Matrix Pivot Step Operation Basis Update

A (1, 1) 2 c1 ↔ c3 h1 = e3, h3 = e1
1 0 0 2 1
2 4 2 −4 2
3 6 3 6 3
3 2 1 3 3

 (1, 1) 4
c4 → c4 − 2c1
c5 → c5 − c1

h4 =


0
0
−2

1
0

 , h5 =


0
0
−1

0
1




1 0 0 0 0
2 4 2 −8 0
3 6 3 0 0
3 2 1 −3 0

 (1, 1) 4
r2 → r2 − 2r1
r3 → r3 − 3r1
r4 → r4 − 3r1

f1 =


1
2
3
3




1 0 0 0 0
0 4 2 −8 0
0 6 3 0 0
0 2 1 −3 0

 (1, 1)
↓

(2, 2)
1,3 r2 → 1

4 r2 f2 =


0
4
0
0




1 0 0 0 0
0 1 1/2 −2 0
0 6 3 0 0
0 2 1 −3 0

 (2, 2) 4 c3 → c3 − 1
2 c2

c4 → c4 + 2c2
h3 =


1

−1/2
0
0
0

 , h4 =


0
2
−2

1
0




1 0 0 0 0
0 1 0 0 0
0 6 0 12 0
0 2 0 1 0

 (2, 2) 4
r3 → r3 − 6r2
r4 → r4 − 2r2

f2 =


0
4
6
2




1 0 0 0 0
0 1 0 0 0
0 0 0 12 0
0 0 0 1 0

 (2, 2)
↓

(3, 3)
1,2,3

c3 ↔ c4
r3 → 1

12 r3
h3 =


0
2
−2

1
0

 , h4 =


1

−1/2
0
0
0

 , f3 =


0
0

12
0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0

 (3, 3) 4 r4 → r4 − r3 f3 =


0
0

12
1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0


(3, 3)
↓

(4, 4)
↓

stop

1

Let us get together all the information about new bases we have accumulated, by wrting the
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inverses of the change of bases matrices:

(h1, . . . , h5) =


0 0 0 1 0
0 1 2 −1/2 0
1 0 −2 0 −1
0 0 1 0 0
0 0 0 0 1

 , (f1, . . . , f4) =


1 0 0 0
2 4 0 0
3 6 12 0
3 2 1 1

 .

Check Ahi = fi for i ≤ 3 to be sure!

Notice that the proposed algorithm is optimised for clarity. If you need to do it by hand, use the
greedy algorithm instead. This means killing as many entries as possible and then rearranging
the results. For instance, you could start on the same matrix A by utilising c3 = c5 and c2 = 2c1:

Matrix Operation

A =


0 0 1 2 1
2 4 2 −4 2
3 6 3 6 3
1 2 3 3 3

 c2 → c2 − 2c1
c4 → c4 − 2c3
c5 → c5 − c3

0 0 1 0 0
2 0 2 −8 0
3 0 3 0 0
1 0 3 −3 0


r2 ← r2 − 2r1
r3 → r3 − 3r1
r4 → r4 − 3r1

c1 ↔ c3
1 0 0 0 0
0 0 2 −8 0
0 0 3 0 0
0 0 1 −3 0


c2 ↔ c3

r2 → 1
2 r2

r3 → r3 − 3r2
r4 → r4 − r2

1 0 0 0 0
0 1 0 −4 0
0 0 0 12 0
0 0 0 1 0


r2 → r2 + 4r4
r3 → r3 − 12r4

c3 ↔ c4
r3 ↔ r4

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0



5.1.2 The rank of a matrix

Now we would like to discuss the number s that appears in Theorem 5.1.1. Does the initial
matrix uniquely determine this number?

Let T : U → V be a linear map, where dim(U) = n, dim(V) = m. Let e1, . . . , en be a basis of U
and let f1, . . . , fm be a basis of V. Recall from Section 2.2.3 that rank(T) = dim(im(T)).

Lemma 5.1.3. rank(T) is the size of the largest linearly independent subset of T(e1), . . . , T(en).
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Proof. im(T) is spanned by the vectors T(e1), . . . , T(en), and by Theorem 1.4.11, some subset of
these vectors forms a basis of im(T). By definition of basis, this subset has size dim(im(T)) =
rank(T), and by Corollary 1.4.15 no larger subset of T(e1), . . . , T(en) can be linearly indepen-
dent.

Now let A =

 r1
...

rm

 =
(
c1 . . . cn

)
be an m× n matrix over F with rows r1, r2, . . . , rm ∈ F1,n

and columns c1, c2, . . . , cn ∈ Fm. Left and right multiplications by A are linear maps

LA = A : Fn → Fm, LA(x) = Ax, RA = A : F1,m → F1,n, RA(y) = yA. (2)

Definition 5.1.4. (i) The row-space of A is the image of RA: it is the subspace of F1,n spanned by
the rows r1, . . . , rm of A. The row rank of A is equal to

• the dimension of the row-space of A,

• or the rank of RA

• or, by Lemma 5.1.3, the size of the largest linearly independent subset of r1, . . . , rm.

(ii) The column-space of A is the image of LA: it is the subspace of Fm spanned by the columns
c1, . . . , cn of A. The column rank of A is equal to

• the dimension of the column-space of A,

• or the rank of LA

• or, by Lemma 5.1.3, the size of the largest linearly independent subset of c1, . . . , cn.

There is no obvious reason why there should be any particular relationship between the row
and column ranks, but in fact it will turn out that they are always equal.

Example.

A =
1 2 0 1 1 r1
2 4 1 3 0 r2
4 8 0 4 4 r3
c1 c2 c3 c4 c5

We can calculate the row and column ranks by applying the sifting process (described in
Section 1.4) to the row and column vectors, respectively.

Doing rows first, r1 and r2 are linearly independent, but r3 = 4r1, so the row rank is 2.

Now doing columns, c2 = 2c1, c4 = c1 + c3 and c5 = c1 − 2c3, so the column rank is also 2.

Theorem 5.1.5. ApplyingR1,R2 orR3 to a matrix A does not change the row or column rank of A.
The same is true for C1, C2 and C3.

Proof. The matrix A represents the linear map LA, defined in (2), in the standard basis. Applying
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one of the operations yields a matrix A′, representing the same linear map LA in another basis.
The column ranks of A and A′ are both equal to the rank of LA.

The row ranks of A and A′ are equal to the column ranks of the transposed matrices AT and
A′ T. These matrices represent RA in the standard and the slightly changed bases. Thus, the row
ranks of A and A′ are both equal to the rank of RA.

Corollary 5.1.6. Let s be the number of non-zero rows in the Smith normal form of a matrix A (see
Theorem 5.1.1). Then both row rank of A and column rank of A are equal to s.

Proof. Since elementary operations preserve ranks, it suffices to find both ranks of a matrix in
the Smith form. Obviously, it is s.

In particular, Corollary 5.1.6 establishes that the row rank is always equal to the column rank.
This allows us to forget this artificial distinction and always talk about the rank of a matrix.

The most efficient way of computing the rank of a matrix by hand is to perform just enough
transformations to make it obvious. For instance, let us look at the following matrix:

Matrix Operation

B =

 1 2 0 1 1
2 4 1 3 0
4 8 1 5 2

 r2 → r2 − 2r1
r3 → r3 − 4r1 1 2 0 1 1

0 0 1 1 −2
0 0 1 1 −2


Since the resulting matrix has r2 = r3, Rank(B) ≤ 2. Since c1 and c3 are linearly independent,
Rank(B) = 2.

5.1.3 The answer to LT

Recall that two m× n matrices A and B are said to be equivalent if there exist invertible P and Q
with B = QAP; that is, if they represent the same linear map, cf. Section 4.2.3.

It is easy to check that it is an equivalence relation on the set Fm,n of m× n matrices over F. We
shall show now that the equivalence of matrices has effective characterisations.

Theorem 5.1.7. Let A, B ∈ Fm,n. The following conditions on A and B are equivalent.

(i) A and B are equivalent.

(ii) A and B represent the same linear map with respect to different bases.

(iii) A and B have the same rank.
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(iv) B can be obtained from A by application of elementary row and column operations.

Proof. (i)⇔ (ii): This is true by Theorem 4.1.4.

(ii)⇒ (iii): Since A and B both represent the same linear map T, we have rank(A) = rank(B) =
rank(T).

(iii)⇒ (iv): By Theorem 5.1.1, if A and B both have rank s, then they can both be brought into
the form

Es =

(
Is 0s,n−s

0m−s,s 0m−s,n−s

)
by elementary row and column operations. Since these operations are invertible, we can first
transform A to Es and then transform Es to B.

(iv) ⇒ (i): We saw in Section 4.3 that applying an elementary row operation to A can be
achieved by multiplying A on the left by an elementary row matrix, and similarly applying
an elementary column operation can be done by multiplying A on the right by an elementary
column matrix. Hence (iv) implies that there exist elementary row matrices R1, . . . , Rr and
elementary column matrices C1, . . . , Cs with B = Rr . . . R1AC1 . . . Cs. Since elementary matrices
are invertible, Q = Rr . . . R1 and P = C1 . . . Cs are invertible and B = QAP.

In the above proof, we also showed the following:

Proposition 5.1.8. Any m× n matrix is equivalent to the matrix Es defined above, where s = rank(A).

The matrices Es are canonical forms for the linear maps in the LT problem. This means that they
are easily recognizable representatives of equivalence classes of matrices.

5.2 Solving systems of linear equations

Row transformations solve systems of linear equations. But don’t ever try column transforma-
tions: it is faux pas.

5.2.1 Linear equations and the inverse image problem

The study and solution of systems of simultaneous linear equations is the main motivation
behind the development of the theory of linear algebra and of matrix operations. Let us consider
a system of m equations in n unknowns x1, x2 . . . xn, m, n ≥ 1.

α11x1 + α12x2 + · · · + α1nxn = β1
α21x1 + α22x2 + · · · + α2nxn = β2

...
...

...
αm1x1 + αm2x2 + · · · + αmnxn = βm

(3)
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All coefficients αij and βi belong to F. Solving this system means finding all collections
x1, x2 . . . xn ∈ F such that (3) holds true.

Let A = (αij) ∈ Fm,n be the m× n matrix of coefficients. Consider the column vectors

x =

 x1
...

xn

 ∈ Fn and b =

 β1
...

βm

 ∈ Fm.

This allows us to rewrite system (3) as a single equation

Ax = b or LA(x) = b (4)

where the coefficient A is a matrix, the right-hand side b is a given vector in Fm, the unknown x
is a vector in Fn and LA is the linear map from (2).

Using the new terms of linear maps, we have just reduced solving a system of linear equations
to the inverse image problem. That is, given a linear map T : U → V, and a fixed vector b ∈ V,
find T−1(b) := {x ∈ U | T(x) = b}.

In fact, these two problems are equivalent! In the opposite direction, just choose bases in U and
V and denote a matrix of T in these bases by A. Proposition 3.3.1 says that T(x) = b if and only
if Ax = b. This reduces the inverse image problem to solving a system of linear equations.

Let us make several observations that follow from the properties of the linear maps.

The case when b = 0, or equivalently when βi = 0 for 1 ≤ i ≤ m, is called the homogeneous case.
Here the set of solutions is

ker(LA) = {x ∈ Fn | LA(x) = 0} = {x ∈ Fn | Ax = 0},

which is sometimes called the nullspace of the matrix A.

In general, it is easy to see that if x0 is one solution to a system of equations, then the complete
set of solutions is equal to

x0 + ker(LA) = {x0 + y | y ∈ ker(LA)}.

It is possible that there are no solutions at all; this occurs when b 6∈ im(LA). If there are
solutions, then there is a unique solution precisely when ker(LA) = {0}. If the field F is infinite
and there are solutions but ker(LA) 6= {0}, then there are infinitely many solutions.

5.2.2 Gauss method and elementary row transformations

There are two standard high school methods for solving linear systems: substitution method
(where you consequently express variables through other variables and substitute the result
in remaining equations) and elimination method (sometimes called Gauss method). The latter is
usually more effective, so we would like to contemplate its nature.
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In fact, Gauss method are exactly elementary row transformations! We saw in Section 4.3 that
a row transformation changes A to PA where P is one of the elementary matrices. Since P is
invertible,

Ax = b ⇔ PAx = Pb

that allows us to improve the equation until we can see the solution. Notice that the column
transformation changes A to AP and it is just destroying the equation.

Example. Consider the following three systems.{
2x + y = 1

4x + 2y = 1

{
2x + y = 1
4x + y = 1

{
2x + y = 1

4x + 2y = 2

The Gauss method solves them by subtracting twice the first equation from the second equation:{
2x + y = 1

0 = −1

{
2x + y = 1
−y = −1

{
2x + y = 1

0 = 0

The first equation has no solutions. The second equation has a single solution (x, y) = (0, 1).
The third equation has infinitely many solutions (x, y) = (t, 1− 2t).

In terms of the elementary row transformations, we write the systems in matrix form:(
2 1
4 2

)(
x
y

)
=

(
1
1

) (
2 1
4 1

)(
x
y

)
=

(
1
1

) (
2 1
4 2

)(
x
y

)
=

(
2
1

)
Then we perform r2 ← r2 − 2r1 on all three of them. Equivalently, we multiply by P =

E(2)1
−2,2,1 =

(
1 0
−2 1

)
:

(
2 1
0 0

)(
x
y

)
=

(
1
−1

) (
2 1
0 −1

)(
x
y

)
=

(
1
−1

) (
2 1
0 0

)(
x
y

)
=

(
1
0

)

5.2.3 Augmented matrix

We would like to make the process of solving more mechanical by forgetting about the variable
names w, x, y, z, etc. and doing the whole operation as a matrix calculation. For this, we use the
augmented matrix of the system of equations, which for the system Ax = b of m equations in n
unknowns, where A is the m× n matrix (αij) is defined to be the m× (n + 1) matrix

A =
(

A b
)
=


α11 α12 . . . α1n β1
α21 α22 . . . α2n β2

...
...

...
αm1 αm2 . . . αmn βm

 .

The vertical line in the matrix is put there just to remind us that the rightmost column is different
from the others, and arises from the constants on the right-hand side of the equations.

Let us look at the following system of linear equations over R, that is, we want to find all
x, y, z, w ∈ R satisfying the equations.
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
2w − x + 4y − z = 1

w + 2x + y + z = 2
w − 3x + 3y − 2z = −1

−3w − x − 5y = −3

Elementary row operations on A are precisely Gauss transformations of the corresponding
linear system. Thus, the solution can be carried out mechanically as follows:

Matrix Operation
2 −1 4 −1 1
1 2 1 1 2
1 −3 3 −2 −1
−3 −1 −5 0 −3

 r1 → r1/2


1 −1/2 2 −1/2 1/2
1 2 1 1 2
1 −3 3 −2 −1
−3 −1 −5 0 −3

 r2 → r2 − r1, r3 → r3 − r1, r4 → r4 + 3r1


1 −1/2 2 −1/2 1/2
0 5/2 −1 3/2 3/2
0 −5/2 1 −3/2 −3/2
0 −5/2 1 −3/2 −3/2

 r3 → r3 + r2, r4 → r4 + r2


1 −1/2 2 −1/2 1/2
0 5/2 −1 3/2 3/2
0 0 0 0 0
0 0 0 0 0

 r2 → 2r2/5


1 −1/2 2 −1/2 1/2
0 1 −2/5 3/5 3/5
0 0 0 0 0
0 0 0 0 0

 r1 → r1 + r2/2


1 0 9/5 −1/5 4/5
0 1 −2/5 3/5 3/5
0 0 0 0 0
0 0 0 0 0


The original system has been transformed to the following equivalent system, that is, both
systems have the same solutions.

{
w + 9/5y − 1/5z = 4/5
x − 2/5y + 3/5z = 3/5

In the latter system, variables y and z can take arbitrary values in R in the solution set; say
y = s, z = t. Then equations tell us that x = 2s/5− 3t/5 + 3/5 and w = −9s/5 + t/5 + 4/5

52



5 Elementary Transformations and Their Applications

(be careful to get the signs right!), and so the complete set of solutions is
w
x
y
z

 =


−9s/5 + t/5 + 4/5
2s/5− 3t/5 + 3/5

s
t

 =


4/5
3/5

0
0

+ s


−9/5

2/5
1
0

+ t


1/5
−3/5

0
1

 , s, t ∈ R.

5.2.4 Row echelonisation a matrix

Let A = (αij) be an m× n matrix over the field F. For i-th row let αi,c(i) be the first (leftmost)
non-zero entry in this row. In other words, αi,c(i) 6= 0 while αij = 0 for all j < c(i). By convention,
c(i) = ∞ if αij = 0 for all j.

After applying this procedure, the resulting matrix A = (αij) has the following properties.

(i) All zero rows are below all non-zero rows.

(ii) Let r1, . . . , rs be the non-zero rows. Then each ri with 1 ≤ i ≤ s has 1 as its first non-zero
entry. (In other words, αi,c(i) = 1.)

(iii) c(1) < c(2) < · · · < c(s).

(iv) αk,c(i) = 0 for all k > i.

Definition 5.2.1. A matrix satisfying these properties is said to be in row echelon form.

There is a stronger version of the last property

(v) αk,c(i) = 0 for all k 6= i.

Definition 5.2.2. A matrix satisfying properties (i), (ii), (iii), and (v) is said to be in row reduced
echelon form.

Here is the intuition behind these forms:

• The number of non-zero rows in a row echelon form of A is the rank of A (prove it
yourself).

• The row reduced echelon form of A (it is not just my misuse of articles: this form is,
indeed, unique) solves the system of linear equations.

In this light, the following theorem says that every system of linear equations can be solved by
Gauss method.

Theorem 5.2.3. Every matrix can be brought to the row reduced echelon form by elementary row
transformations.

Proof. This proof is similar to the proof of Theorem 5.1.1, yet somewhat more technically
complex. Again we describe an algorithm whose steps contain elementary row operations. We
have to show that
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1. after termination the resulting matrix has the row reduced echelon form,

2. the algorithm terminates after finitely many steps.

Both these statements are clear from the nature of the algorithm. Make sure that you understand
why they are clear!

At any stage of the procedure, we are looking at the entry αij in a particular position (i, j) of the
matrix. (i, j) is called the pivot position, and αij the pivot entry. We start with (i, j) = (1, 1) and
proceed as follows.

1. If αij and all entries below it in its columns are zero (i.e. if αkj = 0 for all k ≥ i), then move
the pivot one place to the right, to (i, j + 1) and repeat Step 1, or terminate if j = n.

2. If αij = 0 but αkj 6= 0 for some k > j then applyR2 and interchange ri and rk.

3. At this stage αij 6= 0. If αij 6= 1, then applyR3 and multiply ri by α−1
ij .

4. At this stage αij = 1. If, for any k 6= i, αkj 6= 0, then apply R1, and subtract αkj times ri
from rk.

5. At this stage, αkj = 0 for all k 6= i. If i = m or j = n then terminate. Otherwise, move the
pivot diagonally down to the right to (i + 1, j + 1), and go back to Step 1.

If one needs only a row echelon form, this can done faster by replacing steps 4 and 5 with
weaker and faster steps as follows.

4a. At this stage αij = 1. If, for any k > i, αkj 6= 0, then apply R1, and subtract αkj times ri
from rk.

5a. At this stage, αkj = 0 for all k > i. If i = m or j = n then terminate. Otherwise, move the
pivot diagonally down to the right to (i + 1, j + 1), and go back to Step 1.

In the example below, we find a row echelon form of a matrix by applying the faster algorithm.
The number in the ‘Step’ column refers to the number of the step applied in the description of
the procedure above.

Example. A =


0 0 1 2 1
2 4 2 −4 2
3 6 3 −6 3
1 2 3 3 3

.
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Matrix Pivot Step Operation
0 0 1 2 1
2 4 2 −4 2
3 6 3 −6 3
1 2 3 3 3

 (1, 1) 2 r1 ↔ r2


2 4 2 −4 2
0 0 1 2 1
3 6 3 −6 3
1 2 3 3 3

 (1, 1) 3 r1 → r1/2


1 2 1 −2 1
0 0 1 2 1
3 6 3 −6 3
1 2 3 3 3

 (1, 1) 4
r3 → r3 − 3r1
r4 → r4 − r1


1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 2 5 2

 (1, 1)→ (2, 2)→ (2, 3) 5, 1


1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 2 5 2

 (2, 3) 4 r4 → r4 − 2r2


1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 0 1 0

 (2, 3)→ (3, 4) 5, 2 r3 ↔ r4


1 2 1 −2 1
0 0 1 2 1
0 0 0 1 0
0 0 0 0 0

 (3, 4)→ (4, 5)→ stop 5, 1

Note that the row reduced echelon form of A can be obtained from a row echelon form. In this
example, three further row transformations are needed:

r1 → r1 + 2r3
r2 → r2 − 2r3
r1 → r1 − r2


1 2 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0



5.2.5 Rank criterion

The following criterion has mostly theoretical value. The proof may appear in your example
sheets. If not try proving it on your own.
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Proposition 5.2.4. Let A be the n×m matrix of a linear system, A its augmented n× (m + 1) matrix.
The system of linear equations has a solution if and only if rank(A) = rank(A).

5.3 The inverse of a matrix

The row reduction is an efficient practical method for finding the inverse matrix

5.3.1 Definition and basic properties

Let A ∈ Fm,n. Recall (cf. Section 2.3.2) that A is called invertible, if there exists the inverse
matrix A−1 ∈ Fm,n such that AA−1 = Im and A−1A = In.

Example. Let A =

(
1 2 0
2 0 1

)
and B =

 1 −2
0 1
−2 5

. Then AB = I2, but BA 6= I3, so a

non-square matrix can have “a right inverse” which is not “a left inverse”. Such misfortunes do
not happen with square matrices.

Lemma 5.3.1. If A and B are n× n matrices such that AB = In, then A and B are invertible, and
A−1 = B, B−1 = A.

Proof. If Bx = 0 then x = Inx = A(Bx) = 0. Thus, LB : Fn → Fn is injective. By Theorem 2.2.7,
rank(LB) = n − nullity(LB) = n − 0 = n so that LB is surjective and bijective. The inverse
is a linear map. Thus, B is invertible and B−1 exists. Finally, A = ABB−1 = B−1 and A−1 =
(B−1)−1 = B.

Lemma 5.3.2. If A and B are invertible n× n matrices, then AB is invertible, and (AB)−1 = B−1A−1.

Proof. This is clear, because ABB−1A−1 = B−1A−1AB = In.

5.3.2 Row reduced form of an invertible matrix

Proposition 5.3.3. The row reduced echelon form of an invertible n× n matrix A is In.

Proof. First note that if an n× n matrix A is invertible, then it has rank n. Consider the row
reduced echelon form B = (βij) of A. As we saw in Section 5.1.2, we have βic(i) = 1 for
1 ≤ i ≤ n (since rank(A) = rank(B) = n), where c(1) < c(2) < · · · < c(n), and clearly this is
only possible if c(i) = i for 1 ≤ i ≤ n. Then, since all other entries in column c(i) are zero, we
have B = In.

Corollary 5.3.4. An invertible matrix is a product of elementary matrices.
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Proof. The sequence of row operations in the proof of Proposition 5.3.3 can be written as

A ← E1A ← E2E1A ← . . . ← ErEr−1 . . . E1A = In.

Since elementary matrices are invertible and their inverses are also elementary,

A = (ErEr−1 . . . E1)
−1 = E−1

1 E−1
2 . . . E−1

r .

5.3.3 Algorithm for matrix inversion

Corollary 5.3.4 yields an explicit formula for the inverse matrix

A−1 = ErEr−1 . . . E1 = ErEr−1 . . . E1 In

that can be turned into an algorithm. Just reduce A to its row reduced echelon form In, using
elementary row operations, while simultaneously applying the same row operations to the
identity matrix In. These operations transform In to A−1.

In practice, we might not know whether or not A is invertible before we start, but we will find
out while carrying out this procedure because, if A is not invertible, then its rank will be less
than n, and it will not row reduce to In.
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Example.

A =

 3 2 1
4 1 3
2 1 6

  1 0 0
0 1 0
0 0 1


r1 → r1/3 1 2/3 1/3

4 1 3
2 1 6

  1/3 0 0
0 1 0
0 0 1


r2 → r2 − 4r1
r3 → r3 − 2r1 1 2/3 1/3

0 −5/3 5/3
0 −1/3 16/3

  1/3 0 0
−4/3 1 0
−2/3 0 1


r2 → −3r2/5 1 2/3 1/3

0 1 −1
0 −1/3 16/3

  1/3 0 0
4/5 −3/5 0
−2/3 0 1


r1 → r1 − 2r2/3
r3 → r3 + r2/3 1 0 1

0 1 −1
0 0 5

  −1/5 2/5 0
4/5 −3/5 0
−2/5 −1/5 1


r3 → r3/5 1 0 1

0 1 −1
0 0 1

  −1/5 2/5 0
4/5 −3/5 0

−2/25 −1/25 1/5


r1 → r1 − r3
r2 → r2 + r3 1 0 0

0 1 0
0 0 1

  −3/25 11/25 −1/5
18/25 −16/25 1/5
−2/25 −1/25 1/5


So

A−1 =

 −3/25 11/25 −1/5
18/25 −16/25 1/5
−2/25 −1/25 1/5

 .

It is always a good idea to check the result afterwards. This is easier if we remove the common
denominator 25, and we can then easily check that 3 2 1

4 1 3
2 1 6

 −3 11 −5
18 −16 5
−2 −1 5

 =

 −3 11 −5
18 −16 5
−2 −1 5

 3 2 1
4 1 3
2 1 6

 =

 25 0 0
0 25 0
0 0 25


which confirms the result!
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6 The Determinant: Methods of Calculation

This is a breather chapter, roughly in line with the breather week. The only goal of this chapter
is to introduce the determinant and to learn how to compute it.

6.1 From first principles

Let A be an n× n matrix over the field F. The determinant of A, which is written as det(A) or
sometimes as |A|, is a certain scalar that is defined from A in a rather complicated way.

6.1.1 Definition of the determinant

The definition for n ≤ 3 is already familiar to you:

det(a) = a, det
(

a b
c d

)
= ad− bc, det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =
a11a22a33 − a11a23a32−
−a12a21a33 + a12a23a31+
+a13a21a32 − a13a22a31

Now we turn to the general definition for n× n matrices. Suppose that we take the product of
n entries from the matrix, where we take exactly one entry from each row and one from each
column. Such a product is called an elementary product.

Recall the symmetric group Sn for Algebra-1 (or Sets and Numbers) last term. The elements of
Sn are permutations of the set Xn = {1, 2, 3, . . . , n}, is simply a bijection from Xn to itself. There
are n! permutations altogether, so |Sn| = n!.

An elementary product contains one entry from each row of A, so let the entry in the product
from the ith row be aiφ(i), where φ is some as-yet unknown function from Xn to Xn. Since the
product also contains exactly one entry from each column, each integer j ∈ Xn must occur
exactly once as φ(i). But this is just saying that φ : Xn → Xn is a bijection; that is φ ∈ Sn. So an
elementary product has the general form a1φ(1)a2φ(2) . . . anφ(n) for some φ ∈ Sn, and there are n!
elementary products altogether. We want to define

det(A) = ∑
φ∈Sn

±a1φ(1)a2φ(2) . . . anφ(n)

but we still have to decide which of the elementary products has a plus sign and which has a
minus sign. In fact this depends on the sign of the permutation φ, which we must now define.

Recall that a transposition is a permutation of Xn that interchanges two numbers i and j in Xn
and leaves all other numbers fixed. It is written as (i, j). The two key facts are

• every φ ∈ Sn is a product of permutations,

• for each fixed φ the number of permutations in this product is always odd or always even.
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Definition 6.1.1. A permutation φ ∈ Sn is said to be even, and to have sign +1, if φ is a
composition of an even number of transpositions; and φ is said to be odd, and to have sign −1,
if φ is a composition of an odd number of transpositions.

Example. The permutation φ ∈ S5 defined by

φ(1) = 4, φ(2) = 5, φ(3) = 3, φ(4) = 2, φ(5) = 1

is equal to (1, 4) · (2, 4) · (2, 5) (Remember that permutations are functions Xn → Xn. Their
product is the composition starting from the right, so this means first apply the function (2, 5)
(which interchanges 2 and 5) then apply (2, 4) and finally apply (1, 4).) or (2, 3) · (3, 4) · (2, 5)) ·
(3, 5) · (1, 5). Hence, sign(φ) = −1.

Now we can give the general definition of the determinant. It is optimal for calculation only if
n ≤ 2. Already for n = 3, you should use other methods.

Definition 6.1.2. The determinant of a n× n matrix A = (aij) is the scalar quantity

det(A) = ∑
φ∈Sn

sign(φ)a1φ(1)a2φ(2) . . . anφ(n).

6.1.2 Characteristic polynomial

Definition 6.1.3. For an n× n matrix A, the determinant det(A− x) := det(A− xIn) is called
the characteristic polynomial of A.

Note that x is an indeterminant variable so that A− xIn is a matrix with coefficients in the field
of rational functions F(x). Its elements are f (x)/h(x) where f (x), h(x) ∈ F[x] and h 6= 0 under
the usual addition and multiplications rules. All the theorems and computation methods for
the determinants apply equally to characteristic functions.

Example. Let A =

(
1 2
5 4

)
. Then

det(A− x) =
∣∣∣∣1− x 2

5 4− x

∣∣∣∣ = (1− x)(4− x)− 10 = x2 − 5x− 6 = (x− 6)(x + 1).

6.1.3 Staircase matrices

An upper staircase matrix (or lower staircase) is a matrix of the form

Aupper =


[

B1
]
∗ . . . ∗

0
[

B2
]
. . . ∗

...
...

...
0 0 . . .

[
Bn
]
 (or Alower =


[

B1
]

0 . . . 0
∗

[
B2
]
. . . 0

...
...

...
∗ ∗ . . .

[
Bn
]
 )
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with n square blocks on the diagonal. Their determinant is

det(Aupper) = det(Alower) = det(B1) · det(B2) · · ·det(Bn) . (5)

Example. The following matrix is un an upper staircase with three 2× 2 blocks.

det



3 0 1 2 3 0
1 1 5 2 0 3
0 0 1 1 1 3
0 0 1 2 3 2
0 0 0 0 1 3
0 0 0 0 1 1

 =

∣∣∣∣3 0
1 1

∣∣∣∣ · ∣∣∣∣1 1
1 2

∣∣∣∣ · ∣∣∣∣1 3
1 1

∣∣∣∣ = 3 · (2− 1) · (1− 3) = −6 .

Triangular and diagonal matrices are subsets of the set of staircase matrices. An upper staircase
matrix is called upper triangular if all the diagonal blocks have size 1. Equivalently, all of its
entries below the main diagonal are zero, that is, (aij) is upper triangular if aij = 0 for all i > j.

The matrix is called diagonal if all entries not on the main diagonal are zero; that is, aij = 0 for
i 6= j. The following is a partial case of Equation(5) but we give an independent simpler proof

Proposition 6.1.4. If A = (aij) is upper (or lower) triangular, then det(A) = a11a22 · · · ann is the
product of the entries on the main diagonal of A.

Proof. If φ ∈ Sn is not the identity permutation, there exists i such that φ(i) < i. The cor-
responding elementary product contain aiφ(i) but aij = 0 when i > j. So the only non-
zero elementary product in the sum occurs when φ is the identity permutation. Hence
det(A) = a11a22 . . . ann = 1.

Example. A =

3 0 − 1
2

0 −1 −11
0 0 2

5

 is upper triangular, and B =

0 0 0
0 17 0
0 0 −3

 is diagonal. By

Proposition 6.1.4, det(A− x) = (3− x)(−1− x)( 2
5 − x) and det(B− x) = −x(17− x)(−3− x).

6.2 Gaussian transformations

An efficient way to compute the determinants is to use row and column transformations, at
least for n ≥ 3. For n = 2, it is easiest to do it straight from the definition.

6.2.1 The effect of matrix operations on the determinant

We will prove this theorem in the next section:

Theorem 6.2.1. Elementary row and column operations affect the determinant of a matrix as follows.
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(i) det(In) = 1.

(ii) Let B result from A by applyingR2 or C2 (swap). Then det(B) = −det(A).

(iii) If A has two equal rows or columns, then det(A) = 0.

(iv) Let B result from A by applyingR1 or C1 (addition). Then det(B) = det(A).

(v) Let B result from A by applyingR3 or C3 (multiplication). Then det(B) = λ det(A).

6.2.2 Algorithm

Let us turn Theorem 6.2.1 into an algorithm for a rational matrix A ∈ Qn,n. Over more general
fields, just skip the first step.

1. UseR3 and C3 to make all the coefficients integer.

2. UseR1, C1,R2 and C2 to reduce A to upper or lower staircase form with blocks of size at
most 2.

3. Apply Formula (5)

Example. We just proceed with the algorithm.∣∣∣∣∣∣∣∣
0 1 1 2
1 2 1 1
2 1 3 1

1/2 1 2 1

∣∣∣∣∣∣∣∣
r4→2r4=

1
2

∣∣∣∣∣∣∣∣
0 1 1 2
1 2 1 1
2 1 3 1
1 2 4 2

∣∣∣∣∣∣∣∣
r4→r4−r2

r3→r3−2r2
=

1
2

∣∣∣∣∣∣∣∣
0 1 1 2
1 2 1 1
0 −3 1 −1
0 0 3 1

∣∣∣∣∣∣∣∣
r3→r3+3r1=

=
1
2

∣∣∣∣∣∣∣∣
0 1 1 2
1 2 1 1
0 0 4 5
0 0 3 1

∣∣∣∣∣∣∣∣
(5)
=

1
2

∣∣∣∣0 1
1 2

∣∣∣∣ · ∣∣∣∣4 5
3 1

∣∣∣∣ = 1
2
· (−1) · (−11) =

11
2

Notice that the algorithm would not work so nicely for the characteristic polynomial det(A− x)
because we will be getting higher and higher powers of x with each transformation.

6.3 Cofactor expansion

That is the final method, optimal for computing characteristic polynomials. It may be also
useful for matrices of large size. Occasionally, combining different methods could optimal.

6.3.1 Minors and cofactors

Let A = (aij) be an n× n matrix. Let Aij be the (n− 1)× (n− 1) matrix obtained from A by
deleting the i-th row and the j-th column of A. Now let Mij = det(Aij). Then Mij is called the
(i, j)-th minor of A.
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Example. If A =

 2 1 0
3 −1 2
5 −2 0

, then A12 =

(
3 2
5 0

)
and A31 =

(
1 0
−1 2

)
, and so

M12 = −10 and M31 = 2.

We define the (i, j)-th cofactor of A as

cij = (−1)i+j Mij = (−1)i+j det(Aij).

In other words, cij is equal to Mij if i + j is even, and to −Mij if i + j is odd. In the example
above,

c11 =

∣∣∣∣ −1 2
−2 0

∣∣∣∣ = 4, c12 = −
∣∣∣∣ 3 2

5 0

∣∣∣∣ = 10, c13 =

∣∣∣∣ 3 −1
5 −2

∣∣∣∣ = −1

c21 = −
∣∣∣∣ 1 0
−2 0

∣∣∣∣ = 0, c22 =

∣∣∣∣ 2 0
5 0

∣∣∣∣ = 0, c23 = −
∣∣∣∣ 2 1

5 −2

∣∣∣∣ = 9

c31 =

∣∣∣∣ 1 0
−1 2

∣∣∣∣ = 2, c32 = −
∣∣∣∣ 2 0

3 2

∣∣∣∣ = −4, c33 =

∣∣∣∣ 2 1
3 −1

∣∣∣∣ = −5.

Theorem 6.3.1. Let A be an n× n matrix.

(i) (Expansion of a determinant by the i-th row.) For any i with 1 ≤ i ≤ n, we have

det(A) = ai1ci1 + ai2ci2 + · · ·+ aincin =
n

∑
j=1

aijcij.

(ii) (Expansion of a determinant by the j-th column.) For any j with 1 ≤ j ≤ n, we have

det(A) = a1jc1j + a2jc2j + · · · anjcnj =
n

∑
i=1

aijcij.

For example, expanding the determinant of the matrix A above by the first row, the third row,
and the second column give respectively:

det(A) = 2 · 4 + 1 · 10 + 0 · (−1) = 18
det(A) = 5 · 2 + (−2) · (−4) + 0 · (−5) = 18
det(A) = 1 · 10 + (−1) · 0 + (−2) · (−4) = 18

6.3.2 Algorithm

Just expand by a row or a column to reduce to smaller size matrices. This is very quick if the
matrix contains a lot of zeroes.

63
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Example. The following matrix is custom-made for the method:

A =


9 0 2 6
1 2 9 −3
0 0 −2 0
−1 0 −5 2

 .

Expanding by the third row, we get det(A) = −2

∣∣∣∣∣∣
9 0 6
1 2 −3
−1 0 2

∣∣∣∣∣∣, and then expanding by the

second column, det(A) = −2 · 2
∣∣∣∣ 9 6
−1 2

∣∣∣∣ = −4 · (18 + 6) = −96.

Example. Let us compute the characteristic polynomial of

A =


0 1 1 2
1 2 1 1
2 1 3 1
3 2 4 2


by combining both methods. We use c1 because the (1, 1)-entry looks the simplest but we avoid
clearing up c2 to avoid higher powers of x:

det(A− x) =

∣∣∣∣∣∣∣∣
−x 1 1 2

1 2− x 1 1
2 1 3− x 1
3 2 4 2− x

∣∣∣∣∣∣∣∣
c4 → c4 − c1
c3 → c3 − c1

=

∣∣∣∣∣∣∣∣
−x 1 1 + x 2 + x

1 2− x 0 0
2 1 1− x −1
3 2 1 −1− x

∣∣∣∣∣∣∣∣ =
Now we expand by the second row:

= −

∣∣∣∣∣∣
1 1 + x 2 + x
1 1− x −1
2 1 −1− x

∣∣∣∣∣∣+ (2− x)

∣∣∣∣∣∣
−x 1 + x 2 + x

2 1− x −1
3 1 −1− x

∣∣∣∣∣∣ =
Now apply r3 → r3 − 2r1, r2 → r2 − r1 on the first matrix and c1 → c1 − 3c2 on the second:

= −

∣∣∣∣∣∣
1 1 + x 2 + x
0 −2x −3− x
0 −1− 2x −5− 3x

∣∣∣∣∣∣+ (2− x)

∣∣∣∣∣∣
−3− 4x 1 + x 2 + x
−1 + 3x 1− x −1

0 1 −1− x

∣∣∣∣∣∣
Now expand by the first columns in both matrices

−
∣∣∣∣ −2x −3− x
−1− 2x −5− 3x

∣∣∣∣+(2− x)(−3− 4x)
∣∣∣∣1− x −1

1 −1− x

∣∣∣∣− (2− x)(−1+ 3x)
∣∣∣∣1 + x 2 + x

1 −1− x

∣∣∣∣ =
and compute each 2× 2 determinant separately in larger brackets

= −
(
− 2x(−5− 3x)− (−1− 2x)(−3− x)

)
+
(
(4x2 − 5x− 6)((1− x)(−1− x) + 1)

)
+

+
(
(3x2 − 7x + 2)((1 + x)(−1− x)− (2 + x))

)
=
(
− 4x2 + 3x + 3

)
+

+
(

4x4 − 5x3 − 6x2
)
+
(
− 3x4 − 2x3 + 10x2 + 15x− 6

)
= x4 − 7x3 + 12x− 3.
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6.3.3 Vandermonde matrix and its determinant

Let a1, a2, . . . , an be elements of the field F. The Vandermonde matrix

V :=


1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2
...

...
...

1 an a2
n . . . an−1

n

 ∈ Fn,n

is an important matrix for many applications. Let us compute its determinant:

det(V) = ∏
1≤i<j≤n

(aj − ai) . (6)

We proceed by induction. For n = 1 the formula is trivial and for n = 2 we have∣∣∣∣ 1 a1
1 a2

∣∣∣∣ = a2 − a1 .

Suppose we know the formula for n− 1. Let us do the elementary column operations on V

cn → cn − a1cn−1, cn−1 → cn−1 − a1cn−2, . . . c2 → c2 − a1c1

in that particular order. Thus,

det(V) =

∣∣∣∣∣∣∣∣
1 0 0 0 . . . 0
1 a2 − a1 a2(a2 − a1) a2

2(a2 − a1) . . . an−2
2 (a2 − a1)

. . . . . . . . . . . . . . .
1 an − a1 an(an − a1) a2

n(an − a1) . . . an−2
n (an − a1)

∣∣∣∣∣∣∣∣ .

Finally expanding by the first row (or using the lower staircase formula)

det(V) = (a2 − a1) . . . (an − a1)

∣∣∣∣∣∣∣∣
1 a2 a2

2 . . . an−2
2

1 a3 a2
3 . . . an−2

3
. . . . . . . . . . . .

1 an a2
n . . . an−2

n

∣∣∣∣∣∣∣∣
and the result follows by the inductive hypothesis.

6.3.4 The inverse of a matrix using determinants

Let A ∈ Fn,n be an n× n matrix. We define the adjoint matrix adj(A) of A to be the n× n matrix
of which the (i, j)-th element is the cofactor cji. In other words, it is the transpose of the matrix
of cofactors. For instance, in the example at the start of Section 6.3.1,

A =

 2 1 0
3 −1 2
5 −2 0

 , adj(A) =

 4 0 2
10 0 −4
−1 9 −5

 .

We will not prove the next theorem but check that A adj(A) = adj(A)A = 18I3 in the last
example.
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Theorem 6.3.2. A adj(A) = det(A)In = adj(A)A

Corollary 6.3.3. If det(A) 6= 0, then A−1 = 1
det(A)

adj(A).

This formula for finding inverses should be used for 2× 2 matrices and sometimes for 3× 3
matrices. For larger matrices, the row reduction method described in Section 5.3 is quicker.

In the example above,  2 1 0
3 −1 2
5 −2 0

−1

=
1
18

 4 0 2
10 0 −4
−1 9 −5

 ,

and in the example in Section 5.3.3,

A =

 3 2 1
4 1 3
2 1 6

 , adj(A) =

 3 −11 5
−18 16 −5

2 1 −5

 , det(A) = −25, A−1 =
−1
25

adj(A).
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7 The Determinant: Algebraic and Geometric Properties

We will catch up with some of the algebraic proofs, missing in the last chapter. Then we will
give the geometric meaning of the determinant over R.

7.1 Algebraic Properties

7.1.1 Determinant of transposed matrix

Recall that the transposed matrix AT of A = (aij) is defined in Section 2.3.2. For example,(
1 3 5
−2 0 6

)T

=

1 −2
3 0
5 6

 .

Theorem 7.1.1. Let A = (aij) be an n× n matrix. Then det(AT) = det(A).

Proof. Let AT = (bij) where bij = aji. Then

det(AT) = ∑
φ∈Sn

sign(φ)b1φ(1)b2φ(2) . . . bnφ(n)

= ∑
φ∈Sn

sign(φ)aφ(1)1aφ(2)2 . . . aφ(n)n.

Now, by rearranging the terms in the elementary product, we have

aφ(1)1aφ(2)2 . . . aφ(n)n = a1φ−1(1)a2φ−1(2) . . . anφ−1(n),

where φ−1 is the inverse permutation to φ. Notice also that if φ is a composition τ1 ◦ τ2 ◦ · · · ◦ τr
of transpositions τi, then φ−1 = τr ◦ · · · ◦ τ2 ◦ τ1 (because each τi ◦ τi is the identity permutation).
Hence sign(φ) = sign(φ−1). Also, summing over all φ ∈ Sn is the same as summing over all
φ−1 ∈ Sn, so we have

det(AT) = ∑
φ∈Sn

sign(φ)a1φ−1(1)a2φ−1(2) . . . anφ−1(n)

= ∑
φ−1∈Sn

sign(φ−1)a1φ−1(1)a2φ−1(2) . . . anφ−1(n) = det(A).

If you find proofs like the above, where we manipulate sums of products, hard to follow, then it
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might be helpful to write it out in full in a small case, such as n = 3. Then

det(AT) = b11b22b33 − b11b23b32 − b12b21b33

+ b12b23b31 + b13b21b32 − b13b22b31

= a11a22a33 − a11a32a23 − a21a12a33

+ a21a32a13 + a31a12a23 − a31a22a13

= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31

= det(A).

7.1.2 Proof of Theorem 6.2.1

Proof. (i) This is Proposition 6.1.4.

In the rest of the proof, we can supply only proofs for the rows. Indeed, by Theorem 7.1.1,
we can apply column operations to A by transposing it, applying the corresponding row
operations, and then re-transposing it. Thus, the proofs for columns follow from the proofs
for rows.

(ii) To keep the notation simple, we shall suppose that we interchange the first two rows, but
the same argument works for interchanging any pair of rows. Then if B = (bij), we have
b1j = a2j and b2j = a1j for all j. Hence

det(B) = ∑
φ∈Sn

sign(φ)b1φ(1)b2φ(2) . . . bnφ(n)

= ∑
φ∈Sn

sign(φ)a1φ(2)a2φ(1)a3φ(3) . . . anφ(n).

For φ ∈ Sn, let ψ = φ ◦ (1, 2), so φ(1) = ψ(2) and φ(2) = ψ(1), and sign(ψ) = − sign(φ).
Now, as φ runs through all permutations in Sn, so does ψ (but in a different order), so
summing over all φ ∈ Sn is the same as summing over all ψ ∈ Sn. Hence

det(B) = ∑
φ∈Sn

− sign(ψ)a1ψ(1)a2ψ(2) . . . anψ(n)

= ∑
ψ∈Sn

− sign(ψ)a1ψ(1)a2ψ(2) . . . anψ(n) = −det(A).

(iii) Again to keep notation simple, assume that the equal rows are the first two. Using the
same notation as in (ii), namely ψ = φ ◦ (1, 2), the two elementary products:

a1ψ(1)a2ψ(2) . . . anψ(n) and a1φ(1)a2φ(2) . . . anφ(n)

are equal. This is because a1ψ(1) = a2ψ(1) (first two rows equal) and a2ψ(1) = a2φ(2) (because
φ(2) = ψ(1)); hence a1ψ(1) = a2φ(2). Similarly a2ψ(2) = a1φ(1) and the two products differ
by interchanging their first two terms. But sign(ψ) = − sign(φ) so the two corresponding
signed products cancel each other out. Thus each signed product in det(A) cancels with
another and the sum is zero.
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(iv) Again, to simplify notation, suppose that we replace the second row r2 by r2 + λr1 for
some λ ∈ K. Then

det(B) = ∑
φ∈Sn

sign(φ)a1φ(1)(a2φ(2) + λa1φ(2))a3φ(3) . . . anφ(n)

= ∑
φ∈Sn

sign(φ)a1φ(1)a2φ(2) . . . anφ(n)

+ λ ∑
φ∈Sn

sign(φ)a1φ(1)a1φ(2) . . . anφ(n).

Now the first term in this sum is det(A), and the second is λ det(C), where C is a matrix
in which the first two rows are equal. Hence det(C) = 0 by (iii), and det(B) = det(A).

(v) Easy. Note that this holds even when the scalar λ = 0.

7.1.3 The determinant of a product

Let us start with an example:

A =

(
1 2
3 2

)
and B =

(
−1 −1

2 0

)
.

Note that det(A) = −4, det(B) = 2 and

AB =

(
3 −1
1 −3

)
and det(AB) = −8 = det(A)det(B) .

Bingo! Let us prove that this simple relationship holds in general.

Remember that there is no simple relationship between det(A + B) and det(A), det(B). In our
example,

A + B =

(
0 1
5 2

)
and det(A + B) = −5 6= det(A) + det(B) .

Lemma 7.1.2. If E is an n × n elementary matrix, and B is any n × n matrix, then det(EB) =
det(E)det(B).

Proof. E is one of the three types E(n)1
λ,ij, E(n)2

ij or E(n)3
λ,i, and multiplying B on the left

by E has the effect of applying R1, R2 or R3 to B, respectively. Hence, by Theorem 6.2.1,
det(EB) = det(B),−det(B), or λ det(B), respectively. But by considering the special case
B = In, we see that det(E) = 1,−1 or λ, respectively, and so det(EB) = det(E)det(B) in all
three cases.

Recall Definition 2.2.9 of the singular map. An n × n matrix A is called singular if the map
LA : x 7→ Ax is singular. By Corollary 2.2.8, this is equivalent to rank(A) < n.

69



7 The Determinant: Algebraic and Geometric Properties

Theorem 7.1.3. For an n× n matrix A, det(A) = 0 if and only if A is singular.

Proof. A can be reduced to Smith normal form by using elementary row and column operations.
By Theorem 5.1.5, none of these operations affect the rank of A, and so they do not affect
whether A is singular or not singluar. By Theorem 6.2.1, they do not affect whether det(A) = 0
or det(A) 6= 0. So we can assume that A is in Smith normal form.

Then rank(A) is the number of non-zero rows of A and, by Proposition 6.1.4, det(A) =
a11a22 · · · ann. Thus, det(A) = 0 if and only if ann = 0 if and only if rank(A) < n.

Theorem 7.1.4. For any two n× n matrices A and B, we have det(AB) = det(A)det(B).

Proof. Suppose first that det(A) = 0. Then we have rank(A) < n by Theorem 7.1.3. Let
T1, T2 : V → V be linear maps corresponding to A and B, where dim(V) = n. Then AB
corresponds to T1T2 (by Theorem 3.4.2). By Corollary 2.2.8, rank(A) = rank(T1) < n implies
that T1 is not surjective. But then T1T2 cannot be surjective, so rank(T1T2) = rank(AB) < n.
Hence det(AB) = 0 so det(AB) = det(A)det(B).

On the other hand, if det(A) 6= 0, then A is nonsingular, and hence invertible, so by Theo-
rem 5.3.4, A is a product E1E2 . . . Er of elementary matrices Ei. Hence det(AB) = det(E1E2 . . . ErB).
Now the result follows from the above lemma, because

det(AB) = det(E1)det(E2 . . . ErB) = det(E1)det(E2)det(E3 . . . ErB) =

det(E1)det(E2) . . . det(Er)det(B) = det(E1E2 . . . Er)det(B) = det(A)det(B).

Let us derive some immediate consequences.

Corollary 7.1.5. If A ∈ Fn,n is invertible, then det(A−1) = det(A)−1.

Proof. AA−1 = In implies that 1 = det(In) = det(AA−1) = det(A)det(A−1).

Corollary 7.1.6. If A ∈ Rn,n is orthogonal, then det(A) = ±1.

Proof. Since det(A) = det(AT) and AT = A−1, det(A) = det(A−1) = det(A)−1. Hence,
det(A)2 = 1 and det(A) = ±1.

Corollary 7.1.7. If A, B ∈ Fn,n are similar, then det(A) = det(B) and, furthermore, det(A− x) =
det(B− x).

Proof. As in Section 4.2.3, there exists an invertible matrix P with B = PAP−1. Then

det(B− xIn) = det(PAP−1 − xIn) = det(A− xIn)P−1)
Th. 7.1.3
=

= det(P)det(A− xIn)det(P−1) = det(P)det(P)−1 det(A− xIn) = det(A− xIn).

The proof for det is verbatim.
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7.1.4 Trace

An alternative proof of the first statement of Corollary 7.1.7 follows from the fact that det(A) is
the free term of det(A− x). Indeed, since det(A− x) = det(B− x), their free term are equal.

But there is another significant coefficient: the trace of the matrix A is the sum of its diagonal
coefficients:

Tr(aij) = ∑
i

aii .

For example,

Tr
(
7
)
= 7, Tr

(
11 2
3 −3

)
= 11 + (−3) = 8, Tr

1 2 3
4 5 6
7 8 9

 = 1 + 5 + 9 = 15.

Proposition 7.1.8. If A ∈ Fn,n then

det(A− x) = det(A)+?x + . . .+?xn−2 + (−1)n−1 Tr(A)xn−1 + (−1)nxn .

Proof. Note that we use ? for the remaining coefficient, about which we make no statement.

To understand the two highest terms, observe that any off-diagonal elementary product for
computing det(A− x) has at most n− 2 terms from the main diagonal: thus, it can contribute
only to the coefficients of xk with k ≤ n− 2. Hence, the top two coefficients come from the
diagonal elementary product:

(a11 − x)(a22 − x) · · · (ann − x) =? + . . .+?xn−2 + (a11 + . . . + ann)(−x)n−1 + (−x)n =

=? + . . .+?xn−2 + (−1)n−1 Tr(A)xn−1 + (−1)nxn.

Finally, one gets the free term by setting x = 0 and det(A− 0) = det(A).

Corollary 7.1.9. If A, B ∈ Fn,n are similar, then Tr(A) = Tr(B).

7.2 Geometric Properties

You will find the proofs in this section slightly different. We have to be less precise and more
intuitive discussing the n-dimensional volume Voln. Given n vectors v1, . . . vn ∈ Rn, let us
consider the parallelepiped spanned by them

P(v1, . . . , vn) := {
n

∑
i=1

βivi | βi ∈ [0, 1]}.

Our goal is to understand and to sketch a proof for the key formula for its volume

Voln(P(v1, . . . , vn)) = |det(v1, . . . , vn)| . (7)
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7.2.1 Volume in small dimensions

Let us use our intuitive understand of the volume in the dimensions n ≤ 3 to prove Equation(7).
By A we denote the matrix (v1, . . . , vn) with columns v1, . . . vn.

If n = 1, then v1 = (a) for some real number. Depending on whether a is positive or not,
P(v1) = [0, a] or P(v1) = [−a, 0]. Since A = (a), Vol1(P(v1)) = |a| = |det(A)|.

For n = 2, change the order of v1, v2 if necessary, so that det(A) ≥ 0. Now consider the
positions of the vectors V1 = v1, V2 = v2 in the plane. Then, in the diagram below, P(v1, v2) is
the parallelogram OV1CV2. Its area is

r1r2 sin(θ2 − θ1) = r1r2(sin θ2 cos θ1 − sin θ1 cos θ2) = x1y2 − x2y1 =

∣∣∣∣ x1 x2
y1 y2

∣∣∣∣

��
��

��
��1

�
�
�
�
�
�
�
�
�
��
��

��
��

��

�
�
�
�
�
�
�
�
�
�

O

V1 = v1 =

(
x1
y1

)

v2 =

(
x2
y2

)
= V2

C

θ2
θ1

r1

r2

Finally, consider n = 3. Let A = (v1 v2 v3) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

. Let us expand by the first

column

det(A) = a11c11 + a21c21 + a31c31 = v1 •

c11
c21
c31


where we are using the dot product. Note that the vector (ci1) is the cross product v2 × v3:

c11 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ = a22a33 − a32a23 , c21 = −
∣∣∣∣ a12 a13

a32 a33

∣∣∣∣ = a32a13 − a12a33 ,

c31 =

∣∣∣∣ a12 a13
a22 a23

∣∣∣∣ = a12a23 − a22a13 .

Thus, the determinant can be written as

det(A) = v1 • (v2 × v3) ,

a well-known (in either MMM-2 or Differential Equations) formula for the 3D-volume.
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7.2.2 Arbitrary dimension

To prove Equation (7), we must define Voln first. Instead, we can just use Equation (7) to define
Voln. Why does it make sense?

Consider the case det A = 0. Then v1 . . . vn span a proper subspace of Rn. Thus, P(v1 . . . vn)
collapses to a parallelepiped of smaller dimension. We can agree that Voln(P(v1 . . . vn)) = 0.

Consider the case det A 6= 0. In this case we can use only column operations in Theorem 6.2.1
to compute the determinant. Let us just make certain that all the rules will be agreeable in terms
of the nD volume:

(i) det(In) = 1 means that the unit cube has volume 1.

(ii) If B results from A by applying C2, then det(B) = −det(A). This means swapping
vi ↔ vj does not change P(v1 . . . vn): its volume does not change.

(iv) If B results from A by applying C1, then det(B) = det(A). This means vi → vi + λvj
slides P(v1 . . . vn) in one direction: its volume does not change.

(v) If B results from A by applying C3, then det(B) = λ det(A). This means vi → λvi
stretches P(v1 . . . vn) in one direction: its volume gets multiplied by |λ|.

(iii) If A has two equal columns, then det(A) = 0. This means that P(v1 . . . vn) has dimension
less than n, then its volume is zero: indeed, column reduce; the last column is zero; add
the first column to the last column; observe a parallelepiped of the same volume and this
volume must be zero.

7.2.3 Orientation

Does Equation (7) work without the absolute value signs? Yes, but you need to make sense of
the negative volume!

Consider the change of basis matrix P from a basis vi to fi in a vector space V over R. We
say that the bases have the same orientation if det(P) > 0 and have the opposite orientations if
det(P) < 0.

Having the same orientation is the equivalence relation on the set of all bases in V. It has two
equivalence classes. An orientation of V is the choice of one of these two orientation classes. The
standard vector space Rn has a standard basis, hence comes with a standard orientation. The
bases with the standard orientation are called positively oriented. The bases with the opposite to
the standard orientation are called negatively oriented.

Now by an oriented nD parallelepiped, we understand a pair (P(v1, . . . , vn), ε) where v1, . . . , vn
is a basis and ε = ±1 depending on whether v1, . . . , vn is positively or negatively oriented. This
allows us to define the oriented volume and have the following version of Equation (7):

det(v1, . . . , vn) = Volor
n (P(v1, . . . , vn), ε) := ε Voln(P(v1, . . . , vn)) . (8)
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8 Eigenvalues and Eigenvectors

We are ready to make some progress on LO, cf. Section 4.2.3. Unlike LT, we are not going to
solve it. In Multilinear Algebra next year, you will see a solution for the case F = C: cf. Jordan
Normal Form on internet.

In this course, we shall settle the question which matrices are similar to a diagonal matrix. Such
matrices are called diagonalisable.

8.1 Eigenvectors and eigenvalues

8.1.1 The definition of an eigenvector and an eigenvalue

In some books, eigenvectors and eigenvalues are called characteristic vectors and characteristic
roots. We will not use these terms.

Definition 8.1.1. Let T : V → V be a linear operator, where V is a vector space over F. Suppose
that for some non-zero vector v ∈ V and some scalar λ ∈ F, we have T(v) = λv. Then v is
called an eigenvector of T, and λ is called the eigenvalue of T corresponding to v.

Note that the zero vector is not an eigenvector. (This would not be a good idea, because T0 = λ0
for all λ.) However, the zero scalar 0F may sometimes be an eigenvalue.

Example. Let T : R2 → R2 be defined by

T
(

a1
a2

)
=

(
2a1

0

)
.

Then T(e1) = 2e1, so 2 is an eigenvalue and e1 is an eigenvector. Also T(e2) = 0 = 0e2, so 0 is
an eigenvalue and e2 is an eigenvector.

In this example, notice that in fact αe1 and αe2 are eigenvectors for any α 6= 0. In fact, in general,
it is easy to see that if v is an eigenvector of T, then so is αv for any non-zero scalar α.

Let e1, . . . , en be a basis of V, and let A = (aij) be the matrix of T with respect to this basis.
As in Section 3.3.1, to each vector v ∈ V, we associate the column vector v ∈ Fn such that by
Proposition 3.3.1, for u, v ∈ V, we have T(u) = v if and only if Au = v. In particular,

T(v) = λv⇐⇒ Av = λv

that leads to the next definition:

Definition 8.1.2. Let A be an n× n matrix over F. Suppose that, for some non-zero column
vector x ∈ Fn and some scalar λ ∈ F, we have Ax = λx. Then x is called an eigenvector of A,
and λ is called the eigenvalue of A corresponding to x.

It follows from Proposition 3.3.1 that if the matrix A corresponds to the linear map T, then λ is
an eigenvalue of T if and only if it is an eigenvalue of A.
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8.1.2 Role of characteristic polynomial

Theorem 8.1.3. Let A be an n× n matrix. Then λ is an eigenvalue of A if and only if λ is a root of the
characteristic polynomial det(A− x).

Proof. Suppose that λ is an eigenvalue of A. Then Ax = λx for some non-zero x ∈ Fn. This is
equivalent to Ax = λInx, or (A− λIn)x = 0. But this says exactly that x is in the kernel of LA.
By Corollary 2.2.8, the matrix A− λIn is singular. By Theorem 7.1.3,

0 = det(A− λIn) = det(A− x)|x=λ .

Conversely, if λ is a root of det(A − x) then det(A − λIn) = 0 and A − λIn is singular. By
Corollary 2.2.8, there exists a non-zero x ∈ Fn with (A− λIn)x = 0, which is equivalent to
Ax = λInx = λx, and so λ is an eigenvalue of A.

The above theorem gives us a method of calculating eigenvalues of a matrix. Once the eigenval-
ues are known, it is then straightforward to compute the corresponding eigenvectors.

Example 1. Let A =

(
1 2
5 4

)
. Then

det(A− x) =
∣∣∣∣ 1− x 2

5 4− x

∣∣∣∣ = (1− x)(4− x)− 10 = x2 − 5x− 6 = (x− 6)(x + 1).

Hence the eigenvalues of A are the roots of (x− 6)(x + 1) = 0; that is 6 and −1.

Let us now find the eigenvectors corresponding to the eigenvalue 6. We seek a non-zero column

vector
(

x1
x2

)
such that

(
1 2
5 4

)(
x1
x2

)
= 6

(
x1
x2

)
; that is

(
−5 2

5 −2

)(
x1
x2

)
=

(
0
0

)
.

We can take
(

x1
x2

)
=

(
2
5

)
to be our eigenvector; or indeed any non-zero multiple of

(
2
5

)
.

Similarly, for the eigenvalue −1, we want a non-zero column vector
(

x1
x2

)
such that

(
1 2
5 4

)(
x1
x2

)
= −1

(
x1
x2

)
; that is

(
2 2
5 5

)(
x1
x2

)
=

(
0
0

)
,

and we can take
(

x1
x2

)
=

(
1
−1

)
to be our eigenvector.

Example 2. This example shows that the eigenvalues can depend on the field F. Let

A =

(
0 −1
1 0

)
. Then det(A− x) =

∣∣∣∣ −x −1
1 −x

∣∣∣∣ = x2 + 1,
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so the characteristic equation is x2 + 1 = 0. If F = R (the real numbers) then this equation
has no solutions, so there are no eigenvalues or eigenvectors. However, if F = C (the complex
numbers), then there are two eigenvalues i and −i. By a calculation similar to the last example,(
−1

i

)
and

(
1
i

)
are eigenvectors corresponding to i and −i respectively.

By Corollary 7.1.7, similar matrices have the same characteristic equation. There are two
important consequences of this. First, similar matrices have the same eigenvalues. Second, since
different matrices corresponding to a linear operator T are all similar, they all have the same
characteristic equation, so we can unambiguously refer to det(T), Tr(T) and det(T− x): they
can be computed in any basis.

8.1.3 Diagonalisation

The linear operators and the matrices satisfying the next theorem are called diagonalisable.

Theorem 8.1.4. Let T : V → V be a linear map. Then the matrix of T is diagonal with respect to some
basis of V if and only if V has a basis consisting of eigenvectors of T.

Equivalently, let A be an n× n matrix over F. Then A is similar to a diagonal matrix if and only if the
space Fn has a basis of eigenvectors of A.

Proof. The equivalence of the two statements follows directly from the correspondence between
linear maps and matrices, and the corresponding definitions of eigenvectors and eigenvalues.

Suppose that the matrix B = (aij) of T is diagonal with respect to the basis f1, . . . , fn of V. Recall
from Section 3.3.1 that the images of the i-th basis vector of V is represented by the i-th column
of B. But since B is diagonal, this column has the single non-zero entry aii. Hence T(fi) = aiifi,
and so each basis vector fi is an eigenvector of B.

Conversely, suppose that f1, . . . , fn is a basis of V consisting entirely of eigenvectors of T. Then,
for each i, we have T(fi) = λifi for some λi ∈ F. But then the matrix of T with respect to this
basis is the diagonal matrix B = (aij) with aii = λi for each i.

There is one case where the eigenvalues can be written down immediately.

Proposition 8.1.5. Suppose that the matrix A is upper (or lower) triangular. Then the eigenvalues of A
are just the diagonal entries aii of A.

Proof. In this case, A− x is also upper triangular. By Corollary 6.1.4,

det(A− x) =
n

∏
i=1

(aii − x)

so the eigenvalues are the aii.
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Example. Let A =

(
1 1
0 1

)
. Then A is upper triangular, so its only eigenvalue is 1. We can now

see that A is not diagonalisable. Otherwise, we would have a basis of eigenvectors. Let P be
the change of basis matrix. Since both eigenvalues are 1, PAP−1 = I2 and A = P−1(PAP−1)P =
P−1 I2P = I2, a contradiction.

8.1.4 The case of distinct eigenvalues

This is the case where we can solve LO at this point.

Theorem 8.1.6. Let λ1, . . . , λr be distinct eigenvalues of T : V → V, and let v1, . . . , vr be correspond-
ing eigenvectors. (So T(vi) = λivi for 1 ≤ i ≤ r.) Then v1, . . . , vr are linearly independent.

Proof. Suppose that for some a1, . . . , ar ∈ F we have

a1v1 + a2v2 + . . . + arvr = 0.

Then, applying T to this equation gives

a1λ1v1 + a2λ2v2 + . . . + arλrvr = 0.

Furthermore, applying T repeatedly to this equation gives

a1λk
1v1 + a2λk

2v2 + . . . + arλk
r vr = 0

for all k. Organising the first r such equations together into a matrix form yields

A ·

a1v1
...

arvr

 =

0
...

0

 where A =


1 1 1 . . . 1

λ1 λ2 λ3 . . . λr
...

...
...

λr−1
1 λr−1

2 λr−1
3 . . . λr−1

r


is the transpose of the Vandermonde matrix from Section 6.3.3. By Equation (6), it admits an
inverse A−1. Multiply by it to geta1v1

...
arvr

 = A−1A ·

a1v1
...

arvr

 = A−1 ·

0
...

0

 =

0
...

0

 .

It follows that all ai are equal to zero.

Notice that the columns in the last proof are unusual: their entries are elements of V. It does
not cause any issues with the proof!

Corollary 8.1.7. If the linear map T : V → V (or equivalently the n× n matrix A) has n distinct
eigenvalues, where n = dim(V), then T (or A) is diagonalisable.
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Proof. Under the hypothesis, there are n linearly independent eigenvectors, which form a basis
of V by Corollary 1.4.15. The result follows from Theorem 8.1.4.

Corollary 8.1.8. Let A, B ∈ Fn,n and A has n distinct eigenvalues. Then A and B are similar if and
only if they have the same eigenvalues.

Example. Let

A =

 4 5 2
−6 −9 −4

6 9 4

 so that |A− x| =

∣∣∣∣∣∣
4− x 5 2
−6 −9− x −4
6 9 4− x

∣∣∣∣∣∣ .

To help evaluate this determinant, apply first the row operation r3 → r3 + r2 and then the
column operation c2 → c2 − c3, giving

|A− x| =

∣∣∣∣∣∣
4− x 5 2
−6 −9− x −4
0 −x −x

∣∣∣∣∣∣ =
∣∣∣∣∣∣

4− x 3 2
−6 −5− x −4
0 0 −x

∣∣∣∣∣∣ ,

and then expanding by the third row we get

−x
(
(4− x)(−5− x) + 18

)
= −x(x2 + x− 2) = −x(x + 2)(x− 1)

so the eigenvalues are 0, 1 and −2. Since these are distinct, we know from the above corollary
that A can be diagonalised. In fact, the eigenvectors will be the new basis for the diagonal
matrix, so we will calculate these.

In the following calculations, we will denote eigenvectors v1, etc. by

 x1
x2
x3

, where x1, x2, x3

need to be calculated by solving simultaneous equations.

For the eigenvalue λ = 0, an eigenvector v1 satisfies Av1 = 0, which gives the three equations:

4x1 + 5x2 + 2x3 = 0; −6x1 − 9x2 − 4x3 = 0; 6x1 + 9x2 + 4x3 = 0.

The third is clearly redundant, and adding twice the first to the second gives 2x1 + x2 = 0 and

then we see that one solution is v1 =

 1
−2

3

.

For λ = 1, we want an eigenvector v2 with Av2 = v2, which gives the equations

4x1 + 5x2 + 2x3 = x1; −6x1 − 9x2 − 4x3 = x2; 6x1 + 9x2 + 4x3 = x3; =⇒

3x1 + 5x2 + 2x3 = 0; −6x1 − 10x2 − 4x3 = 0; 6x1 + 9x2 + 3x3 = 0.

Adding the second and third equations gives x2 + x3 = 0 and then we see that a solution is

v2 =

 1
−1

1

.
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Finally, for λ = −2, Av3 = −2v3 gives the equations

6x1 + 5x2 + 2x3 = 0; −6x1 − 7x2 − 4x3 = 0; 6x1 + 9x2 + 6x3 = 0,

of which one solution is v3 =

 1
−2

2

.

Now, if we change basis to v1, v2, v3, we should get the diagonal matrix with the eigenvalues
0, 1,−2 on the diagonal. We can check this by direct calculation. Since the inverse of the basis
change matrix P has the new basis vectors as its columns,

P−1 =

 1 1 1
−2 −1 −2

3 1 2

 ⇒ P =

 0 1 1
2 1 0
−1 −2 −1

 , PAP−1 =

 0 0 0
0 1 0
0 0 −2

 .

The last equality follows from Theorem 4.1.4. Check it directly by hand!

Warning. The converse of Corollary 8.1.7 is not true. If it turns out that there do not exist n
distinct eigenvalues, then you cannot conclude from this that the matrix is not be diagonalisable.
This is rather obvious, because the identity matrix has only a single eigenvalue, but it is diagonal
already. Even so, this is one of the most common mistakes that students make.

If there are fewer than n distinct eigenvalues, then the matrix may or may not be diagonalisable.
See the repeated real eigenvalue case in Section 8.2.3.

8.2 Applications

Applications of the eigenvalues are numerous. We only consider two.

8.2.1 Fibonacci and Lucas numbers

The famous Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . are defined as

F0 = 0, F1 = 1; Fm = Fm−1 + Fm−2, m ≥ 2.

The Lucas numbers 2, 1, 3, 4, 7, 11, 18, . . . have the same recursive formula but a different start:

L0 = 2, L1 = 1; Lm = Lm−1 + Lm−2, m ≥ 2.

It helps to write both recursions in the vector form, using the vectors and the matrix

fn =

(
Fn+1

Fn

)
, sn =

(
Ln+1

Ln

)
, A =

(
1 1
1 0

)
.

The definitions become

f0 =

(
1
0

)
, fn+1 = Afn and s0 =

(
2
1

)
, sn+1 = Asn.
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This gives us semi-useful answers such as fn = Anf0 and a method to prove some of the
identities. For instance,(

Ln+1
Ln

)
= sn = An

(
2
1

)
= An(f0 + f1) = Anf0 + Anf1 = fn + fn+1 =

(
Fn+1 + Fn+2

Fn + Fn+1

)
proves that Ln = Fn + Fn+1. Yet we can do much better by diagonalising the matrix A. Note that

det(A− x) =
(

1− x 1
1 −x

)
= x2 − x− 1 = (x− λ)(x− λ[)

where the roots are the golden ratio and its companion

λ1 = λ =
1 +
√

5
2

, λ2 = λ[ = (1− λ) =
1−
√

5
2

.

Solving two linear systems (A− λi)x = 0 gives eigenvectors

w1 =

(
1 +
√

5
2

)
, w2 =

(
1−
√

5
2

)
.

Now express the starting vectors in the basis of eigenvalues

f0 =
1

2
√

5
(w1 −w2), s0 =

1
2
(w1 + w2)

and we get the general formulas

fn =
1

2
√

5
(Anw1−Anw2) =

1
2
√

5
(λnw1−λn

[ w2), s0 =
1
2
(Anw1 + Anw2) =

1
2
(λnw1 +λn

[ w2) .

Looking at the lower entry of the vectors, we arrive at Binet’s formula:

Fn =
1

2
√

5
(2λn − 2λn

[ ) =
λn − λn

[√
5

, Ln =
1
2
(2λn + 2λn

[ ) = λn + λn
[ .

8.2.2 Cayley-Hamilton theorem

This theorem will be proved for general n in Multilinear Algebra next year.

Theorem 8.2.1. If A ∈ F2,2, then A2 = Tr(A)A− det(A)I2.

Proof. Let us write A = (aij) and compute the right-hand side:

(a11 + a22)

(
a11 a12
a21 a22

)
−
(

det(A) 0
0 det(A)

)
=

(
a2

11 + a21a12 (a11 + a22)a12
(a11 + a22)a21 a2

22 + a21a12

)
= A2.
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This gives the following way to solve the LO for the 2× 2 over any field F.

Corollary 8.2.2. If A ∈ F2,2 and A 6= αI2, then A is similar to B =

(
0 −det(A)
1 Tr(A)

)
.

Proof. Since A 6= αI2, we can find a nonzero vector x ∈ F2 which is not an eigenvector. Then
Ax and x are linearly independent. Consider the basis f1 = x, f2 = Ax. In this basis,

Af1 = Ax = f2

and, by Theorem 8.2.1,

Af2 = A(Ax) = A2x = (Tr(A)A− det(A)I2)x = Tr(A)Ax− det(A)x = tr(A)f2 − det(A)f1 .

Thus, the matrix of LA in this basis is B.

8.2.3 All 2x2 real matrices

Let us solve LO in R2,2, using Corollary 8.2.2. Write det(A − x) = (λ1 − x)(λ2 − x). The
polynomial det(A− x) is real, so we have the following three possibilities.

Repeated real eigenvalue λ = λ1 = λ2 ∈ R. By Corollary 8.2.2, we have two similarity
classes: scalar and non-scalar matrices. Again by Corollary 8.2.2, we can choose any matrix
with the same trace and determinant as a representative. Good representatives are(

λ 0
0 λ

)
and

(
λ 1
0 λ

)
.

For instance, let

A =

(
1 4
−1 −3

)
so that det(A− x) = x2 + 2x + 1 = (x + 1)2

so there is a single eigenvalue −1 with multiplicity 2. Since A is not scalar, A is similar to

B =

(
−1 1

0 −1

)
. To find the change of basis explicitly, observe that Theorem 8.2.1 tells us that

(A + I2)2 = 0. It follows that any vector (A + I2)x will be either zero, or an eigenvector. Since
the first column of A + I2 is non-zero, we can choose

v2 :=
(

1
0

)
, v1 := (A + I2)v2 =

(
2
−1

)
so that P−1 = (v1 v2) =

(
2 1
−1 0

)
.

By Theorem 4.1.4, PAP−1 = B. Check it by hand!
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Two distinct real eigenvalues λ1 6= λ2 ∈ R, By Corollary 8.2.2, we have a single similarity
class and we can choose any matrix with the same trace and determinant as a representative.
The good representative is (

λ1 0
0 λ2

)
.

For instance, let

A =

(
1 4
1 1

)
so that det(A− x) = x2 − 2x− 3 = (x− 3)(x + 1)

so there are two distinct eigenvalues, 3 and −1. Associated eigenvectors are
(

2
1

)
and

(
−2

1

)
,

so we put P−1 =

(
2 −2
1 1

)
and get PAP−1 =

(
3 0
0 −1

)
from Theorem 4.1.4. Check it by hand!

Two complex, nonreal eigenvalues λ1 = aeφi and λ2 = ae−φi with a, φ ∈ R, a > 0 and
φ 6∈ 2πZ. By Corollary 8.2.2, we have a single similarity class and we can choose any matrix
with the same trace and determinant as a representative. The good representative is(

a cos φ −a sin φ
a sin φ a cos φ

)
= a

(
cos φ − sin φ
sin φ cos φ

)
.

For instance, let

A =

(
1 −1
7 −3

)
so that det(A− x) = x2 + 2x + 4 = (x− 2e2πi/3)(x− 2e−2πi/3)

so that A is similar to B =

(
−1
√

3
−
√

3 −1

)
(we choose φ = −2π/3 for this). To choose the

corresponding change of basis, we choose any v1, say v1 =

(
1
0

)
. The first column of B forces

our hand for the second vector

Av1 = −v1 −
√

3v2 ⇒ v2 =
−1√

3
(A + I2)v1 =

−1√
3

(
2 −1
7 −2

)(
1
0

)
=
−1√

3

(
2
7

)

It follows that P−1 =

(
1 −2/

√
3

0 −7/
√

3

)
and PAP−1 = B. Check it by hand!
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9 Spectral Theorem and Singular Value Decomposition

In the final section we consider ET and EO, cf. Section 4.2.3. First we will solve EO for
self-adjoint operators. Then we will solve ET in general.

9.1 Spectral theorem

We will study EO now. Hence, we will work with a euclidean space V = (V, τ) throughout.

9.1.1 Adjoint map

Proposition 9.1.1. Let T : V → V be a linear operator. There exists a unique linear operator S such
that for all v, w ∈ V

τ(T(v), w) = τ(v, S(w)) . (9)

Proof. Let f1, . . . , fn be an orthonormal basis. Equation (9) implies that

S(w) = ∑
i

τ(fi, S(w))fi = ∑
i

τ(T(fi), w)fi . (10)

This implies that S, if exists, is unique.

The existence of S is clear too: equation (10) defines S.

Definition 9.1.2. The unique linear map S in Proposition 9.1.1 is called the adjoint of T. We
write this as T∗. We say T is self-adjoint if T∗ = T.

Orthonormal bases are handy for computing adjoint maps, as clear from the next fact.

Proposition 9.1.3. Fix an orthonormal basis f1, . . . , fn of V. Let A be the matrix of a linear operator T
in this basis. Then AT is the matrix of the adjoint operator T∗ in the same basis.

Proof. Let A = (aij). Then T(fi) = ∑k akifk. Equation (10) implies that

T∗(fj) = ∑
i

τ(T(fi), fj)fi = ∑
i,k

τ(akifk, fj)fi = ∑
i

ajifi

which proves that AT is the matrix of T∗.

Example. Consider the standard euclidean space R2 and the linear map T given by A =(
1 2
5 4

)
in the standard basis. By Proposition 9.1.3, T∗ given by AT. Let us change the basis to

f1 =

(
0
1

)
, f2 =

(
1
1

)
, P−1 =

(
0 1
1 1

)
, P = (P−1)−1 =

(
−1 1
1 0

)
.

83



9 Spectral Theorem and Singular Value Decomposition

In the new basis T and T∗ are given by

P
(

1 2
5 4

)
P−1 =

(
2 6
2 3

)
and P

(
1 5
2 4

)
P−1 =

(
−1 0

5 6

)
The matrices are no longer easily relatable because the basis is not orthonormal.

Corollary 9.1.4. In an orthonormal basis, symmetric matrices correspond to self-adjoint operators.

9.1.2 Eigenvalues and eigenvectors of self-adjoint operators

First, we’ll warm up by proving a proposition which we’ll need in the main proof.

Proposition 9.1.5. Let A be an n× n real symmetric matrix. Then A has an eigenvalue in R, and all
complex eigenvalues of A lie in R.

Proof. The characteristic equation det(A− x) = 0 is a polynomial equation of degree n in x.
Since C is an algebraically closed field, it certainly has a root λ ∈ C, which is an eigenvalue for
A if we regard A as a matrix over C. It remains to prove that any such λ lies in R.

For a column vector v or matrix B over C, we denote by v or B the result of replacing all entries
of v or B by their complex conjugates. Since the entries of A lie in R, we have A = A.

Let v ∈ Cn,1 be a complex eigenvector associated with λ. Then

Av = λv (11)

so, taking complex conjugates and using A = A, we get

Av = λv. (12)

Transposing (11) and using AT = A gives

vT A = λvT, (13)

so by equations (12) and (13), we have

λvTv = vT Av = λvTv.

Note that v = (a1, a2, . . . , an)T is non-zero, since eigenvectors are non-zero. Hence,

vTv = a1a1 + . . . + anan = |a1|2 + . . . + |an|2

is a positive real number. Thus, λ = λ and λ ∈ R.

We are ready to prove the spectral theorem. It solves both LO and EO for self-adjoint operators
and symmetric real matrices.
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9 Spectral Theorem and Singular Value Decomposition

Theorem 9.1.6. Let V be a euclidean space of dimension n. If T : V → V is a selfadjoint linear operator,
there is an orthonormal basis f1, . . . , fn of V consisting of eigenvectors of T.

An n× n real symmetric matrix is orthogonally similar to a diagonal matrix.

Proof. By Corollary 9.1.4, the statements are equivalent. Let us prove the first statement.

We proceed by induction on n = dim V. If n = 0 there is nothing to prove, so let us assume the
proposition holds for n− 1.

By proposition 9.1.5, T has an eigenvalue in λ1 ∈ R. Let v ∈ V be a corresponding eigenvector
in V. Then f1 = v/|v| is also an eigenvector, and |f1| = 1.

We consider the space W = v⊥ := {w ∈ V | τ(w, f1) = 0}. Since W is the kernel of a surjective
linear map

V −→ R, x 7→ τ(x, v) ,

it is a subspace of V of dimension n− 1. We claim that T maps W into itself. Indeed, suppose
w ∈W; we want to show that T(w) ∈W also. This follows from T being self-adjoint:

τ(T(w), v) = τ(w, T(v)) = τ(w, α1v) = α1τ(w, v) = 0.

Now we know that T maps W into itself. Moreover, W is a euclidean space of dimension
n− 1, so we may apply the induction hypothesis to the restriction of T to W. This gives us an
orthonormal basis f2, . . . , fn of W consisting of eigenvectors of T. Then the set f1, . . . , fn is an
orthonormal basis of V, which also consists of eigenvectors of T.

9.1.3 Orthogonality of eigenvectors

The next property, implicit in the proof of the spectral theorem 9.1.6, is useful when calculating
examples. It helps us to write down more vectors in the final orthonormal basis immediately.

Proposition 9.1.7. Let A be a real symmetric matrix, and let λ1, λ2 be two distinct eigenvalues of A,
with corresponding eigenvectors v1, v2. Then v1 • v2 = 0.

Proof. We will use the equality v1 • v2 = vT
1 v2. We have

Av1 = λ1v1, Av2 = λ2v2. (14)

The trick is now to look at the expression vT
1 Av2. On the one hand, by (14) we have

vT
1 Av2 = v1 • (Av2) = v1 • (λ2v2) = λ2(v1 • v2) . (15)

On the other hand, AT = A, so vT
1 A = vT

1 AT = (Av1)
T, so using (14) again we have

vT
1 Av2 = (Av1)

Tv2 = (λ1vT
1 )v2 = (λ1v1) • v2) = λ1(v1 • v2) . (16)

Comparing (15) with (16), we have (λ2 − λ1)(v1 • v2) = 0. Since λ2 − λ1 6= 0 by assumption,
we have v1 • v2 = 0.
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9 Spectral Theorem and Singular Value Decomposition

Corollary 9.1.8. Let λ1, λ2 be two distinct eigenvalues of a self-adjoint linear operator T, with corre-
sponding eigenvectors v1, v2. Then τ(v1, v2) = 0.

Example. Let n = 2 and let

A =

(
1 3
3 1

)
⇒ det(A− x) = (1− x)2 − 9 = x2 − 2x− 8 = (x− 4)(x + 2) .

Hence, the eigenvalues of A are 4 and −2. Solving Av = λv for λ = 4 and −2, we find

corresponding eigenvectors
(

1
1

)
and

(
−1

1

)
. Proposition 9.1.7 tells us that these vectors are

orthogonal to each other (which we can of course check directly), so if we divide them by their
lengths to give vectors of length 1, giving

f1 =

(
1√
2

1√
2

)
, f2 =

(−1√
2

1√
2

)
, P−1 =

(
1√
2
−1√

2
1√
2

1√
2

)
, P = (P−1)T =

(
1√
2

1√
2

−1√
2

1√
2

)
,

an orthonormal basis consisting of eigenvectors of A, which is what we want. We could compute

the inverse by transposition because P is orthogonal. Check that PAP−1 =

(
4 0
0 −2

)
.

Example. Let n = 3 and

A =

 3 −2 1
−2 6 −2

1 −2 3

 .

Then, expanding by the first row,

det(A− x) = (3− x)(6− x)(3− x)− 4(3− x)− 4(3− x) + 4 + 4− (6− x)

= −x3 + 12x2 − 36x + 32 = (2− x)(x− 8)(x− 2),

so the eigenvalues are 2 (repeated) and 8. For the eigenvalue 8, if we solve Av = 8v then

we find a solution x =

 1
−2

1

. Since 2 is a repeated eigenvalue, we need two corresponding

eigenvectors, which must be orthogonal to each other. By Proposition 9.1.7, they are orthogonal
to x, which allows us to write an acceptable solution:

y =

 1
0
−1

, x =

1
1
1

.

Check by hand that these are eigenvectors with eigenvalues 2! To get an orthonormal basis, we
just need to divide by their lengths:

f1 =
1√
6

x =


1√
6
−2√

6
1√
6

, f2 =
1√
2

y =


1√
2
0
−1√

2

, f3 =
1√
3

x =


1√
3

1√
3

1√
3

, P−1 =


1√
6

1√
2

1√
3

−2√
6

0 1√
3

1√
6
−1√

2
1√
3

 .

Orthogonality gives us P = (P−1)T and we know that PA−1P is the diagonal matrix with entries
8, 2, 2. Check it by hand!
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9.2 Singular value decomposition

To address ET, consider a linear map T : V →W between euclidean spaces. We already know
that we can choose bases in V and W such that the matrix of T is in the Smith normal form(

In 0
0 0

)
where n = rank(T). Its refinement is known as the singular value decomposition.

9.2.1 Motivational example

We want to solve ET for a linear operator

T =

(
1 −1
0 2

)
: R2 −→ R2 .

Its eigenvalues are 1 and 2. Let us call the corresponding eigenvectors f1 and f2. We will also
need its inverse:

f1 =

(
1
0

)
, f2 =

(
−1

1

)
, T−1 =

(
1 1/2
0 1/2

)
.

We start by computing the image T(S2) of the unit sphere S2:

T(S2) = {x ∈ R2 | ‖T−1(x)‖ = 1} = {
(

x
y

)
∈ R2 | ‖

(
1 1/2
0 1/2

)
·
(

x
y

)
‖ = 1} .

The length of the vector in the last expression is

(x +
1
2

y)2 + (
1
2

y)2 = x2 + xy +
1
2

y2

so that T(S2) is an ellipse given by the equation x2 + xy + 1
2 y2 = 1. Let us parametrise it, using

polar coordinates:

T(S2) = {T
(

cos θ
sin θ

)
∈ R2 | θ ∈ R} = {

(
cos θ − sin θ

2 sin θ

)
∈ R2 | θ ∈ R} .

Its semiaxes are directions of the largest and the smallest vectors on the ellipse. We can find
them by elementary trigonometry, using α = arcsin(1/

√
5) (and cos α = 2/

√
5):

(cos θ − sin θ)2 + (2 sin θ)2 = cos2 θ − 2 cos θ sin θ + 5 sin2 θ =

= 1− sin(2θ) + 4 sin2 θ = 1− sin(2θ) + 2(1− cos(2θ)) =

= 3− (sin(2θ) + 2 cos(2θ)) = 3−
√

5(
1√
5

sin(2θ) +
2√
5

cos(2θ)) =

= 3−
√

5(sin α sin(2θ) + cos α cos(2θ)) = 3−
√

5 cos(2θ − α) .

Thus, we get the largest vector when cos(2θ− α) = −1 and it has length
√

3 +
√

5. We can pick
2θ − α = π, which means θ = (π + α)/2. The key vectors are

v1 =

(
cos π+α

2
sin π+α

2

)
=

(
− sin α

2
cos α

2

)
=

−√√5−2
2
√

5√
2+
√

5
2
√

5


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and

u1 =
1

T(v1)
T(v1) =

1√
3 +
√

5

(
cos π+α

2 − sin π+α
2

2 sin π+α
2

)
= . . . Good Luck!

� �
�

Similarly, we get the smallest vector when sin(2θ + α) = 1 and it has length
√

3−
√

5. We can
repeat this calculation but we know for certain that the corresponding vectors v2 and u2 are
obtained by rotating v1 and u1 by π/2 clockwise:

v2 =

(
0 −1
1 0

)
v1 =

−√ 2+
√

5
2
√

5

−
√√

5−2
2
√

5

 and u2 =
1√

3−
√

5
T(v2) =

(
0 −1
1 0

)
v2 .

The upshot of all this is not that the precise final forms of the vectors look hard (this tend to
happen with SVD) but that v1, v2 is a good orthonormal basis of the domain of T and u1, u2 is a
good orthonormal basis of the range of T. In these bases, the matrix of T is( √

3 +
√

5 0
0

√
3−
√

5

)
.

9.2.2 Main theorem

Theorem 9.2.1. (SVD for linear maps) Suppose T : (V, τV) → (W, τW) is a linear map of rank n
between euclidean spaces. Then there exist unique positive numbers γ1 ≥ γ2 ≥ . . . ≥ γn > 0, called
the singular values of T, and orthonormal bases of V and W such that the matrix of T with respect to
these bases is (

D 0
0 0

)
where D =

γ1
. . .

γn

 .

Proof. Choose orthonormal bases of V and W. Write T as a matrix A in these bases. Consider
an operator S : V → V given by the matrix ATA in the same basis:

v 7→ S(v) where S(v) = ATAv .

Since (AT A)T = AT(AT)T = ATA, the matrix AT A is symmetric and the operator S is selfadjoint.
By Theorem 9.1.6, we can choose an orthonormal basis f1, . . . , fk of V, consisting of eigenvectors
of S. Then S(fi) = aifi where ai are the eigenvalues of A.

Observe that the eigenvalues are non-negative:

ai = τV(fi, Sfi) = fi
T(ATAfi) = (Afi)

T(Afi) = τW(Tfi, Tfi) ≥ 0 .

In fact, we have computed the length of the image vectors: |Tfi| =
√

ai. A similar trick shows
that T(fi) is orthogonal to T(fj) for i 6= j:

τW(Tfi, Tfj) = (Afi)
T(Afj) = fi

T(AT Afj) = τV(fi, Sfj) = ajτV(fi, fj) = 0 .
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Now reorder the orthonormal basis f1, . . . , fk so that

a1 ≥ . . . ≥ at > 0, at+1 = . . . = ak = 0 ,

define γi =
√

ai for i ≤ t and define an orthonormal basis h1, . . . , hm of W by

hi :=
1
γi

T(fi) for all i ≤ t

and picking some ht+1, . . . , hm, which can be done by the Gram-Schmidt process (Theo-
rem 3.2.6).

Since T(fi) = γihi for i ≤ t and T(fj) = 0 for j > t. Thus, t = rank(T) = n and the matrix of T
with respect to these bases has the required form.

It remains to prove uniqueness of the singular values. Suppose we have orthonormal bases
f′1, . . . , f′k of V and h′1, . . . , h′m of W, in which T is represented by a matrix

(
B 0
0 0

)
, where B =

β1
. . .

βt

 , β1 ≥ . . . ≥ . . . βt > 0.

First, t = rank(T) = n. Then β2
i is an eigenvalue of S (we write in the original basis in the next

calculation):

S(f′i) = ∑
j

τV(f′j, S(f′i))f
′
j = ∑

j
τV(f′j, S(f′i))f

′
j = ∑

j
f′j

T
(AT Af′i)f

′
j =

= ∑
j
(Af′j)

T(Af′i)f
′
j = ∑

j
τW(T(f′j), T(f′i))f

′
j = ∑

j
τW(β jh′j, βih′i)f

′
j = β2

i f′i .

By the uniqueness of eigenvalues, γi = βi.

Before we proceed with some examples, all on the standard euclidean spaces Rn, let us restate
the SVD for matrices:

Corollary 9.2.2. (SVD for matrices) Given any real k×m matrix A, there exist unique singular values
γ1 ≥ γ2 ≥ . . . ≥ γn > 0 and (non-unique) orthogonal matrices P and Q such that

PAQ−1 = PAQT = D̃ where D̃ =

(
D 0
0 0

)
and D =

γ1
. . .

γn

 .

Note that terminologically SVD needs to decompose A. Thus, by the SVD people often under-
stand the presentation of A as

A = PTD̃Q .

This solves EO: D̃ is orthogonally equivalent to A. Furthermore, matrices of the form like D̃ are
normal forms of the orthogonal equivalence classes.
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9 Spectral Theorem and Singular Value Decomposition

Example. Consider the linear map R2 → R2, given by the symmetric matrix A =

(
1 3
3 1

)
, in

the example after Corollary 9.1.8. There we found the orthogonal matrix

P =

(
1√
2

1√
2

−1√
2

1√
2

)
with PAPT =

(
4 0
0 −2

)
.

This is not the SVD of A because the diagonal matrix contains a negative entry. To get to the
SVD we just need to pick different bases for the domain and the range: the columns f1, f2 of
P−1 can still be a basis of the domain, while the basis of the range could become f1, −f2. This is
the SVD:

P =

(
1√
2

1√
2

1√
2
−1√

2

)
, Q =

(
1√
2

1√
2

−1√
2

1√
2

)
, PAQT =

(
4 0
0 2

)
.

The same method works for any symmetric matrix: the SVD is just orthogonal diagonalisation
with additional care needed for signs. If the matrix is not symmetric, we need to follow the
proof of Theorem 9.2.1 during the calculation.

Example. Consider a linear map T : R3 → R2, given by A =

(
4 11 14
8 7 −2

)
. The matrix of S in

the standard basis is

AT A =

 4 8
11 7
14 −2

(4 11 14
8 7 −2

)
=

 80 100 40
100 170 140
40 140 200

 .

The eigenvalues of this matrix are 360, 90 and 0. Hence the singular values of A are

γ1 =
√

360 = 6
√

10 ≥ γ2 =
√

90 = 3
√

10 .

At this stage we are assured of the existence of orthogonal matrices P and Q such that

PAQ−1 = PAQT =

(
6
√

10 0 0
0 3
√

10 0

)
.

To find the orthogonal matrices we need to find eigenvectors of AT A:

e1 =

1/3
2/3
2/3

 , e2 =

−2/3
−1/3

2/3

 , e3 =

 2/3
−2/3

1/3


and then their images under A:

f1 =
1

6
√

10
Ae1 =

(
3/
√

10
1/
√

10

)
, f2 =

1
3
√

10
Ae2 =

(
1/
√

10
−3/
√

10

)
.

Hence, the orthogonal matrices are

P−1 =

(
3/
√

10 1/
√

10
1/
√

10 −3/
√

10

)
, Q−1 =

1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

 .
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9.2.3 Geometric intuition

Let us summarize the geometric intuition about linear maps on euclidean spaces. First, in a
euclidean space we always choose an orthonormal basis. Then we write all the matrices in an
orthonormal basis or two orthonormal bases.

The first type of useful matrices are orthogonal matrices P ∈ Rn,n. They are cool algebraically
because calculation of their inverses: P−1 = PT. They have two geometric meanings:

• they represent orthogonal linear operators, those operators that preserve distances and
angles,

• they represent the basis changes between orthonormal bases, the only bases changes that
we allow ourselves.

The second type of useful matrices are symmetric matrices S ∈ Rn,n. They are easy to recognize:
S = ST. They have two geometric meanings as well:

• they represent self-adjoint linear operators,

• they represent the operators that can be written as diagonal operators in an orthonormal
basis.

Finally, to understand SVD, we need two figures in Rn: the unit sphere S and an ellipsoid E

Sn := {(xi) | x2
1 + . . . + x2

n = 1}, En := {(xi) | a1x2
1 + . . . + anx2

n = 1}

where we require all ai to be positive. We always write these equations in coordinates in some
orthonormal basis. There is only one sphere: any basis will produce the same sphere. There are
infinitely many ellipsoids: we can choose different bases and different constants ai.

Let us now consider the geometric meaning of SVD of a linear operator T : V →W:

• T takes the unit sphere Sn to an ellipsoid Ek where n = dim V and k = rank(T).

• If γ1 ≥ γ2 ≥ . . . ≥ γk > 0 are the singular values of T, the ellipsoid Ek can be given by the
equation

1
γ2

1
x2

1 +
1

γ2
2

x2
2 + . . . +

1
γ2

k
x2

k = 1

inside the image of T.

• The largest singular value γ1 is the half-girth of the ellipsoid Ek, the length of its major
semi-axis.

• The largest singular value γ1 can be thought of a measure of how “large” T is. More
precisely, it is the operator norm of T, which you will study next year.

• The last statement can be expressed as the following useful formula:

γ1 = sup
{
|T(x)|
|x| | x ∈ V \ {0}

}
= max{|T(x)| | x ∈ Sn ⊂ V}.
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