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Chapter 1 - What is abstract algebra?

In this course we'll be studying algebraic structure. Often a module like this has
the words abstract algebra in the title. The main examples we'll see are groups
and rings. Let's not worry about what these are just yet.

First of all, let's explore the words abstract and algebra. When we think of
the word algebra we think of symbols replacing speci�c instances of numbers and
manipulationg them to various ends.

1.1 Getting fussy about algebra

Think about some typical algebra that you may have seen at school/college.

x(x+ y) = yx

⇒ x2 + xy − yx = 0

⇒ x2 = 0

⇒ x = 0

Let's think very precisely (much more precisely than usual) about which prop-
erties of numbers we are using here.

First of all we have used the fact that x(x+ y) = x2+xy for any two numbers.

We've also used that facts that xy = yx, that yx + (−yx) = 0 and that
x2 + 0 = x2.

Finally we've used the fact that the only number whose square is 0 is 0 itself
when we've concluded that x2 = 0⇒ x = 0.

All of these facts are certainly true if x and y are regular numbers, '+' means
regular addition and xy mean x × y the regular multiplication of two numbers x
and y. However some of these facts would not be true in other cases.

For example if x and y are both matrices and xy means matrix multiplication
of x and y then we can't say that xy = yx.

Here is a case in point



(
2 1
3 2

)(
2 0
3 2

)
6=
(
2 0
3 2

)(
2 1
3 2

)
.

We can't say that if the square of a matrix is the zero matrix then that matrix
itself must be the zero matrix since(

0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

If x and y are vectors and xy means the vector product of x and y then we
can't say that xy = yx. Don't worry if you have not met the vector product just
yet.

In this module we'll be paying a lot of attention to the exact properties of
operations like this. It will be important to be able to decide which objects and
operations have which properties because we want to explore what happens when
we abstract these from any particular instance of it. Probably this last sentence
doesn't mean much to you now but it should mean more to you as the module
goes on.

1.2 Algebra and symmetry

Sometimes, we can also think about the algebraic structures we'll be exploring ge-
ometrically. This approach re�ects more closely the origins of the abstract algebra
as a discipline in its own right. Here is an example, to give a �avour of this.

Imagine the following, an equilateral triangle made of red paper �tting exactly
into a yellow paper frame.



The back of the triangle is blue, from the back it looks like this (notice the 2
and 3 are swapped on this reverse view).

Let's turn it back over again...

and lift the triangle out of its frame.



How many ways can we put the triangle back into its frame so that it occupies
the frame exactly? Let's count them.

1. We could put it straight back down, exactly in the position it was in when
we picked it up:

2. We could rotate it by
1

3
of a turn anticlockwise.

3. We could rotate it by
2

3
of a turn anti-clockwise.



4. We could re�ect it in this line (you might prefer to think of this as a 180
degree rotation about this axis given by the line). This means the triangle
will be the other way up afterwards and we'll see the blue side.

5. or about this line/axis



6. or about this one

These six are all the possibilities. Here is an argument as to why there can be no
more than 6.

For any 'way' the corner labelled 1 can end in one of three 'frame corners'. Af-
ter that the corner labelled 2 can end in either of the two remaining frame corners.
After that the corner labelled 3 will end in the other frame corner.

This means there are at most 3 × 2 × 1 = 6 possible 'ways'. Since we have
already found six di�erent 'ways' these must be all six of them.

At this point it's probably worth pointing out the the 'ways' are called 'sym-
metries'. More precisely these are the symmetries of an equilateral triangle.

Finally, and very importantly, think about what would happen if you pick the
triangle up from its orginal position, move it according to on of the 'ways', then
move the new triangle according to another (possibly the same) 'way'. The trian-
gle is occupying its frame after these two moves so what you have done must be
the same as one of the six 'ways'.

Convince yourself that doing this to the triangle and then doing this

to the new triangle is the same as just doing this to the original triangle

.



Considering this for all possible choices of 'do thing one' then 'do thing two'
we can start to �ll in this table.

Do this �rst

◦

D
o
th
is
se
co
n
d



The complete table looks like this.

Do this �rst

◦

D
o
th
is
se
co
n
d

Figure 1: The six symmetries of an equilateral triangle and how any two of them
'combine'.

What did we do?

We took a mathematical object (an equilateral triangle) and we looked at trans-
formations of it that preserve some property (sitting in the frame) and which were
'undo-able' (i.e. we could apply some other transformation to get the object back
to its orginal state).

This is actually our �rst example of a group! This one is called D6, the dihedral
group of symmetries of an equilateral triangle.

Later we'll see that groups provide a way to study situations like this in an
abstract sense.



Chapter 2 - Sets and Binary operations

2.1 What is a set?

2.1.1 De�nition A set is simply a collection of objects.

We use curly brackets to denote sets. For example, if we write

A = {2, 5, 13},

then we're saying that the set A consists of the elements 2, 5, 13. This is one
way of specifying a set; we simply list all its elements between curly brackets. The
notation x ∈ S means x is a member of the set S and the notation x /∈ S means
x is not a member of the set S. For the set A above, we know 13 ∈ A but 11 /∈ A.
We can also specify some in�nite sets in this fashion; for example, the set of all
integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
This is absolutely standard notation: when you see Z, you're expected to know
that it's the set of integers. The set of natural numbers is

N = {0, 1, 2, 3, 4 . . . }.

Again this is standard notation (but not all mathematicians include 0 in the
natural numbers).i

Here is an example of another way of specifying a set:

B = {x ∈ Z | x2 = 16}.

This is saying that B is the set of all integers x satisfying the equation x2 = 16.
Of course, another way of specifying the same set would be to write B = {−4, 4}.

If we write
C = {x ∈ N | x2 = 16},

then C = {4}.

To get more practice with this notation, observe that another way of specifying
the natural numbers is to write

N = {x ∈ Z | x ≥ 0}.

Yet another correct�although admittedly silly way�is to write

N = {x ∈ Z | x ≥ −0.5}.



2.2 The empty set

2.2.1 De�nition The empty set is the set containing no objects. It is denoted
by ∅.

If we write
D = {u ∈ Z | u3 = 2},

then D is the set of integers u satisfying u3 = 2. There are no integers satisfying
this equation, so D is the empty set. We denote the empty set by ∅, so we can
write D = ∅.

Here are a couple more examples of empty sets:

{w ∈ N | w ≤ −1} = ∅, {v ∈ Z | 3.01 ≤ v ≤ 3.99} = ∅.

2.3 More sets (and more notation)

Here are some other sets you need to know:

1. Q is the set of rational numbers. We can write this as

Q =
{a
b
| a, b ∈ Z, b 6= 0

}
.

Examples of elements of Q are 0, 5, −7/11, 3/2, 6/4 (the last two being
the same element). From Foundations you should/will know that

√
2 is

irrational. You can write this statement in set notation:
√
2 /∈ Q. Other

examples of irrational numbers are e and π.

2. R is the set of real numbers. It isn't possible to write R in straightforward
way as for the sets above, but you can think of the elements of R as points
on the real line. Examples of elements of R are −7, 3/5, 3.85,

√
7, (π+1)/2,

sin 5.

3. C is the set of complex numbers. You have seen complex numbers in your
Further Mathematics (or equivalent) A-Level.

Recall that i is a symbol that satis�es i2 = −1. We can write the set of
complex numbers as

C = { a+ bi | a, b ∈ R }.



4. We de�ne the set of n-dimensional points/vectors with real coordinates/components
as

Rn = {(x1, x2, . . . , xn) | x1, x2, . . . , xn ∈ R}.
Thus R2 is the set of points/vectors in the plane, and R3 is the set of
points/vectors in 3- dimensional space.

Notice that in the above notation vectors/points are written as rows, for
example (1, 2) ∈ R2.

You might be more used to writing vectors as columns, so you might write
x1
x2
...
xn


instead of (x1, x2, . . . , xn). For example,(

1
2

)
instead of (1, 2).

Just like Q, R and C where we have the four basic arithmetic operations, Rn

has some additional structure de�ned on it. Vector addition is de�ned by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2,+y2, . . . , xn + yn)

or, in column notation
x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn


For example, in R3,

(2, 3,−4) + (2, 1, 0) = (4, 4,−4)



or, in column notation,  2
3
−4

+

2
1
0

 =

 4
4
−4


Scalar multiplication is de�ned as follows. If λ is a scalar (i.e. λ ∈ R) and
x = (x1, x2, . . . , xn) ∈ Rn is a vector, we de�ne

λx = λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn).

For example, in R3, if λ = 3 and x = (1, 2, 3) then

3(1, 2, 3) = (3, 6, 9).

You learn in Algebra II about how these two operations give Rn the structure
of a vector space over R ('over R' just means that, in this case, the scalars
are real numbers).

2.4 What is a binary operation?

2.4.1 De�nition Let S be a set. A binary operation on S is a rule by which
any two elements of S can be combined to give another element of S. ♦

We are going to use the symbol ? for binary operations. It's use will mostly be
reserved for when we are talking about a general, non-speci�ed, binary operation.

So given s1, s2 ∈ S we have a further element s1 ? s2 ∈ S.

2.4.2 Examples

1. Addition is a binary operation on R, because given any two real numbers,
their sum is a real number. One way mathematicians like to say this is, �R is
closed under addition�. All that means is that the sum of two real numbers
is a real number. ♦

2. Addition is also a binary operation on C, Q, Z and N. Likewise, multiplica-
tion is a binary operation on N, Z, Q, R, C. ♦



3. Is subtraction a binary operation? This question does not make sense be-
cause we haven't speci�ed the set. Subtraction is a binary operation on Z,
Q, R, C. Subtraction is not a binary operation on N; for example 1, 2 ∈ N
but 1− 2 = −1 /∈ N. Thus N is not closed under subtraction. ♦

4. Is division a binary operation on R? No, because 1, 0 are real numbers but
1/0 is not de�ned. Thus R is not closed under division. ♦

5. Let us de�ne R∗ to be the set of non-zero real numbers:

R∗ = { x ∈ R | x 6= 0 }.

Now division is a binary operation on R∗. But notice that addition is no
longer a binary operation on R∗; for example 5, −5 ∈ R∗ but 5+ (−5) = 0 /∈
R∗. ♦

2.5 Operations on vectors

Recall
Rn = {(x1, x2, . . . , xn) | x1, x2, . . . , xn ∈ R}.

and that in the above notation vectors are written as rows, for example (1, 2) ∈ R2

but they can equally be written as columns:(
1
2

)
.

Vector addition de�ned by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2,+y2, . . . , xn + yn)

is then a binary operation on Rn, the result of adding two vectors in Rn is
another vector in Rn.

Vector subtraction, given by

(x1, x2, . . . , xn)− (y1, y2, . . . , yn) = (x1 − y1, x2 − y2, . . . , xn − yn),

is another binary operation.

What about multiplication by a scalar? Recall that if λ is a scalar (i.e. λ ∈ R)
and x = (x1, x2, . . . , xn) ∈ Rn is a vector, we de�ne

λx = λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn).



Notice that the result is in Rn, but still multiplication by a scalar is not a
binary operation on Rn, because we're not `combining' two elements of Rn, but
one element of R which is λ, and one element of Rn which is x.

What about the dot product? The dot product is de�ned on Rn for all n. If
x = (x1, . . . , xn) and y = (y1, . . . , yn) we de�ne their dot product to be

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Notice that the result is in R, not Rn, so the dot product is not a binary operation.

What about the cross product (also known as the vector product)? It is de�ned
on R3 only as follows. Mixing row and column notation (!), if x = (x1, x2, x3) and
y = (y1, y2, y3) ∈ R3 then

x× y =

x1x2
x3

×
y1y2
y3

 =

 x2y3 − y2x3
−(x1y3 − y1x3)
x1y2 − y1x2


So, if x, y ∈ R3 then x× y is again in R3. This means that the cross product

is a binary operation on R3.

2.6 Operations on matrices

2.6.1 De�nition Mm×n(R) is the set of m× n matrices with entries in R. We
similarly de�ne Mm×n(C), Mm×n(Q), Mm×n(Z), etc. ♦

2.6.2 Example

M2×2(R) =
{(

a b
c d

)
| a, b, c, d ∈ R

}
.

♦
Matrix addition and subtraction are binary operations on the set Mm×n(R).

Matrix multiplication is a binary operation on the set Mn×n(R), note that
square matrices are needed here so that they can be multiplied together with the
result being the same size square matrix (see the Notes on Matrices document on
the module Moodle page for more details).



2.7 Operations on polynomials

2.7.1 De�nition R[x] is the set of polynomials in x with real coe�cients. El-
ements of R[x] are polynomials and so have the form

anx
n + an1x

n−1 + a1x+ a0

where a0, a1, . . . an are real numbers.

We can vary the set that we take the coe�cients coe�cients from to get other
sets of polynomials.

C[x] is the set of polynomials in x with complex coe�cients, Q[x] is the set of
polynomials in x with rational coe�cients, and Z[x] is the set of polynomials in x
with integer coe�cients. ♦

Notice that Z[x] ⊆ Q[x] ⊆ R[x] ⊆ C[x].

Addition, subtraction and multiplication of polynomials are de�ned as you
would expect. For example in Z[x] we have

(4x3 − 2x2 + 3x+ 6) + (x2 − 10x+ 3) = 4x3 − x2 − 7x+ 9

(4x3 − 2x2 + 3x+ 6)− (x2 − 10x+ 3) = 4x3 − 3x2 + 13x+ 3

and

(4x3 − 2x2 + 3x+ 6)× (x2 − 10x+ 3) = 4 x5 − 42 x4 + 35 x3 − 30 x2 − 51 x+ 18

This addition, multiplication and subtraction each give a binary operation on
each of Z[z],Q[x],R[x],C[x].

You'll be aware that we can create functions by dividing a polynomial by
another, so called rational functions. For example f : R→ R and g : R \ {1} → R
given by

f(x) =
x3 + 3x+ 1

x2 + 1
, g(x) =

x+ 2

x− 1
.



However
x3 + 3x+ 1

x2 + 1
cannot be written as a polynomial. So polynomial divi-

sion is not a binary operation on any of Z[z],Q[x],R[x],C[x].

2.8 Multiplication tables

Recall our de�nition of a binary operation on a set S: it is simply a rule which for
any pair of elements of S produces a third "output" element. This binary operation
does not have to be `natural', whatever that means. It does not have to be some-
thing we met before, like addition, multiplication etc. We can simply invent a set
S and binary operation on it. If the S is �nite, this is easy by means of a multipli-
cation table which tells us for any pair of elements of S what the output element is.

Let S = {a, b, c}. Let ? be the binary operation on S with the following
mutiplication table:

? a b c

a b c a
b a c a
c b b c

The result of the multiplication a ? b, is found at the intersection of the row
headed by a with the column headed by b. In other words, for multiplication tables,
the �rst element determines the row and the second determines the column. Thus
for the multiplication table above,

a ? b = c, b ? a = a, c ? b = b, a ? a = b, . . . .

You might think that this example is somewhat contrived, and you'd be right.
But later on we'll meet more natural multiplication tables that arise from studying
groups, permutations, etc. ♦

2.9 Commutativity and associativity

2.9.1 De�nitions Let S be a set and ? a binary operation.

We say that the binary operation ? is commutative on S if a ? b = b ? a for all
a, b ∈ S.

We say that the binary operation ? is associative on S if (a ? b) ? c = a ? (b ? c)
for all a, b, c ∈ S. ♦



Let's consider this for some of the binary operations we've met already:

2.9.2 Examples

1. Addition and multiplication on R (or C or R[x] or . . . ) are both commutative
and associative. When operations are commutative and associative, order
and bracketing do not matter (though it's suprisingly tricky to give a formal
proof of this, we'll not give one here):

e+((c+ b)+ (d+ a)) = a+ b+ c+ d+ e, e · ((c · b) · (d · a)) = a · b · c · d · e.

Of course subtraction is neither commutative nor associative (write some
examples). ♦

2. Addition is commutative and associative on Rn. The cross product is not
commutative on R3. If you have met the cross product before you will
probably know that if x, y ∈ R3 then

y × x = −x× y.

We say that the cross product is anti-commutative. ♦

3. Matrix addition is both commutative and associative on Mm×n(R).
Matrix multiplication is an associative but not commutative on the set
Mn×n(R) (see the Notes on Matrices document on the module Moodle page
for more details).

4. Let S = {a, b, c} and let ? be the binary operation given by the composition
table we looked at in section 2.8. Then ? is not commutative; for example

a ? b = c, b ? a = a.

It is also not associative; for example

(a ? b) ? c = c ? c = c, a ? (b ? c) = a ? a = b.

♦

5. When a binary operation is associative bracketing doesn't matter. For ex-
ample,

(a ? b) ? ((c ? d) ? e) = (a ? (b ? c)) ? (d ? e).



As long as we keep a, b, c, d, e in the same order from left to right, then the
order in which we do the multiplications does not matter. Thus there would
be no ambiguity in writing

(a ? b) ? ((c ? d) ? e) = a ? b ? c ? d ? e.

This fact that bracketing doesn't matter as long as we keep the same order is
called the general associativity theorem. For a proper formulation and proof
see
https://proofwiki.org/wiki/General_Associativity_Theorem/Formulation_2/Proof_1 ♦

6. Are there binary operations that are commutative but not associative? Yes
but it isn't easy to come up with `natural' examples. However it is easy
to invent a �nite set and a composition table that is commutative but not
associative. Let S = {a, b, c}. Let ? be the binary operation on S with the
following composition table:

? a b c

a b c a
b c c a
c a a c

Note that ? is commutative; you can see this by noting that the table is
symmetric about the diagonal from the top left corner to the bottom right
corner. But it isn't associative. For example,

(b ? c) ? a = a ? a = b, b ? (c ? a) = b ? a = c.

♦

2.9.3 Exercise In the following, is ◦ a binary operation on A? If so, is it
commutative? Is it associative? In each case justify your answer.

(a) A = R is the set of real numbers and a ? b = a/b.

(b) A = {1, 2, 3, 4, . . . } is the set of positive integers and a ? b = ab.

(c) A = {. . . , 1/8, 1/4, 1/2, 1, 2, 4, 8, . . . } is the set of powers of 2 and a ◦ b = ab.

(d) A = C is the set of complex numbers and a ? b = |a− b|.



Chapter 3 - Groups

3.1 The de�nition of a group

A group is a pair (G, ?) where G is a set and ? is a binary operation on G, such
that the following four properties hold:

(i) (closure) for all a, b ∈ G, a ? b ∈ G;

(ii) (associativity) for all a, b, c ∈ G,

a ? (b ? c) = (a ? b) ? c;

(iii) (existence of the identity element) there is an element e ∈ G such that for
all a ∈ G,

a ? e = e ? a = a;

(iv) (existence of inverses) for every a ∈ G, there is an element b ∈ G (called the
inverse of a) such that

a ? b = b ? a = e.

♦

If ? is a binary operation then (i) automatically holds. So why did is it listed in
the de�nition? It's there for good measure! When you suspect an operation gives
you a group the �rst thing you should check is that the operation is really a binary
operation.

99% of mathematicians call (i)�(iv) the �group axioms�even through they are
the �de�ning properties of a group� . This could be considered to be a bit odd,
the word axiom is usually reserved for statements of `universal truth'.

3.2 First examples (and non-examples)

3.2.1 Example (R,+) is a group. We know already that addition is a binary
operation on R, so `closure' holds. We know addition of real numbers is associative.
What is the identity element? We want an element e ∈ R so that a+e = e+a = a
for all a ∈ R. It is clear that e = 0 works and is the only possible choice. Moreover,
the (additive) inverse of a is −a: a+ (−a) = (−a) + a = 0. ♦



3.2.2 Example Recall our de�nition of the natural numbers:

N = {0, 1, 2, . . . }.

Is (N,+) a group? Conditions (i), (ii) are satis�ed. For condition (iii) we can take
the identity element to be 0 (again the only possible choice). But (iv) does not
hold. For example, if we take a = 1, there is no b ∈ N such that a+ b = b+ a = 0.
Thus (N,+) is not a group. ♦

3.2.3 Example (Z,+), (Q,+) and (C,+) are groups. ♦

3.2.4 Example Recall we de�ned

R∗ = {α ∈ R : α 6= 0}.

Then (R∗, ·) is a group, where · means multiplication. Again closure and associa-
tivity are obvious. If e is the identity element then it has to satisfy α ·e = e ·α = α
for all α ∈ R. Thus e = 1 and this is the only choice possible. Then the inverse of
α is α−1.

We can de�ne C∗ and Q∗ in the same way and obtain groups (C∗, ·) and (Q∗, ·).

Can we obtain from Z a group with respect to multiplication? In view of the
above, the obvious candidate is

U = {α ∈ Z : α 6= 0}.

But (U, ·) is not a group. It is true that (i), (ii) and (iii) hold with 1 being the
identity element. But, for example, 2 ∈ U does not have an inverse: there is no
b ∈ U such that b · 2 = 2 · b = 1. So (U, ·) is not a group. But the answer is not
no; all we've done is shown that the obvious choice for a group (Z∗, ·) made up of
integers does not work. We'll return to this question and answer it fully later. ♦

3.2.5 Example (R2,+) is a group. Let's prove this. We're allowed to assume
the usual properties of the real numbers (see Section 2.9.2). The elements of R2

are pairs (a1, a2) where a1, a2 are real numbers. Addition is de�ned by

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).

Note that the entries a1+ b1 and a2+ b2 are real numbers, and so (a1+ b1, a2+ b2)
is a pair of real numbers. Hence (a1 + b1, a2 + b2) is in R2. In other words, R2 is



closed under addition, which shows that (R2,+) satis�es condition (i). Next we
want to prove associativity of addition. Consider a, b, c in R2. We can write

a = (a1, a2), b = (b1, b2), c = (c1, c2).

Here a1, a2, b1, b2 and c1, c2 are real numbers. Note that

(a+ b) + c = ((a1 + b1) + c1, (a2 + b2) + c2) .

Likewise,
a+ (b+ c) = (a1 + (b1 + c1), a2 + (b2 + c2)) .

Because addition of real numbers is associative, we know that

(a1 + b1) + c1 = a1 + (b1 + c1), (a2 + b2) + c2 = a2 + (b2 + c2).

Hence
(a+ b) + c = a+ (b+ c).

This shows that (R2,+) satis�es (ii).

Next we need an identity element, and the obvious candidate is 0 = (0, 0).
Then

(a1, a2) + (0, 0) = (a1 + 0, a2 + 0) = (a1, a2),

and
(0, 0) + (a1, a2) = (0 + a1, 0 + a2) = (a1, a2).

Thus (iii) is satis�ed.

Finally we want an inverse. If a = (a1, a2) is in R2 then the inverse we choose
(there's no other choice) is b = (−a1,−a2). This is in R2 and satis�es

a+ b = b+ a = (0, 0).

Hence (iv) is satis�ed and so (R2,+) is a group. ♦

What matters is that you realize that the properties of addition in R2 simply
follow from the de�nition of addition in R and corresponding properties of the real
numbers.

The proofs for the following examples 3.2.6, 3.2.7, and 3.2.8 are similar.

3.2.6 (Rn,+) is a group for any n ≥ 2. ♦



3.2.7 (R[x],+) is a group. ♦

3.2.8 (Mm×n(K),+) are groups for K = C, R, Q, Z, with 0m×n, the m×n matrix
all of whose entries are 0, the identity element. ♦

3.2.9 All the groups we have met so far are in�nite. Here is an example of a
�nite group. Let A = {+1,−1}. Then (A, ·) is a group (where of course · is
multiplication). ♦

3.2.10 Let B = {1, i,−1,−i}, where i =
√
−1. Then (B, ·) is another example

of a �nite group. ♦

3.2.11 Let C = {1, i}. Then (C, ·) is not a group since it isn't closed; for example
i · i = −1 /∈ C. ♦

3.3 Abelian groups

3.3.1 De�nition We say that a group (G, ?) is abelian if (in addition to prop-
erties (i)�(iv) in de�nition 3.1) it also satis�es

(v) (commutativity) for all a, b ∈ G,

a ? b = b ? a.

♦

All the groups we have seen above are actually abelian: (R,+), (C,+), (Q,+),
(R[x],+), (Rn,+), (R∗, ·), (C∗, ·), (Mm×n(R),+), . . .

Are there any non-abelian groups? Our �rst example uses matrix multiplication
as the binary operation.

3.4 A matrix group

We saw that (M2×2(R),+) is a group. This in fact is not a particularly interesting
group because addition of matrices is not a very interesting operation. Multiplica-
tion of matrices is a far more interesting and natural operation; as we saw, if A, B
represent certain geometric operations (e.g. scaling, re�ection, rotation, etc.) then
BA is the operation that one obtains from doing A �rst then B; if this doesn't
sound familiar look again at the Notes on Matrices on the module Moodle page.
Can we obtain a group out of (say) 2× 2 matrices under multiplication?



To answer, let's look back to Example 3.2.4. There we obtained a multiplica-
tive group from the real numbers by removing 0. We had to remove 0 because it
doesn't have a multiplicative inverse.

It will not be enough for us to exclude the zero matrix, because there are non-
zero matrices that do not have an inverse (again see the Notes on Matrices on
the module Moodle page for an example). What if we exclude all non-invertible
matrices; do we get a group under multiplication?

3.4.1 De�nition De�ne

GL2(R) =
{(

a b
c d

)
|a, b, c, d ∈ R and ad− bc 6= 0

}
.

♦

Recall that ad− bc is the determinant of the 2× 2-matrix ( a bc d ), and the matrix is
invertible if and only if this determinant is non-zero. So GL2(R) contains all the
invertible 2× 2 matrices (with real entries) and none of the non-invertible ones.

3.4.2 Theorem GL2(R) is group under multiplication of matrices. We call
GL2(R) the general linear group.

Proof . The �rst thing to check is that GL2(R) is closed under multiplication. If
A and B are in GL2(R) then AB is a 2×2 matrix with real entries. Also, we know
that det(AB) = det(A) det(B). Because A and B have non-zero determinants, so
does AB. So AB is in GL2(R).

We already know that matrix multiplication is associative.

The identity matrix

I2 =

(
1 0
0 1

)
is in GL2(R) (because it has non-zero determinant) and is the multiplicative iden-
tity element; it satis�es AI2 = I2A = A for any 2× 2 matrix A.

Finally, we should ask if every matrix in GL2(R) has an inverse. We de�ned
GL2(R) so every element is invertible, but we need to make sure that the in-
verse is also in GL2(R). If A ∈ GL2(R) then det(A) 6= 0. We know, since



det(A) det(A−1) = 1 that det(A−1) 6= 0 and indeed

det(A−1) =
1

det(A)
.

Moreover, A−1 is a 2× 2 matrix with real entries. Hence A−1 ∈ GL2(R). ♦

We can de�ne GL2(Q) and GL2(C) in a similar way and show that they are
groups. However, as this very important exercise shows we can't do this with the
integers.

3.4.3 Exercise Show that{(
a b
c d

)
|a, b, c, d ∈ Z and ad− bc 6= 0

}
is not a group with respect to multiplication. ♦

You may remember D6, the symmetries of an equliaterial triangle, from chap-
ter 1. That is a non-abelian group.

In the next section we give another similar example of a non-abelian group,
but this time, instead of an equilaterial triangle, we'll look at the symmetries of a
square.

3.5 D8 the symmetries of a square

In many ways the examples above are misleading for three reasons:

� Most of the examples of groups we have met above have additional structure.
For example, in R we can add, but we can also multiply and we can divide
by non-zero numbers.

In fact R is an example of a �eld. Like in R2 we have addition and scalar
multiplication, so R2 is an example of a vector space. This doesn't stop
(R,+) and (R2,+) from being groups, but if you want to test your own ideas
in group theory, it is best to also look at examples where there aren't any of
these additional structures.

� Most of groups you've met so far are abelian, the exception is GL2(R). The
theory of abelian groups is rather close in �avour to linear algebra. Many of
the most interesting groups that you'll come across during your degree will
be non-abelian.



� All the groups above, except for Example 3.2.9 and Example 3.2.10, are in�-
nite. Although in�nite groups are important and interesting, some theorems
we will do in this course will apply only to �nite groups. Thus it is essential
to become familiar with examples of �nite groups.

Here is a great example of a group!

Imagine the following (this might ring a bell); a square made of red paper
�tting exactly into a yellow paper frame.

On the back it looks like this.

Let's turn it back over again.



and lift the square out of its frame.

How many ways can we put the square back into its frame so that it occupies
the frame exactly? Let's count them.

1. We could put it straight back down, exactly in the position it was in when
we picked it up:



2. We could rotate it by
1

4
of a turn anticlockwise.

3. We could rotate it by
1

2
of a turn anitclockwise.



4. We could rotate it by
3

4
of a turn anitclockwise.

5. We could re�ect it in this line (you might prefer to think of this as a 180
degree rotation about this axis given by the line). This means the square
will be the other way up afterwards and we'll see the blue side.



6. or about this line/axis

7. or about this one



8. or this one

These eight are all the possibilities.

Here is an argument as to why there can be no more than 8 'ways'. For any
'way' the corner labelled 1 can end in one of four 'frame corners'. After that the
corner labelled 2 can end in either of the two corners adjacent to the one the the
corner labelled 1 landed in.After that the new positions of corner 3 and corner 4
are completely determined.

This means there are at most 4× 2 = 8 possible 'ways'. Since we have already
found eight di�erent 'ways' these must be all eight of them.



Finally, and very importantly, think about what would happen if you pick the
square up from its orginal position, move it according to on of the 'ways', then
move the newly positioned square according to another (possibly the same) 'way'.
The square is occupying its frame after these two moves so what you have done
must be the same as one of the eight 'ways'.

Convince yourself that doing this to the triangle and then doing this to

the new triangle is the same as just doing this to the original triangle .

Considering this for all possible choices of 'do thing one' then 'do thing two'
we can start to �ll in this table.

Do this �rst

◦

D
o
th
is
se
co
n
d

The complete table looks like this.



Do this �rst

◦

D
o
th
is
se
co
n
d

You may be thinking that at this point we really need some notation to save
drawing the pictures representing the 'moves' every time!

Let ρ0, ρ1, ρ2, ρ3 be anticlockwise rotations of the square about O by 0◦, 90◦,

180◦ and 270◦. So these are , , and respectively.

Let's give the re�ections names too. As in Figure 2:

� σ0 the re�ection about the diagonal joining the top-right vertex to the
bottom-left vertex;

� σ1 the re�ection about the line joining the midpoint of top side and the
midpoint of bottom side;

� σ2 the re�ection about the diagonal joining top-left vertex and the bottom-
right vertex;

� σ3 the re�ection about the line joining the midpoint of the left side and the
midpoint of the right side.



O

12

3 4

σ0
σ1

σ2

σ3

Figure 2: Left: the square with vertices labelled 1, 2, 3, 4. Right: the re�ections
σ0, σ1, σ2, σ3.

These are the 'symmetries of a square' and put into a set they look like this.

D8 = {ρ0, ρ1, ρ2, ρ3, σ0, σ1, σ2, σ3}.

We talked about a group of symmetries, so it is not enough to just list the sym-
metries, but we have to specify a binary operation.

We've discussed that the compostion/multiplication is 'do the �rst move, then
do the second move'. Notice that if we think of the moves as functions then this is
just compostion of functions. (In fact you could put the square in the x, y plane
with its centre at (0, 0) and write down the matrix which corresponds to each of
the moves.)

We need to be clear about how the notation works here. If α, β ∈ D8 then
α ◦ β means the symmetry which is "apply β �rst then α" (not the other way
round). This might feel a bit strange. The reason for this choice is that we want
to sometimes think of the elements of D8 as functions, and when we do that we
want composition in D8 to agree with the usual composition of functions. Recall
that f ◦ g means apply g �rst then f .

Now we can write out a composition/multiplication table (remember: α ◦ β
means you take α from the left column of 'row headings' and β from the top row
of 'column headings'):



◦ ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3

ρ0 ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3
ρ1 ρ1 ρ2 ρ3 ρ0 σ1 σ2 σ3 σ0
ρ2 ρ2 ρ3 ρ0 ρ1 σ2 σ3 σ0 σ1
ρ3 ρ3 ρ0 ρ1 ρ2 σ3 σ0 σ1 σ2
σ0 σ0 σ3 σ2 σ1 ρ0 ρ3 ρ2 ρ1
σ1 σ1 σ0 σ3 σ2 ρ1 ρ0 ρ3 ρ2
σ2 σ2 σ1 σ0 σ3 ρ2 ρ1 ρ0 ρ3
σ3 σ3 σ2 σ1 σ0 ρ3 ρ2 ρ1 ρ0

It is not worth your while to check every entry in the table, but make sure you
check four or �ve entries at random to get an idea of how to compose symmetries,
and let me know if there are any mistakes!

Let's convince ourselves that (D8, ◦) is a group.

The �rst thing we should ask about is closure. This is clear from the table
(either the picture one or the symbol one); when you compose two elements of D8

you get an element of D8.

It is clear that ρ0 (=do nothing) is an identity element.

It is also (geometrically) clear that every element has an inverse which does
belong to D8. If you re�ect twice in the same line you end up where you started, so
σi ◦σi = ρ0; in other words, σi is its own inverse for i = 0, 1, 2, 3. The inverse of an
anticlockwise rotation around O by 90◦ is an anticlockwise rotation around O by
270◦. We �nd that the inverses of ρ0, ρ1, ρ2 and ρ3 respectively are ρ0, ρ3, ρ2 and ρ1.

What's left is to prove associativity. Composing symmetries is associative for
exactly the same reason as composing functions is associative.

Doing "symmetry A followed by symmetry B" to the square and then doing
symmetry C to what you got is the same as doing symmetry A to the square and
then doing "symmetry B followed by symmetry C" to what you got (they both
are doing A then B then C to the square).

If you think the square as being centred at the origin and the matrices for each
symmetry then you really can think of the elements as functions.

D8 non-abelian group is our �rst example of a non-abelian group. To check that
it isn't abelian all we have to do is give a pair of symmetries that don't commute.



For example,
σ0 ◦ ρ1 = σ3, ρ1 ◦ σ0 = σ1.

3.5.1 Exercise In this exercise you will write out the composition/multiplication
table for the group D6 which is the group of symmetries of an equilateral triangle.
Sketch an equilateral triangle and label the vertices 1, 2, 3 in anticlockwise order
(see Chapter for a reminder about this). Label the centre of the triangle with O.
Let ρ0, ρ1, ρ2 denote anticlockwise rotations about O through angles 0, 2π/3 and
4π/3. Let σ1, σ2, σ3 denote re�ections about the lines respectively joining vertices
1, 2, 3 to O. Let

D6 = {ρ0, ρ1, ρ2, σ1, σ2, σ3}.
Write down a composition/multiplication table for D3 and explain why it is a
group 1. You can see from the table that D6 is not abelian.

3.5.2 Exercise Write down the symmetries of a triangle that is isoceles but
not equilateral and a composition table for them. Do they form a group?

1More generally, Dn denotes the group of symmetries of a regular polygon with n sides.
These are called the dihedral groups. Some mathematicians denote D2n by Dn because it is the
symmetries of a regular n-gon.



Chapter 4 - First theorems and notation

Our �rst two theorems deal with subconscious assumptions. One of the de�ning
properties of a group is the `existence of the identity element' (property (iii)). The
word `the' contains a hidden assumption; how do we know there is only one identity
element? Shouldn't we be talking about the `existence of an identity element'?

4.1 Uniqueness of the identity element and inverses

4.1.1 Theorem Let (G, ?) be a group. Then (G, ?) has a unique identity ele-
ment.

Proof . Suppose that e and e′ are identity elements. Thus, for all a ∈ G we have

a ? e = e ? a = a, (1)

and
a ? e′ = e′ ? a = a. (2)

Now let us try evaluating e ? e′. If we let a = e and use (2) we �nd

e ? e′ = e.

But if we let a = e′ and use (1) we �nd

e ? e′ = e′.

Thus e = e′. In other words, the identity element is unique. ♦

4.1.2 Theorem Let (G, ?) be a group and let a be an element of G. Then a
has a unique inverse.

Proof . Our proof follows the same pattern as the proof of Theorem 4.1.1, and
you'll see this pattern again and again during your undergraduate career. Almost
all uniqueness proofs follow the same pattern: suppose that there are two of the
thing that we want to prove unique; show that these two must be equal; therefore
it is unique.

For our proof we suppose that b and c are both inverses of a. We want to show
that b = c. By de�nition of inverse (property (iv) in the de�nition of a group) we
know that

a ? b = b ? a = e, a ? c = c ? a = e,



where e is of course the identity element of the group. Thus

b = b ? e by (iii) in the de�nition of a group

= b ? (a ? c) from the above a ? c = e

= (b ? a) ? c by (ii) in the de�nition of a group

= e ? c from the above b ? a = e

= c by (iii) again.

Thus b = c. Since any two inverses of a must be equal, we see that the inverse of
a is unique. ♦

4.2 Getting relaxed about notation

It is quite tedious to keep writing ? for the group operation. If (G, ?) is a group
and a, b ∈ G, we shall write ab for a?b, unless there is reason for possible confusion.

For example if (G, ?) = (R,+) then it is silly to write ab for a+ b because the
usual meaning for ab is �a× b�. But it is OK most of the time, and when it is OK
we will do it. Moreover, we shall often say �let G be a group�, without giving an
explicit name to the binary operation. When we talk of the groups R, R2, R[x],
R∗, etc. we shall mean the groups (R,+), (R2,+), (R[x],+), (R∗, ·), etc. This may
feel a bit odd at �rst but it's something you will get used to.

If G is a group, and we're writing ab for a ? b, then it makes sense to use 1 to
denote the identity element instead of e. We write a−1 for the (unique) inverse of
a. So

a ? b = b ? a = e,

where b is the inverse of a, becomes

aa−1 = a−1a = 1,

which looks familiar.

Here are a couple of crucial results that you should get used to.

4.2.1 Theorem Let G be a group and a ∈ G. Then

(a−1)−1 = a.



Proof .We're being asked to prove that a is the inverse of a−1. Thinking carefully
about what this would mean, we want to show that

a−1a = 1 = aa−1

But this is clearly true because a−1 is the inverse of a. ♦

The above proof is a good exercise in getting your head around de�nitions.
Make sure you understand how we are proving that a is acting as the inverse
element to a−1 in the above (usually we think of this the other way round).

4.2.2 Theorem Let G be a group and a, b ∈ G. Then

(ab)−1 = b−1a−1.

Notice that we reverse the order when taking inverse. You have probably seen
this before when you did matrices at school/college

Proof . We're being asked to prove that b−1a−1 is the inverse of ab. So we want
to show that

(b−1a−1)(ab) = 1 = (ab)(b−1a−1).

Now

(b−1a−1)(ab) = b−1(a−1a)b by associativity

= b−11b

= 1,

and similarly (ab)(b−1a−1) = 1. ♦

Note that you shouldn't write
a

b
unless the group is abelian. This notation is

ambiguous; does
a

b
mean b−1a or ab−1? The two aren't the same in a non-abelian

group.

4.2.3 Exercise Use D8 to give counterexamples to the following:

� b−1a = ab−1,

� (ab)−1 = a−1b−1,

� a−1ba = b.



4.2.4 Exercise Let G be a group satisfying a2 = 1 for all a in G. Show that G
is abelian.
Going back to our discussion of notation, if n is a positive integer we shall de�ne

an = aa · · · a︸ ︷︷ ︸
n times

.

We de�ne a0 = 1. If n is a negative integer we de�ne an = (a−n)−1. Again we
should re�ect a little to make sure we're not being reckless. Does a3 mean (a?a)?a
or a ? (a ? a)? It doesn't matter because of the associativity property of a group.

4.2.5 Example Let ? be the binary operation on S = {a, b, c} in Example 2.9.2
3. Note that (S, ?) is de�nitely not a group, as ? is not associative. Now you can
check that

(a ? a) ? a = a, a ? (a ? a) = c.

Thus writing a3 in this context does not make any sense. ♦

The following theorem deals with some consequences of this notation, which should
look reasonably familiar to you.

4.2.6 Theorem Let G be a group, and let a ∈ G. Then

1. an ∈ G for all n ∈ Z.

2. If n ∈ Z then (a−1)n = (an)−1 = a−n.

3. Moreover, if m, n are integers then

(am)n = amn, aman = am+n.

4. Further, if the group G is abelian, a, b ∈ G and n an integer then

(ab)n = anbn.

Proof .

1. Let's deal with the case of n = 0 separately. a0 = 1 and certainly 1 ∈ G so
the statement is true then.



Now let's prove it for positive integers by induction on n. If n = 1 then
an = a1 = a since a ∈ G so the statement is true when n = 1.

Now suppose we know that ak ∈ G for some positive integer k. Then
ak+1 = aka ∈ G since both ak and a are in G which is closed under the
binary operation. It follows by induction that an ∈ G for any positive inte-
ger n.

Now let's prove that an ∈ G when n is a negative integer.

Then an = (a−n)−1. But we know that a−n ∈ G since −n is positive by
earlier in the proof. So (a−n)−1 is also in G by the de�nition of a group.
Therefore an ∈ G.

2. Clearly this is true if n = 0 since all three of the expressions are equal to 1.

If n is a positive integer then an(a−1)n = aa · · · a︸ ︷︷ ︸
n times

a−1a−1 · · · a−1︸ ︷︷ ︸
n times

.

Each aa−1 in the centre collapses to a 1 and eventually we see that this expres-
sion is 1. Therefore it's true to say that (a−1)n = (an)−1. Also (an)−1 = a−n

just by notational de�nition.

If n is a negative integer then

an(a−1)n = (a−n)−1((a−1)−n)−1 = (a−1)−n((a−1)−1)−n = (a−1)−na−n = 1

where the expressions either side of the second and third equals sign are the
same by what we have already proved for positive integers. The last equals
sign follows in a similar way to above (remembering that −n is a positive
integer).

Again we can conclude that (a−1)n = (an)−1. Also (an)−1 = ((a−n)−1)−1 =
a−n.

3. Here we need to �rst prove that for any integers m and n,

(am)n = amn, aman = am+n.



If m and n are positive integers then

(am)n = aa · · · a︸ ︷︷ ︸
m times

aa · · · a︸ ︷︷ ︸
m times

· · · aa · · · a︸ ︷︷ ︸
m times︸ ︷︷ ︸

n times

.

From this it can be seen that (am)n = amn.

If m is positive and n is negative then we have

(am)n = ((am)−n)−1 = (a−mn)−1 = ((amn)−1)−1 = amn

using what we have just proved for positive integers and part ii).

The other cases (m negative and n positive and m and n both negative are
similar).

We also need to show that aman = am+n.

If m and n are positive integers then

aman = aa · · · a︸ ︷︷ ︸
m times

aa · · · a︸ ︷︷ ︸
n times

= am+n.

If m is positive and n is negative then, since n = −k where k = −n is a
postive integer we have

aman = ama−k = am(a−1)k aa · · · a︸ ︷︷ ︸
m times

a−1a−1 · · · a−1︸ ︷︷ ︸
k times

= am−k = am+n.

Again, the other cases are similar.

4. Suppose n is positive and G is abelian.

Then
(ab)n = abab · · · ab︸ ︷︷ ︸

n times

= aa · · · a︸ ︷︷ ︸
n times

bb · · · b︸ ︷︷ ︸
n times

= anbn.

Note that the expressions either side of the second equals sign are the same
only because G is abelian.

Then, if n is negative, we have

(ab)n = ((ab)−n)−1 = ((ab)−1)−n = (b−1a−1)−n = (b−1)−n(a−1)−n = bnan = anbn.



The equalities in the above rely on what we have already proved in this
theorem and results from earlier in this chapter (it's a useful exercise to
make sure you can see which ones). ♦

The next example shows that we must have an ablelian group for 4. in the theo-
rem 4.2.6 above to hold.

4.2.7 Example In D8 you can check that

ρ21σ
2
0 = ρ2, (ρ1σ0)

2 = ρ0,

and so ρ21σ
2
0 6= (ρ1σ0)

2. ♦

4.3 Additive notation

For some groups the binary operation is `addition' (whatever that means). These
include (R,+), (Z,+), (R[x],+), (R2,+) etc. An important convention is that
additive notation is only ever used for abelian groups. A multiplicative group can
be abelian, such as (R∗, ·), and can be non-abelian, such as (D8, ◦).

You need to rephrase statements appropriately when using additive notation.
For example, instead of speaking of

an = aa · · · a︸ ︷︷ ︸
n times

,

you need to talk about
na = a+ a+ · · ·+ a︸ ︷︷ ︸

n times

.

Instead of b−1 write −b. We will mostly state and prove theorems in multiplicative
notation, but it's up to you to translate these into additive notation for groups
where the binary operation is addition. Let's do this for Theorem 4.2.6. Here is
the translation.

4.3.1 Theorem Let G be an (abelian) group with addition as the binary op-
eration, and let a ∈ G. Then

1. na ∈ G for all n ∈ Z.

2. n(−a) = −(na) = (−n)a for any n ∈ Z

3. Moreover, if m, n are integers then

m(na) = (mn)a, ma+ na = (m+ n)a.



4. Further, if a, b ∈ G and n an integer then

n(a+ b) = na+ nb.



Chapter 5 - The order of an element

We return to using multiplicative notation. In Theorem 4.2.6 we observed that if
G is a group containing an element a, then an is also in G for all integers n. It
seems at �rst sight that this makes every group in�nite: just pick an element a
and you have an in�nite list of elements

. . . , a−4, a−3, a−2, a−1, 1, a, a2, a3, a4, a5, . . . .

The group D8 is �nite, so what goes wrong? Take a = ρ1 ∈ D8 which represents
anti-clockwise rotation by 90◦. Then a4 = 1. Thus the seemingly in�nite list above
simply becomes

. . . , 1, a, a2, a3, 1, a, a2, a3, 1, . . . .

In reality the list consists of exactly four elements 1, a, a2, a3.

5.1 The Order of an Element

The above discussion leads us to the following de�nition.

5.1.1 De�nition The order of an element a in a group G is the smallest pos-
itive integer n such that an = 1. If there is no such positive integer n, we say a
has in�nite order. ♦

In a �nite group (a group with a �nite number of elements) every element must
have �nite order.

5.1.2 Lemma Let G be a �nite group and g be an element of G. The g has
�nite order.

Proof . Suppose g ∈ G has in�nite order. Then g0, g1, g2, g3, . . . are elements of
G which are distinct from one another, since if gm = gn for some natural numbers
m,n with m < n then e = g0 = gm−m = gn−m and g has �nite order.

This cannot happen in a �nite group and so g must have �nite order. ♦

5.1.3 Example The order of ρ1 is D8 is 4. The order of ρ2 is 2. The order of
ρ0 is 1. What are the orders of the other elements? ♦



5.1.4 Example In (R∗, ·), the element 1 has order 1 and the element −1 has
order 2. What is the order of 7? Is there a positive integer n such that 7n = 1?
No. Thus 7 has in�nite order.

What are the elements of �nite order in R∗. These are the non-zero real num-
bers a such that an = 1 for some positive integer n. You should know that the
only such real numbers are 1 and −1. So the only elements of �nite order in R∗
are 1 and −1 and all the other elements have in�nite order. ♦

5.1.5 Example When you saw the equation an = 1 in the above example, you
may have thought of the n-th roots of unity. The n-th roots of unity don't all live
in R; they live in C. In fact, they live in C∗.

For concreteness we take n = 3. You will know from Foundations that there
are three cube roots of unity. These are 1, ζ, ζ2, where ζ = e2πi/3. See Figure 3.
Let us think of these inside the group C∗. Then ζ and ζ2 have order 3. Let's check
this for ζ2. We note

(ζ2)1 = ζ2, (ζ2)2 = ζ4 = ζ · ζ3 = ζ, (ζ2)3 = (ζ3)2 = 12 = 1.

So the least positive integer n such that (ζ2)n = 1 is n = 3, so ζ2 has order 3.
Don't forget that 1 has order 1. So there are three cube roots of unity. Two have
order 3 and one has order 1.

Now let us think brie�y about the fourth roots of unity. These are 1, i, i2, i3.
Again see Figure 3. Note that i2 = −1 and i3 = −i. Of the four, only two have
order 4 and these are i and i3 (check). Of course, −1 has order 2 and 1 has order
1. ♦

5.1.6 Exercise Write down and sketch the sixth roots of unity. What are their
orders? Repeat with the eighth roots of unity.

5.1.7 Exercise C∗ has lots of elements of in�nite order. Find a few.

5.1.8 Exercise Let G = GL2(R). Show that

A =

(
0 1
−1 0

)
, B =

(
1 1
0 1

)
belong to G. Determine their orders.

Whilst reading the above examples and working out your own, you may have
noticed the following:



1

ζ

ζ2

i

1

−i

−1

Figure 3: On the left, the three cube roots of unity: here ζ = e2πi/3. On the right,
the four fourth roots of unity. Note that e2πi/4 = eπi/2 = i, so the fourth roots of
unity are 1, i, i2 = −1, and i3 = −i.

5.1.9 Lemma Let G be a group and g be an element of G.

(i) g has order 1 if and only if g is the identity element.

(ii) Let m be a non-zero integer. Then gm = 1 if and only if g has �nite order
d with d | m.

Proof . Let G be a group. Suppose g has order 1. By de�nition of order, g1 = 1.
Thus g = 1 which is the identity element of G. Conversely, the identity element
clearly has order 1. This proves (i).

Part (ii) is an `if and only if' statement. Suppose that g has order d and d | m.
Then gd = 1 and m = qd where q is an integer. So gm = (gd)q = 1. Let us prove
the converse. Suppose gm = 1 where m is a non-zero integer. Then g|m| = 1, and
|m| is a positive integer. Thus g has �nite order, which we denote by d. By the
division algorithm which you met in Foundations we may write

m = qd+ r, q, r ∈ Z and 0 ≤ r < d.

Now gd = 1 by de�nition of order, so 1 = gm = (gd)q · gr = gr. But 0 ≤ r < d.
As d is the order, it is the least positive integer such that gd = 1. So gr = 1 is
possible with 0 ≤ r < d if and only if r = 0. This happens if and only if m = qd
which is the same as d | m. ♦

5.1.10 Exercise Let G be an abelian group. Suppose a, b are elements of
orders m and n. Let d = lcm(m,n). Show that (ab)d = 1, ensuring that you
point out where you have used the fact the G is abelian. Give a counterexample



to show that this does not have to be true if G is non-abelian. Hint: Look at D6.♦

Now we return to our examples. We've looked at various multiplicative groups,
but what about additive groups? If (G,+) is a group where the binary operation
is addition, what is the order of an element a? Of course, it is the smallest positive
integer n such that na = 0. If there is no such positive integer that a has in�nite
order.

5.1.11 Example In (R,+), (Z,+), (R[x],+), (C,+), the only element of �nite
order is 0, which has order 1. All other elements have in�nite order.

How do we know this. Look at the equation na = 0 with a in the group and n
a positive integer. We can divide both sides by n and obtain a = 0. ♦

5.2 Preview of Lagrange's Theorem

Lagrange's theorem is a beautiful result which says something about how only the
number of elements in a �nite group determines some of its internal structure. We
won't state of prove Lagrange's theorm in this module. We'll prove a result which
could be deduced from Lagrange's theorem but without using Lagrange's theorem!

5.2.1 De�nition Let G be a group. The order of G is the number of elements
that G has. We denote the order of G by |G| or #G. ♦

We will prove that in a �nite abelian group the order of each element is a
divisor of the order of the group. We'll need a two lemmas �rst.

5.2.2 Lemma Let G be a group and 1 6= g ∈ G. Then g has order 2 if and
only if g = g−1.

Proof . By de�nition, if g has order 2 then g2 = 1. Multiplying both sides of this
on the left by g−1 gives g = g−1g2 = g−1.

For the converse suppose that g = g−1. Since g 6= 1, the order of g is not 1.
Mutiplying both sides of g = g−1 on the left by g gives g2 = gg−1 = 1. Therefore
the order of g is 2. ♦



5.2.3 Lemma Let G be a group and 1 6= g ∈ G and let n be a positive integer.
Then g has order n if and only if g−1 has order n.

Proof . Suppose g has order n. Then gn = 1 and so, multiplying both sides by
(gn)−1 gives 1 = (gn)−1 = (g−1)n. This means that the order of g is n or a positive
integer less than n. But if (g−1)k = 1 for some 0 < k < n then gk = 1 and this
contradicts n being the order of g.

For the converse suppose that g−1 has order n. Then (g−1)n = 1 and so
(gn)−1 = 1. But this means that gn = 1 so the order of g is n or a positive integer
less than n. But if gj = 1 for some 0 < j < n then (g−1)j = 1 which contradicts n
being the order of g−1. ♦

5.2.4 Lemma Let G be a �nite abelian group with elements {1 = g1, g2, ..., gn}.
Then g21g

2
2 . . . g

2
n = 1.

Proof . First rename the elements, keeping 1 = g1 so that g2, g3, . . . , gm are all the
elements of order 2 and gm+1, gm+2, . . . , gn are all the elements with order greater
than 2.

By Lemma 5.2.2, none of gm+1, gm+2, . . . , gn are their own inverse and clearly
none of them have inverse 1 = g1. Therefore, for all i with m + 1 ≤ i ≤ n there
exists a unique j with m + 1 ≤ j ≤ n and with i 6= j such that gj = g−1i . (Note
that this also follows from Lemma 5.2.3.)

Now renumber gm+1, gm+2, . . . gn so that in each set

{gm+1, gm+2}, {gm+3, gm+4}, . . . {gn−1, gn}

the two elements are inverse to one another. Notice that any two distinct sets (i.e.
sets which are not equal) in this list are disjoint (i.e. have no elements in common)
as follows:

Suppose {gi, gi+1} and {gj, gj+1} are two such (distinct) sets and suppose
{gi, gi+1} ∩ {gj, gj+1} 6= ∅ then at least one of the following must be true

1. gi = gj, in which case gi+1 = gj+1 as they are both the inverse of gi

2. gi = gj+1 in which case gi+1 = gj as there are both the inverse of gi

3. gi+1 = gj in which case gi = gj+1 as they are both the inverse of gi+1 or



4. gi+1 = gj+1 in which case gi = gj as they are both the inverse of gi+1.

In all four cases {gi, gi+1} = {gj, gj+1}. This contradicts the two sets being
distinct. (Notice that it follows from this that there must be an even number of
elements which have order greater than 2.)

Now consider g21g
2
2 . . . g

2
n. Since g21 = g22 = · · · = g2m = 1 this is equal to

g2m+1g
2
m+2 . . . g

2
n. But, since G is abelian, this is the same as

(gm+1gm+2)
2(gm+3gm+4)

2 . . . (gn−1gn)
2 = 1

because gm+2 is the inverse of gm+1,gm+4 is the inverse of gm+3 and so on.

Therefore g21g
2
2 . . . g

2
n = 1. ♦

5.2.5 Theorem Let G be a �nite abelian group. Let x ∈ G. Then the order of
x divides the order of G.

Proof .Note �rst that x has �nite order by Lemma 5.1.2. SupposeG = {g1, g2, . . . gn}
where n = |G|. Note that this means that x = gi for some i.

Consider the set {xg1, xg2, . . . xgn}. We will show that {xg1, xg2, . . . xgn} = G.
Clearly {xg1, xg2, . . . xgn} ⊆ G. But if g ∈ G then g = x(x−1g) ∈ {xg1, xg2, . . . xgn}.
Therefore G ⊆ {xg1, xg2, . . . xgn} and so {xg1, xg2, . . . xgn} = G.

Now consider
g1(xg1)g2(xg2) . . . gn(xgn).

Since G is abelian, is the product of the squares of all the elements and so by
Lemma 5.2.4 it is equal to 1.

On the other hand, since G is abelian

g1xg1g2xg2 . . . gnxgn = xng21g
2
2 . . . g : X → R2

n.

But g21g
2
2 . . . g : X → R2

n = 1, again by Lemma 5.2.4. Therefore

1 = g1xg1g2xg2 . . . gnxgn = xng21g
2
2 . . . g : X → R2

n = xn.

The result now follows by Lemma 5.1.9. ♦

5.2.6 Example The set {1, i,−1,−i} forms a group of order 4 under multipli-
cation (convince yourself that this is true). Then 1 has order 1; −1 has order 2; i
and −i have order 4. This is all consistent with the Theorem 5.2.5. ♦



Chapter 6 - Subgroups

6.1 Informal discussion of subgroups of D8

The group D8 contains rotations and re�ections. Here is its multiplication table
(look back at chapter 3 for a reminder about the notation).

◦ ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3

ρ0 ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3
ρ1 ρ1 ρ2 ρ3 ρ0 σ1 σ2 σ3 σ0
ρ2 ρ2 ρ3 ρ0 ρ1 σ2 σ3 σ0 σ1
ρ3 ρ3 ρ0 ρ1 ρ2 σ3 σ0 σ1 σ2
σ0 σ0 σ3 σ2 σ1 ρ0 ρ3 ρ2 ρ1
σ1 σ1 σ0 σ3 σ2 ρ1 ρ0 ρ3 ρ2
σ2 σ2 σ1 σ0 σ3 ρ2 ρ1 ρ0 ρ3
σ3 σ3 σ2 σ1 σ0 ρ3 ρ2 ρ1 ρ0

Let us now look at the rotations on their own and the re�ections on their own,
R is the set of rotations and S is the set of re�ections below:

R = {ρ0, ρ1, ρ2, ρ3}, S = {σ0, σ1, σ2, σ3}.

For now let us look at the part of the composition table that involves only rotations:

◦ ρ0 ρ1 ρ2 ρ3

ρ0 ρ0 ρ1 ρ2 ρ3
ρ1 ρ1 ρ2 ρ3 ρ0
ρ2 ρ2 ρ3 ρ0 ρ1
ρ3 ρ3 ρ0 ρ1 ρ2

Notice from the table that if we compose two rotations we obtain a rotation. We
didn't really need the table for this; we can see it from the geometry. Thus ◦ is a
binary operation on R (as well as being a binary operation on D8).

We can ask whether (R, ◦) is a group, and it is easy to see that the answer
is yes (with the same reasoning as before). We have an interesting phenomenon,
which is a group (R, ◦) contained in another group (D8, ◦). We say that (R, ◦) is
a subgroup of (D8, ◦).

We will discuss subgroups at length later. It is also interesting to note that
(R, ◦) is abelian. An algebraic way of seeing the (R, ◦) is abelian is to note that its
composition table is symmetric about the leading diagonal. But you should also



see geometrically that if you compose two rotations (centred at the same point)
then the order does not matter. So (R, ◦) is an abelian subgroup of the non-abelian
group (D8, ◦).

What about (S, ◦)? Do the re�ections of the square form a group? By looking
at the composition table the �rst thing we notice is that S is not closed under
composition. So (S, ◦) is not a group. Are there any other subgroups inside (D8, ◦)
besides (R, ◦)? Yes. See Figure 4 for a complete list.

(D8, ◦)

({ρ0, ρ2, σ0, σ2}, ◦) ({ρ0, ρ1, ρ2, ρ3}, ◦) ({ρ0, ρ2, σ1, σ3}, ◦)

({ρ0, σ0}, ◦) ({ρ0, σ2}, ◦) ({ρ0, ρ2}, ◦) ({ρ0, σ1}, ◦) ({ρ0, σ3}, ◦)

({ρ0}, ◦)

Figure 4: The �gure shows the subgroups of (D8, ◦) and how they �t inside each
other.

Again, check that a couple of these are subgroups. Don't waste time checking
there aren't other subgroups of (D8, ◦); when you know a lot more about groups
and subgroups you can come back to this question.

Now let us write down the formal de�nition of a subgroup and give some
examples.

6.2 De�nition and examples

6.2.1 De�nition Let (G, ?) be a group. Let H be a subset of G and suppose
that (H, ?) is also a group. Then we say that H is a subgroup of G (or more
formally (H, ?) is a subgroup of (G, ?)). ♦

For H to be a subgroup of G, we want H to a group with respect to the same
binary operation that makes G a group.



6.2.2 Example R∗ is a subset of R and both are groups. But R∗ is not a
subgroup of R, since the operation that makes R∗ a group is multiplication and
the operation that makes R a group is addition. ♦

6.2.3 Example Z is a subgroup of R (or more formally, (Z,+) is a subgroup of
(R,+)); because Z is a subset of R and both are groups with respect to the same
binary operation which is addition. ♦

6.2.4 Example R is a subgroup of R[x] since any real number can be viewed
as a polynomial of degree 0. ♦

6.2.5 Example (∅,+) is not a subgroup of (R,+), simply because (∅,+) is not
a group; a group has to be non-empty since it has to contain an identity element.
♦

6.3 Criterion for a subgroup

6.3.1 Theorem Let G be a group. A subset H of G is a subgroup if and only
if it satis�es the following three conditions

(a) 1 ∈ H,

(b) if a, b ∈ H then ab ∈ H,

(c) if a ∈ H then a−1 ∈ H.

Proof . The theorem has an �if and only if� statement.

It's usual when proving an �if and only if� statement to break it up into an �if�
part, and an �only if� part, and prove each part separately. This is what we will
do here. The �if� part says: �if H is a subset of G that satis�es (a),(b),(c) then
it is a subgroup of G�. The �only if� part says: �if H is a subgroup of G then H
satis�es (a), (b), (c)�.

Let us do the �if� part of the proof �rst. We have a group G and a subset
H of G. All we have been told is that H satis�es conditions (a), (b), (c) in the
statement of the theorem. We want to show that H is a group, where the binary
operation on H is the same as the binary operation on G. This means that we
have to show that H satis�es properties (i), (ii), (iii), (iv) in the de�nition of a
group.



Property (i) is `closure': we want that if a, b ∈ H then ab ∈ H. But this is
what (b) is saying. So (i) is satis�ed.

Property (ii) is associativity. We want to show that for all a, b, c ∈ H, we have
(ab)c = a(bc). But if a, b, c are elements of H then they are also elements of G.
We know that associativity holds in G: (ab)c = a(bc). So (ii) holds 2.

Property (iii) is the existence of the identity element in H. But (a) tells us
that 1 ∈ H. This 1 is the identity element of G and so satis�es a1 = 1a = a for
all a in G. Since every a in H is also in G we have that a1 = 1a = a for all a in
H so 1 is the identity element of H, and so (iii) holds.

Finally, property (iv) asserts the existence of an inverse for every a ∈ H. This
follows from (c). Hence H is a group contained in G and so a subgroup. We have
now �nished the proof of the �if� part.

Next we do the �only if�part of the proof. Here we assume that H is a subgroup
of |G| as in De�nition 6.2.1 and need to show that it then satis�es conditions (a),
(b) and (c) in the statement of this theorem.

In some ways proving (a) is the most tricky. Remember the 1 in (a) is the
identity from G. Let's call that element 1G in this part of the proof to remind
us of that. All we know is that H is a group and so it will contain an identity
element. Let's call this 1H . So 1H ∈ G and if we can show that 1H = 1G then it
will follow that 1 ∈ H.

We have 1H = 1H1H . Now 1H ∈ G and so it has an inverse in G, 1−1H with
the property that 1H1

−1
H = 1G (think carefully about this and make sure you are

happy with why 1G is on the right hand side as opposed to 1H).

Multiplying both sides of 1H = 1H1H on the left by 1−1H gives 1−1H 1H = 1−1H 1H1H
or 1G = 1G1H = 1H .

So the identity element of G equals the identity element of H and in particular
(returning to the usual notation 1G = 1) 1 ∈ H.

(b) follows because, as a group in its own right under the same binary operation
as G, H is closed under that binary operation.

2There is a subtle point here that is camou�aged by our notation, and that is that the binary
operation we're using on H is precisely the same one as the binary operation we're using on G.
If it was di�erent we would have no right to say: because associativity holds in G it holds in H.



To show (c) we have to show that if a ∈ H then the inverse of a in G is in
H. Because H is a subgroup it will have an inverse in H, call this a−1. Then
1H = aa−1 = a−1a. But, since 1 = 1H , this means that 1 = aa−1 = a−1a and a−1

is the inverse of a in G (by the uniqueness of inverses, Theorem 4.1.2). ♦

Now let's try out the theorem.

6.3.2 Example Let's take G = R∗ and H the subset of positive real numbers:

H = {a ∈ R∗ : a > 0}.

Let's show that H is a subgroup of G. First, 1 is positive, so 1 ∈ H. Hence
condition (a) is satis�ed.

To check (b), suppose that a, b are in H. Thus a and b are positive, and so
their product ab is also positive. Hence ab ∈ H and we know that (b) is satis�ed.

Finally, we want to check condition (c). Suppose a is an element of H. Then
a is positive, and so a−1 is positive. Hence a−1 is also an element of H. It follows
that condition (c) is satis�ed.

By Theorem 6.3.1, H is a subgroup of R∗. ♦

6.3.3 Example Let

2Z = {2a : a ∈ Z} = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . . }.

In other words, 2Z is the set of even integers. Now 2Z is a subset of Z, but is
it a subgroup of Z? We should check the three conditions in the theorem, where
G = Z and H = 2Z. Condition (a) is �1 ∈ H�. What does that mean in our
context? 1 is not the number 1. The 1 in the theorem is the identity element for
the group operation on Z. The group operation on Z is addition. The identity
element is 0. As 0 is an even number (after all 0 = 2 × 0) we have 0 ∈ 2Z. Thus
condition (a) is satis�ed.

Let's move on to condition (b). This says �if a, b ∈ H then ab ∈ H�. Again ab
doesn't always mean the product of a and b; it is shorthand for a ? b where ? is
the binary operation on G. Here G = Z and the binary operation on Z is +. So
to check (b) what we must check is the following �if a, b ∈ 2Z then a + b ∈ 2Z�.
In words this just says �the sum of two even integers is even�, which is true so (b)



holds.

Finally we have to interpret (c) in our context. Here a−1 is the inverse of a
with respect to addition, so it just means −a. Thus to check (c) we want to check
that �if a is an even integer then −a is also even�. Again this is true, so (c) holds.

It follows from Theorem 6.3.1 that 2Z is a subgroup of Z.

By contrast, the set of odd integers

{. . . ,−5,−3,−1, 1, 3, 5, . . . }

is not a subgroup of Z. For example, it does not contain the identity element 0,
so does not satisfy (a). ♦

6.3.4 Example In Subsection 6.1, we listed the ten subgroups of D8. Go back
to that list, and use Theorem 6.3.1 to verify that a couple of them are indeed
subgroups. ♦

6.3.5 Example Let
V = {(a, a) : a ∈ R}.

In other words V is the subset of R2 where the x-coordinate equals the y-coord-
inate. Thus V is the line y = x in R2. It is geometrically obvious that V contains
the origin, which is the identity element of R2; that if we add two vectors belonging
to it the result also belongs to it; and that if we multiply any vector belonging
to this diagonal by −1 the result also belongs to V . Figure 5 will help you visu-
alise this. But you also need to be able to write a proof in symbols. Let us do that:

First note that 0 = (0, 0) ∈ V . Secondly, suppose u ∈ V and v ∈ V . By
de�nition of V , u = (a, a) and v = (b, b) for some a, b ∈ R. Thus u + v =
(a+ b, a+ b) which again belongs to V . Finally, suppose that v ∈ V . By de�nition
of V , v = (a, a) for some a ∈ R. So −v = (−a,−a) which is in V . This shows
that V is a subgroup of R2. ♦

6.3.6 Example This time we take W = {(a, a) : a ∈ R, a ≥ 0}. The set W
is not all the line y = x but a `ray' as in Figure 6. Note that W does satisfy the
�rst two conditions (a), (b) for being a subgroup. However, it does not satisfy
condition (c); for example, v = (1, 1) belongs to W but −v = (−1,−1) does not.
Hence W is not subgroup of R2.



x

y

V

Figure 5: The set V = {(a, a) : a ∈ R} is the line y = x. It contains the identity
element (0, 0), is closed under addition and negation. Therefore it is a subgroup
of R2.

To show that W is not a subgroup, we gave a counterexample. This means
that we gave an example to show that at least one of the requirements in Theo-
rem 6.3.1 is not satis�ed. ♦

6.3.7 Example Let

V = {(a, a) : a ∈ R}, V ′ = {(−a, a) : a ∈ R}.

You know from Example 6.3.5 that V is a subgroup of R2 (and is the line y = x).
You can show, in a similar way, that V ′ (which happens to be the line y = −x) is
also a subgroup of R2. What about their union U = V ∪V ′? You can check that U
satis�es conditions (a) and (c) of Theorem 6.3.1. However, (1, 1) and (−1, 1) are
in U but their sum (0, 2) is not in U . So U does not satisfy (b), and is therefore
not a subgroup of R2. See Figure 7.

On the other hand, the intersection V ∩ V ′ = {(0, 0)} is a subgroup of R2. ♦

6.3.8 Exercise Let G be a group and let H1, H2 be subgroups. Show that
H1 ∩H2 is also a subgroup of G.

6.3.9 Example Let's take

C = {(a, a3) : a ∈ R}.

Clearly C is a subset of R2; in fact it is the graph y = x3 (see Figure 8). But
is it a subgroup? It contains the identity element (0, 0). Moreover, −(a, a3) =
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(1, 1)

(−1,−1)

Figure 6: The rayW = {(a, a) : a ∈ R, a ≥ 0} is not a subgroup of R2. It contains
the identity element (0, 0) and is closed under addition. The problem is with the
existence of additive inverses; e.g. (1, 1) is in W but its inverse (−1,−1) isn't in
W .

x

y

VV ′

(1, 1)(−1, 1)

(0, 2)

Figure 7: The lines y = x and y = −x are subgroups of R2. Their union is not.

(−a, (−a)3). So C satis�es condition (c) for subgroups. But it doesn't satisfy
condition (b). To show this we give a counterexample. Note that (1, 1) is in C but
(1, 1) + (1, 1) = (2, 2) is not in C. ♦

6.3.10 Example Z2 is a subgroup of R2. ♦

6.3.11 Exercise Which lines in R2 de�ne a subgroup? Justify your answer.

6.3.12 Example Recall that

C∗ = {α ∈ C : α 6= 0}.



x
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(a, a3)

(−a,−a3)

Figure 8: The set C = {(a, a3) : a ∈ R} is the graph y = x3. It satis�es conditions
(a) and (c) for subgroups but not condition (b).

Geometrically, C∗ is the whole complex plane minus the origin. We have observed
before that C∗ is a group (where the binary operation is multiplication of complex
numbers). Let

S = {α ∈ C : |α| = 1}.
The set S is the set of all points in the complex plane with distance 1 from the
origin. Of course this is just the unit circle (the circle centred at the origin with
radius 1) as in Figure 9. Let us check that S is a subgroup of C∗; it is clearly

1

S
i

1

−i

−1

Figure 9: On the left, the group S which is just the unit circle. On the right, the
subgroup of the fourth roots of unity.

a subset. Of course the identity element of C∗ is 1 and |1| = 1 so 1 ∈ S, which
proves (a). Suppose α, β ∈ S. Then |α| = 1 and |β| = 1. From the properties of



the absolute value 3 we have

|αβ| = |α||β| = 1.

Thus αβ ∈ S. This proves (b).

To check (c), suppose α ∈ S, so that |α| = 1. Then, again from the properties
of the absolute value,

|α−1| = 1

|α| = 1,

so α−1 ∈ S. By Theorem 6.3.1, S is indeed a subgroup of C∗.

We shall call S the circle group. Notice that S is an in�nite subgroup of C∗.
But C∗ has plenty of �nite subgroups too. An example is {1, i,−1,−i}. This is the
set of solutions to the equation x4 = 1 (check). The solutions to x4 = 1 are called
the fourth roots of unity. Check for yourself that {1, i,−1,−i} is a subgroup of
C∗ (and in fact a subgroup of S). Can you �nd a �nite subgroup of C∗ that isn't
a subgroup of S? We'll return to roots of unity later. ♦

6.3.13 Exercise In the following, is H a subgroup of the group G? Give full
justi�cation.

Before you start answering: You might be wondering why the binary op-
eration on G isn't speci�ed. Mathematicians generally don't; you're expected to
�gure it out from the context 4.

(i) G = R, H = R∗.

(ii) G = R∗, H = {1,−1}.

(iii) G = C, H = 2Z.

(iv) G = C, H = {a+ ai : a ∈ R}.

(v) G = C∗, H = {α ∈ C∗ : α3 = 1}.
3At school/college you might have called |α| the modulus of α. Most mathematicians call |α|

the absolute value of α.
4We know that addition makes R into a group, and multiplication doesn't. But are there

really no other binary operations on R that make it into a group?
Yes, there are binary operations other than addition that make the set of real numbers into a

group. But if this was anything other than the usual or obvious operation you'd have been told
so.



(vii) G = R[x], H = Z[x].

(viii) G = R[x], H = {f ∈ R[x] : f(0) = 0}.

(ix) G = R[x], H = {f ∈ R[x] : f(0) = 1}.

6.3.14 Exercise Let
D = {α ∈ C∗ : |α| ≤ 1}.

Sketch D. Show that D is not a subgroup of C∗.

6.3.15 Exercise Let r be a positive real number. Let

Sr = {α ∈ C∗ : |α| = r}.

What does Sr represent geometrically? For what values of r will Sr be a subgroup
of C∗?

6.4 Roots of unity

Let n be a positive integer. Let ζ = e2πi/n. The n-th roots of unity are the solutions
in C to the equation xn = 1. Recall that there are exactly n of them:

1, ζ, ζ2, . . . , ζn−1.

See Figure 3 for the roots of unity when n = 3 and n = 4 and note how they're
distributed on the unit circle. Write

Un = {1, ζ, ζ2, . . . , ζn−1}.

That is, Un is the set of n-th roots of unity.

6.4.1 Lemma Un is a subgroup of C∗ of order n.

Proof . Clearly Un is a subset of C∗ containing 1. Suppose a, b ∈ Un. We want to
check that ab ∈ Un. But since an = bn = 1 we know that (ab)n = anbn = 1. So ab
is also an n-th root of unity and so ab ∈ Un. Likewise, (a−1)n = (an)−1 = 1. So
a−1 is an n-th root of unity and so a−1 ∈ Un. Thus Un is indeed a subgroup of C∗.
Since it has n elements, it has order n.

Notation Warning. The notation Un is not standard. Why do I point this out?
You must always be careful with notation: do other people understand you? If
you write C∗ then this is standard notation and every mathematician will know



what you mean. If you write Un, others (e.g. your tutor and supervisor) will not
know what you mean. They will of course know that the n-th roots of unity are a
subgroup of C∗, but they will not know that you're denoting this subgroup by Un.
If you write Un, even in your homework, then you have to say what it is.

6.4.2 Exercise Is U2 ∪ U3 a subgroup of C∗?

6.5 Non-trivial and proper subgroups

It's very easy for you to prove the following proposition.

6.5.1 Proposition Let G be a group. Then G and {1} are subgroups.

Here, of course, {1} is the subset containing the identity element of G. We call
{1} the trivial subgroup of G; any other subgroup is called non-trivial. A subgroup
of G that is not equal to G is called proper. The subgroups {1} and G aren't
particularly interesting, since they're always there. The interesting subgroups are
the proper non-trivial subgroups.

6.5.2 Example The trivial subgroup of Z is {0}. Examples of a non-trivial
subgroups are Z and 2Z. The subgroup 2Z is proper and non-trivial. ♦

6.5.3 Example Consider the group U4 which is the group of fourth roots of
unity. Thus U4 = {1, i,−1,−i}; of course the binary operation is multiplication.
The trivial subgroup is {1}. We note that U2 = {1,−1} is a non-trivial proper
subgroup. Are there any others?

Suppose H is another non-trivial proper subgroup of U4. Then 1 ∈ H, as
subgroups always contain the identity element. Since H is non-trivial, and H 6=
{1,−1}, it must contain either i or −i. Suppose H contains i. Then H contains
i2 = −1 and i3 = −i. Therefore H = U4, which contradicts the assumption that
H is proper. Similarly if H contains −i then H = U4 (check). Therefore the only
non-trivial proper subgroup of U4 is U2 = {1,−1}. ♦



Chapter 7 - Cyclic groups

Cyclic groups are the simplest groups to understand. These are those groups where
the elements are powers of one particular element. We say they are generated by
that element.

7.1 Cyclic subgroups

7.1.1 Theorem Let G be a group, and let g be an element of G. Write 〈g〉 for
the set

〈g〉 = {gn | n ∈ Z} = {. . . , g−2, g−1, 1, g, g2, g3, . . . }.
Then 〈g〉 is a subgroup of G.

Proof . We'll prove this using Theorem 6.3.1. So we need to show that the subset
〈g〉 of G satis�es conditions (a), (b) and (c) in that theorem.

Let's start with (a). We have that g0 = 1 and, since 0 ∈ Z this means that the
identity from G, 1 ∈ 〈g〉.

Now for (b). We need to show that if a, b ∈ 〈g〉 then ab ∈ 〈g〉. We do this as
follows.

Let a, b ∈ 〈g〉. Then a = gm and b = gn for some m,n ∈ Z. Then ab = gmgn =
gm+n by Theorem 4.2.6. Since m+ n ∈ Z this means that ab ∈ 〈g〉.

Finally (c). We need to show that if a ∈ 〈g〉 then a−1 ∈ 〈g〉:

Let a ∈ 〈g〉. The a = gm for some m ∈ Z. Then a−1 = (gm)−1 = g−m by
Theorem 4.2.6. Since −m ∈ Z this means that a−1 ∈ 〈g〉. ♦

7.1.2 De�nition Let G be a group and let g ∈ G. We call 〈g〉 the cyclic
subgroup of G generated by g. If G = 〈g〉 for some g ∈ G then we call G a cyclic
group, and we say that g is a generator of G.

7.1.3 Example As roots of unity are fresh in your mind, let's start with them.
The group of n-th roots of unity Un is cyclic, since every element is a power of
ζ = e2πi/n; indeed the elements of Un are precisely

ζ0 = 1, ζ, ζ2, . . . , ζn−1.



Thus Un = 〈ζ〉 and ζ is a generator.

Let's consider U6, and calculate the cyclic subgroup generated by each element.
Write ζ = e2πi/6. Note that ζ6 = 1. Consider for example h = ζ2. The powers of
h are 1, h, h2. Indeed, note that h3 = ζ6 = 1. Thus

h4 = h, h5 = h2, h6 = 1, h7 = h, . . . .

What about h−1. We know that h3 = 1; multiplying both sides by h−1 we deduce
that h−1 = h2. Thus

h−2 = h, h−3 = 1, h−4 = h2, h−5 = h, . . . .

Thus the distinct powers of h are 1, h, h2, which are 1, ζ2, ζ4. We can't write all
the elements of U6 as powers of h; therefore h is not a generator of U6.

However, let us consider g = ζ5. We can write the powers of g and simplify
them using the fact that ζ6 = 1. For example,

g2 = ζ10 = ζ6ζ4 = ζ4.

We �nd that 1, g, g2, g3, g4, g5 are respectively, 1, ζ5, ζ4, ζ3, ζ2, ζ. Since every ele-
ment of U6 is a power of g = ζ5, we see that g is also a generator of U6. Table 1
lists the elements of U6 and the subgroups they generate.

g 〈g〉
1 {1}
ζ {1, ζ, ζ2, ζ3, ζ4, ζ5}
ζ2 {1, ζ2, ζ4}
ζ3 {1, ζ3}
ζ4 {1, ζ2, ζ4}
ζ5 {1, ζ, ζ2, ζ3, ζ4, ζ5}

Table 1: The six elements of U6 and the cyclic subgroups they generate.

7.1.4 Example Recall the group D8 of the symmetries of the square. It has
8 elements. It's easy to write down the subgroup generated by each element (see
Section 3.5 to remind yourself of the notation):



g 〈g〉
1 {1}
ρ1 {1, ρ1, ρ2, ρ3}
ρ2 {1, ρ2}
ρ3 {1, ρ1, ρ2, ρ3}
σ0 {1, σ0}
σ1 {1, σ1}
σ2 {1, σ2}
σ3 {1, σ3}

None of the elements of D8 generates it. We see that D8 is not a cyclic group. ♦

7.1.5 Theorem Cyclic groups are abelian.

Proof . Let G be a cyclic group generated by g. Let a, b be elements of G. We
want to show that ab = ba. Now, a = gm and b = gn for some integers m and n.
So, ab = gmgn = gm+n and ba = gngm = gn+m. But m + n = n +m (addition of
integers is commutative). So ab = ba.

Whilst working through the above examples, you will have noticed a pattern
about 〈g〉, which we state in the following theorem.

7.1.6 Theorem Let G be a group and let g be an element of �nite order n.
Then

〈g〉 = {1, g, g2, . . . , gn−1}.
In particular, the order of the subgroup 〈g〉 is equal to the order of g.

Proof . Observe that 〈g〉 is a set, and {1, g, . . . , gn−1} is a set. We want to show
that these sets are the same.

Whenever you have two sets, A and B, and you want to prove that they're
equal, one way to do this is to show that every element of A belongs to B and
every element of B belongs to A. You will see this principle again and again
throughout your undergraduate career.

Let's apply this principle in our situation. By de�nition,

〈g〉 = {gn : n ∈ Z} = {. . . , g−2, g−1, 1, g, g2, g3, . . . }.

That is 〈g〉 is the set of all powers of g. It is obvious that every element of
{1, g, . . . , gn−1} belongs to 〈g〉. What about the other way round. Suppose that h



is an element of 〈g〉. We want to show that h is an element of {1, g, . . . , gn−1}. We
can write h = gm where m is an integer (positive or negative). We want to show
that h = gr where r is one of 0, 1, 2, . . . , n − 1. For this we will use the division
algorithm which you met in Foundations. We can write

m = qn+ r, q, r ∈ Z, 0 ≤ r < n.

Here we simply divided m by n; the integers q, r are respectively the quotient and
the remainder. Thus

h = gm = gqn+r = (gn)q · gr.
However, gn = 1 since g has order n. So h = gr. Since 0 ≤ r < n, we see that r is
one of 0, 1, . . . , n − 1. Therefore h is in {1, g, . . . , gn−1}. By our principle, we see
that 〈g〉 = {1, g, . . . , gn−1}.

7.1.7 Exercise In each of the following groups G, write down the cyclic sub-
group generated by g.

(a) G = S, g = exp(2πi/7).

(b) G = GL2(R), g = ( 0 1
−1 0 ).

7.1.8 Exercise Which of the following groups G are cyclic? Justify your answer
for each, and if G is cyclic then write down a generator.

(a) G = kZ (where k is a non-zero integer).

(b) D3.

7.1.9 Exercise In this exercise, you will show using contradiction that R∗ is
not cyclic. Suppose that it is cyclic and let g ∈ R∗ be a generator. Then R∗ = 〈g〉.
In particular, |g|1/2 ∈ R∗ and so |g|1/2 = gm for some integer m. Show that the
only solutions to this equation are g = ±1. Where's the contradiction?

7.1.10 Exercise In this exercise you'll show that Q is not cyclic. Let a, b be
integers with b 6= 0. Let p be a prime that does not divide b. Show that 1/p cannot
be written in the form na/b with n an integer. Deduce that Q is not cyclic.

7.1.11 Exercise Show that S is not cyclic.



7.2 Congruence classes modulo n under addition

In Foundations you have de�ned an equivalence relation on Z for a �xed postive
integer n as follows.

`Where a, b are integers, a is said to be congruent modulo n to b if a− b is a
multiple of n, i.e. if there exists an integer k such that a = b+ kn.'

In Foundations you go on to say that the equivalence classes for this equiva-
lence relation are called the congruence classes modulo n and you write [a]n for the
congruence class modulo n containing a. This means that [a]n = {a+kn | k ∈ Z}.
You call the set of equivalence classes Z/nZ.

You then de�ne the following two operations on Z/nZ, denoted +n and ×n, as
follows:

� [a]n +n [b]n = [a+ b]n

� [a]n ×n [b]n = [a× b]n.

In Foundation you make sure that these are well-de�ned because they are de-
�ned in terms of representatives of equivalence classes. Notice that these are both
binary operations on Z/nZ (since both [a+ b]n ∈ Z/nZ and [a× b]n ∈ Z/nZ.

Given this, in this module, we might ask the following questions.

i. Is (Z/nZ,+n) a group?

ii. Is (Z/nZ,×n) a group?

Let's look at the `addition table' for (Z/6Z,+6) (case i. above with n = 6).

+6 [0]6 [1]6 [2]6 [3]6 [4]6 [5]6

[0]6 [0]6 [1]6 [2]6 [3]6 [4]6 [5]6
[1]6 [1]6 [2]6 [3]6 [4]6 [5]6 [0]6
[2]6 [2]6 [3]6 [4]6 [5]6 [0]6 [1]6
[3]6 [3]6 [4]6 [5]6 [0]6 [1]6 [2]6
[4]6 [4]6 [5]6 [0]6 [1]6 [2]6 [3]6
[5]6 [5]6 [0]6 [1]6 [2]6 [3]6 [4]6

We can see that this is a group in which [0]6 is the identity element, the inverse
of [m]6 is [6−m]6 = [−m]6 (associativity follows from the associativity of regular



addition of integers). This is proved formally below in Theorem 7.2.2.

There is nothing special about n = 6 here, the same would be true for any
positive integer n.

Now let's look at the multiplication table for (Z/6Z,×6) (case ii. above with
n = 6).

×6 [0]6 [1]6 [2]6 [3]6 [4]6 [5]6

[0]6 [0]6 [0]6 [0]6 [0]6 [0]6 [0]6
[1]6 [0]6 [1]6 [2]6 [3]6 [4]6 [5]6
[2]6 [0]6 [2]6 [4]6 [0]6 [2]6 [4]6
[3]6 [0]6 [3]6 [0]6 [3]6 [0]6 [3]6
[4]6 [0]6 [4]6 [2]6 [0]6 [4]6 [2]6
[5]6 [0]6 [5]6 [4]6 [3]6 [2]6 [1]6

We can see that this is not a group. You could pick out many reasons for this
but one of them is that the only candidate for the identity is [1]6 and then [0]6 has
no inverse element.

Maybe the problem is just with the `zero element', like we have seen before
with the need to remove 0 to get R∗ as a group under multiplication.

If we remove [0]6 from the table row and column headings above we get

×6 [1]6 [2]6 [3]6 [4]6 [5]6

[1]6 [1]6 [2]6 [3]6 [4]6 [5]6
[2]6 [2]6 [4]6 [0]6 [2]6 [4]6
[3]6 [3]6 [0]6 [3]6 [0]6 [3]6
[4]6 [4]6 [2]6 [0]6 [4]6 [2]6
[5]6 [5]6 [4]6 [3]6 [4]6 [2]6

The appearance of [0]6 within this table shows that this is no longer even a
binary operation on {[1]6, [2]6, [3]6, [4]6, [5]6} so it certainly doesn't give us a group.

It's worth noting here that had we done the above but with n = 5 rather than
n = 6 we would still have seen that (Z/5Z,×5) is not a group but removing [0]5
then gives



×5 [1]5 [2]5 [3]5 [4]5

[1]5 [1]5 [2]5 [3]5 [4]5
[2]5 [2]5 [4]5 [1]5 [3]5
[3]5 [3]5 [1]5 [4]5 [2]5
[4]5 [4]5 [3]5 [2]5 [1]5

which is a group (convince yourself it has the required properties by looking at
the table above). Keeping to our convention of ∗ meaning `remove the zero ele-
ment', we would say that (Z/6Z)∗ with binary operation ×6 is not a group but
((Z/5Z)∗,×5) is a group.

We'll explore this more when we come to the rings part of the module. At this
point we'll also explain footnote 9, about the notation Z/nZ, at the bottom of
page 29 in the Foundations notes.

7.2.1 Exercise Write down the addition and multiplication tables for Z/4Z
and Z/5Z.

Here is the proof that, for any positive integer n, (Z/nZ,+n) is a group.

7.2.2 Theorem Let n be an integer satisfying n ≥ 1. Then (Z/nZ,+) is an
abelian group.

Proof . To show that Z/nZ a group, we want to check that Z/nZ is closed under
addition, that addition is associative, that there is an identity element, and that
every element has an additive inverse.

We de�ne, as in Foundations, Z/nZ to be the set of congruence classes modulo
m. There, the sum of classes [a]n and [b]n is de�ned to be [a + b]n which is a
congruence class modulo m (and it is checked that this is well-de�ned). So Z/nZ
is closed under addition. Let's prove associativity. Note

([a]n + [b]n) + [c]n = [a+ b]n + [c]n

= [(a+ b) + c]n

= [a+ (b+ c)]n addition in Z is associative

= [a]n + [b+ c]n

= [a]n + ([b]n + [c]n).

Thus addition in Z/nZ is associative. Obviously [0]n is the additive identity. What
about the additive inverse? Note that [a]n + [−a]n = [0]n so every class has an



additive inverse 5.
Thus (Z/nZ,+) is a group. The proof that it is abelian is left as an easy exer-

cise. ♦

Note that we can safely refer to `the group Z/nZ' without specifying the binary
operation as +n because Z/nZ is never a group under ×n.

7.2.3 Example For each element of the group Z/nZ, we can write down the
cyclic group it generates. Note that since Z/nZ is an additive group, the subgroup
generated by g is 〈g〉 = {mg | m ∈ Z}. That is, it is the set of multiples of g rather
than the set of powers of g. This is done below in the case n = 6. See Table 2.

[a]6 〈[a]6〉
[0]6 {[0]6}
[1]6 {[0]6, [1]6, [2]6, [3]6, [4]6, [5]6}
[2]6 {[0]6, [2]6, [4]6}
[3]6 {[0]6, [3]6}
[4]6 {[0]6, [2]6, [4]6}
[5]6 {[0]6, [1]6, [2]6, [3]6, [4]6, [5]6}

Table 2: The six elements of Z/6Z and the cyclic subgroups that they generate.

You can see from the above example how Z/nZ = 〈[1]n〉 for any positive integer
n, so that Z/nZ is cyclic for any positive integer n.

7.2.4 Exercise In each of the following groups G, write down the both the
order of the element g and the cyclic subgroup generated by g.

(a) G = Z/5Z, g = [4]5.

(b) G = Z/8Z, g = [2]8.

(c) G = Z/12Z, g = [8]12.

5Perhaps you prefer the inverse of [a]n where 0 ≤ a < n to be of the form [b]n where b
also satis�es 0 ≤ b < n. In this case, if 0 < a < m, then observe that 0 < n − a < n,
and [a]n + [n − a]n = [0]n, since a + (n − a) ≡ 0 (mod n). Moreover −0 ≡ 0 (mod n), thus
−[0]n = [0]n.



Chapter 8 - Composition as a binary operation

Virtually all of this chapter is revision from Foundations. It's mainly included
for completeness and so mostly only de�nitions and statements of results are in-
cluded. Here we de�ne a function, de�ne what it means to say that two function
are equal, de�ne the terms injective, surjective, bijective and inverse function and
state related results.

There is one result which warrants particular attention, this is the associativity
of composition of functions, covered in Theorem 8.2.3. In the two chapters which
follow this one we'll be looking at some groups which have functions as their
elements and which use compostion of functions as their binary operation and so
this is essential for that.

8.1 De�nitions

8.1.1 De�nition Given two sets X and Y , a function, f , is a rule which asso-
ciates a unique element y ∈ Y to each element x ∈ X.

We write f : X → Y . If y ∈ Y is the unique element of Y associated with
x ∈ X we write y = f(x).

X is called the domain of the function and Y is called the codomain. The
subset {f(x) | x ∈ X} of Y is called the image of f .

8.1.2 De�nition Let X, Y , A and B be sets and let f : X → Y and g : A→ B
be functions.

We say that f = g if all of the following hold

1. X = A

2. Y = B

3. f(x) = g(x) for all x ∈ X. ♦

8.2 Composition, injective and surjective functions, inverses

8.2.1 De�nition Let S1, S2 and S3 be sets and f , g be functions

f : S1 → S2, g : S2 → S3.



We can de�ne the composition g ◦ f : S1 → S3 by the rule: (g ◦ f)(x) = g(f(x)),
i.e. g ◦ f is the function obtained by substituting f into g.

8.2.2 Example Here is an example of composition of functions. Let

f : R→ R, f(x) = x2 − 5

and
g : R→ R, g(x) = 3x+ 2.

Notice that because the codomain and the domain are both R for both f and g
we can compose these functions, and we can do that both 'ways round':

(f ◦ g)(x) = f(g(x)) = f(3x+ 2) = (3x+ 2)2 − 5 = 9x2 + 12x− 1,

(g ◦ f)(x) = g(f(x)) = g(x2 − 5) = 3(x2 − 5) + 2 = 3x2 − 13.

The order matters here: f ◦ g is the result of substituting g into f , and g ◦ f is the
result of substituting f into g.

The following lemma might look quite basic, but it one of the most important
results we shall meet in this module, and we shall use it again and again. it tells
us that compostion of functions is associative.

8.2.3 Lemma Let S1, S2, S3, S4 be sets and let f , g, h be functions

h : S1 → S2, g : S2 → S3, f : S3 → S4.

Then f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Proof
Think about what these two functions do to an element x ∈ S1.

Let's start with f ◦(g◦h). Here we 'do' g◦h to x �rst, this will give us g(h(x)).
Then we 'do' f to this. So we will end up with f(g(h(x))).

Now think about the e�ect of (f ◦ g) ◦ h) on x Here we 'do' h to x �rst, this
will give us h(x). Then we 'do' f ◦ g to this, this means doing g to it, then doing
f to the result. So we will again end up with f(g(h(x))).

Therefore [f ◦ (g ◦ h)](x) = f(g(h(x))) = [(f ◦ g) ◦ h](x) for all x ∈ S1 and this
is what it means to say that f ◦ (g ◦ h) and (f ◦ g) ◦ h are equal functions. ♦



8.2.4 De�nition Let X and Y be sets. Let f : X → Y be a function. Suppose
there exists a function g : Y → X such that (g ◦ f)(x) = x for all x ∈ X and
(f ◦ g)(y) = y for all y ∈ Y . Then f is said to be invertible and g is said to be the
inverse function to f .

Note that then g is also invertible and f is the inverse function to g by the
symmetry in the de�nition. Also it is usual to then write g as f−1.

8.2.5 De�nitions Let X and Y be sets. The function f : X → Y is said to be
injective or one-to-one if whenever x1, x2 ∈ X with x1 6= x2 then f(x1) 6= f(x2).
Note that this is equivalent to saying that if x1, x2,∈ X and f(x1) = f(x2) then
x1 = x2.

The function f : X → Y is said to be surjective or onto if for all y ∈ Y there
exists x ∈ X such that f(x) = y.

The function f : X → Y is said to be a bijection it is both injective and sur-
jective. ♦

The next theorem, from Foundations, is going to be really important to us
when we look at groups whose elements are functions. If we are to have a group,
we will need these functions to be invertible.

8.2.6 Theorem Let X and Y be sets. The function f : X → Y is bijective if
and only if it is invertible.

8.3 Composition of functions as a binary operation

In example 8.2.2 we started with functions R→ R (i.e. with domain and codomain
which are both the set of real numbers) and composed them to obtain functions
R → R. Likewise, in de�nition 8.2.1, if S1 = S2 = S3 = S say, so that f and g
are functions S → S then g ◦ f is a function S → S. In this case (i.e. when the
domains and codomains are equal) ◦ is a binary operation.

It's easy to get confused about this. Although the set S is involved in this, this
is not a binary operation on S, because it doesn't take two elements of S and give
us another element. It is a binary operation on the set of functions from S to itself.



Composition of functions from a set S to itself is associative but not commu-
tative. We know that it is associative from Lemma 8.2.3. We know that it isn't
commutative by Example 8.2.2.

This sets the scene for the next two chapters where we will see some examples
of groups whose elements are functions from a set to itself.



Chapter 9 - Groups of isometries of the plane

9.1 Isometries of the plane that �x the origin

Here we will think about functions f : R2 → R2 which `preserve distance'. These
are called isometries. Two groups will arise from this but �rst let's make these
ideas precise with some de�nitions.

9.1.1 De�nition Let a,b ∈ R2 so that a = (a1, a2) and b = (b1, b2) where
a1, a2, b1, b2 ∈ R. Then the (Euclidean) distance between a and b is given by

|a− b| =
√
(a1 − b1)2 + (a2 − b2)2.

9.1.2 De�nition Let f : R2 → R2 be a function such that for any a,b ∈ R2,
|f(a)− f(b)| = |a− b|. Then f is called an isometry of R2. ♦

This just means that, in an isometry, the distance between any two given points
and the distance between their image points is the same. You may hear such maps
referred to as being distance preserving.

Note that such functions in this chapter are isometries of R2 so we'll sometimes
just call them isometries (dropping the `of R2').

9.1.3 Exercise Write down some functions which are isometries of R2. ♦

The following lemma is key to how we can see isometries as the elements of
a group. It says that if we compose two isometries then the new thing we get is
still an isometry. This means that composition is a binary operation on the set of
isometries.

9.1.4 Lemma Let f : R2 → R2 and g : R2 → R2 be isometries of R2. Then
g ◦ f : R2 → R2 is an isometry of R2.

Proof . Let a,b ∈ R2. Since f is an isometry |f(a) − f(b)| = |a − b|. Since g is
an isometry, |g(f(a))− g(f(b))| = |f(a)− f(b)|. But then

|(g ◦ f)(a)− (g ◦ f)(b)| = |g(f(a))− g(f(b))| = |f(a)− f(b)| = |a− b|.

This means that g ◦ f is an isometry. ♦



Being an isometry is a very restrictive condition on a function and it turns out
that we can specify that an isometry must take one of a very small number of
forms. We start by �nding these forms for isometries which �x the origin. In the
following lemma we consider isometries which �x the orgin and the point (1, 0).

9.1.5 Lemma Let f : R2 → R2 be a function such that

1. f((0, 0)) = (0, 0) and f((1, 0)) = (1, 0)

2. f is an isometry of R2.

Then f is either the identity map (i.e. f((x, y)) = (x, y) for all x, y ∈ R or it
is a re�ection in the x-axis (i.e f((x, y)) = (x,−y) for all x, y ∈ R).

Proof . First consider the image of the point (0, 1) under f . Let's call this (s, t),
i.e. f((0, 1)) = (s, t). (s, t) must be on the unit circle because it remains the same
distance from the origin as (0, 1) is. It must also be the same distance from (1, 0)
as (0, 1) is. So it is on a circle centred at (1, 0) with radius

√
2. These two circles

are shown in Figure 10.

−2 −1 1 2 3 4

−2

−1

1

2
x2 + y2 = 1

(x− 1)2 + y2 = 2

Figure 10: The two possibilities for the image of (0, 1) are shown in red.

So (s, t) is on both of these circles which means that

s2 + t2 = 1 and (s− 1)2 + t2 = 2.

Solving these simultaneously gives s = 0 and t = ±1. So there are only two
possibilites for the image of (0, 1), one is (0, 1) and the other is (0,−1). This gives
us two cases in the proof.



Case 1 When f((0, 1)) = (0, 1).

Let p = (x, y) ∈ R2. Suppose f(p) = q = (u, v) ∈ R2. The distance of p
from (0, 0) is the same as the distance of q from f((0, 0)) = (0, 0). Therefore

u2 + v2 = x2 + y2.

The distance of p from (1, 0) is the same as the distance of q from f((1, 0)) =
(1, 0). Therefore

(u− 1)2 + v2 = (x− 1)2 + y2.

By subracting one of theses equations from the other (the RHSs and the
LHSs) we get 2u = 2x. Therefore u = x.

We also have that the distance of p from (0, 1) is the same as the distance
of q from f((0, 1)) = (0, 1). Therefore

u2 + (v − 1)2 = x2 + (y − 1)2.

Recall that u2 + v2 = x2 + y2. Substracting one of these equations from the
other, we have 2v = 2y and so v = y. So, in this case, x = u and y = v and
so p = q and f is the identity map.

Case 2 When f((0, 1)) = (0,−1).

Again let p = (x, y) ∈ R2 and suppose f(p) = q = (u, v) ∈ R2. As in case
1. we can deduce that u = x.

The distance of p from (0, 1) is the same as the distance of q from f((0, 1)) =
(0,−1). Therefore

u2 + (v + 1)2 = x2 + (y − 1)2.

Again u2+ v2 = x2+ y2. Substracting one of these equations from the other,
we have 2v = −2y and so v = −y. Therefore, in this case, u = x and v = −y
and so f((x, y)) = (x,−y) and f is the re�ection in the x-axis. ♦

9.1.6 Theorem Let f : R2 → R2 be a function such that

1. f((0, 0)) = (0, 0)

2. f is an isometry of R2.



Then f is either a rotation about the origin or it is a re�ection in the x-axis
followed by a rotation about the origin.

Proof . Let f((1, 0)) = (u, v). Let θ be the angle between the line joining (u, v) to
the origin and the line joining (1, 0) to the origin, measured anti-clockwise from the
latter to the former. Let gθ : R2 → R2 be the function which is an anti-clockwise
rotation through angle θ about the origin. This clearly has an inverse function (or,
equivalently, is a bijection). Consider the function (gθ)

−1 ◦ f . We have that

(g−1θ ◦ f)(1, 0) = g−1θ ((u, v)) = (1, 0).

Also (g−1θ ◦ f)(0, 0) = g−1θ (f(0, 0)) = g−1θ (0, 0) = (0, 0) and g−1θ ◦ f an isometry
(this is by Lemma 9.1.4 since both f and (gθ)

−1 are isometries). Therefore by
Lemma 9.1.5, (gθ)

−1 ◦ f is either the identity map or a re�ection in the x-axis.

If (gθ)
−1◦f is the identity map, then f = (gθ◦(gθ)−1)◦f = gθ◦((gθ)−1◦f) = gθ.

If (gθ)
−1◦f is re�ection in the x axis, which we'll call rx, then f = (gθ◦(gθ)−1)◦

f = gθ ◦ ((gθ)−1 ◦ f) = gθ ◦ rx.

This means that f is either a rotation about the origin or it is a re�ection in
the x-axis followed by a rotation about the origin. ♦

Now we make a useful switch to the notation of complex numbers. If we think
of R2 as being the complex plane (Argand diagram), we can describe describe a
rotation by multiplication by a complex number with modulus 1 (which will there-
fore take the form eiθ) and the re�ection in the x-axis by conjugation. So we'll
now think of the point (x, y) as being, or being identi�ed with if you prefer, the
complex number x+ iy in the Argand diagram.

In these terms Theorem 9.1.6 says the followng. Let f : C → C be a function
such that

1. f(0) = 0

2. f preserves distance, i.e. for any w, z ∈ C, |f(w)− f(z)| = |w − z|.

Then f either has form f(z) = eiθz for some θ ∈ R or form f(z) = eiθz.

The set of all such functions is actually a group (under composition of func-
tions)!



9.1.7 Theorem The set of isometries of R2, here identi�ed with C, which �x
the origin is a group under composition of funtions. We call this group O2(R), the
orthogonal group on R2.

Proof . We need to check (i) - (iv) in the de�nition of a group.

(i) Closure. We could deduce this using Lemma 9.1.4 and noting that the
composition of two �unctions which �x the orgin will �x the origin. However it's
useful to look at the way multiplication (i.e. composition) really works in this
group. By Theorem 9.1.6 every element of O2(R) is a function f which either has
form form f(z) = eiθz or form f(z) = eiθz for some θ ∈ R. `Multiplication' (i.e.
composition) in this group works like this:

Type of �rst isometry
◦ eiθz eiθz

Type of second isometry
eiωz ei(ω+θ)z ei(ω+θ)z
eiωz ei(ω−θ)z ei(ω−θ)z

Figure 11: The types of isometry of the plane which �x the origin and how they
combine.

From this we can see that the binary operation is closed because if we combine
any of the two types in any order the result is still an isometry.

(ii) Associativity. This is a group where the elements are functions from a
set to itself and the binary operation is composition. Such a binary operation is
always associative. See Lemma 8.2.3.

(iii) Identity. Clearly the identity map is an isometry of R2 which �xes the
origin. As one of the two standard forms it is the map f(z) = e0×iz = 1 × z = z
.This is the identity element in the group.

(iii) Existence of inverses. If f has form f(z) = eiθz then f−1(z) = e−iθz
(which we can see is of the �rst form) and if f has form f(z) = eiθz then
f−1(z) = e−iθz = eiθz (which we can see is of the second form) so inverses ex-
ist. ♦

It's worth noting that we could have expressed all of the above in matrix
notation, thinking of z as x+ iy:

1. f(z) = eiθz is equivalent to f

(
x
y

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.



2. f(z) = eiθz is equivalent to f

(
x
y

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1 0
0 −1

)(
x
y

)
.

We'll make this idea of being able to think of a group in more than one way
a bit more precise in Chapter 12. We'll generally stick with complex numbers
notation for this as it's a bit more elegant and certainly more compact.

9.1.8 Exercise Multiply out

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1 0
0 −1

)
. What sort of trans-

formation does this represent?

9.1.9 Exercise Show that the inverse matrix to both

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1 0
0 −1

)
(once multiplied out) is its transpose. Matrices like

this are called orthogonal.

9.1.10 Theorem The set of isometries, f : R2 → R2 of the form f(z) = eiθz,
where R2 has been identi�ed with C, is a subgroup of O2(R). This is the subgroup
of all the rotations about the orgin. It is called SO2(R), the special orthogonal
group on R2. ♦

Proof . We need to check conditions (a), (b) and (c) in Theorem 6.3.1.

(a) The identity in O2(R) is f(z) = z = ei×0z. This is f(z) = eiθz with θ = 0
and so it is in SO2(R).

(b) Suppose f, g ∈ SO2(R). Then f(z) = eiθ1z and g(z) = eiθ2z for some
θ1, θ2 ∈ R. Then (g ◦ f)(z) = g(f(z)) = g(eiθ1z = eiθ1eiθ2z = ei(θ1+θ2)z. This
is in SO2(R).

(c) Suppose f ∈ SO2(R). Then f−1(z) = e−iθz which can be seen to be in
SO2(R). ♦

9.2 General isometries of the plane

Now lets consider general isometries of the plane, i.e. those which don't necessarily
�x the origin. It turns out we have already done much of the work to understand
these. We'll stick with the idea of having identi�ed R2 with C here.



9.2.1 Theorem Let f be an isometry of R2, identi�ed with C as above. Then
f has one of the following two forms.

1. f(z) = eiθz + w where θ ∈ R and w ∈ C

2. f(z) = eiθz + w, where θ ∈ R and w ∈ C.

Proof . Let w = f(0). Let h−w be the translation through −w, i.e. h−w(z) = z−w.
Clearly h−w is an isometry. By Lemma 9.1.4 h−w ◦ f is an isometry.

(h−w ◦ f)(0) = h−w(f(0)) = h−w(w) = w − w = 0 so h−w ◦ f is an isometry
which �xes the origin. By Theorem 9.1.6 either

1. there is a real number θ such that h−w ◦ f(z) = eiθz for all z ∈ C. This
means that, for all z ∈ C, f(z)− w = eiθz, or f(z) = eiθz + w, or

2. there is a real number θ such that h−w ◦ f(z) = eiθz for all z ∈ C. This
means that, for all z ∈ C, f(z)− w = eiθz, or f(z) = eiθz + w. ♦

The set of all isometries of R2 is again a group. This group is called Eucl(R2).
Here is a sketch of the details.

The inverses of the two fypes are f−1(z) = e−iθ(z−w) and f−1(z) = e−iθ(z − w) =
eiθz − eiθ(w) respectively.

Here is how these isometries combine:

Type of �rst isometry
◦ eiθz + u eiθz + u

Type of second isometry
eiωz + v ei(ω+θ)z + eiωu+ w ei(ω+θ)z + eiωu+ w
eiωz + v ei(ω−θ)z + eiωu+ w ei(ω−θ)z + eiωu+ w

Figure 12: The types of isometry of the plane and how they combine.

It's clear that the identity map is an isometry of R2, so we again have a group,
under composition of functions.

Again, it's worth noting that we could have expressed all of the above in matrix
notation, thinking of z as x+ iy and w as a+ bi:

1. f(z) = eiθz + w is equivalent to

f

(
x
y

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
+

(
a
b

)
.



2. f(z) = eiθz + w is equivalent to

f

(
x
y

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1 0
0 −1

)(
x
y

)
+

(
a
b

)
.

9.2.2 Exercise Prove that O2(R) is a subgroup of Eucl(R2).

9.2.3 Exercise Show that set of elements of Eucl(R2) which have the form
f(z) = z + w for some w ∈ C is a subgroup of Eucl(R2).



Chapter 10 - Symmetric Groups

Probably the most interesting groups have elements that are functions. In the
last chapter we saw some examples and the groups we are about to meet in this
chapter, the symmetric groups, are other examples. It turns out that every �nite
group can be thought of as a subgroup of one of the symmetric groups. This is
called Cayley's Theorem, where this statement is made precise. You won't meet
this until later courses in group theory.

10.1 Motivation

Let A be a set, and let f , g be functions from A to itself. We know that we can
compose f , g to obtain f ◦g which is also a function from A to itself. We shall write
Map(A) for the set of functions from A to itself. Then ◦ is a binary operation on
Map(A). And it's natural to ask if this makes Map(A) into a group. After all, we
know by Lemma 8.2.3 that composition of functions is associative. The following
example will help clarify these ideas.

10.1.1 Example Let A = {1, 2}. You will quickly convince yourself that there
are only four functions from A to itself, which are given in Figure 13.
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Figure 13: f1, f2, f3 and f4 are the four functions from {1, 2} to itself.

ThusMap(A) = {f1, f2, f3, f4}. IsMap(A) a group with respect to composition
of functions? Here is the composition table for Map(A):



◦ f1 f2 f3 f4

f1 f1 f2 f3 f4
f2 f2 f1 f4 f3
f3 f3 f3 f3 f3
f4 f4 f4 f4 f4

Make sure you understand the table. The entry for fi ◦ fj is at the intersection
of the i-th row and j-th column. As always, fi ◦ fj means apply fj �rst then fi.
We know that composition of functions is associative by Lemma 8.2.3. Moreover,
it is clear from the table that f1 is the identity element. But f3 and f4 don't have
inverses; we can't combine either of them with any of the four functions to obtain
the identity f1.

But if you look carefully at the table, you will see a group with respect to
composition. It is the subset: {f1, f2}. We already know why f1, f2 have inverses
(which in this case happen to be f1 and f2 respectively), and f3, f4 don't: the
functions f1, f2 are bijections and f3 and f4 are not. This was Theorem 8.2.6
which says that a function f from a set X to a set Y has an inverse if and only if
it is a bijection. In the example we have been looking at X = Y = {1, 2}.

♦

10.2 The symmetric group on a general set A

Let A be a set. We shall denote the set of bijections from A to itself by Sym(A).

10.2.1 Example In Example 10.1.1 we wrote down all the functions from A =
{1, 2} to itself and found that exactly two of these are bijections. These were
called f1 and f2 in Figure 13. Hence Sym(A) = {f1, f2}. Note that f1 = idA, the
function which sends every element of A to itself. In that example, we noted that
{f1, f2} is a group under composition with f1 being the identity element. Check
this again, and note that the group is abelian. ♦

10.2.2 Theorem Let A be a set. Then (Sym(A), ◦) is a group with idA as the
identity element.

We call Sym(A) the symmetric group on A.

Proof .
We need to do this usual checks: closure; associativity; identity element; exis-

tence of inverses.



Closure in this group means showing that if f : A → A and g : A → A are
both bijections then (g ◦ f) : A→ A is also a bijection. We do this as follows.

Let c ∈ A. Since g is surjective there exists b ∈ A such that g(b) = c. Since f
is surjective there exists a ∈ A such that f(a) = b. Then (g ◦ f)(a) = g(f(a)) =
g(b) = c and so g ◦ f is surjective.

Let a1, a2 ∈ A be such that (g ◦ f)(a1) = (g ◦ f)(a2). Then g(f(a1)) = g(f(a2))
and by the injectivitiy of g, f(a1) = f(a2). Then, by the injectivitiy of f , a1 = a2
and so g ◦ f is injective.

Therefore g ◦ f is a bijection.

Composition of functions is associative by Lemma 8.2.3.

Clearly idA is a bijection and so is in Sym(A). We want to check that idA
is the identity for composition, which means that for any f ∈ Sym(A) we want
f ◦ idA = idA ◦ f = f . Note

(f ◦ idA)(x) = f(idA(x)) = f(x), (idA ◦ f)(x) = idA(f(x)) = f(x).

Thus f ◦ idA = idA ◦ f = f holds.

Finally we want every element of Sym(A) to have an inverse in Sym(A). This
is true by Theorem 8.2.6.

10.2.3 Exercise Let f : Z→ Z and g : R→ R be given by x 7→ 2x. Show that
f /∈ Sym(Z) but g ∈ Sym(R). Write down gn for integers n.

10.2.4 Exercise Let f : C → C, g : C → C, h : C → C be given by f(z) =
z + 1, g(z) = z + i, h(z) = iz. Describe f , g, h geometrically. Show that f , g, h
are in Sym(C). Show that f and g commute. What about f and h or g and h?
What are the orders of f , g and h?

10.3 Sn

We de�ne Sn to be the group Sym({1, 2, . . . , n}). We call Sn the n-th symmetric
group. In Example 10.2.1 we found that S2 is a group of order 2.



10.3.1 Theorem Sn has order n!.

Proof . Sn is the set of bijections from {1, 2, . . . , n} to itself. So we want to count
these bijections. It's clear that any injective function from {1, 2, . . . , n} to itself
will be surjective (because if distinct elements get sent to distinct elements then
the number of elements that get 'hit' must be n, i.e. all elements of {1, 2, . . . , n}
are 'hit' and the function is surjective).

So let's count the injections. Let f be an injection from {1, 2, . . . , n} to itself.
Then f(1) can be any of 1, 2, . . . , n; that is, there are n choices for f(1). If we �x
f(1) then f(2) 6= f(1). So there are n− 1 choices for f(2) once we've chosen f(1).
Likewise there are n − 2 choices for f(3) once we've chosen f(1) and f(2). It is
now clear that the number of injections is

n× (n− 1)× · · · × 1 = n!.

The elements of Sn are called permutations. One way of representing permuta-
tions is to use diagrams such as those for f1, f2 ∈ S2 in Figure 13. The following
is a more economical way. Let a1, a2, . . . , an be the numbers 1, 2, . . . , n in some
order. Then (

1 2 · · · n
a1 a2 · · · an

)
represents the unique permutation in Sn that sends 1 to a1, 2 to a2, . . . , and n to
an.

10.3.2 Example S2 has two elements:(
1 2
1 2

)
,

(
1 2
2 1

)
.

These are respectively the same as f1, f2 in Figure 13. The �rst of these is the
identity element. We noted in Example 10.2.1 that S2 = Sym({1, 2}) is abelian.
♦

10.3.3 Example We know from Theorem 10.3.1 that S3 has 6 elements. These
are (

1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
3 2 1

)
.



Again, the �rst of these is the identity element. It is important that you know
what the notation means and how to multiply two permutations written in this
notation, so let's have some practice. Let

ρ =

(
1 2 3
3 1 2

)
, µ =

(
1 2 3
1 3 2

)
.

Never forget that these are bijections from {1, 2, 3} to itself. To �nd out what ρ
does, look at the columns. ρ is the function that sends 1 to 3, 2 to 1 and 3 to 2.
Thus

ρ(1) = 3, ρ(2) = 1, ρ(3) = 2. (3)

Likewise,
µ(1) = 1, µ(2) = 3, µ(3) = 2.

Now let us compute ρµ. As always, this means apply µ �rst then ρ. So

(ρµ)(1) = ρ(µ(1)) = ρ(1) = 3;

(ρµ)(2) = ρ(µ(2)) = ρ(3) = 2;

(ρµ)(3) = ρ(µ(3)) = ρ(2) = 1.

Thus

ρµ =

(
1 2 3
3 2 1

)
.

Similarly,

µρ =

(
1 2 3
2 1 3

)
.

Note that µρ 6= ρµ, so S3 is non-abelian. How do we compute ρ−1? From (3) we
�nd

1 = ρ−1(3), 2 = ρ−1(1), 3 = ρ−1(2).

We rearrange this:

ρ−1(1) = 2, ρ−1(2) = 3, ρ−1(3) = 1.

Hence

ρ−1 =

(
1 2 3
2 3 1

)
.

♦

10.3.4 Exercise Let ρ and τ be the following permutations:

ρ =

(
1 2 3 4 5
2 3 5 1 4

)
, τ =

(
1 2 3 4 5
3 1 2 5 4

)
.

Compute ρ−1, ρτ , τ 2.



10.3.5 Exercise Show that Sn is non-abelian for n ≥ 3.

10.4 Cycle notation

Let a1, a2, . . . , am be distinct elements of the set {1, 2, . . . , n}. By the notation

(a1, a2, . . . , am) (4)

we mean the element of Sn that takes a1 to a2, a2 to a3, . . . , am−1 to am and am
back to a1, and �xes all other elements of {1, 2, . . . , n}. The permutation (4) is
called a cycle of length m. A cycle of length 2 is called a transposition.

10.4.1 Example Let µ = (1, 4, 5) ∈ S5. The cycle µ is of length 3 and is
illustrated in Figure 14.

1

4

5
2 3

Figure 14: The cycle (1, 4, 5) ∈ S5.

We can write (1, 4, 5) using our old notation:

(1, 4, 5) =

(
1 2 3 4 5
4 2 3 5 1

)
.

Notice that (1, 4, 5) = (4, 5, 1) = (5, 1, 4). However, (1, 4, 5) 6= (1, 5, 4).

The transposition (1, 5) ∈ S5 is given in Figure 15.
In our old notation, the transposition (1, 5) is written as follows:

(1, 5) =

(
1 2 3 4 5
5 2 3 4 1

)
.

Note that (1, 5) = (5, 1).

Finally (1) is the cycle that takes 1 to itself and �xes all the other elements.
Clearly (1) = (2) = (3) = (4) = (5) = id is nothing other than the identity per-
mutation. ♦



15

2 3 4

Figure 15: The transposition (1, 5) ∈ S5. This merely swaps 1 and 5, and �xes
all other elements.

I hope that the above example has convinced you that cycle notation is simul-
taneously more concise and and more transparent than the old notation. If so,
the following theorem, where we show that every permutation can be written as a
product of disjoint cycles will come as a pleasant surprise!

Before we state it, what does disjoint mean? Two cycles (a1, a2, . . . , an) and
(b1, b2, . . . , bm) are said to be disjoint if ai 6= bj for all integers i, j with 1 ≤ i ≤ n
and 1 ≤ j ≤ m. What does product mean? The product of two permutations is
their composition as functions.

10.4.2 Theorem Every permutation can be written as a product of disjoint
cycles.

Proof . Let ρ be an element of Sn. Consider the sequence

1, ρ1, ρ21, ρ31, . . .

Every term in this in�nite sequence is contained in the �nite set {1, 2, . . . , n}. Thus
the sequence must contain repetition. Let ρu1 be the �rst term in the sequence
that has already appeared. Thus ρu1 = ρv1 for some 0 ≤ v < u. Apply ρ−v to
both sides. We obtain ρu−v1 = 1. Note that 0 < u − v ≤ u. If u − v < u, then
ρu−v1 is in fact the �rst term in the sequence that has already appeared, which
contradicts our assumption. Therefore, u − v = u and so v = 0. Hence ρu1 = 1,
and 1, ρ1, . . . , ρu−11 are distinct.

Let µ1 be the cycle of length u

µ1 =
(
1, ρ1, ρ21, . . . , ρu−11

)
.

It is clear that µ1 has the same e�ect as ρ on the elements 1, ρ1, . . . , ρu−11.



Now let a be the �rst element of the set {1, 2, . . . , n} not appearing in the list
1, ρ1, . . . , ρu−11. Repeat the above argument with the sequence

a, ρa, ρ2a, ρ3a, . . . .

We deduce the existence of a cycle

µ2 =
(
a, ρa, . . . , ρv−1a

)
such that µ2 and ρ have the same e�ect on the elements a, ρa, . . . , ρv−1a. Let us
show that µ1 and µ2 are disjoint. Suppose otherwise. Then ρi1 = ρja for some
0 ≤ i < u and 0 ≤ j < v. Now apply ρv−j to both sides to obtain ρk1 = a where
k = i+ v − j. This contradicts our assumption that a does not appear in the list
1, ρ1, . . . , ρu−11. Hence the cycles µ1 and µ2 are disjoint. Now the product µ1µ2

has the same e�ect as ρ on the elements 1, ρ1, . . . , ρu−11, a, ρa, . . . , ρv−1a.

We repeat the process, starting with the �rst element of {1, 2, . . . , n} not ap-
pearing in either cycle µ1, µ2 to construct a µ3 that is disjoint from both µ1 and
µ2, etc. As the set {1, 2, . . . , n} is �nite, this process must terminate eventually
with some µr. The product of disjoint cycles µ1µ2 . . . µr has the same e�ect on
{1, . . . , n} as ρ. Therefore

ρ = µ1µ2 · · ·µr.
♦

Let's see an example where we write down a permutation as a product of cycles.

10.4.3 Example Let

ρ =

(
1 2 3 4 5 6 7 8
5 7 1 4 8 2 6 3

)
.

Write ρ as a product of disjoint cycles.

Answer: We start with 1 are repeatedly apply ρ to it:

1 7→ 5 7→ 8 7→ 3 7→ 1.

Therefore ρ contains the cycle (1, 5, 8, 3). Now we start with an element of the set
{1, 2, . . . , 8} that is not contained in the cycle (1, 5, 8, 3). For example start with
2 and repeatedly apply ρ to it:

2 7→ 7 7→ 6 7→ 2.



So ρ also contains the cycle (2, 7, 6). Note that the cycles (1, 5, 8, 3) and (2, 7, 6)
are disjoint, and ρ contains the product (or composition) (1, 5, 8, 3)(2, 7, 6). There
still remains one element of the set {1, 2, . . . , 8} that does not appear as either of
the two cycles (1, 5, 8, 3) and (2, 7, 6) and this is 4. Applying ρ to 4 we �nd:

4 7→ 4.

So
ρ = (1, 5, 8, 3)(2, 7, 6)(4)

as a product of disjoint cycles. Recall that (4) is just the identity, so it is usual to
omit it and write,

ρ = (1, 5, 8, 3)(2, 7, 6).

You might be wondering why we wrote ρ as above and not ρ = (2, 7, 6)(1, 5, 8, 3).
This does not matter since disjoint cycles commute; more on this below. ♦

10.4.4 Example Let

σ = (1, 3, 10, 9)(2, 5, 6), τ = (4, 3, 10)(1, 5, 8).

Express στ and σ−1 as a product of disjoint cycles.

Answer: We start with 1 and follow the same procedure as the above example.
Note that στ1 means apply τ �rst to 1 and then apply σ to the result. Now τ1 = 5
and σ5 = 6. So στ1 = 6. Next we apply στ to 6. The permutation τ does not
have 6 in its cycle decomposition, so τ6 = 6. So στ6 = σ6 = 2. We keep applying
στ until we return to 1:

1 7→ 6 7→ 2 7→ 5 7→ 8 7→ 3 7→ 9 7→ 1.

Thus στ has the cycle (1, 6, 2, 5, 8, 3, 9) in its decomposition as a product of disjoint
cycles. We note that this cycle has no 4 in it. So we apply στ repeatedly starting
with 4:

4 7→ 10 7→ 4.

Hence στ has the product (1, 6, 2, 5, 8, 3, 9)(4, 10) in its decomposition as a product
of disjoint cycles. Finally, note that of the elements of the set {1, 2, . . . , 10},
the only one not appearing in the product (1, 6, 2, 5, 8, 3, 9)(4, 10) is 7. However
στ7 = 7. So

στ = (1, 6, 2, 5, 8, 3, 9)(4, 10)

as a product of disjoint cycles.



You may have noticed that we were tacitly assuming that σ and τ are elements
of S10 and computed the product under that assumption. In fact, we would have
obtained the same result had σ and τ been elements of S11, S12, . . . . Indeed viewed
as elements of S11, the permutations σ and τ , and the cycles (1, 6, 2, 5, 8, 3, 9) and
(4, 10) all �x 11.

To compute σ−1 we start with σ = (1, 3, 10, 9)(2, 5, 6) and reverse the arrows:
Therefore σ−1 = (1, 9, 10, 3)(2, 6, 5). Check for yourself that σσ−1 is indeed the
identity permutation. ♦

10.4.5 Exercise Let ρ and τ be as given in Exercise 10.3.4. Write ρ and τ as
products of disjoint cycles.

10.4.6 Exercise Which of the following pairs of permutations are equal ele-
ments of S6?

(i) (1, 2, 3)(4, 6) and (6, 4)(2, 3, 1)(5).

(ii) (4, 5, 6)(1, 2, 3) and (3, 1, 2)(5, 4, 6).

10.4.7 Exercise Let ρ = (1, 2, 3)(4, 5) and τ = (1, 2, 3, 4). Write the following
in cycle notation (i.e. as a product of disjoint cycles): ρ−1, τ−1, ρτ , τρ2.

10.4.8 Lemma Disjoint cycles commute.

Proof . Let σ and τ be disjoint cycle in Sn and write

σ = (a1, a2, . . . , ak), τ = (b1, b2, . . . , b`).

Since σ and τ are disjoint ai 6= bj for i = 1, . . . , k and j = 1, . . . , `.

We want to show that στ = τσ. This means that στx = τσx for all x ∈
{1, 2, . . . , n}. We subdivide into three cases:

Case 1: x does not equal any of the ai or bj. Then τx = x and σx = x. Therefore

στx = σx = x = τx = τσx.

Case 2: x = ai for some i = 1, . . . , k. Thus x does not equal any of the bj, and so
τx = x. Hence στx = σx = σai = ai+1; here ak+1 is interpreted as being a1. Let's
compute τσx. This is τσai = τai+1 = ai+1 since ai+1 does not equal any of the bj.



Hence στx = τσx.

Case 3: x = bj for some j = 1, . . . , `. This is similar to Case 2.

We conclude that στ = τσ as required.

10.5 D2n and Sn

Cast your mind back to Chapter 1 when we met the six symmetries of an equilat-
eral triangle.

We gave each of the symmetries a name:

And this is the the composition/table using the binary operation `followed
by'(essentially composition of symmetries):

◦ ρ0 ρ1 ρ2 σ1 σ2 σ3

ρ0 ρ0 ρ1 ρ2 σ1 σ2 σ3
ρ1 ρ1 ρ2 ρ0 σ3 σ1 σ2
ρ2 ρ2 ρ0 ρ1 σ2 σ3 σ1
σ1 σ1 σ2 σ3 ρ0 ρ1 ρ2
σ2 σ2 σ3 σ1 ρ2 ρ0 ρ1
σ3 σ3 σ1 σ2 ρ1 ρ2 ρ0

This is the group D6.

Remember that we labelled the vertices of the equilateral triangle with the
numbers 1, 2, 3. Notice how there is a natural correspondence between the ele-
ments of D6 and elements of S3. For example σ2 swaps vertices 1 and 3 and so it



corresponds to (1, 3) ∈ S3.

The elements of S3 which correspond to

ρ0, ρ1, ρ2, ρ3, σ1, σ2, σ3 ∈ D6

written in disjoint cycle notation are, respectively:

(1); (1, 2, 3); (1, 3, 2); (2, 3); (1, 3); (1, 2).

Notice that the list above is the whole of S3. Here is the composition/multiplication
table for S3.

◦ (1) (1, 2, 3) (1, 3, 2) (2, 3) (1, 3) (1, 2)

(1) (1) (1, 2, 3) (1, 3, 2) (2, 3) (1, 3 (1, 2)
(1, 2, 3) (1, 2, 3 (1, 3, 2) (1) (1, 2) (2, 3) (1, 3)
(1, 3, 2) (1, 3, 2) (1) (1, 2, 3) (1, 3) (1, 2) (2, 3)
(2, 3) (2, 3) (1, 3) (1, 2)) (1) (1, 2, 3) (1, 3, 2)
(1, 3) (1, 3) (1, 2) (2, 3) (1, 3, 2) (1) (1, 2, 3)
(1, 2) (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2) (1)

This is identical to the D6 table if you carefully swap all the entries according
to the correspondence above! From an asbtract algebra point of view, when we
are really only interested in the elements and how they combine, is there really
any distinction between D6 and S3? Chapter 12 contains more on this.

Now cast your mind back to Chapter 3 when we met D8 and labelled the ver-
tices of the square with 1, 2, 3, 4 as in Figure 2. Go back there and remind yourself
of the notation for the elements of D8.

In the notation established there, the elements of D8 are

ρ0, ρ1, ρ2, ρ3, σ0, σ1, σ2, σ3.

The elements of S4 which correspond to these by considering where the four
vertices end up, written in disjoint cycle notation are, respectively:

(1); (1, 2, 3, 4); (1, 3)(2, 4); (1, 4, 3, 2); (2, 4); (12)(34); (13); (14)(23).



Notice that this is not the whole of S4 because S4 has 24 elements. Why is it
that the permutation (1, 2, 3) ∈ S4, for example, does not correspond to a symme-
try of the square?

Here is the composition/multiplication table for D8

◦ ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3

ρ0 ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3
ρ1 ρ1 ρ2 ρ3 ρ0 σ1 σ2 σ3 σ0
ρ2 ρ2 ρ3 ρ0 ρ1 σ2 σ3 σ0 σ1
ρ3 ρ3 ρ0 ρ1 ρ2 σ3 σ0 σ1 σ2
σ0 σ0 σ3 σ2 σ1 ρ0 ρ3 ρ2 ρ1
σ1 σ1 σ0 σ3 σ2 ρ1 ρ0 ρ3 ρ2
σ2 σ2 σ1 σ0 σ3 ρ2 ρ1 ρ0 ρ3
σ3 σ3 σ2 σ1 σ0 ρ3 ρ2 ρ1 ρ0

Here is the composition/multiplication table for the corresponding 8 elements
of S4.

◦ (1) (1, 2, 3, 4) (1, 3)(2, 4) (1, 4, 3, 2) (2, 4) (1, 2)(3, 4) (1, 3) (1, 4)(2, 3)

(1) (1) (1, 2, 3, 4) (1, 3)(2, 4) (1, 4, 3, 2) (1, 3) (1, 2)(3, 4) (1, 3) (1, 4)(2, 3)
(1, 2, 3, 4) (1, 2, 3, 4) (1, 3)(2, 4) (1, 4, 3, 2) (1) (1, 2)(3, 4) (1, 3) (1, 4)(2, 3) (1, 3)
(1, 3)(2, 4) (1, 3)(2, 4) (1, 4, 3, 2) (1) (1, 2, 3, 4) (1, 3) (1, 4)(2, 3) (2, 4) (1, 2)(3, 4)
(1, 4, 3, 2) (1, 4, 3, 2) (1) (1, 2, 3, 4) (1, 3)(2, 4) (1, 4)(2, 3) (2, 4) (1, 2)(3, 4) (1, 3)
(2, 4) (2, 4) (1, 4)(2, 3) (1, 3) (1, 2)(3, 4) (1) (1, 4, 3, 2) (1, 3)(2, 4) (1, 2, 3, 4)

(1, 2)(3, 4) (1, 2)(3, 4) (2, 4) (1, 4)(2, 3) (1, 3) (1, 2, 3, 4) (1) (1, 4, 3, 2) (1, 3)(2, 4)
(1, 3) (1, 3) (1, 2)(3, 4) (2, 4) (1, 4)(2, 3) (1, 3)(2, 4) (1, 2, 3, 4) (1) (1, 4, 3, 2)

(1, 4)(2, 3) (1, 4)(2, 3) (1, 3) (1, 2)(3, 4) (2, 4) (1, 4, 3, 2) (1, 3)(2, 4) (1, 2, 3, 4) (1)

Notice that the above table shows that

H = {(1); (1, 2, 3, 4); (1, 3)(2, 4); (1, 4, 3, 2); (2, 4); (1, 2)(3, 4); (1, 3); (1, 4)(2, 3)}

is a subgroup of S4. Again, is this subgroup really any di�erent to D8 itself?

This means there is a subgroup which is a essentially a `copy' of D8 inside
S4. We'll make this idea more precise in chapter 12 and you will eventually be
comfortable enough to say that there is no distinction between D8 and this copy
of D8 and say that D8 is a subgroup of S4.

10.5.1 Exercise Think about the group D10, the symmetries of a regular pen-
tagon. How many elements does it have? How many elements does S5 have?
How is there a subgroups of S5 which is a `copy' of D10? Think about how this
generalises to any integer n > 2.



Chapter 11 - The Alternating Group

Here we'll meet the alternating group An which is a subgroup of Sn. This group
has had many applications in mathematics. Notably the fact that there is no
formula for the roots of a quintic from its coe�cients based on the four arithmetic
operations and taking nth roots can be proved as a consquence of the internal
subgroup structure of this group.

11.1 Permutations and transpositions

11.1.1 Lemma Every permutation can be written as a product of transposi-
tions.

Note the absence of the word `disjoint'.

Proof . We know that every permutation can be written a product of cycles. So
it is enough to show that a cycle can be written as a product of transpositions.
Check for yourself that

(a1, a2, . . . , am) = (a1, am) · · · (a1, a3)(a1, a2). (5)

11.1.2 Example Equation (5) gives a recipe for writing any cycle as a product
of transpositions. For example,

(1, 5, 9) = (1, 9)(1, 5).

Note that these transpositions are not disjoint and so they don't have to commute.
Check that

(1, 9)(1, 5) 6= (1, 5)(1, 9).

One thing to be careful about is that decomposition of a permutation as a product
of transpositions is not in any way unique. For example, using (5) we have

(1, 2, 3, 4) = (1, 4)(1, 3)(1, 2).

However, you can also check that

(1, 2, 3, 4) = (2, 3)(1, 3)(3, 5)(3, 4)(4, 5).

So we can write (1, 2, 3, 4) as a product of 3 transpositions and as a product of 5
transpositions. Can we write it as a product of 4 transpositions? Spend no more
and no less than �ve minutes thinking about this. ♦



11.2 Even and odd Permutations

Let n ≥ 2 be an integer. Let x1, x2, . . . , xn be variables, and let Pn be the polyno-
mial

Pn =
∏

1≤i<j≤n

(xi − xj).

The polynomial Pn is called the n-th alternating polynomial. It will help us to
discover an important subgroup of Sn called the alternating group and denoted by
An. Let us write down the �rst three alternating polynomials:

P2 = x1 − x2, P3 = (x1 − x2)(x1 − x3)(x2 − x3),
P4 = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

If σ ∈ Sn then de�ne
σ(Pn) =

∏
1≤i<j≤n

(xσ(i) − xσ(j)).

11.2.1 Example Let σ = (1, 2) ∈ S3. Then

σ(P3) = (xσ1 − xσ2)(xσ1 − xσ3)(xσ2 − xσ3)
= (x2 − x1)(x2 − x3)(x1 − x3)
= −P3.

We obtain the equality in the �nal step of the calculation by comparing the factors
of P3 with the factors of σ(P3), and not by expanding! Note that the �rst factor
of P3 changed sign and the last two factors are swapped. So σ(P3) = −P3.

Now let τ = (1, 2, 3) ∈ S3. Then

τ(P3) = (xτ(1) − xτ(2))(xτ(1) − xτ(3))(xτ(2) − xτ(3))
= (x2 − x3)(x2 − x1)(x3 − x1)
= P3.

Again we obtain equality by comparing factors. Write down ρ(P3) for the other
four elements ρ ∈ S3. ♦

This example involving P3 for an element of S3 is quite straightforward. Let's
look at a more di�cult example.



11.2.2 Example Let τ = (2, 4) ∈ S5. We want to check that τ(P5) = −P5.
Some factors of P5 are una�ected. For example, τ(x1−x3) = xτ(1)−xτ(3) = x1−x3.
The ones that aren't a�ected are the ones that don't contain either of x2 or x4.
These are,

x1 − x3, x1 − x5, x3 − x5.
We will split the other factors of P5 into four groups

6:

(I) x1 − x2, x1 − x4,
(II) x2 − x3, x3 − x4,
(III) x2 − x5, x4 − x5,
(IV) x2 − x4.

Let's study what τ does to each group. Note that

τ(x1 − x2) = x1 − x4, τ(x1 − x4) = x1 − x2.

Thus τ swaps the factors in group (I) whilst keeping their signs the same. But

τ(x2 − x3) = x4 − x3 = −(x3 − x4), τ(x3 − x4) = x3 − x2 = −(x2 − x3).

Thus τ swaps the factors in group (II) and changes the sign of each. Moreover,

τ(x2 − x5) = x4 − x5, τ(x4 − x5) = x2 − x5.

So τ swaps the factors in group (III) whilst keeping their signs the same. Finally,

τ(x2 − x4) = xτ2 − xτ4 = x4 − x2 = −(x2 − x4).

So the one factor in group (IV) simply changes sign. We see that τ(P5) has the
same factors as P5 with three sign changes: τ(P5) = (−1)3P5 = −P5. ♦

11.2.3 Lemma Let τ ∈ Sn be a transposition. Then τ(Pn) = −Pn.

Proof . Let τ = (`,m). The transposition (`,m) swaps ` and m, and keeps ev-
erything else �xed. In particular (`,m) = (m, `). So we can suppose that ` < m.
Any factor xi − xj where neither i nor j is equal to ` nor m, is una�ected by τ .

6The word �groups� here is used in its English language sense, not in its mathematical sense.



We pair o� the other factors as follows:

(I)


x1 − x`, x1 − xm,
x2 − x`, x2 − xm,
...

...

x`−1 − x`, x`−1 − xm,

(II)


x` − x`+1, x`+1 − xm,
x` − x`+2, x`+2 − xm,
...

...

x` − xm−1, xm−1 − xm,

(III)


x` − xm+1, xm − xm+1,

x` − xm+2, xm − xm+2,
...

...

x` − xn, xm − xn,
(IV)

{
x` − xm.

Now τ swaps each pair in (I), keeping the signs the same; it swaps each pair in
(II) and changes the sign of each; it swaps each pair in (III), keeping the signs the
same; it changes the sign of x`− xm. So τ(Pn) has exactly the same factors as Pn,
up to a certain number of sign changes. How many sign changes? The number of
sign changes is:

2(m− `− 1) + 1.

The 1 is for changing the sign of x` − xm. There are 2 sign changes coming from
each pair in (II). The number of such pairs is m− `− 1. Since the number of sign
changes is odd, we see that τ(Pn) = −Pn.

11.2.4 Lemma If σ ∈ Sn then σ(Pn) = ±Pn. More precisely, if σ is a product
of an even number of transpositions then σ(Pn) = Pn and if σ is a product of an
odd number of transpositions then σ(Pn) = −Pn.

Proof . Recall, by Lemma 11.1.1, that we can write every permutation as a product
of transpositions. Every transposition changes the sign of Pn. The lemma follows.

11.2.5 Example We have noted in Example 11.1.2 that the way we express a
permutation as a product of transpositions is not unique. Indeed we saw that

(1, 2, 3, 4) = (1, 4)(1, 3)(1, 2), (1, 2, 3, 4) = (2, 3)(1, 3)(3, 5)(3, 4)(4, 5).



So we can write (1, 2, 3, 4) as a product of 3 transpositions and as a product of
5 transpositions. We asked the question of whether (1, 2, 3, 4) can be written as
a product of 4 transpositions? Write σ = (1, 2, 3, 4). From the above lemma, we
see that σ(Pn) = −Pn. If we're able to write σ as a product of an even number
of transpositions then σ(Pn) = Pn. We would then have Pn = −Pn which is a
contradiction. Therefore we cannot write σ as a product of 4 transpositions. ♦

This example tells us how to prove the following theorem.

11.2.6 Theorem Every permutation in Sn can be written as a product of ei-
ther an even number of transpositions, or an odd number of transpositions but
not both.

Proof . Let σ ∈ Sn. Then, by Lemma 11.1.1, Sn can be written as a product of
transpositions. Suppose σ can be written both as a product of an even number
of transpositions and a a product of an odd number of transpositions. Then by
Lemma 11.2.4 we have σ(Pn) = Pn and σ(Pn) = −Pn. This implies that Pn = −Pn,
a contradiction. The conclusion follows. ♦

11.2.7 De�nition We shall call a permutation even if we can write it as a
product of an even number of transpositions, and we shall call it odd if we can
write it as a product of an odd number of transpositions.

11.2.8 Example (1, 2, 3, 4) is an odd permutation because we can write it as
the product of 3 transpositions:

(1, 2, 3, 4) = (1, 4)(1, 3)(1, 2).

Indeed, a cycle of length n can be written as product of n−1 transpositions by (5).
So we need to be careful because a cycle of length n is even if n is odd, and it is
odd if n is even!

The permutation (1, 2, 3)(4, 5) is the product of an even permutation which is
(1, 2, 3) and an odd permutation which is the transposition (4, 5). Thus (1, 2, 3)(4, 5)
is an odd permutation.

What about the identity element id? Note that id(Pn) = Pn, so id must be
even. We must be able to write it as a product of an even number of transpo-
sitions. A mathematician would say that the identity element is the product of
zero transpositions, so it is even. If you don't feel comfortable with that kind of



reasoning, instead, note that

id = (1, 2)(1, 2),

which does allow us to check that id is indeed even.

We now come to de�ne a very important group. Let n ≥ 2. We de�ne the n-th
alternating group to be

An = {σ ∈ Sn | σ is even}.

As usual, all we've done is specify a subset of Sn which we've denoted by An and
we must indeed show that An is a group.

11.2.9 Theorem An is a subgroup of Sn.

Proof . We've already seen that the identity element id is even, so id ∈ An. If σ,
ρ ∈ An then we can write each as an even number of transpositions. Therefore the
product σρ can be written as an even number of transpositions (even+even=even).
Hence σρ ∈ An.

Finally we must show that the inverse of an even permutation is even. Suppose
σ is even. We can write

σ = τ1τ2 . . . τm

where the τi are transpositions, and m is even. Now

σ−1 = (τ1τ2 · · · τm)−1
= τ−1m τ−1m−1 · · · τ−11

= τmτm−1 · · · τ1.

Here you should convince yourself that τ−1 = τ for any transposition τ . Since m
is even, we �nd that σ−1 is even and so σ−1 ∈ An.

Hence An is a subgroup of Sn. ♦

11.2.10 Example Recall that S2 = {id, (1, 2)}. We see that A2 = {id} is the
trivial subgroup. ♦



11.2.11 Example Recall that S3 has 3! = 6 elements:

S3 = {id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.

Then
A3 = {id, (1, 2, 3), (1, 3, 2)}.

Note that S3 is non-abelian, but you can check that A3 is abelian. ♦

In the above examples we saw that An has half the number of elements of Sn
for n = 2, 3. In fact, this pattern continues.

11.2.12 Theorem Let n ≥ 2. Then An has order

|An| =
1

2
|Sn| =

n!

2
.

Proof . We will show there are the same number of even permutations as odd
permutations in Sn.

Suppose σ ∈ Sn is an even permutation. Let τ = (1, 2), an odd permutation.
Then τσ is an odd permutation. Moreover if σ1 and σ2 are distinct even permu-
tations then τσ1 and τσ2 are distinct odd permutations (think about this, if not
you could multiply them both on the left by τ again and get that σ1 = σ2). So
for every even permutation we can create a distinct odd permutation in this way.
Therefore the number of odd permutations is greater than or equal to the number
of even permutations.

Now suppose σ ∈ Sn is an odd permutation. Let τ = (1, 2), an odd permu-
tation. Then τσ is an even permutation. Moreover if σ1 and σ2 are distinct odd
permutations then τσ1 and τσ2 are distinct even permutations. So for every odd
permutation we can create a distinct even permutation in this way. Therefore
the number of even permutations is greater than or equal to the number of odd
permutations.

Combining these statements we must have that the number of even permuta-
tions is the same as the number of odd permuations and so |An| = 1

2
|Sn| = n!

2
.

♦

11.2.13 Exercise Let ρ and τ be as given in Exercise 10.3.4. Write ρ and τ as
products of transpositions and state if they're even or odd.



11.2.14 Exercise Write down the elements of A3 and check that it is cyclic
(and hence abelian). Show that An is non-abelian for n ≥ 4.

11.2.15 Exercise Let ρ and τ ∈ Sn. Show that τ is even if and only if ρ−1τρ
is even. (Hint: It will help to show that if ρ = c1c2 · · · cm as a product of
transpositions, then ρ−1 = cmcm−1 . . . c1).



Chapter 12 - Isomorphisms of Groups

At the end of the Chapter 10 we saw that D6 and S3 have arisen in two di�erent
way but have `the same' multiplication table

Here is D6 in the usual notation.

◦ ρ0 ρ1 ρ2 σ1 σ2 σ3

ρ0 ρ0 ρ1 ρ2 σ1 σ2 σ3
ρ1 ρ1 ρ2 ρ0 σ3 σ1 σ2
ρ2 ρ2 ρ0 ρ1 σ2 σ3 σ1
σ1 σ1 σ2 σ3 ρ0 ρ1 ρ2
σ2 σ2 σ3 σ1 ρ2 ρ0 ρ1
σ3 σ3 σ1 σ2 ρ1 ρ2 ρ0

Remember that we labelled the vertices of the equilateral triangle with the
numbers 1, 2, 3. Notice how there is a natural correspondence between the ele-
ments of D6 and elements of S3. For example σ2 swaps vertices 1 and 3 and so it
corresponds to (1, 3) ∈ S3.

The elements of S3 which correspond to

ρ0, ρ1, ρ2, ρ3, σ1, σ2, σ3 ∈ D6

written in disjoint cycle notation are, respectively:

(1); (1, 2, 3); (1, 3, 2); (2, 3); (1, 3); (1, 2).

Notice that the list above is the whole of S3. If you carefully swap each el-
ement in the D6 table for its corresponding element in the S3 table you get the
composition/multiplication table for S3.

◦ (1) (1, 2, 3) (1, 3, 2) (2, 3) (1, 3) (1, 2)

(1) (1) (1, 2, 3) (1, 3, 2) (2, 3) (1, 3) (1, 2)
(1, 2, 3) (1, 2, 3) (1, 3, 2) (1) (1, 2) (2, 3) (1, 3)
(1, 3, 2) (1, 3, 2) (1) (1, 2, 3) (1, 3) (1, 2) (2, 3)
(2, 3) (2, 3) (1, 3) (1, 2)) (1) (1, 2, 3) (1, 3, 2)
(1, 3) (1, 3) (1, 2) (2, 3) (1, 3, 2) (1) (1, 2, 3)
(1, 2) (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2) (1)

From this abstract point of view they actually are the same.



There is another group that has `the same' multiplication table as the two
above. It is a group consisting of six matrices representing rotations about the
origin and re�ections in lines through the origin:

R0 =

(
1 0
0 1

)
, R1 =

(
−1

2
−
√
3
2√

3
2
−1

2

)
, R2 =

(
−1

2

√
3
2

−
√
3
2
−1

2

)
,

L1 =

(
−1 0
0 1

)
, L2 =

(
1
2

√
3
2√

3
2
−1

2

)
, L3 =

(
1
2
−
√
3
2

−
√
3
2
−1

2

)
.

1. R0 is the identity map;

2. R1 is the rotation anticlockwise about the origin throuh 2π/3 radians;

3. R2 is the rotation anticlockwise about the origin throuh 4π/3 radians;

4. L1 is the re�ection in the y − axis;
5. L2 is the re�ection in the line y = tan(π/6)x;

6. L3 is the re�ection in the line y = tan(5π/6)x.

There are shown in the diagram below. Notice an equaliteral triangle centred
at the origin has been added to the diagram below. You should be able to convince
yourself that the triangle would be mapped to itself by each of these matrices and,
thinking of them like that, the correspondence with D6 feels very natural.



Here is the multiplication table.

◦ R0 R1 R2 L1 L1 L3

R0 R0 R1 R2 L1 L2 L3

R1 R1 R2 R0 L3 L1 L1

R2 R2 R0 R1 L1 L3 L1

L1 L1 L1 L3 R0 R1 R2

L1 L1 L3 L1 R2 R0 R1

L3 L3 L1 L1 R1 R2 R0

Note that these six matrices under matrix multiplication are a subgroup of
GL2(R) and indeed a subgroup of O2(R), at least when thought of in complex
number form, but not a subgroup of SO2(R). Convince yourself about these state-
ments.

Here is another example of the same thing.

U4 has multiplication table as below

× 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

If you replace each 1 with [0]4, each i with [1]4, each −1 with [2]4 and each −i
with [3]4, then switch × for +4 you get the table for (Z/4Z,+4) as below.

+4 [0]4 [1]4 [2]4 [3]4

[0]4 [0]4 [1]4 [2]4 [3]4
[1]4 [1]4 [2]4 [3]4 [0]4
[2]4 [2]4 [3]4 [0]4 [1]4
[3]4 [3]4 [0]4 [1]4 [2]4

If you now replace each [0]4 with ρ0, each [1]4 with ρ1, each [2]4 with ρ2 and
each [3]4 with ρ3 and then switch +4 for `followed by' you get the table for the
subgroup {ρ0, ρ1, ρ2, ρ3} of D8 as below



followed by ρ0 ρ1 ρ2 ρ3

ρ0 ρ0 ρ1 ρ2 ρ3
ρ1 ρ1 ρ2 ρ3 ρ0
ρ2 ρ2 ρ3 ρ0 ρ1
ρ3 ρ3 ρ0 ρ1 ρ2

Here is another(slightly silly) example of two groups which are essentially the same.
The set {e, a, b} with binary operation ∗ given in the table below is a group.

? e a b

e e a b
a a b e
b b e a

So is the set {apple, strawberry, lemon} with binary operation � given in the
table below is a group.

� apple strawberry lemon

apple apple strawberry lemon
strawberry strawberry lemon apple
lemon lemon apple strawberry

The point is that the names are not important, it's the interactions between
the elements (i.e. how they combine according to the binary operation) which
characterise a group.

Here is one more example, this time involving in�nite groups, which you may need
to think a bit more about to take in.

In S we can think of each element as eiθ for some real number θ. Then such
elements combine as eiθ × eiω = ei(θ+ω).

In SO2(R) each element f is an isometry of the form f(z) = eiθz for some real
number θ. Composing two elements f, g ∈ SO2(R), where g(z) = eiωz gives

(f ◦ g)(z) = f(g(z)) = f(eωiz) = eiθeiωz = ei(θ+ω)z.

This one is a little more tricky to see but in both cases the operation is essentially
about adding the values θ and ω and we are only interested in that value up to



multiples of 2π (because changing the value by a multiple of 2π has no e�ect on
either the element of S or the element of SO2(R). Again we could ask whether
these two groups really any di�erent?

We'll see here that these are all examples of isomorphic groups. What does
this mean?

12.1 What is an isomorphism?

12.1.1 De�nition Let (G, �) and (H, ∗) be groups. We say that the function
φ : G→ H is an isomorphism if it is a bijection and it satis�es

φ(g1 � g2) = φ(g1) ∗ φ(g2)

for all g1, g2 in G. In this case we say that (G, �) and (H, ∗) are isomorphic.

Isomorphic groups may look di�erent, but in essence they are the same. An
isomorphism is a way of relabeling the elements of one group to obtain another
group, as the following examples will make clear.

12.1.2 Example De�ne φ : Z/mZ→ Um by the rule

φ([a]m) = ζa, a = 0, 1, . . . ,m− 1.

Then φ is a bijection and satis�es the property

φ([a]m +m [b]m) = φ([a+ b]m) = ζa+b = ζa · ζb = φ([a]m)φ([b]m).

So φ is an isomorphism. ♦

12.1.3 Example Recall that, for a real number θ, the map fθ : C → C given
by fθ(z) = eiθz, the anti-clockwise rotation through and angle θ about 0, is an
isometry of C (notice how we can use the value θ as a subscript in the function
name to indicate the size of the rotation). As an aside, it's also worth noting that,
in the language of matrices and R2, this would correspond to the transformation
given by this rotation matrix:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

It represents anticlockwise rotation around the origin through an angle θ.



Returning to complex numbers notation, if θ, φ ∈ R then

(fθ ◦ fφ)(z) = fθ(fφ(z)) = fθ(e
iφz) = eiθeiφz = ei(θ+φ)z = fθ+φ(z).

This gives the identity
fθ+φ = fθ ◦ fφ

(or in matrix language
Rθ+φ = RθRφ)

which `turns addition into multiplication', indeed it comes from the identity

ei(θ+φ) = eiθeiφ.

So fθ and e
iθ are analogues and we might expect that the groups SO2(R) and

S are isomorphic. Recall that SO2(R) is the special orthogonal group (de�ned in
Theorem 9.1.10) given by

SO2(R) = {fθ | θ ∈ R},

and S is the circle group (page 62) given by

S = {α ∈ C | |α| = 1} = {eiθ | θ ∈ R}.

You can satisfy yourself that the map

φ : SO2(R)→ S, φ(fθ) = eiθ

is an isomorphism.

By this correspondence, we see that there are isometry analogues of the n-th
roots of unity (which you can translate to matrix analogues if you prefer). If we
let

Z = f2π/n ∈ SO2(R)
(in other words the isometry which is the anticlockwise rotation about the

origin through angle 2π/n) then idC = Z0,Z, . . . ,Zn−1 all satisfy the relationship
An = idCm their nth power is the identity. ♦

12.1.4 Exercise Let Z = f2π/6. Show that {1,Z, . . . ,Z5} is a subgroup of
SO2(R). Write down the orders of its elements.

12.1.5 Exercise Write down an isomporphism φ from D6 to S3. To do this
you need to specify with of id, (1 2), (2 3), (1 3), (1 2 3), (1 3 2) ∈ S3 is for each
element in D6 = {ρ0, ρ1, ρ2, σ1, σ2, σ3}. You don't need to check that your φ is an
isomorphism.



12.1.6 Exercise Write down an isomporphism φ from D8 to a subgroup of S3.
You don't need to check that your φ is an isomorphism.

12.1.7 Exercise Suppose groups G and H are isomorphic. Show that G and
H have the same order. Show that G is abelian if and only if H is abelian. Show
that G is cylic if and only if H is cyclic.

12.2 Direct products of groups

We'll now look at a way to form new groups from existing ones. Given groups
(G, ?), (H, �) we can de�ne a group structure on the set of ordered pairs G×H =
{(g, h) | g ∈ G, h ∈ H}.

12.2.1 De�nition Given groups (G, ?), (H, �) de�ne a binary operation . on
G×H = {(g, h) | g ∈ G, h ∈ H} as follows. If (g1, h1), (g2, h2) ∈ G×H then

(g1, h1).(g2, h2) = (g1 ? g2, h1 � h2).

Then (G×H, .) is a group called the the direct product of G and H. ♦

12.2.2 Exercise Prove that (G×H, .) as above is a group by showing

1. that . is an associative binary operation on G×H,

2. that (1G, 1H) is the identity element where 1G is the identity in G and 1H is
the identity in H

3. that (g−1, h−1) is the inverse element to (g, h) where g−1 is the inverse to
g ∈ G and h−1 is the inverse to h ∈ H.

12.2.3 Example Let G = Z/2Z and H = Z/2Z in the de�nition above. The
elements of G×H are then ([0]2, [0]2), ([1]2, [0]2),([0]2, [1]2) and ([1]2, [1]2) and its
table is

+ ([0]2, [0]2) ([1]2, [0]2) ([0]2, [1]2) ([1]2, [1]2)

([0]2, [0]2) ([0]2, [0]2) ([1]2, [0]2) ([0]2, [1]2) ([1]2, [1]2)
([1]2, [0]2) ([1]2, [0]2) ([0]2, [0]2) ([1]2, [1]2) ([0]2, [1]2)
([0]2, [1]2) ([0]2, [1]2) ([1]2, [1]2) ([0]2, [0]2) ([1]2, [0]2)
([1]2, [1]2) ([1]2, [1]2) ([0]2, [1]2) ([1]2, [0]2) ([0]2, [0]2)

Exceptionally, we have used + for the binary operation in the direct product
here because the two underlying groups are both additive groups.



12.2.4 Example You've actually seen the example above before, on Assign-
ment 1. Here are the elements of the group of isometries of a rectangle which isn't
a square, there are four of them.

L− re�ect about
horizontal axis

M − re�ect about
vertical axis

R− rotate through
half a turn
about centre

I − the identity
(do nothing)

And here is its group table.

◦ I R L M

I I R L M
R R I M L
L L M I R
M M L R I

Can you �nd a one-to-one correspondence between the four elements of Z/2Z×
Z/2Z and the four elements of the group above which maps the table for Z/2Z×
Z/2Z (in other words can you �nd an isomorphism between the two groups)?
There are actually several isomorphisms.

This group actually has a special name, it's called the Klein 4-group and it's
denoted K4. Here is the generic multiplication table for K4 where we just call the
elements 1, a, b and c.

◦ 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Notice

� the group is abelian

� each element other than the identity has order 2



� the product of any two distinct elements which are both not the identity is
the other element which is not the identity.

These three properties characterise the entire table (i.e. you can write down
the whole table from just knowing these three properties).

12.3 Classifying groups up to isomorphism

This is really what abstract group theory is all about. We want to answer questions
like

� What is a complete list, up to isomorphism, of all the groups with 3 elements?

� What is a complete list, up to isomorphism, of all the groups with 4 elements?

And so on....

The following theorem, which generalises Theorem 5.2.5 to non-Abelian groups
will help us to answer the two questions above at least.

12.3.1 Theorem Let G be a �nite group. Let g ∈ G. Then the order of g
divides the order of G.

Proof . By Theorem 5.1.2, g has �nite order n. Consider the subgroup generated
by g i.e.

〈g〉 = {1, g, g2, . . . , gn−1}.
This contains n elements. If G = 〈g〉 then we are done because then |G| = n and
the order of g is n so clearly the order of g then divides the order of G.

If not we can �nd an element x ∈ G such that x 6∈ 〈g〉. For such an element x
consider the set

X = {x, xg, xg2, . . . , xgn−1}.
We will show that X contains n elements by showing that all the listed elements
of X are distinct. We wil also show that X ∩ 〈g〉 = ∅.

Suppose that xgi = xgj for integers i, j with 0 ≤ i < j ≤ n− 1. Then, multi-
plying both sides of this on the right by g−i gives x = gj−i. But this implies that
x ∈ 〈g〉 which contradicts the way that x was chosen.

Now suppose that X ∩ 〈g〉 6= ∅. Then there are integers i, j between 0 and
n− 1 inclusive such that gi = xgj. Multiplying both sides of this on the right by



g−j gives gi−j = x which again implies that x ∈ 〈g〉, a contradiction.

Suppose G = 〈g〉 ∪X. Then G has 2n elements and the order of g, n, divides
the order of G.

If not we can choose an element y ∈ G such that y 6∈ 〈g〉 ∪X. In a similar way
to before with X and x let

Y = {y, yg, yg2, . . . , ygn−1}.
As before all the listed elements of Y are distinct. As before Y ∩ 〈g〉 = ∅. Also
Y ∩ X = ∅ as follows. If not there are integers i, j between 0 and n − 1 inclu-
sive such that ygi = xgj. Multiplying both sides of this on the right by g−i gives
y = xgj−i which implies that y ∈ X, contradicting the way that y has been chosen.

Suppose G = 〈g〉 ∪ X ∪ Y . Then G has 3n elements and the order of g, n,
divides the order of G.

If not choose z ∈ G such that z 6∈ 〈g〉∪X∪Y and let Z =...(argument continues
as before)...

This process must end at some point because G is a �nite group. At the point
it does we have deduced that other order of g divides the order of G. ♦

12.3.2 Example We'll now use this to show that there are actually only two
groups of order 4, up to isomorphism.

Suppose we have a group G with four elements. Let's call them 1, a, b and c,
they are all distinct from one another.

Then either

1. G has an element of order 4

2. G has no elements of order 4.

Case 1. Let's suppose, renaming if necessary and so without any loss of generality,
that a is an element of order 4. Then the whole group is {1, a, a2, a3} and so,
again renaming if necessary, without any loss of generality we can assume
that b = a2 and c = a3.

Then the group table looks like this



◦ 1 a b = a2 c = a3

1 1 a b c
a a b c 1

b = a2 b c 1 a
c = a3 c 1 a b

So it's a cyclic group of order 4. U4, Z/4Z and the subgroup {ρ0, ρ1, ρ2, ρ3} of
D8 are all examples of this type, i.e. they are all isomorphic to one another
and to the group shown above.

Case 2. In the second case we have no elements of order 4. By Theorem 12.3.1 all the
elements other than 1 must have order 2. In other words a2 = b2 = c2 = 1.
Combining this with what we know about the identity element, a lot of the
multiplcation table is already �lled in

◦ 1 a b c

1 1 a b c
a a 1
b b 1
c c 1

Now consider ab. It must be one of 1, a, b or c.

If ab = 1 then, multiplying on the left by a, gives a2b = a. But a2 = 1 so this
gives b = a. This is not possible a and b are distinct elements in the group.

If ab = a then, multiplying on the left by a, gives a2b = a2. But a2 = 1 so
this gives b = 1. This is not possible 1 and b are distinct elements in the
group.

If ab = b then, multiplying on the right by b, gives ab2 = b2. But b2 = 1 so
this gives a = 1. This is not possible 1 and a are distinct elements in the
group.

The only possibility left is that ab = c!

You can argue similarly that ba = c, ac = b, ca = b, bc = a and cb = a. This
means the complete table must be



◦ 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

and the group is K4. ♦

12.3.3 Exercise Show that there is only one group with order 3 (up to iso-
morphism). Show that there is only one group with order 5 (up to isomorphim).
What is the smallest non-abelian group? ♦

12.4 What's so special about Sn?

We started lecture 10 by looking at symmetry groups of arbitrary sets A. Then
we restricted ourself to Sn = Sym({1, 2, . . . , n}). This is not as big a restriction
as it looks. Suppose the set A is �nite, and let n = |A|, the number of elements of
A. Then Sym(A) is isomorphic to Sn. One way of seeing this is convince ourselves
that every permutation of {1, 2, . . . , n} gives us a permutation of A. For example,
suppose A = {a1, a2, a3}. Then the permutation {1, 2, 3} given by(

1 2 3
2 3 1

)
corresponds to the permutation of A given by(

a1 a2 a3
a2 a3 a1

)
.

Understanding Sym(A) with |A| = n is the same as understanding Sn.



Chapter 13 - Group Homomorphisms

13.1 What is a group homomorphism?

A homomorphism is like an isomorphism but we take out the requirement to be a
bijection. As we noted, when groups are isomorphic they are essentially the same.
When there is a homomorphism between groups which isn't a bijection they have
a coarser similarity. You will explore this much more in future modules about
group theory, this chapter just serves as an introduction.

13.1.1 De�nition Let (G, �) and (H, ?) be groups. We say that the function
φ : G→ H is a homomorphism if it satis�es

φ(g1 � g2) = φ(g1) ? φ(g2)

for all g1, g2 in G.

This means that all isomorphims are homomorphisms and so you have exam-
ples of homomorphisms already, all the isomorphisms you saw in the last chapter.

We also de�ne some associated objects.

13.1.2 De�nitions Let G and H be groups and let φ : G→ H be a homomor-
phism. Then

1. Ker φ = {g ∈ G | φ(g) = 1H} is called the kernel of φ.

2. Im φ = {h ∈ H | there exists g ∈ G with φ(g) = h} = {φ(g) | g ∈ G} is
called the image of φ

Let's look at some examples of homomorphisms that are not isomorphisms.

13.1.3 Example Let G = Z and let H = {1,−1} (under multiplication). De-
�ne a function φ : G→ H as follows:

φ(m) =

{
1 if m is even
−1 if m is odd

To check that this is a homomorphism we need compare φ(m)φ(n) with φ(m+n)
and show they are equal for all possible combinations of m,n being odd or even.



If m and n are both even then φ(m) = φ(n) = 1 and so φ(m)φ(n) = 1. Also
m+ n is even and so φ(m+ n) = 1 and we have φ(m+ n) = φ(m)φ(n).

If m and n are both odd then φ(m) = φ(n) = −1 and so φ(m)φ(n) = 1. Also
m+ n is even and so φ(m+ n) = 1 and we have φ(m+ n) = φ(m)φ(n).

Ifm is odd and n is even then φ(m) = −1 and φ(n) = 1 and so φ(m)φ(n) = −1.
Also m+n is odd and so φ(m+n) = −1 and we have φ(m+n) = φ(m)φ(n). The
case of m even and n odd is similar.

So φ is a homomorphism. It's clear that Im φ = {−1, 1} and that Ker φ = 2Z.

13.1.4 Example Let G = Z and let H = Z/nZ. De�ne a function φ : G→ H
as follows:

φ(m) = [m]n

To check that this is a homomorphism we need to show that φ(k) + φ(l) =
φ(k + l) for all integers k, l.

We have

φ(k) + φ(l) = [k]n + [l] + n = [k + l]n = φ(k + l).

So φ is a homomorphism. Ker φ = {k ∈ Z | [k]n = [0]n} = nZ, the multiples
of n. Convince yourself that Im φ = Z/nZ.

13.1.5 Example Let G = Eucl(R2) and H = O2(R). Recall from chapter 9
that there are two possible forms for an isometry in G so we de�ne a function
φ : G→ H by describing what happens to each of the two forms, as follows:

If f ∈ G is given by f(z) = eiθz + w where θ ∈ R and w ∈ C then φ(f) is the
element of H given by (φ(f))(z) = eiθz.

If f ∈ G is given by f(z) = eiθz + w where θ ∈ R and w ∈ C then φ(f) is the
element of H given by (φ(f))(z) = eiθz.

In both cases we are just dropping the translation part of the map, the `+w'
which comes at the end.



To prove that this is a homomorphism we need to show that φ(f ◦ g) =
φ(f) ◦ φ(g) for all possible combinations of isometry types for f and g.

For example, if f(z) = eiθz + w and g(z) = eiµz + v then (φ(f))(z) = eiθz and
(φ(g))(z) = eiµz. This means that (φ(f) ◦ φ(g))(z) = ei(θ+µz. Also

(f ◦ g)(z) = ei(θ+µ) + eiθv + w

and so φ(f ◦ g) = ei(θ+µ)z. Therefore φ(f ◦ g) = φ(f) ◦ φ(g).

If f(z) = eiθz + w and g(z) = eiµz + v then (φ(f))(z) = eiθz and (φ(g))(z) =
eiµz. This means that (φ(f) ◦ φ(g))(z) = ei(θ−µz. Also

(f ◦ g)(z) = ei(θ−µ) + eiθv + w

and so φ(f ◦ g) = ei(θ−µ)z. Therefore φ(f ◦ g) = φ(f) ◦ φ(g).

The other two cases are similar.

Now we might ask what is Ker φ? Giving this some thought, we would need f
to have form f(z) = z + w for it to become the identity function upon dropping
the translation part, the `+w'. So the kernel of φ is the set of isometries which are
pure translation, those with form f(z) = z + w for some w ∈ C.

Convince yourself that Im φ = O2(R) (φ is surjective).

13.1.6 Exercise Let G = Sn and let H = {1,−1} (under multiplication).
De�ne a function φ : G→ H as follows:

φ(σ) =

{
1 if σ is even
−1 if σ is odd

Check that φ is a homomorphism and write down Ker φ and Im φ.

13.1.7 Exercise Let G = R2 and let H = R2. De�ne a function φ : G→ H as
follows:

φ(x, y) = (x, 0).

Show that φ is a homomorphism and calculate Ker φ and Im φ.



13.2 The kernel and the image of a homomorphism

You will learn much more about the kernel and the image of homomorphisms in
future group theory modules. They are fundamental in understanding exactly how
groups are related and the structure of general groups.

For now we will just prove that the kernel and the image of a homomorphism
are both subgroups of the groups they lie in. We need a lemma for this.

13.2.1 Lemma Let G and H be groups and let φ : G → H be a homomor-
phism. Then φ(1G) = 1H (here we are using 1G and 1H for the respective identity
elements rather than the usual 1 for emphasis).

Proof . We have 1G1G = 1G. Therefore, since φ is a homomorphism, we have

φ(1G) = φ(1G1G) = φ(1G)φ(1G) (*).

But φ(1G) is just an element of H and as such has an inverse in H, φ(1G)
−1.

Multiplying both sides of (*) on the left by φ(1G)
−1 gives

1H = φ(1G)
−1φ(1G) = φ(1G)

−1φ(1G)φ(1G) = 1Hφ(1G) = φ(1G).

♦

13.2.2 Theorem Let G and H be groups and let φ : G → H be a homomor-
phism. Then

1. Ker φ = {g ∈ G | φ(g) = 1} is a subgroup of G

2. Im φ = {θ(g) | g ∈ G is a subgroup of H.

Proof .
In both cases we'll use the (a), (b), (c) test for a subgroup from Theorem 6.3.1.

1. (a) Identity. By Lemma 13.2.1, 1 ∈ Ker φ = {g ∈ G | φ(g) = 1}.

(b) Closure. Suppose g1, g2 ∈ Ker φ. Then φ(g1) = φ(g2) = 1. Therefore
φ(g1g2) = φ(g1)φ(g2) = 1 and g1g2 ∈ Ker φ.

(c) Inverses. Suppose g ∈ Ker φ. Then φ(g) = 1. We need to show that
φ(g−1) = 1 so that g−1 ∈ Ker φ. We do this as follows:

φ(g−1) = φ(g−11 = φ(g−1)φ(g) = φ(gg−1) = φ(1) = 1.



2. Im φ = {θ(g) | g ∈ G is a subgroup of H. (a) Identity. By Lemma 13.2.1,
1 ∈ Im φ = {θ(g) | g ∈ G.

(b) Closure. Suppose h1, h2 ∈ Im φ. Then there exist g1, g2 ∈ G such that
φ(g1) = h1 and φ(g2) = h2. Then φ(g1g2) = φ(g1)φ(g2) = h1h2 and so
h1h2 ∈ Im φ.

(c) Inverses. Suppose h ∈ Im φ. We need to show that h−1 (which exists in
H) is also in Im φ.

Since h ∈ Im φ there exists g ∈ G such that φ(g) = h. Then

φ(g−1φ(g) = φ(g−1g) = φ(1) = 1 (**).

Multiplying both sides of (**) on the right by φ(g)−1 gives

φ(g−1) = φ(g−1φ(g)φ(g)−1 = φ(g)−1 = h−1.

This means that h−1 ∈ Im φ, as required. ♦

13.2.3 Exercise Let G and H be groups and let φ : G → H be a homomor-
phism. Show that φ is injective if and only if Ker φ = {1}.

13.2.4 Exercise Let G and H be groups and let φ : G → H be an injective
homomorphism. Show that H contains a subgroup with is isomorphic to G.



Chapter 14 - Rings

The remaining chapters are about another structure in abstract algebra. These
are called rings. Rings have two binary operations, an `addition' and a `multipli-
cation'. The set of integers Z with its usual addition and multiplication is in many
ways the prototype ring.

In the integers we have the likes of `division with remainder'; `unique factori-
sation into products of primes' and `fractions built from integers (the rationals)'.
Some of ring theory is concerned with the extent to which other rings have prop-
erties like this. We'll take particular interest in rings of polynomials in this module.

If you start to miss groups don't worry, we will see them again in the remaining
chapters!

14.1 De�nition

A ring is a triple (R,+, ·), where R is a set and +, · are binary operations on R
such that the following properties hold

(i) (closure) for all a, b ∈ R, a+ b ∈ R and a · b ∈ R;

(ii) (associativity of addition) for all a, b, c ∈ R

(a+ b) + c = a+ (b+ c);

(iii) (existence of an additive identity element) there is an element 0 ∈ R such
that for all a ∈ R,

a+ 0 = 0 + a = a.

(iv) (existence of additive inverses) for all a ∈ R, there an element, denoted by
−a, such that

a+ (−a) = (−a) + a = 0;

(v) (commutativity of addition) for all a, b ∈ R,

a+ b = b+ a;

(vi) (associativity of multiplication) for all a, b, c ∈ R,

a · (b · c) = (a · b) · c;



(vii) (distributivity) for all a, b, c ∈ R,

a · (b+ c) = a · b+ a · c; (b+ c) · a = b · a+ c · a;

(viii) (existence of a multiplicative identity) there is an element 1 ∈ R so that for
all a ∈ R,

1 · a = a · 1 = a.

Moreover, a ring (R,+, ·) is said to be commutative, if it satis�es the following
additional property:

(ix) (commutativity of multiplication) for all a, b ∈ R,

a · b = b · a.

Note that the word `commutative' in the phrase `commutative ring' refers to mul-
tiplication. Commutativity of addition is part of the de�nition of ring. Some
textbooks omit property (viii) from the de�nition of a ring. Those textbooks call
a ring satisfying (viii) a ring with unity. We shall always assume that our rings
satisfy (viii).

Observe, from properties (i)�(v), if (R,+, ·) is a ring, then (R,+) is an abelian
group.

14.2 Examples

14.2.1 Example You know lots of examples of rings: Z, Q, R, C, R[x], etc.
All these examples are commutative rings.

14.2.2 Example Let

M2×2(R) =
{(

a b
c d

)
| a, b, c, d ∈ R

}
.

This is the set of 2× 2 matrices with real entries. From the properties of matrices
it is easy to see that M2×2(R) is a ring with the usual addition and multiplication
of matrices. The additive identity is the zero matrix, and the multiplicative iden-
tity is I2. The ring M2×2(R) is an example of a non-commutative ring, as matrix
multiplication is non-commutative.

Similarly we de�neM2×2(C),M2×2(Z),M2×2(Q). These are all non-commutative
rings. ♦



14.2.3 Theorem Let m be an integer satisfying m ≥ 2. Then Z/mZ is a ring.

Proof . We really mean that (Z/mZ,+m,×m) is a commutative ring. We've al-
ready seen that that (Z/mZ,+m) is an abelian group. That leaves associativity
of multiplication, distributivity and the existence of a multiplicative identity to
check. These all follow from the corresponding properties in Z as follows. Given
a, b, c ∈ Z we have:

associativity of multiplication: [a]m ×m ([b]m ×m [c]m) = [a]m ×m [bc]m =
[a(bc)]m = [(ab)c]m = [ab]m ×m [c]m = ([a]m ×m [b]m)×m [c]m.

distributivity: [a]m×m ([b]m+m [c]m) = [a]m.[b+c]m = [a(b+c)]m = [ab+ac]m =
[ab]m +m [ac]m = [a]m ×m [b]m +m [a]m ×m [c]m.

existence of a multiplicative identity: [1]m ×m [a]m = [1.a]m = [a]m = [a.1]m =
[a]m ×m [1]m. ♦

14.2.4 Example You're familiar with the following two binary operations on
R3: addition and the cross product (also known as the vector product). Is
(R3,+,×) a ring? No. First the cross product is not associative. For example,

i× (j× j) = 0, (i× j)× j = −i.
We only need one of the properties (i)�(viii) to fail for us to conclude that (R3,+,×)
is not a ring. We know that (vi) fails. It is interesting to note that (viii) fails too,
as we now show. Indeed,

a× b = −b× a. (6)

Suppose 1 is a vector in R3 that satis�es

a× 1 = 1× a = a

for all a ∈ R3. From (6) we see that a = −a for all a ∈ R3. This gives a
contradiction. Therefore (viii) fails too. ♦

14.2.5 Example Consider (R[x],+, ◦), where ◦ is composition of polynomials.
Is this a ring? No. It is easy to see that all the required properties hold except
for distributivity (the �multiplicative identity� is the polynomial f(x) = x). Let
us give a counterexample to show that distributivity fails. Let

f(x) = x2, g(x) = x, h(x) = x.

Then
f ◦ (g + h) = f(2x) = 4x2; f ◦ g + f ◦ h = x2 + x2 = 2x2.

♦



14.2.6 Example The zero ring is the ring with just one element {0}. In this
ring 1 = 0, and there is only one possible de�nition of addition and multiplication:
0 + 0 = 0, 0 · 0 = 0. The zero ring is not interesting.

14.2.7 Example Let's step back a little and think about R2. We know that
(R2,+) is an abelian group. Is there a way of de�ning multiplication on R2 so that
we obtain a ring? We will de�ne two di�erent multiplications that make R2 into
a ring. The �rst is more obvious: we de�ne

(a1, a2)× (b1, b2) = (a1b1, a2b2).

With this de�nition, you can check that (R2,+,×) is a ring, where the multiplica-
tive identity is 1 = (1, 1).

The other way is more subtle: we de�ne

(a1, a2)× (b1, b2) = (a1b1 − a2b2, a1b2 + a2b1). (7)

Where does this de�nition come from? Recall that R2 is represented geometrically
by the plane, and C is represented geometrically by the plane. If we're thinking of
points in the plane as elements of R2 then we write them as ordered pairs of real
numbers: (a, b). If we're thinking of points in the plane as elements of C then we
write them in the form a + ib where again a, b are real numbers. We multiply in
C using the rule

(a1 + ia2)× (b1 + ib2) = (a1b1 − a2b2) + i(a1b2 + a2b1). (8)

Notice that de�nitions (7), (8) are exactly the same at the level of points on the
plane. We've used the multiplicative structure of C to de�ne multiplication on
R2. With this de�nition, (R2,+,×) is a ring. What is the multiplicative identity?
It's not (1, 1). For example (1, 1)× (1, 1) = (0, 2). Think about the multiplicative
identity in C. This is simply 1 = 1+0i. So the multiplicative identity in (R2,+,×)
(with multiplication de�ned as in (7)) is (1, 0). Check for yourself that

(a1, a2)× (1, 0) = (1, 0)× (a1, a2) = (a1, a2).

♦
Here are couple of quick lemmas about rings.



14.2.8 Lemma Let R be a ring and a ∈ R. Then 0.a = 0 = a.0.

Proof . We have (make sure you can see why each of the two equalities in the
below is true):

0.a = (0 + 0).a = 0.a+ 0.a.

Adding the additive inverse of 0.a, namely −(0.a) to both sides of this equation
gives 0 = 0.a− 0.a = 0.a+ 0.a− 0.a = 0.a.

That 0 = a.0 holds similarly. ♦
There is a consequence of the above for a ring R in which 1 = 0. Then

a = a · 1 = a · 0 = 0 for all a ∈ R and so R is the zero ring. To summarise a ring
is the zero ring if and only if 1 = 0.

14.2.9 Lemma Let R be a ring and a, b ∈ R. Then −(a.b) = (−a).b = a.(−b).

Proof . We have that ab + (−a).b = (a + (−a)).b = 0.b = 0 by Lemma 14.2.8.
By the uniqueness of additive inverses (see 4.1.2, noting that this is written in
mutiplicative notation) it follows that (−a).b = −(ab). To get the other result
consider ab+ a.(−b) in a similar way. ♦



Chapter 15 - Subrings and ideals

15.1 Subrings

Just as we have subgroups, so we have subrings.

15.1.1 De�nition Let (R,+, ·) be a ring. Let S be a subset of R and suppose
that (S,+, ·) is also a ring with the same multiplicative identity. Then we say that
S is a subring of R (or more formally (S,+, ·) is a subring of (R,+, ·)). ♦

For S to be a subring of R, we want S to a ring with respect to the same two
binary operations that makes R a ring, and 1R ∈ S where 1R is the multiplicative
identity of R.

15.1.2 Example Z is a subring of R; Q is a subring of R; Z is a subring of Q;
R is a subring of R[x]. ♦

Theorem 6.3.1 gave a criterion for a subset of a group to be a subgroup. As
you'd expect we have a similar criterion for a subset of a ring to be a subring.

15.1.3 Theorem Let R be a ring. A subset S of R is a subring if and only if
it satis�es the following conditions

(a) 0, 1 ∈ S (that is S contains the additive and multiplicative identity elements
of R);

(b) if a, b ∈ S then a+ b ∈ S;

(c) if a ∈ S then −a ∈ S;

(d) if a, b ∈ S then ab ∈ S.

Proof . Let's prove this from `left to right' �rst. So suppose that the subset S is
a subring of R.

By (i),(ii),(iii) and (iv) in the de�nition of a ring (S,+) is a subgroup of (R,+).

By theorem 6.3.1, since (S,+) is a subgroup of (R,+), 0 ∈ S and both (b) and
(c) above are true.

We know from the de�nition of a subring that the multiplicative identity from
R is in S, so we now know that (a) above is true. Also from the de�nition of a



subring, if a, b ∈ S then ab ∈ S, so (d) above is true.

Now for `right to left' . Suppose S is a subset of R and (a), (b), (c), (d) above
are true.

Since 0 ∈ S and since (b) and (c) are true, by 6.3.1 (S,+) is a subgroup of
(R,+).

(a) above ensures the existence of a multiplicative identity in S and (d) tells
us that S is closed under multiplication.

All that remains to check is the commutativity of the addition in S, the asso-
ciativity of the multiplication in S and the distributive rules in S. But these all
follow immediately because they hold in R and any elements of S are also elements
of R. ♦

15.1.4 Example In Example 6.3.3, we saw that the set of even integers 2Z is
a subgroup of Z. Strictly speaking, (2Z,+) is a subgroup of (Z,+). Now we know
that (Z,+, ·) is a ring. Is (2Z,+, ·) a subring? From Theorem 15.1.3 we see that
it isn't because 1 /∈ 2Z. ♦

15.1.5 Example In view of the previous example, let's try to discover if Z has
any subrings other than itself. Let S be a subring of Z. We know that 0, 1 ∈ S.
Also, by (b) we know that 2 = 1 + 1 ∈ S. Repeating the argument, 3 = 2 + 1 ∈ S
and so on. By induction we know that 0, 1, 2, . . . are all in S. But by (c), if a ∈ S
then −a ∈ S. So . . . ,−3,−2,−1 are also in S. Hence Z is contained in S. But S
is a subset of Z. So they must be equal: S = Z.

Therefore, the only subring of Z is Z itself.
♦

15.1.6 Exercise As a diversion, contrast the above to the situation with sub-
groups of the group (Z,+).

1. Show that nZ = {nm | m ∈ Z} is a subgroup of (Z,+) for any integer n.
Deduce that there are in�nitely many proper subgroups of (Z,+).

2. Let H be a non-trivial, proper subgroup of Z. Let n be the smallest positive
integer in H. Using, division with remainder, show that H = nZ. ♦

Back to rings!



15.1.7 Exercise Let m be an integer satisfying m ≥ 2. Show that the only
subring of Z/mZ is Z/mZ itself. ♦

The easiest way to show that a set is a ring is to show that it is a
subring of a known ring. If you do this, you only have four properties to check
(a),(b),(c),(d). If you don't do this, you'll have eight properties to check (i)�(viii).
The following two examples will help you appreciate this principle.

15.1.8 Example Let

S =
{ a
2r
| a, r ∈ Z, r ≥ 0

}
.

Then S is a ring.

First think of a ring that contains S. The elements of S are rational numbers
whose denominator is a power of 2; for example

7 =
7

20
,

−1
2
,

15

8
=

15

23

are elements of S. An obvious choice of a ring that contains S is Q, the ring of
rational numbers. So let's show that S is a subring of Q. Clearly 0 = 0/20 and
1 = 1/20 are in S. Suppose α, β are elements of S. We can write

α =
a

2r
, β =

b

2s
,

where a, b, r, s ∈ Z and r, s ≥ 0. We want to check that α + β, −α and αβ are
in S. Note that

−α =
−a
2r
, αβ =

ab

2r+s
.

Clearly −α, αβ are in S, since −a, a + b, r, r + s are integers and r, r + s ≥ 0.
Now for the sum, we'll assume without loss of generality that r ≥ s. Then

α + β =
a+ 2r−sb

2r
.

Now since a, b, r, s are integers and r ≥ s, we have a + 2r−sb is also an integer.
Clearly, α + β is in S. By Theorem 15.1.3, S is a subring and therefore a ring. ♦

15.1.9 Exercise Which of the following are subrings of M2×2(R)? If so, are
they commutative?



(i)

{(
a b
0 c

)
| a, b, c ∈ R

}
.

(ii)

{(
a b
0 0

)
| a, b ∈ R

}
.

(iii)

{(
a b
0 1

)
| a, b ∈ R

}
.

(iv)

{(
a 0
0 b

)
| a ∈ R, b ∈ Z

}
.

(v)

{(
a b
−b a

)
| a, b ∈ R

}
.

(vi) {A ∈M2×2(R) | det(A) = 1}.

15.2 Ideals

We can get some understanding of a ring by considering its subring but generally
the study of rings depends on other subsets of the ring called ideals. We'll use
these most in chapter 18 but they will also crop up in chapter 17.

15.2.1 De�nition Let R be a ring. Let I be a subset of R. Then I is said to
be a (two-sided) ideal of R if

1. (I,+) is a subgroup of (R,+)

2. For every x ∈ I and r ∈ R, both xr ∈ I and rx ∈ I.

15.2.2 Examples

1. In any ring R, {0} and R itself are ideals.

2. nZ is an ideal of Z for any n ∈ Z.

3. The set of polynomials of the form anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x (i.e.

those with no constant term), where ai ∈ R is an ideal of R[x].

4. For any commutative ring R and any r ∈ R, rR = {rs | s ∈ R} is an ideal
of R.

5. Mn(mZ), i.e the set of matrices 2×2 matrices whose entries are all multiples
of m, is an ideal of Mn(Z) for any integer m.



15.2.3 Lemma Let R be a non-zero ring and let I be an ideal of R. Then
I = R if and only if 1 ∈ I.

Proof . Suppose I = R. Then, since 1 ∈ R, 1 ∈ I.

For the converse suppose 1 ∈ I. Since I is an ideal we have 1.r ∈ I for all
r ∈ R. But 1.r = r and so this means r ∈ I for all r ∈ R. Therefore R = I. ♦

We can generalise the result above a little. Suppose that I is an ideal of Z and
−1 ∈ I. Then, for all n ∈ Z, we would have n = (−1) × (−n) ∈ I and therefore
I = Z.

−1 is the only element in Z other than 1 itself to have a multiplicative inverse,
namely −1, and you can see how this was used in the argument that is −1 ∈ I, an
ideal of Z then I = Z just given. As an element in a ring which has a multiplicative
inverse is called a unit of that ring. Here is the de�nition.

15.2.4 De�nition Let R be a ring. An element u is called a unit if there is
some element v in R such that uv = vu = 1. In other words, an element u of R is
a unit if it has a multiplicative inverse that belongs to R.

15.2.5 Example In any non-zero ring, 0 is not a unit and 1 is a unit. ♦

15.2.6 Example In R, Q, C, every non-zero element has a multiplicative in-
verse. So the units are the non-zero elements. ♦

15.2.7 Example What are the units in Z? Suppose u is a unit in Z. Then
there is some v ∈ Z such that uv = vu = 1. This means that 1/u is an integer.
The only integers u such that 1/u is also an integer are ±1. So the units in Z are
±1. ♦

15.2.8 Example Recall that R[x] is the ring of polynomials with real coe�-
cients. Then x is not a unit, since there is no polynomial that we can multiply x
by to get 1 (think of the degree of resultant polynomial, more on this in chapter
17). However, 2 is a unit, since 1/2 is a polynomial in R[x] with real coe�cients:

1

2
=

1

2
+ 0x.

Convince yourself that the units in R[x] are precisely the non-zero constant
polynomials. ♦



So now we will generalise Lemma 15.2.3 slightly, in the form of a corollary.

15.2.9 Corollary Let R be a non-zero ring and let I be an ideal of R. Then
I = R if and only if I contains a unit in R.

Proof . Suppose I = R. Then, since 1 ∈ R, 1 ∈ I and is a unit.

For the converse suppose u ∈ I and u is a unit. This means that there exists
v ∈ R such that uv = vu = 1. But, since I is an ideal 1 = uv ∈ I and I = R by
Lemma 15.2.3. ♦

We can work out exactly what the ideals of Z look like.

15.2.10 Theorem Let I be an ideal of Z. Then I = nZ = {nm |m ∈ Z} for
some n ∈ Z.

Proof . If I = {0} then let n = 0 and we are done.

So assume I 6= 0. If x ∈ I then −x ∈ I and so I will contain a positive integer.
Let n be the smallest positive integer contained in I. Since I is an ideal and n ∈ I,
nm ∈ I for all integers m. This means that nZ ⊆ I.

Now let x ∈ I. By `division with remainder' there exist q, r ∈ Z with 0 ≤
r ≤ n − 1 such that x = nq + r. Since n ∈ I, nq ∈ I and −nq ∈ I. Also x ∈ I
and therefore r = x − nq ∈ I. By the minimality of n this means r = 0 and
x = nq ∈ nZ. Therefore I ⊆ nZ and I = nZ. ♦

15.2.11 Exercise Let R be a commutative ring and let x ∈ R. Prove that
xR = {xr | r ∈ R} is an ideal of R. Show by example that this may be false if R
is not commutative.

15.2.12 Exercise Let I, J be ideals of a ring R.

1. Prove that I + J = {x+ y |x ∈ I, y ∈ J} is an ideal of R.

2. Prove that I∩J is an ideal of R. Show by example that I∪J is not necessarily
an ideal of R.

15.2.13 Exercise Express each of the following ideals of Z in the form mZ
where m ∈ Z.



1. 5Z ∩ 7Z

2. 10Z ∩ 15Z

3. 3Z ∩ 5Z ∩ 7Z.

4. 6Z+ 8Z.

5. 6Z+ 5Z.



Chapter 16 (non-examinable) - The unit group of a
ring

16.1 The unit group of a ring

Recall that we de�ned R∗, Q∗, C∗ be removing from R, Q, C the zero element; e.g.

R∗ = {a ∈ R | a 6= 0}.
We found that R∗ is group with respect to multiplication. In Example 3.2.4 we
tried to do the same with Z and failed to obtain a group. Note that R, Q, C are
rings and so is Z. Given a ring, is there a naturally de�ned subset that is a group
with respect to multiplication? It turns out that the answer is yes, and that for
R, Q and C we obtain R∗, Q∗, C∗ as we'd expect.

Let's think about what this natural subset might be. It seems sensible to
include 1 in the subset because that will certainly act as an identity element in the
group we seek. Then, if we include any other element it would have to be a unit
from the ring in order that it has a multiplicative inverse. This line of thinking
leads us to wonder whether the set of all the units in a ring is a group under
multiplication. It turns out that it is:

16.1.1 De�nition Let R be a ring. We de�ne the unit group of R to be the
set 7

R∗ = {a ∈ R | a is a unit in R}. (9)

Just because we've called R∗ the unit group of R doesn't get us out of checking
that it is really a group!

16.1.2 Lemma Let (R,+, ·) be a ring and let R∗ be the subset de�ned in (9).
Then (R∗, ·) is a group.

Proof . We must �rst show that R∗ is closed under multiplication. Suppose u1,
u2 ∈ R∗. Thus u1, u2 are units of R, and so there are v1, v2 ∈ R such that

u1v1 = v1u1 = 1, u2v2 = v2u2 = 1. (10)

We want to show that u1u2 is a unit. Note that v2v1 ∈ R since R is closed under
multiplication (it's a ring after all). Moreover,

(u1u2)(v2v1) = u1(u2v2)v1 associativity of multiplication

= u1 · 1 · v1 since u2v2 = 1

= 1 since u1v1 = 1.

7Some mathematicians write R× instead of R∗.



Similarly (v2v1)(u1u2) = 1. Thus u1u2 is a unit 8 in R, and so u1u2 ∈ R∗. We've
proved that R∗ is closed under multiplication.

We want to show that multiplication is associative in R∗. But multiplication
is associative in R since R is a ring. Therefore it is associative in R∗.

Since 1 · 1 = 1, 1 is a unit and so 1 ∈ R∗.

Finally we want to show that every element in R∗ has a multiplicative inverse
that belongs to R∗. Suppose u ∈ R∗. Then uv = vu = 1 for some v ∈ R. Note
that this makes v also a unit, and so v ∈ R∗. Thus u has a multiplicative inverse
in R∗. This completes the proof that R∗ is a group.

16.1.3 Example Note that R∗, C∗, Q∗ have exactly the same meaning as be-
fore. ♦

16.1.4 Example We showed that the units of Z are ±1. Therefore the unit
group of Z is

Z∗ = {1,−1}.
♦

16.1.5 Example Recall that M2×2(R) is the ring of 2 × 2 matrices with real
entries. It is clear from the de�nition of a unit, that the units of M2×2(R) are the
invertible matrices. In other words, they are the ones having non-zero determinant.
Thus

(M2×2(R))∗ = GL2(R).

Similarly,

(M2×2(Q))∗ = GL2(Q), (M2×2(C))∗ = GL2(C).

What about the unit group of M2×2(Z)? This is more complicated. For ex-
ample, consider the matrix A = ( 3 1

1 1 ). The matrix A is invertible, and A−1 =(
1/2 −1/2
−1/2 3/2

)
. Although A is in M2×2(Z), its inverse is not in M2×2(Z), but it is in

M2×2(Q) and M2×2(R). Thus A is a unit in M2×2(Q), and M2×2(R) but not in
8Start again. We have u1, u2 are units and so satisfy (10) for some v1, v2 in R. We want to

show that u1u2 is a unit. What is wrong with the following argument?

(u1u2)(v1v2) = (u1v1)(u2v2) = 1 · 1 = 1.

Similarly (v1v2)(u1u2) = 1. Thus u1u2 is a unit.



M2×2(Z). The problem is clear: when calculating the inverse of a matrix, we must
divide by its determinant, and the result does not have to be an integer.

Let's go back to the de�nition of a unit. Suppose A ∈M2×2(Z) is a unit. Then
there is a matrix B ∈M2×2(Z) such that

AB = BA = I2.

Taking determinants, are recalling that det(AB) = det(A) det(B) we �nd that

det(A) det(B) = 1.

Now det(A) and det(B) are integers because A and B have integer entries. Thus

det(A) = det(B) = 1, or det(A) = det(B) = −1.

Conversely if A ∈ M2×2(Z) has determinant ±1, then its inverse will have integer
entries and so A is a unit. We deduce that

(M2×2(Z))∗ = {A ∈M2×2(Z) | det(A) = ±1} .

We de�ne the group GL2(Z) by

GL2(Z) = {A ∈M2×2(Z) | det(A) = ±1} ;

then (M2×2(Z))∗ = GL2(Z). In fact, for a commutative ring R we de�ne

GL2(R) = {A ∈M2×2(R) | det(A) ∈ R∗} .

You will easily see that this is consistent with the earlier de�nitions of GL2(R),
GL2(C), GL2(Q) and GL2(Z), and that moreover, (M2×2(R))

∗ = GL2(R).

16.1.6 Example Let

S =

{(
a b
0 c

)
| a, b, c ∈ Z

}
.

We'll show that that S is a ring under the usual addition and multiplication of
matrices and then �nd S∗.

To show that S is a ring it is enough to show that it is a subring of M2×2(Z).
We leave that as an exercise.



Let us compute the unit group. Suppose A = ( a b0 c ) is in S. To be unit it is not
enough for this matrix to be invertible, we also want the inverse to belong to S.
So we require the determinant ac to be non-zero and we want

A−1 =
1

ac

(
c −b
0 a

)
=

(
1/a −b/ac
0 1/c

)
to belong to S. Thus we want the integers a, b, c to satisfy

ac 6= 0,
1

a
,
1

c
,− b

ac
∈ Z.

This happens precisely when a = ±1 and c = ±1. Thus

S∗ =

{(
±1 b
0 ±1

)
| b ∈ Z

}
.

♦

16.1.7 Exercise In Example 15.1.8, we showed that

S =
{ a
2r
| a, r ∈ Z, r ≥ 0

}
is a ring. Find its unit group.

16.1.8 Exercise Let Z[
√
2] = {a+ b

√
2 | a, b ∈ Z}. Show that Z[

√
2] is a ring

and that 1 +
√
2 is a unit. What is its order as an element of the group Z[

√
2]∗?

16.1.9 Exercise Let ζ = e2πi/3 (this is a cube root of unity). Check that ζ = ζ2.
Let Z[ζ] = {a+ bζ : a, b ∈ Z}.

(i) Show that ζ2 ∈ Z[ζ] (Hint: the sum of the cube roots of unity is . . . ).

(ii) Show that Z[ζ] is a ring.

(iii) Show that ±1, ±ζ and ±ζ2 are units in Z[ζ].

(iv) (Harder) Show that Z[ζ]∗ = {±1,±ζ,±ζ2}.

(v) Show that this group is cyclic.



16.2 Fields

A �eld (F,+, ·) is a commutative ring which is not the zero ring such that every
non-zero element is a unit. Thus a commutative ring F is a �eld if and only if its
unit group is

F ∗ = {a ∈ F | a 6= 0}.

16.2.1 Example R, C, Q are �elds. ♦

16.2.2 Example Z is not a �eld, since for example 2 ∈ Z is non-zero but not
a unit. ♦

16.2.3 Example R[x] is not a �eld, since for example x ∈ R[x] is non-zero but
not a unit. ♦

16.2.4 Example
Q[i] = {a+ bi | a, b ∈ Q}

is a �eld as follows.

First we have to show that Q[i] is a commutative ring. For this it is enough to
show that Q[i] is a subring of C. It is clearly a subset of C that contains 0 and 1.
Suppose α, β ∈ Q[i]. We want to show that α + β, αβ, −α are all in Q[i]. Write

α = a+ bi, β = c+ di

where a, b, c, d ∈ Q. Then

α + β = (a+ c) + (b+ d)i.

Since Q is closed under addition, a+ c and b+ d ∈ Q. So α+ β ∈ Q[i]. Similarly,
check for yourself that αβ and −α are in Q[i]. Thus Q[i] is a subring of C and so
a ring 9.

Finally we have to show that every non-zero element of Q[i] is a unit. Suppose
α is a non-zero element of Q[i]. We can write α = a + bi where a, b ∈ Q,

9Arguably, we could've made the proof more transparent by writing

α =
r

s
+
u

v
i, β =

k

`
+
m

n
i,

where r, s, u, v, k, `, m, n are integers and s, v, `, n are non-zero. This would've worked, but
it's probably better to get used to thinking of rational numbers as numbers in their own right.



and not both zero. We want to show that existence of some β ∈ Q[i] such that
αβ = βα = 1. In other words, we want to show that 1/α is in Q[i]. But we
know how to compute 1/α. Recall that to divide complex numbers we multiply
the numerator and denominator by the conjugate of the denominator:

1

α
=

1

a+ bi

=
1

a+ bi
· a− bi
a− bi

=
a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i.

As a, b are rationals, so are a/(a2+b2) and b/(a2+b2). So 1/α is in Q[i]. Therefore
Q[i] is a �eld. ♦

16.2.5 Exercise Let Q[
√
2] = {a+ b

√
2 : a, b ∈ Q}. Show that Q[

√
2] is a �eld.

16.2.6 Exercise Let

F =
{(

a b
−b a

)
| a, b ∈ R

}
.

(a) Show that F is a �eld (under the usual addition and multiplication of ma-
trices). (Hint: Begin by showing that F is a subring of M2×2(R). You need
to also show that F is commutative and that every non-zero element has an
inverse in F .)

(b) Let φ : F → C be given by φ
(
a b
−b a

)
= a + bi. Show that φ is a bijection

that satis�es φ(A+ B) = φ(A) + φ(B) and φ(AB) = φ(A)φ(B). Note that,
although we are not de�ning it in this module, you have just shown that F
and C are isomorphic (as rings/�elds).

(c) Show that
F ′ =

{(
a b
−b a

)
| a, b ∈ C

}
is not a �eld.

16.3 Units in Z/mZ

16.3.1 Example What are the unit groups of Z/mZ for m = 2, 3, 4, 5, 6.
To work this out just look at the multiplication table for Z/6Z



×6 [0]6 [1]6 [2]6 [3]6 [4]6 [5]6

[0]6 [0]6 [0]6 [0]6 [0]6 [0]6 [0]6
[1]6 [0]6 [1]6 [2]6 [3]6 [4]6 [5]6
[2]6 [0]6 [2]6 [4]6 [0]6 [2]6 [4]6
[3]6 [0]6 [3]6 [0]6 [3]6 [0]6 [3]6
[4]6 [0]6 [4]6 [2]6 [0]6 [4]6 [2]6
[5]6 [0]6 [5]6 [4]6 [3]6 [2]6 [1]6

and scan for the elements which have multiplicative inverses. You'll see that.

(Z/6Z)∗ = {[1]6, [5]6} .
In the same way you'll �nd that

(Z/2Z)∗ = {[1]2} , (Z/3Z)∗ = {[1]3, [2]3} ,
(Z/4Z)∗ = {[1]4, [3]4} , (Z/5Z)∗ = {[1]5, [2]5, [3]5, [4]5} .

For example here is the multiplication table for Z/5Z from which you can see
that every non-zero element is a unit.

×5 [0]5 [1]5 [2]5 [3]5 [4]5

[0]5 [0]5 [0]5 [0]5 [0]5 [0]5
[1]5 [0]5 [1]5 [2]5 [3]5 [4]5
[2]5 [0]5 [2]5 [4]5 [1]5 [3]5
[3]5 [0]5 [3]5 [1]5 [4]5 [2]5
[4]5 [0]5 [4]5 [3]5 [2]5 [1]5

In particular, Z/2Z, Z/3Z and Z/5Z are �elds and Z/4Z, Z/6Z are not �elds.
Can you make a general guess as to which Z/mZ are �elds and which aren't? Can
you prove your guess? ♦

16.3.2 Theorem Let [a]m ∈ Z/mZ. Then [a]m is a unit in Z/mZ if and only
if gcd(a,m) = 1. Thus

(Z/mZ)∗ = {[a]m | 0 ≤ a ≤ m− 1 and gcd(a,m) = 1} .
Proof . Suppose [a]m is a unit in Z/mZ. Then there is some [b]m in Z/mZ so
that ab ≡ 1 (mod m). Thus, there is some k ∈ Z such that ab − 1 = km. Write
g = gcd(a,m). Then g | a and g | m. So g | (ab − km) = 1. But this means that
g = 1.

Conversely, suppose gcd(a,m) = 1. By Bezout's Lemma (see Foundations) we
know that we can write 1 = ba + cm for some integers b, c ∈ Z. Thus ab ≡ 1
(mod m). Hence [a] is a unit, with multiplicative inverse [b]m. ♦



16.3.3 Exercise Redo Example 16.3.1 using Theorem 16.3.2.

16.3.4 Example By Theorem 16.3.2, we know that 19 is invertible in Z/256Z.
But the statement of the theorem does not tell us how to �nd the inverse. It
would take us a very long to run through the elements u ∈ Z/256Z and check to
see if 19u ≡ 1 (mod 256). However, the proof of the theorem does give us
a recipe for �nding the inverse. We know by factoring that gcd(19, 256) = 1,
but let's use Euclid's Algorithm 10 to write 1 as a linear combination of 19 and
256:

256 = 13× 19+ 9

19 = 2× 9+ 1.

Thus

1 = 19− 2× 9 = 19− 2× (256− 13× 19) = (1− 2×−13)× 19− 2× 256,

so
1 = 27× 19− 2× 256.

Hence 27× 19 ≡ 1 (mod 256), so [27]256 is the inverse of [19]256 in Z/256Z. ♦

16.4 Fermat's Little Theorem & Euler's Theorem via group
theory

Through the computations you've done so far, you've probably conjectured the
following.

16.4.1 Theorem Let p be a prime. Then Z/pZ is a �eld. Therefore,

(Z/pZ)∗ = {[1]p, [2]p, . . . , [p− 1]p}.

Proof .We already know that Z/mZ is a commutative ring for any integer m ≥ 2.
Now to show that Z/pZ is a �eld, we must show that any non-zero [a]p ∈ Z/pZ is
invertible. But if [a]p ∈ Z/pZ is non-zero, then a is one of 1, 2, . . . , p− 1. Clearly
a is not divisible by p. Since p is prime, gcd(a, p) = 1. Hence by Theorem 16.3.2,
[a]p is invertible in Z/pZ. This shows that Z/pZ is a �eld.

10It is easy to get muddled in the substitutions involved in Euclid's Algorithm. One way to
reduce the muddle is to somehow distinguish the numbers you started with, here 256 and 19, and
the remainders from the quotients. I did the distinguishing by writing the numbers we started
with and the remainders in boldtype. In your calculations, you can underline them.



16.4.2 Exercise Prove the converse of Theorem 16.4.1: if Z/mZ is a �eld then
m is prime.

16.4.3 Theorem (Fermat's Little Theorem) Let p be a prime and a an integer
such that p - a. Then

ap−1 ≡ 1 (mod p). (11)

Proof . We know that a ≡ b (mod p) where b is one of 0, 1, 2, . . . , p − 1. Now as
p - a, we see that b 6= 0. By Theorem 16.4.1, [b]p is in the unit group of Z/pZ
which is

(Z/pZ)∗ = {[1]p, [2]p, . . . , [p− 1]p}.
The order of the group (Z/pZ)∗ is clearly p− 1. By Theorem 12.3.1,

[b]p−1 = 1.

Thus bp−1 ≡ 1 (mod p). Since a ≡ b (mod p), we obtain (11). ♦

Here's a fun application of Fermat's Little Theorem.

16.4.4 Example Here we'll compute 21000 (mod 13).

Since 13 is prime and 13 - 2, we know by Fermat's Little Theorem that 212 ≡ 1
(mod 13). Now by the Division Algorithm,

1000 = 83× 12 + 4.

Therefore,

21000 = 283×12+4 = (212)83 × 24 ≡ 183 × 16 ≡ 3 (mod 13).

♦
Now for Euler's theorem...

16.4.5 De�nition Let m ≥ 1. We denote the order of the group (Z/mZ)∗ by
ϕ(m). The function ϕ is called Euler's ϕ-function.

16.4.6 Example We know that if p is a prime, then (Z/pZ)∗ = {[1]p, [2]p, . . . , [p−
1]p}., and so ϕ(p) = p− 1. ♦

16.4.7 Example We know that

(Z/6Z)∗ = {[1]6, [5]6},
and so ϕ(6) = 2. ♦



16.4.8 Example Let n ≥ 1. Then (Z/2nZ)∗ consists of [a]2n with a in the
range 0 ≤ a ≤ 2n − 1 that are coprime to 2n. These are the odd integers a in the
range 0 ≤ a ≤ 2n − 1. Thus

(Z/2nZ)∗ = {[1]2n , [3]2n , . . . , [2n − 1]2n}.

Hence ϕ(2n) = 2n−1. ♦

16.4.9 Theorem (Euler's Theorem) Let m be an integer satisfying m ≥ 2. Let
a be an integer such that gcd(a,m) = 1. Then

aϕ(m) ≡ 1 (mod m).

Proof . This has almost the same proof as Fermat's Little Theorem. I'll leave the
necessary modi�cations as an exercise.

You're probably wondering if there is a formula for ϕ(m), and in fact there is.

16.4.10 Proposition Write

m = pr11 · · · prkk
where p1, . . . , pk are distinct primes and r1, . . . , rk are positive integers. Then

ϕ(m) = (pr11 − pr1−11 ) · · · (prkk − prk−1k ).

The proof of Proposition 16.4.10 is a little long and we'll not include it in these
notes. I'll post a video of this but it's non-examinable.

16.4.11 Exercise Use Euler's Theorem to compute 21000 (mod 63).

16.4.12 Exercise It is known that (Z/mZ)∗ is cyclic if m = 2, 4, pa or 2pa

where p is an odd prime. For all other m ≥ 2, the unit group (Z/mZ)∗ is not
cyclic. For more on this, do Number Theory in term 3. For now, check that
(Z/7Z)∗ is cyclic, but (Z/8Z)∗ is not cyclic.

16.4.13 Exercise Use Theorem 12.3.1 to show that ϕ(m) is even for m ≥ 3.



Chapter 17 - Factorisation in rings

17.1 Factorisation in the integers

In Foundations you have proved the existence and uniqueness of the factorisation
of an integer into products of prime numbers. This is Theorem 20.1 in the Foun-
dations notes which says:

`Every n ∈ N can be written uniquely as a product of primes.'

Some of the key steps in being able to prove this were as follows

� `Division with remainder' in the integers, i.e. for all a ∈ Z and 0 6= b ∈ N
there exist unique r, q ∈ Z such that a = bq + r where 0 ≤ r < b. This is
Theorem 18.7 in the Foundations notes.

� `Euclid's algorithm' from which you can deduce Bezout's Lemma. Bezout's
lemma implies that, given a, b ∈ N with a > b > 0 there exist x, y ∈ Z
such that hcf(a, b) = xa + yb. These are Theorems 19.1 and 19.3 in the
Foundations notes.

� The property of a prime number p that, for any a, b ∈ Z, if p|ab then p|a or
p|b. This is Theorem 19.5 in the Foundations notes.

We will show that there are analogues of all the concepts above in the polyno-
mial ring F [x] where F is a �eld and from these we will be able to deduce a form
of unique factorisation in F [x].

A �eld was de�ned in chapter 16 as follows. A �eld (F,+, ·) is a commutative
ring which is not the zero ring such that every non-zero element is a unit.

Q, R, C are �elds. Z is not a �eld (for example 2 does not have a multiplicative
inverse). Also we'll need the fact that Z/pZ is a �eld if p is prime (as proved in
chapter 16).

17.2 Factorisation in the ring F [x] where F is a �eld

Note that in the below we will be restricting to a polynomial ring of the form F [x]
where F is a �eld even though some of the ideas can be applied to more general
polynomial rings (i.e. to some polynomial rings where the coe�cients aren't nec-
essarily from a �eld). You will see more of this in future algebra modules which
cover rings.



First we de�ne the degree of a polynomial in F [x] and look at some of its
properties.

17.2.1 De�nition Let F be a �eld. Let f(x) ∈ F [x]. Suppose

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where an 6= 0. Then we de�ne the degree of f(x) to be n. We write deg(f(x)) = n.
If f(x) = 0, the zero polynomial, we de�ne deg(f(x)) = −∞. ♦

This is just the regular notion of order which you will probably be used to. The
order of a polynomial is given by the highest power of x that occurs in it. So the
order of x2+3x+2 is 2, the order of x10+1 is 10, the order of 3x+2 is 1 and the
order of the constant polynomial 4 is 0. Be careful about the zero polynomial, in
the above it is de�ned to have order −∞ which distinguishes it from the non-zero
constant polynomials which have degree 0.

17.2.2 Proposition Let F be a �eld. Then

1. if f(x), g(x) ∈ F [x] then deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) (here we
apply the conventions that −∞ + n = −∞ = n + (−∞) for any n ∈ N and
that −∞+ (−∞) = −∞).

2. f(x) ∈ F [x] is a unit in F [x] if and only if deg(f(x)) = 0.

3. if f(x), g(x) ∈ F [x] are such that f(x)g(x) = 0 then either f(x) = 0 or
g(x) = 0.

4. if f(x), g(x) ∈ F [x] with 0 ≤ deg(g(x)) ≤ deg(f(x)) then there exist
q(x), r(x) ∈ F [x] with deg(r(x)) < deg(g(x)) and f(x) = g(x)q(x) + r(x).

Proof .

1. First suppose that f(x) = 0. Then deg(f(x)) = −∞. We then have
f(x)g(x) = 0 and so deg(f(x)g(x)) = −∞ = deg(f(x)) + deg(g(x)) by
the conventions we are adopting about addition involving −∞.

The result is true similarly if g(x) = 0.

So assume that f(x) 6= 0 and g(x) 6= 0. Then m = deg(f(x)) ≥ 0 and
n = deg(g(x)) ≥ 0. Suppose that f(x) = amx

m + am−1x
m−1 + ...+ a1x+ a0

and g(x) = bnx
n + bn−1x

n−1 + · · · + b1x + b0 where ai, bj ∈ F with am 6= 0



and bn 6= 0. We can see that ambn 6= 0 by contradiction as follows.

Suppose ambn = 0. Then, since am 6= 0 and F is a �eld there exists a−1m ∈ F
such that a−1m am = 1. Mutliplying both sides of ambn = 0 by a−1m gives
bn = 1bn = a−1m ambn = a−1m 0 = 0, contradicting bn 6= 0.

We have

f(x)g(x) = ambnx
m+n+ (ambn−1 + am−1bn)x

n−1 + · · ·+ (a1b0 + a0b1)x+ a0b0

and, since ambn 6= 0, deg(f(x)g(x)) = m+ n = deg(f(x)) + deg(g(x)).

2. Suppose f(x) ∈ F [x] is a unit. Then there exists g(x) ∈ F [x] such that
f(x)g(x) = 1 so that deg(f(x)g(x)) = 0. By 1. above this means that
deg(f(x)) = 0 (and deg(g(x)) = 0).

Conversely, suppose deg(f(x)) = 0. Then f(x) = a0 where 0 6= a0 ∈ F .
Since F is a �eld there exists a−10 ∈ F such that a−10 a0 = 1. This means that
f(x) is a unit with inverse g(x) = a−10 .

3. If both f(x) 6= 0 and g(x) 6= 0 then deg(f(x)) ≥ 0 and deg(g(x)) ≥ 0. By
1. above this would give deg(f(x)g(x)) ≥ 0 and, in particular f(x)g(x) 6= 0.
Therefore if f(x)g(x) = 0 we must have either f(x) = 0 or g(x) = 0 (or
both).

4. Notice that this is nothing more than the long division of polynomials you
might have seen in school/college.

The proof will be by induction on the degree of f(x). If deg(f(x)) = 0 then
f(x) = k1 for some 0 6= k1 ∈ F . Since 0 ≤ degg(x) ≤ deg(f(x)) = 0,
g(x) = k2 for some 0 6= k2 ∈ F . But then f(x) = k1 = k1k

−1
2 k2 + 0 so the

statement is true with q(x) = k1k
−1
2 and r(x) = 0.

Now suppose that f(x) = amx
m + am−1x

m−1 + ... + a1x + a0 where m ≥ 1
and g(x) = bnx

n + bn−1x
n−1 + · · · + b1x + b0 where ai, bj ∈ F with am 6= 0

and bn 6= 0. We have m = deg(f(x)) ≥ deg(g(x)) = n. Let

f1(x) = f(x)− (amb
−1
n )xm−ng(x).

Observing that the coe�cient of xm in f1(x) is zero we see that deg(f1) ≤
m−1. By strong induction on the degree of f there exists q1(x), r(x) ∈ F [x]
with deg(r(x)) < deg(g(x)) such that f1(x) = q1(x)g(x) + r1(x). This gives

q1(x)g(x) + r(x) = f(x)− (amb
−1
n )xm−ng(x).



This rearranges to f(x) = ((amb
−1
n )xm−n + q1(x))g(x) + r(x). If we put

q(x) = (amb
−1
n )xm−n + q1(x) then f(x) = g(x)q(x) + r(x) where deg(r(x)) <

deg(g(x)), as required. ♦

The proposition above just states properties of polynomials which you are al-
most certainly already familiar with. For example, 1. in the above is just expressing
what we see in the following example

(x3 + 2x+ 1)(2x2 + x+ 1) = 2x5 + 5x4 + 4x4 + 4x2 + 3x+ 1

a degree 3 polynomial multiplied by a degree 2 polynomial gives a degree 5
polynomial.

17.2.3 Examples

1. In Q[x], x+ 1 =
1

2
(2x+ 1) +

1

2
. Notice that this cannot be done in Z[x]. If

x+ 1 = (2x+ 1)q(x) + r(x) where deg(r(x)) < 1 then deg(q(x)) = 0 and so
q(x) = k for some integer k and r(x) would have to be a constant polynomial
(possibly 0). But then, by equating coe�cients of x on both sides 2k = 1
which is not possible for k ∈ Z.

2. Let R = Z/4Z. Note that R is not a �eld because here [2]4×4 [2]4 = [0]4 and
so [2]4 can have no multiplicative inverse.

Now consider f(x) = x2+1, g(x) = 2x+1 ∈ R[x]. Here you need to think of
the coe�cients `modulo 4', we are supressing the usual []4 notation. There
cannot exist q(x), r(x) ∈ R[x] with deg(r(x)) < deg(g(x)) such that f(x) =
g(x)q(x) + r(x). r(x) would have to be a constant polynomial (possibly 0)
and q(x) would have to have degree 1, i.e. q(x) = ax + b. But then, by
comparing coe�cients of x2, 2a = 1 and this cannot happen modulo 4.

17.2.4 Exercise

1. Let f(x) = x2 + 2x + 1 and let g(x) = x − 1 both in Q[x]. Find polyno-
mials q(x), r(x) ∈ Q[x] with deg(r(x)) < deg(g(x)) = 1 such that f(x) =
g(x)q(x) + r(x).

2. Let f(x) = 2x2+x+1 and let g(x) = x+1 both in R[x], where R = Z/3Z (i.e.
we are interpreting the coe�cients modulo 3. Find polynomials q(x), r(x) ∈
R[x] with deg(r(x)) < deg(g(x)) = 1 such that f(x) = g(x)q(x) + r(x).



17.2.5 Corollary Let F be a �eld. Let 0 6= f(x) ∈ F [x] and α ∈ F . Then
the evaluation of f(x) at x = α is zero, i.e. f(α) = 0, if and only if there exists a
polynomial q(x) ∈ F [x] such that f(x) = (x− α)q(x).

Proof . Suppose f(α) = 0. By Propostion 17.2.2 there exists q(x), r(x) ∈ F [x]
with deg(r(x)) < deg(x−α) = 1 such that f(x) = (x−α)q(x)+ r(x). Notice that
this means that r(x) = β for some β ∈ F . But then 0 = f(α) = (α − α)q(α) + β
giving β = 0.

Conversely if there exists q(x) ∈ F [x] such that f(x) = (x − α)q(x) then
f(α) = (α− α)g(α) = 0. ♦

17.2.6 Exercise The factor theorem tells us that if f(x) ∈ C[x] and f(i) = 0,
where i is the usual square root of−1, then f(x) = (x−i)g(x) for some g(x) ∈ C[x].
Use the factor theorem to prove that if f(x) ∈ R[x] then f(i) = 0 if and only if
f(x) = (x2 − 1)h(x) for some h(x) ∈ R[x].

17.2.7 Corollary Let F be a �eld. Let I be an ideal in F [x]. Then there exists
f(x) ∈ F [x] such that I = {f(x)g(x) | g(x) ∈ F [x]}.

Proof . If I = 0 then the result is clearly true with f(x) = 0.

If I 6= 0 let 0 6= f(x) ∈ I have smallest possible degree among non-zero poly-
nomials in I. Since I is an ideal we have {f(x)g(x) | g(x) ∈ F [x]} ⊆ I.

Now suppose h(x) ∈ I. By part 4 of Proposition 17.2.2 there exist q(x), r(x) ∈
F [x] with deg(r(x)) < deg(f(x)) and h(x) = f(x)q(x) + r(x). But then r(x) =
h(x) − f(x)q(x) ∈ I (since both h(x) ∈ I and −f(x)q(x) ∈ I). Since r(x)
has degree less than f(x) it must be the zero polynomial. Therefore h(x) =
f(x)q(x) ∈ {f(x)g(x) | g ∈ F [x]}. This means that I ⊆ {f(x)g(x) | g(x) ∈ F [x]}
and since we have the relevant inclusions both ways round we can conclude that
{f(x)g(x) | g(x) ∈ F [x]} = I. ♦

From now on if f(x) ∈ F (x) we'll denote the subset of F [x] given by

{f(x)g(x) | g(x) ∈ F [x]}

by f(x)F [x]. Note that such a subset is always an ideal of F [x].

17.2.8 Examples



1. I = {f(x) | f(0) = 0} is an ideal of R[x]. It's actually those polynomials
with constant term of 0, those which you can factor an x out of. This means
that I = {xg(x) | g(x) ∈ R[x]} = xR[x].

2. I = {f(x) | f(1) = 0} is an ideal of R[x]. By Corollary 17.2.5, it's actually
those polynomials which have x− 1 as a factor. This means that

I = {(x− 1)g(x) | g(x) ∈ R[x]} = (x− 1)R[x].

17.2.9 De�nition Let 0 6= f(x) ∈ F [x]. Then f(x) is said to be irreducible
over F (or, equivalently, irreducible in F [x]) if wheneverf(x) = g(x)h(x) with
g(x), h(x) ∈ F [x] then either g(x) or h(x) is a constant polynomial (but not both).
♦

Note that the above de�nition says that we can't have both g(x) and h(x) be-
ing constant polynomials which means that an irreducible polynomial f(x) cannot
be a constant polynomial and, since f(x) 6= 0 either, it has to have degree greater
than or equal to 1.

Since the non-zero constant polynomials in F [x] are precisely the units, being
irreducible is the same as saying that if 0 6= f(x) = g(x)h(x) with g(x), h(x) ∈ F [x]
then either g(x) is a unit or h(x) is a unit, but not both.

Probably the easiest way of all to think about this is that 0 6= f(x) ∈ F [x]
is irreducible if it has degree at least one and you cannot write it as the product
of two polynomials in F [x] both with smaller degree. Convince yourself that the
de�nition above is equivalent to this.

Think of being an irreducible polynomial in F [x] as being analagous to being a
prime integer. An irreducible polynomial has degree at least 1 and cannot be `bro-
ken down' into a product of 'smaller' polynomials (where we think of the degree
as giving the size), just as a prime integer cannot be broken down into a product
of smaller integers.

Irreducibility depends on the �eld, hence we have `irreducible over F ' rather
than just `irreducible'. Some of the examples below illustrate this.

17.2.10 Examples

1. For any �eld F , any polynomial with degree 1 is irreducible over F . To
see this, suppose a, b ∈ F with a 6= 0 and ax + b = f(x)g(x). Then by



Proposition 17.2.2 either degf(x) = 0 and deg(g(x)) = 1 or deg(f(x)) = 1
and deg(g(x)) = 0. In the �rst case f(x) is a unit and g(x) is not a unit and
in the second g(x) is a unit and f(x) is not a unit.

2. f(x) = x2 + 1 is irreducible over R. If not we would have

x2 + 1 = (ax+ b)(cx+ d)

for some real numbers a, b, c, d with a and c both non-zero. But then − b
a

would be a real number satisfying x2+1 = 0. However f(x) is not irreducible
over C because f(x) = (x+ i)(x− i).

3. f(x) = x2 − 2 is irreducible over Q. If not we would have

x2 − 2 = (ax+ b)(cx+ d)

for some rational numbers a, b, c, d with a and c both non-zero. But then − b
a

would be a rational number satisfying x2−2 = 0, i.e. a rational square root of
2. However f(x) is not irreducible over R because f(x) = (x+

√
2)(x−

√
2).

4. Let a, b, c ∈ R. Then f(x) = ax2 + bx + c is irreducible over R if b2 < 4ac.
If not we would have ax2 + bx + c = (rx + s)(ux + v) where r, s, u, v are

real numbers with r, u both non-zero. But then −s
r
would be a real number

satisfying ax2 + bx+ c = 0.

We'll now cover some de�nitions and results that will set us up to prove the
existence and uniqueness of factorisation of polynomials in F [x] where F is a �eld.

17.2.11 De�nition Let F be a �eld. Let f(x), g(x) ∈ F [x]. We say that f(x)
divides g(x) and write f(x)|g(x) if there exists h(x) ∈ F [x] such that f(x)h(x) =
g(x). ♦

17.2.12 De�nition Let F be a �eld. Let f(x), g(x) ∈ F [x] be non-zero polyno-
mials. We say that f(x) and g(x) are relatively prime if whenever 0 6= h(x) ∈ F [x]
with h(x)|f(x) and h(x)|g(x) then deg(h(x)) = 0, i.e. h(x) is a unit. ♦

Any unit divides any polynomial and so the above is essentially requiring that
f(x) and g(x) have no divisors in common other then the ones that will always
exist, in particular they have no common divisors which are polynomials with de-
gree greater than 0.

The next theorem is the equivalent of Bezout's lemma for integers but for
polynomials in F [x] where F is a �eld.



17.2.13 Theorem Let F be a �eld. Let f(x), g(x) ∈ F [x] be non-zero polyno-
mails with f(x) and g(x) relatively prime. Then there exist h∗(x), k∗(x) ∈ F [x]
such that

f(x)h∗(x) + g(x)k∗(x) = 1.

Proof . Let I = {f(x)h(x) + g(x)k(x) | h(x), k(x) ∈ F [x]}. Then I is an ideal of
F [x] as follows. First we'll show that I is a subgroup of (F [x],+). We'll use the
usual (a),(b),(c) subgroup test below.

(a) The zero polynomial is in I because 0 = f(x)× 0 + g(x)× 0.

(b) If polynomials j1(x), j2(x) ∈ I then j1(x) = f(x)h1(x) + g(x)k1(x) and
j2(x) = f(x)h2(x) + g(x)k2(x). Then

j1(x) + j2(x) = f(x)[h1(x) + h2(x)] + g(x)[k1(x) + k2(x)]

and since h1(x) + h2(x) ∈ F [x] and k1(x) + k2(x) ∈ F [x] then means that
j1(x) + j2(x) ∈ I.

(c) If the polynomial j(x) ∈ F [x] then j(x) = f(x)h(x) + g(x)k(x) for some
polynomials h(x), k(x) ∈ F [x]. Then −j(x) = f(x)(−h(x)) + g(x)(−k(x)) and,
because −h(x),−k(x) ∈ F [x] this means that −j(x) ∈ I.

Now we need to show that if j(x) ∈ I and r(x) ∈ F [x] then j(x)r(x) ∈ I
(there's no need to show that r(x)j(x) ∈ I separately because F [x] is a commuta-
tive ring).

Since j(x) ∈ I, j(x) = f(x)h(x) + g(x)k(x) for some polynomials h(x), k(x) ∈
F [x]. But then

j(x)r(x) = f(x)h(x)r(x) + g(x)k(x)r(x)

and since both h(x)r(x) ∈ F [x] and k(x)r(x) ∈ F [x] this means the j(x)r(x) ∈ I.

This completes the proof that I is an ideal of F [x] and so by Corallary 17.2.7
there exists j(x) ∈ F [x] such that I = j(x)F [x].

Since f(x), g(x) ∈ I = j(x)F [x] there are polynomials k1(x), h1(x) ∈ F [x] such
that f(x) = j(x)k1(x) and g(x) = j(x)h1(x). This means that j(x)|f(x) and
j(x)|g(x) and, since f(x) and g(x) are relatively prime, it follows that j(x) is a
unit and that I = F [x] by Corollary 15.2.9.



Since 1 ∈ F [x] = I, this means that there exist h(x), k(x) ∈ F [x] such that
f(x)h(x) + g(x)k(x) = 1. ♦

If p is a prime integer which divides the product ab of integers a and b then
either p divides a or p divides b. Next we'll prove the equivalent statement for
irreducible polynomials.

17.2.14 Theorem Let F be a �eld. Let f(x) ∈ F [x] be an irreducible over F .
Suppose that g(x), h(x) ∈ F [x] and f(x)|g(x)h(x). Then f(x)|g(x) or f(x)|h(x).

Proof . We will show that if f(x) does not divide g(x) then it must divide h(x)
which will give the conclusion we need.

Suppose f(x) does not divide g(x). Then f(x) and g(x) are relatively prime
as follows.

Suppose j(x)|f(x) and j(x)|g(x). Then f(x) = j(x)k1(x) and g(x) = j(x)l1(x)
for some k1(x), l1(x) ∈ F [x]. Since f(x) is irreducible one of j(x) or k1(x) is a
non-zero constant polynomial. If the latter, k1(x) = α 6= 0 where α ∈ F then
j(x) = α−1f(x). But then g(x) = j(x)l1(x) = α−1f(x)l1(x) and f(x) divides g(x),
a contradiction. So j(x) is a non-zero constant polynomial, a unit. This means
that f(x) and g(x) are relatively prime.

By Theorem 17.2.13 there exist polynomials k(x),m(x) ∈ F [x] such that
f(x)k(x) + g(x)m(x) = 1. Then

h(x) = h(x)f(x)k(x) + h(x)g(x)m(x).

Since f(x) divides g(x)h(x), f(x) divides the right hand side of the above, so f(x)
divides h(x). ♦

17.2.15 Corollary Let F be a �eld. Let f(x) ∈ F [x] be an irreducible polyno-
mial. Suppose g1(x), g2(x), . . . , gn(x) ∈ F [x] and f(x)|g1(x)g2(x) . . . gn(x). Then
there exists i with 1 ≤ i ≤ n such that f(x)|gi(x).

Proof . By induction on n using Theorem 17.2.14. ♦

17.2.16 Theorem Let F be a �eld. Let f(x) ∈ F [x] with deg(f(x)) ≥ 1. Then
f(x) is expressible as a product of polynomials which are irreducible over F . This
expression is unique in the following sense. Suppose

f(x) = g1(x)g2(x) . . . gm(x) = h1(x)h2(x) . . . hn(x)



where gi(x), hj(x) are all irreducible over F then m = n and, after possibly
renumbering the hj(x) polynomials, g1(x) = a1h1(x), g2(x) = a2h2(x),. . . gn(x) =
anhn(x), where 0 6= ai ∈ F , i.e. each ai is a unit in F [x].

We say the factorisation is `unique up to multiplication by units'.

Proof .

1. Existence of factorisation. We proceed by induction on deg(f(x)).

If deg(f(x)) = 1 then f(x) itself is irreducible and so it is its own factorisa-
tion! So the result is true if deg(f(x)) = 1.

Now assume that we have polynomial f(x) ∈ F [x] with deg(f(x)) > 1 and,
for an induction argument, that any polynomial with degree greater than or
equal to 1 and with smaller degree than that of f(x) has a factorisation as a
product of polynomials which are irreducible in F [x].

If f(x) is irreducible we have our factorisation and can stop. If f(x) is not
irreducible then there exist g(x), h(x) ∈ F [x] with deg(g(x)) < deg(f(x))
and deg(h(x)) < deg(f(x)). By induction we can express both g(x) and
h(x) as products of irreducible polynomials in F [x] and therefore the same
is true for f(x) = g(x)h(x), by putting those two products together.

2. Uniqueness of factorisation. We now proceed by induction on the number of
irreducible factors, m, on the left hand side in the statement of the theorem
(i.e. the number of polynomials gi(x)).

Suppose there is only one polynomial on the left hand side, i.e. f(x) =
g1(x) = h1(x)h2(x) . . . hn(x) where g1(x), hi(x) are all irreducible over F .
But then, since g1(x) is irreducible, there can only be one polynomial on the
right hand side, i.e. n = 1 and f(x) = g1(x) = h1(x) and we are done in the
case m = 1.

Suppose f(x) = g1(x)g2(x) . . . gm(x) = h1(x)h2(x) . . . hn(x) where gi(x), hj(x)
are all irreducible and, again for an induction argument, assume the result
is true for any situation where there are fewer than m polynomials on the
left hand side.



We have g1(x)|h1(x)h2(x) . . . hn(x) so by Corallary 17.2.15 g1(x) divides hi(x)
for some i. Renumbering if necessary, we may assume without loss of gen-
erality, that i = 1, in other words that g1(x)|h1(x). So h1(x) = k(x)g1(x)
for some k(x) ∈ F [x]. Since h1(x) is irreducible either deg(k(x)) = 0 or
deg(g1(x)) = 0 but not both. But g1(x) is irreducible and so deg(g(x)) > 0
which means that deg(k(x)) = 0, i.e. k(x) is a non-zero constant polynomial,
a unit in F [x]. Let k(x) = a ∈ F .

We then have f(x) = g1(x)g2(x) . . . gm(x) = ag1(x)h2(x) . . . hn(x). This gives

g1(x)[g2(x) . . . gm(x)− ah2(x) . . . hn(x)] = 0.

Since g1(x) 6= 0, by Proposition 17.2.2, g2(x) . . . gm(x)− ah2(x) . . . hn(x) = 0
and g2(x) . . . gm(x) = ah2(x) . . . hn(x). By induction we must have that
n−1 = m−1 (which implies than n = m and that, after possibly renumbering
the hj(x) polynomials, g2(x) = a2h2(x), g3(x) = a3h3(x),. . . gn(x) = anhn(x),
where 0 6= ai ∈ F . This, together with the already established g1(x) =
a−1h1(x), gives the result. ♦

17.3 Finding the irreducible polynomials in F [x]

We have seen that whether a polynomial is irreducible certainly depends on the
�eld F . For example x2 +1 is irreducible over R but not irreducible over C. Look
back at Example 17.2.10 for the details.

Here we'll brie�y discuss which polynomials are irreducible over the �elds C,
R and Q.

The fundamental theorem of algebra, stated without proof below, will help us
with this.

17.3.1 Theorem (Fundamental Theorem of Algebra) Let f(x) ∈ C[x] be
a polynomial with deg(f(x)) ≥ 1. Then there exists α ∈ C such that f(α) = 0. In
other words, the equation f(x) = 0 has a root in the complex numbers. ♦

Any proof of this will involve concepts from analysis. This is because the real
numbers, from which the complex numbers are constructed, are an object de�ned
in terms of concepts from analysis (the completeness axiom which is about the
existence of supremums or about certain sequences converging).



17.3.2 Examples We can use the Fundamental Theorem of Algebra to work
out precisely what the irreducible polynomials over C and R are.

1. In C[x] the irreducible polynomials are precisely those with degree 1. You
can see this as follows.

We know that degree 1 polynomials in F [x] are irreducible over F for any
�eld, so certainly degree 1 polynomials in C[x] are irreducible over C. Sup-
pose f(x) ∈ C[x] is irreducible and deg(f(x)) > 1. By the Fundamental
Theorem of Algebra there exists α ∈ C such that f(α) = 0. Then, by Corol-
lary 17.2.5, f(x) factorises as (x − α)g(x) for some g(x) ∈ C[x]. But this
can't happen because deg(g(x)) would have to then be greater than 0 and
f(x) is irreducible over C.

2. In R[x] the irreducible polynomials are precisely those which either have de-
gree 1 or those with degree 2 of the form ax2 + bx+ c where a, b, c ∈ R with
b2 − 4ac < 0. Here is a justi�cation of this.

It's clear that the polynomials in R[x] which either have degree 1 or those
with degree 2 of the form ax2 + bx + c where a, b, c ∈ R with b2 − 4ac < 0
are irreducible over R. It's also clear that polynomials ax2 + bx + c where
a, b, c ∈ R with b2 − 4ac ≥ 0 are not irreducible over R because they have
real roots and will factorise into a product of degree 1 polynomials.

Suppose that f(x) ∈ R[x] has degree greater than 2. Then there exists α ∈ C
such that f(α) = 0. But then we also have f(α) = 0 where α is the complex
conjugate of α. You may remember this result from school/college maths,
it's dependent on the coe�cients of f(x) being real numbers. By repeated
application of the factor theorem this means that f(x) = (x−α)(x−α)g(x)
for some g(x) ∈ C[x] with degree greater than 0.

But (x−α)(x−α) = x2−(α+α)x+αα ∈ R[x] because α+α ∈ R and αα ∈ R.

By 'division with remainder' applied in R[x] there exists q(x), r(x) ∈ R[x]
with deg(r(x)) < 2 such that

f(x) = (x− α)(x− α)q(x) + r(x).

This means that

(x− α)(x− α)(g(x)− q(x)) = r(x).



If g(x)− q(x) 6= 0 then the degree of left hand side of the above is at least 2
whereas the degree of the right hand side r(x) is less than 2 which would be
a contradiction. It follows that g(x)− q(x) = 0 and g(x) = q(x) ∈ R[x] and
so f(x) is not irreducible over R. ♦

For polynomials in Q[x] the question of deciding whether a given polynomial
is irreducible can be very di�cult. Few criteria exist for this but here is one of
them, which we state without proof.

17.3.3 Theorem (Eisenstein's criterion for irreducibility) Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x].

Suppose there exists a prime number p such that

� p|ai for each i with 0 ≤ i < n

� p does not divide an

� p2 does not divide a0.

Then f(x) is irreducible over Q. ♦

We use this in the following exercise, whicha also shows that there are irre-
ducible polynomials over Q with arbitrarily large degree (although clearly this
fact could be established in a more direct way by construction using the theorem
above, e.g. xn + 5xn−1 + 5xn−2 + ...+ 5x+ 5 is irreducible over Q for any positive
integer n by the above with p = 5).

17.3.4 Exercise Prove that f(x) = xp−1+xp−2+ · · ·+x+1 is irreducible over
Q for any prime p by the following steps.

1. Show that if p is prime and 0 < k < p then

(
n

k

)
=

p!

k!(p− k)! is a multiple

of p.

2. Prove that f(x) ∈ Q[x] is irreducible over Q if and only if f(x + 1) ∈ Q[x]
(i.e. the polynomial obtained from f(x) by replacing x by x + 1 and then
multiplying out) is irreducible over Q.

3. Show that, since, f(x) =
xp − 1

x− 1
,

f(x+ 1) =
(x+ 1)p − 1

x
= xp−1 +

(
p

1

)
xp−2 +

(
p

2

)
xp−3 + · · ·+

(
p

p− 1

)
.



4. Use Eisenstein's critierion to deduce that f(x+ 1) is irreducible over Q and
so f(x) is irreducible over Q.



Chapter 18 - Cosets and quotient rings

There are many exciting things about cosets! You can get cosets in groups and
you can also get cosets in rings. You use cosets in groups to prove Lagrange's
theorem. However we will only look at cosets in rings. We'll see that we can make
a new ring from an existing ring where the elements are cosets. Understanding this
(potentially simpler) new ring can then help us to understand the original ring.
But let's not get ahead of ourselves, here's the de�nition of a coset with respect
to an ideal in a ring.

18.1 What is a coset of an ideal in a ring?

18.1.1 De�nition Let R be a ring and I an ideal of R. Let r be an element of
R. We call the set

r + I = {r + x | x ∈ I}
a coset of I in R.

18.1.2 Example The set of even integers 2Z is an ideal of Z. What are the
cosets of 2Z in Z? Let's compute a few:

0 + 2Z = {. . . , 0 + (−4), 0 + (−2), 0 + 0, 0 + 2, 0 + 4, . . . } = {. . . ,−4,−2, 0, 2, 4, . . . };
1 + 2Z = {. . . , 1 + (−4), 1 + (−2), 1 + 0, 1 + 2, 1 + 4, . . . } = {. . . ,−3,−1, 1, 3, 5, . . . };
2 + 2Z = {. . . , 2 + (−4), 2 + (−2), 2 + 0, 2 + 2, 2 + 4, . . . } = {. . . ,−4,−2, 0, 2, 4, . . . };
3 + 2Z = {. . . , 3 + (−4), 3 + (−2), 3 + 0, 3 + 2, 3 + 4, . . . } = {. . . ,−3,−1, 1, 3, 5, . . . }.

You'll quickly discover that

· · · = −4 + 2Z = −2 + 2Z = 2Z = 2 + 2Z = 4 + 2Z = . . .

and
· · · = −3 + 2Z = −1 + 2Z = 1 + 2Z = 3 + 2Z = . . . .

So the ideal 2Z has two cosets in Z, which happen to be 2Z itself, and 1 + 2Z
which is the set of odd integers. ♦

18.1.3 Exercise You know that Z2 is a ring. Let

2Z2 = {(2a, 2b) | a, b ∈ Z}.

In otherwords, 2Z2 is the set of vectors in Z2 with both coordinates even. Check
that 2Z2 is an ideal of Z2, having four cosets. What are they?



18.1.4 Example Now let's look at the index of the trivial ideal {0} of the ring
Z. Note that

a+ {0} = {a}.
So the cosets of {0} in Z are

. . . , {−2}, {−1}, {0}, {1}, {2}, . . .

♦
Here comes the key result in this section.

18.1.5 Lemma Let R be a ring and let I be an ideal. Let x, y ∈ R so that
x+ I and y + I are cosets. Then

x+ I = y + I if and only if x− y ∈ I.

Proof . Note that this is and if and only if statement and therefore requires proof
in both directions.

Starting with `left implies right', suppose x+ I = y+ I. Then, since x = x+0
and 0 ∈ I, x ∈ x+ I = y + I = {y + h | h ∈ I}. Therefore there exist h ∈ I such
that x = y + h. But then x− y = h. This means that x− y ∈ I.

Now for `right implies left'. Now suppose that x− y ∈ I. Let h∗ = x− y. Let
y + h where h ∈ I be an arbitrary element of y + I. Then y + h = x − h∗ + h =
x+ (h− h∗) and so y + h ∈ x+ I. This gives that y + I ⊆ x+ I.

Continuing, let x + h where h ∈ I be an arbtrary element of x + I. Then
x+h = (y+h∗)+h = y+(h∗+h). Since h∗+h ∈ I this means that x+h ∈ y+ I
and that x+ I ⊆ y + I.

The two inclusions y+ I ⊆ x+ I and x+ I ⊆ y+ I imply that x+ I = y+ I.♦

One way to think about the cosets in R with respect to I is that they take an
element of a ring, x, and they bring into one coset, x+ I, all elements that di�er
from that element by an element of I. The next two examples illustrate this.

18.1.6 Example Let X = {(a, 0) | a ∈ R}. Then X is an ideal of the ring R2,
it is the x-axis.

Given (a1, b1) ∈ R2, the coset (a1, b1) + X = {(a1, b1) + (a, 0) | a ∈ R} =
{(a1 + a, b1) | a ∈ R}. Because, by choosing a appropriately, a1 + a can be made



to equal any real number, this is just all the points with y-coordinate b1.

Furthermore, given (a1, b1) and (a2, b2) in R2, what does it mean for the coset
(a1, b1) +X to be the same as the coset (a2, b2) +X?

By Lemma , (a1, b1) +X = (a2, b2) +X if and only if (a1 − a2, b1 − b2) belongs
to X. This happens if and only if b1 − b2 = 0. So the two cosets (a1, b1) + X
and (a2, b2) + X are equal if and only (a1, b1) and (a2, b2) have have the same
y-coordinate.

♦

18.1.7 Example Let R = R[x]. Let I = {f(x) ∈ R[x] | f(0) = 0}. This is the
set of all polynomials with real coe�cients and with no constant term (or whose
constant term is 0). I is an ideal of R[x].

Given g(x) ∈ R[x] the coset g(x) + I = {g(x) + f(x) | f(0) = 0}. Because the
constant term of f(x) is zero this will be all the polynomials which have the same
constant term as g(x).

Now suppose g(x), h(x) ∈ R[x]. What does it mean for the cosets g(x)+ I and
h(x) + I to be equal?

By Lemma 18.1.6, g(x) + I = h(x) + I if and only if g(x)− h(x) ∈ I. Suppose
11

g = a0 + a1x+ · · ·+ anx
n, h = b0 + b1x+ · · ·+ bnx

n,

where a0, . . . , an and b0, . . . , bn are real numbers. Then g(x)−h(x) ∈ I if and only
if a0 − b0 = 0 if and only if a0 = b0 (i.e. g and h have the same constant term).
Therefore g(x) + I and h(x) + I are the same cosets if and only the constant term
of g(x) equals the constant term of h(x). ♦

18.2 Quotient rings

18.2.1 De�nition Let R be a ring and I an ideal of R. We de�ne the quotient
ring R/I to be the set of cosets

R/I = {x+ I | x ∈ R}
11It seems that we're writing f(x) and g(x) both as polynomials of the same degree n; this

looks wrong as there is no reason to suppose that g and h have the same degree. But looks can
be misleading. Here we're in fact writing g(x) and h(x) as polynomials of degree at most n. For
example, if g = 2 + 7x and h = 4 − 3x + 2x3 then we can take n = 3 and let a0 = 2, a1 = 7,
a2 = a3 = 0, and b0 = 4, b1 = −3, b2 = 0, b3 = 2



with addition and multiplication de�ned by

(x+ I) + (y + I) = (x+ y) + I. (12)

(x+ I)(y + I) = (xy) + I. (13)

♦

Note carefully that the elements in R/I are themselves cosets and so the addi-
tion and multiplication de�ned tell us how to add and multiply two cosets to get
another coset! This is why quotient rings can take a bit of getting used to.

We will now go on to prove that R/I is a ring. There is a more serious point
which is that we need to show that the operations (12) and (13) are well-de�ned.

What does this mean? We know that cosets can have more than one `name'.
For example in Z/5Z we have 1 + 5Z = 6 + 5Z so this coset goes both by the
name `1 + 5Z' and by the name `6 + 5Z'. The de�nition above uses this name. So
we'd better make sure that the de�nition is independent of this choice of name.
Precisely, we need to check that this is true:

If

a+ I = a′ + I and b+ I = b′ + I,

then
(a+ b) + I = (a′ + b′) + I and (ab) + I = (a′b′) + I.

The following theorem checks this.

18.2.2 Theorem - the addition and multiplication in (R/I,+, .) are well
de�ned. Let (R,+, .) be an ring and I an ideal of R. Let a, a′, b, b′ be elements
of R such that in R/I we have

a+ I = a′ + I and b+ I = b′ + I,

then
(a+ b) + I = (a′ + b′) + I and (ab) + I = (a′b′) + I



Proof . Since a+ I = a′+ I and b+ I = b′+ I in R/I by Lemma 18.1.6 a−a′ = h1
and b − b′ = h2 where h1, h2 ∈ I. Thus (and note that the commutativity of the
addtion is used in the step below):

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) = h1 + h2.

As (I,+) is a subgroup of (R,+) containing h1 and h2, we know that the sum
h1 + h2 belongs to H. Thus, by Lemma 18.1.6 again, the cosets (a + b) + I and
(a′ + b′) + I are equal.

Now for the multiplication. We have

ab− a′b′ = ab+ ab′ − ab′ − a′b′ = a(b− b′)− b′(a′ − b′).
With a− a′ = h1 ∈ I and b− b′ = h2 ∈ I as before this can be written as

ab− a′b′ = ah2 + b′h1.

But, since I is an ideal and h1, h2,∈ I we have ah2 + b′h1 ∈ I or ab− a′b′ ∈ I.
Thus, by Lemma 18.1.6 once again, the cosets (ab) + I and (a′b′) + I are equal.♦

We need to check one more thing: that R/I is indeed a ring!

18.2.3 Theorem Let (R,+, .) be ring and I an ideal of R. Then (R/I,+, .) is
a ring.

Proof . We have to check the de�ning properties for a ring.

The addition in (R/I,+, .) is closed because if a + I and b + I are two cosets
then their sum (a+ I) + (b+ I) = (a+ b) + I is another coset.

The additive identity element in (R/I,+) is the coset 0+ I (note that as a set
this coset is equal to I). This is because, if a ∈ R,

(a+ I) + (0 + I) = (a+ 0) + I = a+ I = (0 + a) + I = (0 + I) + (a+ I).

Given a ∈ R, the additive inverse of the coset a+ I is the coset (−a) + I. This is
because

(a+I)+((−a)+I) = (a+(−a))+I = 0+I = ((−a)+a)+I = ((−a)+I)+(a+I)

and 0 + I is the identity element in (R/I,+).



The addition is associative because if a, b, c ∈ R then

[(a+ I) + (b+ I)] + (c+ I) = ((a+ b) + I) + (c+ I) = ((a+ b) + c) + I

= (a+ (b+ c)) + I = (a+ I) + ((b+ c) + I) = (a+ I) + [(b+ I) + (c+ I)].

The addition is abelian because if a, b ∈ R. Then

(b+ I) + (a+ I) = (b+ a) + I from the de�nition of addition in R/I

= (a+ b) + I b+ a = a+ b as (R,+) is abelian

= (a+ I) + (b+ I) from the de�nition of addition in R/I.

(14)

Now for the multiplication related properties.

The multiplication in R/I is closed because if a + I and b + I are two cosets
then their product (a+ I)(b+ I) = (ab) + I is another coset.

The multiplicative identity element in R/I is the coset 1 + I. This is because,
if a ∈ R,

(a+ I)(1 + I) = (a.1) + I = a+ I = (1.a) + I = (1 + I)(a+ I).

The addition is associative because if a, b, c ∈ R then

[(a+ I)(b+ I)](c+ I) = ((ab) + I)(c+ I) = ((ab)c) + I

= (a(bc)) + I = (a+ I)((bc) + I) = (a+ I)[(b+ I)(c+ I)].

The distributive properties hold because if if a, b, c ∈ R then

[(a+ I) + (b+ I)](c+ I) = ((a+ b) + I)(c+ I) = ((a+ b)c) + I

= (ac+ bc) + I = ((ac) + I) + ((bc) + I) = (a+ I)(c+ I) + (b+ I)(c+ I).

Similarly (a+ I)[(b+ I) + (c+ I)] = (a+ I)(b+ I) + (a+ I)(c+ I). ♦

18.2.4 Example (which turns out to be very familiar!) Let m ≥ 2 be an
integer. We know that mZ is an idea of Z (consisting of the multiples of m). Lets
think about the quotient ring (Z/mZ,+, x). We're about to �nd out that we've
seen this before.

Recalling Foundations again, you de�ned the congruence class modulo m of
an integer a. This was [a]m = {b ∈ Z | b ≡ a (mod m)}. It turns out that the



congruence class [a]m is equal to the coset a+mZ as follows:

Let c ∈ [a]m. Then c ≡ a (mod m) which means that c− a is a multiple of m.
So c− a = mk for some integer k. Then c = a+mk and c ∈ (a+mZ). Therefore
[a]m ⊆ a+mZ.

Conversely, if d ∈ (a+mZ) then d = a+ml for some l ∈ Z and d−a is a multi-
ple of m. This means that d ≡ a (mod m) and d ∈ [a]m. Therefore a+mZ ⊆ [a]m.

Since both [a]m ⊆ a+mZ and a+mZ ⊆ [a]m we have that a+mZ = [a]m.

In Foundations you we saw an addition and multiplation on the congruence
classes as

[a]m +m [b]m = [a+ b]m and [a]m ×m [b]m = [ab]m

Notice that we could now write these in coset notation as

(a+mZ) + (b+mZ) = (a+ b) +mZ and (a+mZ)(b+mZ) = (ab) +mZ

and that this exactly how addition and multiplication in the quotient ring
(Z/mZ,+, .) was de�ned in De�nition 18.2.1.

So the congruence classes modulo n under addition and mutiplication is exactly
the same ring as the quotient ring (Z/mZ,+)! ♦

Importantly, this means that taking the quotient ring (R/I,+, .) in the case
when R = Z and I = nZ corresponds exactly to ring of conjugacy classes modulo
n under addition. Thus, taking a quotient ring can be seen as a generalisation of
de�ning an addition on conjugacy classes modulo n in the sense that they coincide
in this particular instance but that taking quotient rings can be applied more
widely, as we'll see in the next example.

18.2.5 Example Let f(x) be a polynomial in R = F [x] where F is a �eld. Let
I = f(x)R. Let's think about the quotient ring R/I.

We have I = f(x)R = {f(x)h(x) | h(x) ∈ F [x]} which is precisely those poly-
nomials in F [x] which are multiples of f(x).

Cosets take the form g(x) + I where g(x) ∈ F [x]. If g1(x), g2(x) ∈ F [x] then
the cosets g1(x)+ I = g2(x)+ I if and only if g1(x)−g2(x) ∈ I, i.e. if g1(x)−g2(x)
is a multiple of f(x).



Now suppose g(x) + I is a coset where deg(g(x)) ≥ deg(f(x)). By division
with remainder there exists q(x), r(x) ∈ F [x] with deg(r(x)) < deg(f(x)) such
that g(x) = f(x)q(x) + r(x). But then g(x) − r(x) ∈ I and g(x) + I = r(x) + I.
In fact r(x) is unique (but we didn't prove this). This means there is a unique
'canonical' way of writing g(x) + I as r(x) + I where deg(r(x)) < deg(f(x)).

This is entirely analogous to there being a canonical way to write a coset in
Z/nZ. We would tend to write 1+3Z rather then 4+3Z or −5+3Z for example.

Let's take a speci�c example. Let's take f(x) = x2 + 3x+ 2 and R = R[x]. So
I = f(x)R[x]. The quotient ring in question is then R/I and (2x4+x3−3x+1)+I
is an element of the quotient ring.

Applying `division with remainder'using 2x4 + x3− 3x+1+ I and x2 +3x+2
we get

2x4 + x3 − 3x+ 1 = (x2 + 3x+ 2)(2x2 − 5x+ 11) + (−26x− 21)

so that the polynomial 2x2−5x+1 is the quotient and the polynomial −26x−21 is
the remainder. Notice that (x2+3x+2)(2x2−5x+11) = f(x)(2x2−5x+11) ∈ I,
being a multiple of f(x), and so

2x4 + x3 − 3x+ 1− (−26x− 21) ∈ I.
This means that we have equality of cosets:

(2x4 + x3 − 3x+ 1) + I = (−26x− 21) + I

and (−26x− 21) + I is the canonical form of the coset (2x4 + x3− 3x+1)+ I.

This idea is particularly useful when multiplying two cosets. When perfoming
multiplication in this quotient ring i.e.,

(g(x) + I)(h(x) + I) = g(x)h(x) + I,

it's often the case the g(x)h(x) has degree higher than that of f(x) and so tak-
ing the remainder upon dividing it by f(x) will lead to use being able to write
g(x)h(x) + I back in canonical form. This is entirely analogous to something like

(3 + 5Z)(4 + 5Z) = 12 + 5Z = 2 + 5Z

where the coset 12 + 5Z has been reduced back to canonical form by taking the
remainder when 12 is divided by 5. ♦



18.2.6 Example Something interesting happens when we take f(x) = x2 + 1
and R = R[x] in the previous example.

As we've seen before in the ring R/I where I = f(x)R the additive identity
is 0 + I and the multiplicative identiy is 1 + I. The multiplicative identity has
additive inverse of −1 + I.

But note that since x2 + 1 = x2 − (−1) ∈ I we have the following equality of
cosets

x2 + I = −1 + I.

This means that
(x+ I)(x+ I) = −1 + I.

We have a square root for the negative of the additive identity, a square root of
−1, in this ring! ♦

It turns out that, in the previous example, R/I is `the same' as the complex
numbers. We'll formalise this in the next (and �nal) chapter.



Chapter 19 - Ring Homomorphisms

19.1 What is a ring homomorphism?

In a very similar way to a group homomorphism, a ring homomorphism is a func-
tion from a ring to another ring which `preserves' both the addition and the mul-
tiplication. Here is the de�nition.

19.1.1 De�nition Let (R1,+R1 ,×R1) and (R2,+R2 ,×R2) be rings. We say that
the function φ : R1 → R2 is a (ring) homomorphism if φ(1R1) = 1R2 and it satis�es

φ(r +R1 s) = φ(r) +R2 φ(s) and φ(r ×R1 s) = φ(r)×R2 φ(s)

for all r, s in R1.

If, in addition, φ is a bijection. Then it is said to be an (ring) isomorphism.♦

Let's look at some examples.

19.1.2 Example Let R1 = Z and let R2 = Z/nZ. De�ne a function φ : R1 →
R2 as follows:

φ(m) = m+ nZ (formerly known as [m]n).

To check that this is a homomorphism we need to show that φ(1R1) = 1R2 then
that φ(k) + φ(l) = φ(k + l) and that φ(k)φ(l) = φ(kl) for all integers k, l.

It's clear that 1R1 = 1 and 1R2 = 1+ nZ and φ(1) = 1+ nZ, i.e. φ(1R1) = 1R2 .

We have

φ(k) + φ(l) = (k + nZ) + (l + nZ) = (k + l) + nZ = φ(k + l)

and
φ(k)φ(l) = (k + nZ)(l + nZ) = (kl) + nZ = φ(k + l)

So φ is a homomorphism. ♦

19.1.3 Example Let R1 = C[x] and let R2 = C. De�ne a function φ : R1 → R2

as follows:

φ(f(x)) = f(i).



In other words, φ evaluates f(x) ∈ C[x] at x = i, where i is the usual square
root of −1.

To check that this is a homomorphism we need to show that, φ(1) = 1,
φ(f(x)+ g(x)) = φ(f(x))+φ(g(x)) and that φ(f(x)g(x)) = φ(f(x))φ(g(x)) for all
polynomials f(x), g(x) ∈ C[x].

It's clear that if you evaluate the polynomial 1 at any complex number you
just get the number 1.

We also have

φ(f(x) + g(x)) = f(i) + g(i) = φ(f(x)) + φ(g(x))

and
φ(f(x)g(x)) = f(i)g(i) = φ(f(x))φ(g(x))

So φ is a homomorphism. ♦

19.1.4 Example This one is very similar to the previous one. Let R1 = R[x]
and let R2 = C. De�ne a function φ : R1 → R2 as follows:

φ(f(x)) = f(i).

Again, φ evaluates f(x) ∈ R[x] at x = i.

φ is a homomorphism exactly as in the previous example. ♦

You may be wondering what the real di�erence is between the homomorphims
in the previous two examples. This will be answered soon.

19.1.5 Exercse Let

F =

{(
a b
−b a

)
| a, b ∈ R

}
.

1. Show that F is a �eld (under the usual addition and multiplication of ma-
trices). (Hint: Begin by showing that F is a subring of M2×2(R). You need
to also show that F is commutative and that every non-zero element has a
multiplicative inverse in F .)



2. Let φ : F → C be given by φ

(
a b
−b a

)
= a + bi. Show that φ is a ring

isomorphism

3. Show that

F ′ =

{(
a b
−b a

)
| a, b ∈ C

}
is not a �eld.

19.2 The kernel and the image of a homomorphism

As for group homomorphism we have a kernel and an image. You will learn
much more about the kernel and the image of ring homomorphisms in future
modules covering rings. Just as for group homomorphisms and groups. They are
fundamental in understanding exactly how rings are related.

19.2.1 De�nitions Let R1 and R1 be rings and let φ : R1 → R2 be a ring
homomorphism. Then

1. Ker φ = {r ∈ R1 | φ(r) = 0R2} is called the kernel of φ.

2. Im φ = {s ∈ R2 | there exists r ∈ R1 with φ(r) = s} = {φ(r) | r ∈ R1} is
called the image of φ

You may be expecting the kernel and the image of a ring homomophims to be
subrings of the rings they live inside (by analogy with the corresponding result for
groups, Theorem 13.2.2). This is not the case. Although the image is a subring
(of R2 in the above de�nition) the kernel is in fact an ideal (of R1).

19.2.2 Theorem Let R1 and R2 be rings and let φ : R1 → R2 be a homomor-
phism. Then

1. Ker φ = {g ∈ G | φ(g) = 1} is an ideal of R1

2. Im φ = {θ(g) | g ∈ G} is a subring of R2.

Proof .



1. Noting that φ is a homomorphism between the groups (R1,+) and (R2,+)
we see that Ker φ is a subgroup of (R1,+) by the corresponding theorem
about group homomorphims, Theorem 13.2.2.

To show that Ker φ is an ideal take x ∈ Ker φ and r ∈ R. Then φ(xr) =
φ(x)φ(r) = 0.r = 0 so xr ∈ Ker φ. Similarly rx ∈ Ker φ .

2. Im φ = {θ(r) | r ∈ R1 is an additive subgroup of R2, again by considering φ
as a group homomorphm the groups (R1,+) and (R2,+). All that is left to
check is that 1R2 ∈ Im φ and that if s1, s2 ∈ Im φ then s1s2 ∈ Im φ.

1R2 ∈ Im φ because φ(1R1) = 1R2 , as we see in the de�nition of a ring homo-
morphism.

If s1, s2 ∈ Im φ then s1 = φ(r1), s2 = φ(r2 for some r1, r2 ∈ R1. Then

φ(r1r2) = φ(r1)φ(r2) = s1s2

and so s1s2 ∈ Im φ. ♦

Let's �nish by looking at some examples.

19.2.3 Example For the ring homomorphism in Example 19.1.2,

Ker φ = {k ∈ Z | k + nZ = 0 + nZ} = nZ,

the multiples of n. Convince yourself that Im φ = Z/nZ.

19.2.4 Example For the ring homomorphism from C[x] to C in Example 19.1.3
suppose f(x) ∈ Ker φ.

Then f(i) = 0. This is true if any only f(x) = (x−i)g(x) for some g(x) ∈ C[x].
Therefore Ker φ = (x− i)C[x].

Given a+ bi ∈ C, where a, b ∈ R, its clear that a+ bi = f(i) where f(x) is the
constant polynomial a+ bi ∈ C[x]. This means that φ is surjective and Im φ = C.

19.2.5 Example For the ring homomorphism from R[x] to C in Example 19.1.4
suppose f(x) ∈ Ker φ.

Then f(i) = 0. This is true if any only f(x) = (x2−1)g(x) for some g(x) ∈ R[x].
Therefore Ker φ = (x2 − 1)C[x] by Exercise 17.2.6.



Given a+ bi ∈ C, where a, b ∈ R, its clear that a+ bi = f(i) where f(x) is the
polynomial bx+ a ∈ C[x]. This means that φ is surjective and Im φ = C.

19.2.6 Exercise Let G = R2 and let H = R2. De�ne a function φ : G→ H as
follows:

φ(x, y) = (x, x).

Show that φ is a ring homomorphism and calculate Ker φ and Im φ.

19.2.7 Exercise Let G = R2 and let H = R2. De�ne a function φ : G→ H as
follows:

φ(x, y) = (x, 0).

Give a reason that φ is not a ring homomorphism.

19.2.8 Exercise Let R1 and R2 be groups and let φ : R1 → R2 be a ring
homomorphism. Show that φ is injective if and only if Ker φ = {0R1}.

19.2.9 Exercise Let R1 and R2 be groups and let φ : R1 → R2 be an injective
ring homomorphism. Show that R2 contains a subring which is isomorphic to R1.

19.2.10 Example R[x]/(x2 + 1)R[x] is isomorphic to C as follows.

The isomorphism, φ, needs to map and element of R[x]/(x2 + 1)R[x], i.e. a
coset of the form f(x) + (x2 + 1)R[x] (where f(x) ∈ R[x]) to a complex number.
Letting I = (x2 + 1)R[x], we de�ne it as follows

φ(f(x) + I) = f(i)

.
Consider the following argument, for f(x), g(x) ∈ R[x],

φ(f(x) + I) = φ(g(x) + I) ⇐⇒ f(i) = g(i) ⇐⇒ f(i)− g(i) = 0

⇐⇒ both f(i)− g(i) = 0 and f(−i)− g(−i) = 0

⇐⇒ f(x)− g(x) = (x2 + 1)h(x) for some h(x) ∈ R[x]

⇐⇒ f(x)− g(x) ∈ I ⇐⇒ f(x) + I = g(x) + I.

Following the implications from right to left in this tells us that φ is well-de�ned.
Following the implicatons from left to right then tells us that φ is injective.



You can check that this is a ring homomorphism and also surjective (and hence
an isomorphism). ♦

For all the examples of ring homomorphism in this chapter it's possible to show
that the quotient ring R/Ker φ is isomorphic (as a ring) to Im φ. That's because
this is true for any ring homomorphism. However that story will be left for a future
algebra module.

Many thanks and good luck, Richard.
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