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Chapter 1. Power series I

A power series is a actually a family of series. Given a sequence of coefficients (a0, a1, . . .)

we look at the series
∞∑
n=0

an x
n

for each possible value of x. (More generally we consider series

∞∑
n=0

an (x− x0)n

in which we centre the series at a number x0 rather than at 0. We will develop the theory

just for the first type: everything transfers immediately to the more general case.)

We think of a power series as a kind of infinite polynomial in which the (an) are coefficients.

The series may or may not converge depending upon the value of x. Where it does

converge it defines a function of x and we shall see that the function will automatically

be continuous and differentiable. Many of the most important functions in mathematics

can be written as power series: in particular the exponential function.

Basic properties of power series

We want to know the values of x for which a power series
∑∞

0 an x
n converges. Of course

the answer will depend upon the specific an, but there is a fundamental feature of the

answer that is common to all power series. The set of values where a power series converges

will be an interval (possibly infinite) of the real line. The idea is quite simple: if
∑
ant

n

converges and we choose x to be smaller than t in size then the terms anx
n will be much

smaller than the terms ant
n so we should expect

∑
an x

n to converge as well.

We would like to prove this just by quoting the Comparison Test for series but that doesn’t

quite work because the series
∑
an t

n might not converge absolutely. However we can get

around this problem because anx
n is not just smaller than ant

n but is very much smaller

when n is large.

3



Theorem (Radius of convergence I). Let
∑∞

0 anx
n be a power series with

∑
an t

n

convergent. Then
∞∑
0

anx
n

converges absolutely for all x with |x| < |t|.

Proof Since
∑
an t

n converges we know that an t
n → 0 as n→∞ and so the sequence is

bounded. There is some M for which |antn| < M for all n. Now

N∑
0

|anxn| =
N∑
0

|antn|
∣∣∣x
t

∣∣∣n
≤ M

N∑
0

∣∣∣x
t

∣∣∣n
≤ M

∞∑
0

∣∣∣x
t

∣∣∣n
= M

1

1− |x|/|t|

Hence
∑∞

0 |anxn| <∞ and the series converges absolutely.

Using this principle we can introduce what is called the radius of convergence.

Theorem (Radius of convergence II). Let
∑∞

0 anx
n be a power series. One of the

following holds.

• The series converges only if x = 0.

• The series converges for all real numbers x.

• There is a positive number R with the property that the series converges if |x| < R

and diverges if |x| > R.

In the third case the number R is called the radius of convergence. In the first case we

say that the radius of convergence is 0 and in the second that it is ∞.

Proof Obviously the series does converge if x = 0. If the first option does not hold than

it converges for some other values of x.
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The set of x for which it converges might be unbounded: it might contain arbitrarily

large numbers. In that case the power series will converge absolutely for all real x and

defines a function on R.

Otherwise the set might contain some numbers other than 0 but be bounded. In that

case we let

R = sup{|t| :
∑

an t
n converges}.

Then by our previous theorem the series converges absolutely whenever |x| < R. It does

not converge if |x| > R by definition of R.

As an immediate corollary we get an observation that will be useful later.

Corollary (Absolute series). Let
∑∞

0 anx
n be a power series with radius of convergence

R. Then
∑∞

0 |an|xn also has radius of convergence R.

Example (The geometric series I). The series
∑∞

0 xn has radius of convergence R =

1.

Proof We know that the series converges if and only if x ∈ (−1, 1).

Example (The geometric series II). If p is real the series
∑∞

0 pnxn has radius of

convergence R = 1/|p|.

Proof We know that the series converges if and only if px ∈ (−1, 1) which is the same as

saying that x ∈ (−1/|p|, 1/|p|).

Example (The log series). The series
∑∞

0
xn

n
has radius of convergence R = 1.

Proof From homework we know that the series converges if and only if x ∈ [−1, 1).

Notice that although we have put in the extra factor 1/n in front of xn we have not

changed the radius of convergence. The point is that if we increase x beyond 1, its powers

xn increase exponentially fast and this swamps the effect of the factor 1/n. However, the

extra factor of 1/n does make the series converge at x = −1 but not absolutely.

Example. The series
∑∞

0 nxn has radius of convergence R = 1.
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Proof From homework we know that the series converges if and only if x ∈ (−1, 1).

For most interesting power series we can find the radius of convergence using the ratio

test. There is a formula for the radius of convergence which works for all series which

appears at the end of these notes. As a taste let us look at another example:

Example. The series 1 + 0x+ x2 + 0x3 + x4 + · · · has radius of convergence R = 1.

Proof The series is

1 + x2 + x4 + x6 + · · ·

which is a geometric series with ratio x2. So it converges if and only if x2 ∈ (−1, 1).

However, there is another way to do it which is a much more flexible method. If x > 1

then the terms do not tend to zero so the series diverges. The terms of the series are

(respectively) at most |x|n. So if |x| < 1 the series converges by comparison with the

convergent series
∑
|x|n. So the radius of convergence is 1.

We remarked that it is possible to consider power series centred at points other then 0.

For example
1

1− x
=

1

2− (x+ 1)
=

1

2

1

1− (x+ 1)/2

=
1

2

(
1 +

x+ 1

2
+

(
x+ 1

2

)2

+ · · ·

)
=

1

2
+
x+ 1

4
+

(x+ 1)2

8
+ · · · .

This converges if
∣∣x+1

2

∣∣ < 1: in other words if x differs from −1 by less than 2. The series

is centred at −1 and has radius of convergence 2. This means that it converges on (−3, 1).

Notice that it converges “as far as it possibly can”. The function has an asymptote at

x = 1 so the series cannot represent the function at x = 1.

The continuity of power series

As was remarked several times, many of the most important functions in mathematics

are given by power series so we want to know that such functions have nice properties:

that they are continuous for example.
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Theorem (Continuity of power series). Let
∑∞

0 anx
n with radius of convergence R.

Then the function

x 7→
∞∑
0

anx
n

is continuous on the interval (−R,R).

We already saw some examples in which the power series converges at one or both ends of

the interval [−R,R]. If so it makes sense to ask whether the function is continuous on this

larger set. Perhaps surprisingly this is a bit more subtle than the statement above. There

are some quite slick proofs of the continuity of power series. We will take a very down to

earth approach. Inside the radius of convergence a power series can be approximated by

a polynomial: and polynomials are continuous.

Proof Suppose −R < x < R. We want to show that the function is continuous at x.

Choose a number T with |x| < T < R. Then the series
∑
|an|T n converges, so for each

ε > 0 there is some number N for which

∞∑
N+1

|an|T n < ε/3.

Now if |y − x| < T − |x| we will have |y| < T as well as |x| < T . Hence

∞∑
N+1

|an| |x|n < ε/3 and
∞∑
N+1

|an| |y|n < ε/3.

The partial sum
∑N

0 an y
n is a polynomial in y and polynomials are continuous so

there is some δ0 > 0 with the property that if |y − x| < δ0∣∣∣∣∣
N∑
0

an y
n −

N∑
0

an x
n

∣∣∣∣∣ < ε/3.

Therefore if we choose δ to be the smaller of δ0 and T − |x| then if |y − x| < δ we get

∣∣∣∣∣
∞∑
0

an y
n −

∞∑
0

an x
n

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
N+1

an y
n

∣∣∣∣∣+

∣∣∣∣∣
N∑
0

an y
n −

N∑
0

an x
n

∣∣∣∣∣+

∣∣∣∣∣
∞∑
N+1

an x
n

∣∣∣∣∣
≤

∞∑
N+1

|an| |y|n +

∣∣∣∣∣
N∑
0

an y
n −

N∑
0

an x
n

∣∣∣∣∣+
∞∑
N+1

|an| |x|n < ε.
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Armed with these properties of power series we can begin to investigate the standard

functions such as the exponential. It will turn out that power series are not only continuous

but also differentiable inside the radius of convergence. The derivative makes it easier to

demonstrate the crucial properties of standard functions but we shall begin with the

exponential before we cover derivatives so as to see some concrete applications of our

theory.

The exponential

As explained in the introduction we shall define the exponential function as a power series.

Definition (The exponential). If x ∈ R the series

1 + x+
x2

2
+
x3

6
+ · · ·+ xn

n!
+ · · ·

converges. We call the sum expx.

Proof The ratio of successive terms of the series is

xn+1

(n+ 1)!

n!

xn
=

x

n+ 1
→ 0

so the series converges by the ratio test.

We know that the function x 7→ expx is continuous on R since it is a convergent power

series. We would like to check that it satisfies the characteristic property ex+y = exey.

This will be easy to check once we have derivatives later in the course but it is very

instructive to see how to do it directly from the series definition.

The idea is this. When we multiply ex by ey we have to expand the product of two

brackets (
1 + x+

x2

2
+
x3

6
+ · · ·

)(
1 + y +

y2

2
+
y3

6
+ · · ·

)
which means we have to consider all possible products of one term from the first bracket

and one term from the second bracket (and then add all of these products together). It

is natural to arrange these products into a grid
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1 x x2/2 x3/6 . . .

1 1 x x2/2 x3/6 . . .

y y xy x2y/2 . . .

y2/2 y2/2 xy2/2 . . .

y3/6 y3/6 . . .

...
...

We now want to add all the terms in this grid. One way to make sure that we include

everything is to add them diagonally.

1 + (x+ y) + (x2/2 + xy + y2/2) + (x3/6 + x2y/2 + xy2/2 + y3/6) + · · ·

Now let us collect each diagonal sum over a common denominator. The first is 1 and the

second is x+ y. The third is
x2 + 2xy + y2

2

and the fourth is
x3 + 3x2y + 3xy2 + y3

6
.

We immediately see that we have the binomial expansions of (x + y)2 and (x + y)3. So

the whole sum looks like

1 + (x+ y) +
(x+ y)2

2
+

(x+ y)3

6
+ · · ·

and this is exp(x+ y).

Because we have infinite sums we need an argument to justify this. We shall compare the

sum of a certain number of the diagonals with the product of partial sums of the series

for ex and ey.
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Theorem (The characteristic property of the exponential). If x, y ∈ R then

exp(x+ y) = exp(x) exp(y).

Proof By the algebra of limits it suffices to check that

2m∑
0

(x+ y)k

k!
−

(
m∑
0

xi

i!

)(
m∑
0

yj

j!

)
→ 0

because the first term converges to ex+y and the second to exey. By the binomial theorem,

for each k,

(x+ y)k =
k∑
i=0

k!

i!(k − i)!
xiyk−i =

∑
i+j=k

k!
xi

i!

yj

j!
.

So
2m∑
0

(x+ y)k

k!
−

(
m∑
0

xi

i!

)(
m∑
0

yj

j!

)

=
∑

i+j≤2m

xi

i!

yj

j!
−

∑
i≤m,j≤m

xi

i!

yj

j!
.

We are considering the terms of the form xi

i!
yj

j!
within a triangle but with the terms in a

square removed.

��

��

�

�

We are left with terms in two smaller trian-

gles.

We want to prove that the sums in these two

pieces are small.

The key is that all these terms are “far out”.
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These sums are ∑
i≥m+1,i+j≤2m

xi

i!

yj

j!

and a similar one with the restrictions on i and j interchanged. By the triangle inequality

the absolute value of the sum is at most∑
i≥m+1,i+j≤2m

|x|i

i!

|y|j

j!
.

Once we have made all the terms positive we can include other terms without decreasing

the sum. So the sum of the terms in the smaller triangle has absolute value at most∑
i≥m+1,i+j≤2m

|x|i

i!

|y|j

j!
≤

∑
i≥m+1,j≥0

|x|i

i!

|y|j

j!

and the latter is ( ∑
i≥m+1

|x|i

i!

)(
∞∑
j=0

|y|j

j!

)
.

The first factor tends to 0 as m→∞ while the second is equal to e|y|.

Theorem (The characteristic property of the exponential). If x, y ∈ R then

exp(x+ y) = exp(x) exp(y).

The characteristic property makes us feel comfortable writing exp(x) as ex. We have

ex+y = exey and in particular we have e−u = 1/eu for all real u.

The argument given above can be used to show that power series can be multiplied in the

obvious way inside their intervals of convergence.

Theorem (The product of power series). If
∑
anx

n and
∑
bnx

n converge for x in

the interval (−R,R) then so does the series
∑∞

n=0 (
∑n

k=0 akbn−k)x
n and for all such x

∞∑
n=0

(
n∑
k=0

akbn−k

)
xn =

(
∞∑
i=0

aix
i

)(
∞∑
i=0

bjx
j

)
.

Proof Exercise.
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Inequalities for the exponential

For many purposes it is important to have some estimates for the exponential in terms

of simpler functions. To begin with let us observe that if x is positive it is clear that

ex = 1 + x + x2/2 + · · · is positive. For negative x it is not immediate from the power

series that ex is positive but it follows from the fact that e−u = 1/eu and this is positive

if u is positive. The most useful inequalities are the following.

Theorem (Inequalities for the exponential). The following estimates hold for the

exponential function:

1. 1 + x ≤ ex for all real x

2. ex ≤ 1/(1− x) if x < 1.

Proof If x ≥ 0 then

ex = 1 + x+
x2

2
+ · · · ≥ 1 + x

and if 0 ≤ x < 1

ex = 1 + x+
x2

2
+
x3

6
+ · · · ≤ 1 + x+ x2 + x3 + · · · = 1

1− x
.

So the inequalities are easy to establish if x ≥ 0. To obtain them for negative x we use

the characteristic property of the exponential much as we did to prove positivity.

Suppose x = −u is negative. We know that eu ≥ 1 + u and hence e−x ≥ 1 − x. But

this implies that
1

1− x
≥ ex

so the second inequality is now established for all x < 1.

If x ≤ −1 then 1 + x ≤ 0 whereas ex > 0 so ex ≥ 1 + x. It remains to prove the first

inequality for −1 < x < 0. If x = −u then 0 < u < 1 and so eu ≤ 1/(1 − u). This says

that e−x ≤ 1/(1 + x) and this implies that

1 + x ≤ ex.

These two inequalities sandwich the exponential rather nicely near 0 as shown in the

picture.
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Corollary (The exponential increases). The exponential function is strictly increasing

and its range is (0,∞).

Proof Suppose x < y. Then

ey = ey−xex ≥ (1 + y − x)ex > ex.

This shows that the exponential is strictly increasing.

Since ex ≥ 1 + x the exponential takes arbitrarily large values (at large x). Since

e−x = 1/ex the exponential also takes values arbitrarily close to 0 (at large negative x).

By the IVT the exponential takes all positive values.

Since we know that the exponential increases and is continuous we know that it has an

inverse, the logarithm, which will be the topic of the next section.

The logarithm and powers

We have seen that the exponential function maps R onto (0,∞) and is continuous and

strictly increasing. So we know by the IVT and its corollaries that the exponential has a

continuous inverse defined on (0,∞): the natural logarithm.
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Theorem (The logarithm). There is a continuous strictly increasing function x 7→ log x

defined on (0,∞) satisfying

elog x = x

for all positive x and

log(ey) = y

for all real y. We have that for all positive u and v,

log(uv) = log u+ log v.

Proof We just need to check the last assertion. But

elog u+log v = elog uelog v = uv.

Applying log to both sides we get what we want.

It was proved last term that each positive number has a positive square root. We would

like to know that we can take other non-integer powers of positive numbers. The simplest

way to define these is using the logarithm and exponential.

Definition (Powers). If x > 0 and p ∈ R we define

xp = exp(p log x).

We have the usual rules

1. If n is a positive integer then xn as defined here is indeed the product x.x. . . . .x of

n copies of x.

2. xp+q = xpxq for all x > 0 and p, q ∈ R.

3. log(xp) = p log x for x > 0 and p ∈ R.

4. xpq = (xp)q for all x > 0 and p, q ∈ R.

5. exp(p) = ep for all p ∈ R.

Notice that the last statement is not something we could have proved earlier because we

did not have a definition of powers with which to make sense of the pth power of e. We

shall prove the last one and leave the rest as an exercise.
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Proof By definition of the power,

ep = exp(p log(e)).

Now we know that log(e) = 1 so the second expression is exp(p).

The inequalities we proved for the exponential immediately give us inequalities for the

logarithm. You are asked to demonstrate these in the Homework. The most crucial one

is this:

Theorem (The tangent to the logarithm). If x > 0 then log x ≤ x− 1.

This says that the graph of y = log x lies below the line which is its tangent at the point

(1, 0).

0.5 1.0 1.5 2.0 2.5 3.0
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Chapter 2. Limits and the derivative

In this chapter we shall develop the basic theory of derivatives. The problem that we

start with is to find the instantaneous slope of a curve: the slope of its tangent line at a

point (x, f(x)) on the curve y = f(x).

The geometric picture of our method is this: we consider the point (x, f(x)) and a nearby

point (x+ h, f(x+ h)) and look at the chord joining the two points.

� �+�

�(�)

�(�+�)

16



The slope of this chord is
f(x+ h)− f(x)

h
.

We now ask what happens to this slope as the nearby point gets closer and closer to the

point we care about: what happens as h → 0. We ask whether the quotient f(x+h)−f(x)
h

approaches a limit. If so we define this to be the slope of the curve at (x, f(x)) or the

derivative f ′(x).

In order to carry out this process and analyse it we need to have a definition of the limit

in question. This will be the first part of the chapter.

Limits

Definition (Limits of functions). Let I be an open interval, c ∈ I and f a real valued

function defined on I except possibly at c. We say that

lim
x→c

f(x) = L

if for every ε > 0 there is a number δ > 0 so that if 0 < |x− c| < δ then

|f(x)− L| < ε.

Thus we can guarantee that f(x) is close to L by insisting that x is close to c, but we

exclude the possibility that x = c: we don’t care what f does at c itself nor even whether

f is defined at c. The reason for this freedom is that we want to discuss limits like

lim
h→0

f(x+ h)− f(x)

h

in which the function is not defined at h = 0.

Let’s look at a couple of examples.

Example. Let f : R→ R be defined by

f(x) =

{
1 if x = 0

0 if x 6= 0

Then

lim
x→0

f(x) = 0.

17



Example.

lim
x→1

x2 − 1

x− 1
= 2.

Proof As long as x 6= 1
x2 − 1

x− 1
= x+ 1

and as x→ 1 this approaches 2.

Strictly speaking the last statement is something we haven’t yet proved: we shall do so

now. By comparing the definitions of continuity and limits we can immediately prove the

following lemma.

Lemma (Limits and continuity). If f : I → R is defined on the open interval I and

c ∈ I then f is continuous at c if and only if

lim
x→c

f(x) = f(c).

Proof Exercise.

The last line really contains two pieces of information: that the limit exists and that it

equals f(c). In the previous example the function x 7→ x + 1 is continuous everywhere

and hence at c = 1 so we get limx→1(x+ 1) = 1 + 1 = 2.

We want to have a machine for calculating limits like the continuity machine: for example

we want to know that

lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x)

and

lim
x→c

f(x)g(x) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

whenever f and g have limits at c. One way to prove these would be to relate limits of

functions to limits of sequences just as we did for continuity. This will be an exercise in

the homework.

An alternative approach would be to use a slightly weird trick to deduce what we want

from what we already know about continuity. The trick is that if limx→c f(x) = L we can

define a new function

f̃(x) =

{
f(x) if x 6= c

L if x = c

18



and this new function will be continuous at c. Then we just use the rules for continuity

to deduce the same rules for limits.

We will take for granted the following theorems.

Theorem (Continuous and sequential limits). If f : I\{c} → R is defined on the

interval I except at c ∈ I then

lim
x→c

f(x) = L

if and only if for every sequence (xn) in I\{c} with xn → c we have

f(xn)→ L.

Proof Homework

Theorem (Algebra of limits). If f, g : I\{c} → R are defined on the interval I except

at c ∈ I and limx→c f(x) and limx→c g(x) exist then

1. limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x)

2. limx→c f(x)g(x) = limx→c f(x) limx→c g(x)

3. if limx→c g(x) 6= 0 then

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
.

Proof Exercise

One sided limits

It often happens that we wish to understand the behaviour of f(x) as approaches the end

of the interval where f is defined. For example we want to know what happens to log x

as x approaches 0 from the right.
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So we define one sided limits.

Definition (One sided limits). Let f a real valued function defined on the open interval

(c, d). We say that

lim
x→c+

f(x) = L

if for every ε > 0 there is a number δ > 0 so that if c < x < c+ δ then

|f(x)− L| < ε.

We read the expression as “The limit of f(x) as x approaches c from the right is L”.

We define the limit from the left

lim
x→c−

f(x)

similarly.

Example. Let f : R→ R be defined by

f(x) =



0 if x < 0

1/2 if x = 0

1 if x > 0

Then

lim
x→0+

f(x) = 1

and

lim
x→0−

f(x) = 0.
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At this point we digress slightly to discuss limits at infinity and infinite limits. At times

it is useful to have a notation indicating that a function behaves something like 1/x2 as

x→ 0.

Definition (Infinite limits). If f : I\{c} → R is defined on an open interval I except

perhaps at c ∈ I we write

lim
x→c

f(x) =∞

if for every M > 0 there is a δ > 0 so that if 0 < |x − c| < δ then f(x) > M . The limit

−∞
lim
x→c

f(x) = −∞

is defined similarly.

The limit is infinite if we can make f(x) as large as we please by insisting that x is close

to c (but not equal to c).

Example.

lim
x→0

1

x2
=∞.

Proof Given M > 0 choose δ = 1/
√
M . Then if 0 < |x| < δ = 1/

√
M we have 0 < x2 <

1/M and hence
1

x2
> M.

There is also a one sided version.

Example.

lim
x→0+

1

x
=∞, lim

x→0−

1

x
= −∞.

We also on occasions wish to study the behaviour of functions as the variable becomes

large.

Definition (Limits at infinity). If f : R→ R we write

lim
x→∞

f(x) = L

if for every ε > 0 there is an N so that if x > N then |f(x)− L| < ε.
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This looks very much like the definition of convergence of a sequence. The only difference

is that we now consider arbitrary real x instead of just natural numbers n. The algebra

of limits applies equally well to limits at infinity.

Example.

lim
x→∞

1

x
= 0.

Proof Exercise.

Example.

lim
x→∞

x

ex
= 0.

Proof If x > 0 we have ex ≥ 1 + x+ x2/2 > x2/2. So

0 <
x

ex
<

x

x2/2
=

2

x
→ 0

as x→∞.

The derivative

The idea of calculating the slope of a curve existed before Newton and Leibniz and the

derivatives of certain functions were already known: in particular the derivatives of the

monomials x 7→ xn for positive integers n. It was also known how to calculate areas under

certain curves. Three key points made up the invention of what we call calculus.

The first key point was the creation of a derivative “machine” to enable us to calculate

derivatives of all the standard functions: polynomials, rational functions, the exponen-

tial and trigonometric functions and anything we can build by adding multiplying or

composing these functions.

The second key point of calculus is the recognition that the slope of a curve, the derivative,

can be considered as a function and then differentiated again. For Newton this was crucial

since his aim was to derive Kepler’s Laws of planetary motion from the inverse square law

of gravitation. The inverse square law tells you the acceleration of a planet: the second

derivative of its position.
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The third key point of calculus was the realisation that differentiation and integration

are opposites of one another. This made it possible to simplify the process of integration

enormously by using the rules for derivatives.

Definition (The derivative). Suppose f : I → R is defined on the open interval I and

c ∈ I. We say that f is differentiable at c if

lim
h→0

f(c+ h)− f(c)

h

exists. If so we call the limit f ′(c).

Example (The derivative of x). If f(x) = x then f is differentiable at every point of

R and f ′(c) = 1 for all c.

Proof For every c and h 6= 0

f(c+ h)− f(c)

h
=
c+ h− c

h
= 1

and so

lim
h→0

f(c+ h)− f(c)

h
= lim

h→0
1 = 1.

Example (The derivative of x2). If f(x) = x2 then f is differentiable at every point

of R and f ′(c) = 2c for all c.

Proof For every c and h 6= 0

f(c+ h)− f(c)

h
=

(c+ h)2 − c2

h
=
c2 + 2ch+ h2 − c2

h
= 2c+ h

and so

lim
h→0

f(c+ h)− f(c)

h
= lim

h→0
(2c+ h) = 2c.

Example (The derivative of 1/x). If f(x) = 1/x then f is differentiable at every point

of R except 0 and f ′(c) = −1/c2 for all c 6= 0.
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Proof For every c 6= 0 and h satisfying 0 < |h| < |c|

f(c+ h)− f(c)

h
=

1/(c+ h)− 1/c

h
=
c− (c+ h)

h(c+ h)c
=

−1

(c+ h)c

and so

lim
h→0

f(c+ h)− f(c)

h
= lim

h→0

−1

(c+ h)c
=
−1

c2
.

The derivative machine

Obviously we don’t want to carry out this process for complicated functions so we need

to build a machine to do it for us. The derivative machine is like a food mixer. The mixer

has 3 basic parts: the motor, jug and lid (say) and separate blades to handle different

foods. The derivative machine has 3 basic parts: the sum rule, the product rule and

the chain rule and special rules to handle powers, the exponential and the trigonometric

functions.

In order to start building the machine we need to know that if a function is differentiable

at a point c then it is continuous there. To make the picture clearer let us start by

observing that we can rewrite the derivative

f ′(c) = lim
x→c

f(x)− f(c)

x− c
since if we put x = c+ h and h→ 0 we have x→ c.

Lemma (Differentiability and continuity). If I is an open interval, f : I → R is

differentiable at c ∈ I then f is continuous at c.

Proof We know that
f(x)− f(c)

x− c
→ f ′(c)

as x→ c. Hence

f(x)− f(c) =
f(x)− f(c)

x− c
(x− c)→ f ′(c).0 = 0

as x→ c which implies that f(x)→ f(c) as required.

The sum and product rules follow easily from the algebra of limits.
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Theorem (The sum and product rules). Suppose f, g : I → R are defined on the

open interval I and are differentiable at c ∈ I. Then f + g and fg are differentiable at c

and

(f + g)′(c) = f ′(c) + g′(c)

and

(fg)′(c) = f ′(c)g(c) + f(c)g′(c).

Proof The first will be left as an exercise. For the second

f(x)g(x)− f(c)g(c)

x− c
=

(f(x)− f(c))g(x) + f(c)(g(x)− g(c))

x− c

=
f(x)− f(c)

x− c
g(x) + f(c)

g(x)− g(c)

x− c
.

The algebra of limits tells us that as x→ c this expression approaches

f ′(c)g(c) + f(c)g′(c).

Note that to use the algebra of limits for the product rule we needed to use the fact that

g(x)→ g(c) as x→ c: in other words, the continuity of g at c.

We are now in a position to prove the differentiability of all polynomials. To begin with

let’s observe that if f is a constant function then its derivative is clearly 0. By the product

rule or just a direct check we can see that if we multiply a function f by a constant C

then we also multiply the derivative by C. Using the sum rule we can then handle all

polynomials as long as we check the derivative of each power x 7→ xn. We shall do this

by induction.

Lemma (The derivatives of the monomials). If n is a positive integer then the

derivative of x 7→ xn is x 7→ nxn−1.

Proof We already saw this for n = 1. Assume inductively that we have the result for

f(x) = xn. Then xn+1 = xf(x) so by the product rule its derivative is

1.f(x) + xf ′(x) = xn + xnxn−1 = (n+ 1)xn

completing the inductive step.
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At school you learned the quotient rule for derivatives. I have not included it in the

machine since it follows from the product rule, the chain rule and the derivative of the

function x 7→ 1/x.

The third part of the derivative machine is the chain rule. If we form the composition of

two functions f and g

x 7→ f(g(x))

we want to know that we can differentiate it and obtain the correct formula for the

derivative.

Theorem (Chain rule). Suppose I and J are open intervals, f : I → R and g : J → I,

that g is differentiable at c and f is differentiable at g(c). Then the composition f ◦ g is

differentiable at c and

(f ◦ g)′(c) = f ′(g(c)) . g′(c).

This may look a bit different from the chain rule that you know but in fact it is exactly

the one that you are accustomed to using: let’s see why. Let’s take g(x) = 1 + x2 and

f(u) = u3. Then the composition is f ◦ g : x 7→ (1 + x2)
3
. We have g′(x) = 2x and

f ′(u) = 3u2. According to the theorem the derivative of the composition is

f ′(g(c)) . g′(c) = 3g(c)2 . g′(c) = 3
(
1 + c2

)2
2c = · · · .

Note that the derivative of f is evaluated at g(c): the only place that makes any sense

because f is defined on an interval containing g(c). The chain rule is a bit harder to prove

than the other two rules. How could we try to prove the theorem? We want to investigate

the ratio
f(g(x))− f(g(c))

x− c
as x→ c. The obvious thing to do is to write this as

f(g(x))− f(g(c))

g(x)− g(c)
× g(x)− g(c)

x− c
.

The second factor converges to g′(c) as x→ c.

For the first factor we note that g(x) → g(c) as x → c so the limit of the first factor is

therefore

lim
g(x)→g(c)

f(g(x))− f(g(c))

g(x)− g(c)
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which appears to be f ′(g(c)). So we appear to have proved that

(f ◦ g)′(c) = f ′(g(c))g′(c).

There is a problem however. The quantity g(x) − g(c) could be equal to zero for lots of

values of x: perhaps even all of them. In that case we can’t divide by this quantity. For

this reason we need to start with a new way to express the differentiability of a function.

Lemma (Local linearisation). Suppose I is an open interval, f : I → R and c ∈ I.

Then f is differentiable at c if and only if there is a number A and a function ε with the

properties that for all x

f(x)− f(c) = A(x− c) + ε(x)(x− c),

ε(c) = 0 and ε is continuous at c: (ε(x)→ 0 as x→ c). If this happens A = f ′(c).

This is sometimes called the Weierstrass-Caratheodory criterion. The lemma says that if

x is close to c then f(x) is approximately given by the linear function

x 7→ f(c) + f ′(c)(x− c)

which you recognise as the first Taylor approximation to f .

Proof If the condition holds then

f(x)− f(c)

x− c
= A+ ε(x)

and this approaches A as x→ c. Hence f is differentiable with derivative f ′(c) = A.

On the other hand suppose f is differentiable at c. Set A = f ′(c) and define ε as

follows

ε(x) =

{
f(x)−f(c)

x−c − A if x 6= c

0 if x = c.

If x 6= c then f(x)− f(c) = A(x− c) + ε(x)(x− c) holds because of the way ε is defined,

while if x = c the formula is obvious. To check that ε(x)→ 0 as x→ c observe that

lim
x→c

ε(x) = lim
x→c

(
f(x)− f(c)

x− c
− f ′(c)

)
= 0.

We are now ready to prove the chain rule.
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Proof (of the chain rule) f is differentiable at g(c) so for all y

f(y)− f(g(c)) = f ′(g(c))(y − g(c)) + ε(y)(y − g(c)).

where ε(g(c)) = 0 and ε is continuous at g(c). Hence

f(g(x))− f(g(c)) = f ′(g(c))(g(x)− g(c)) + ε(g(x))(g(x)− g(c)).

Consequently if x 6= c

f(g(x))− f(g(c))

x− c
= f ′(g(c))

g(x)− g(c)

x− c
+ ε(g(x))

g(x)− g(c)

x− c
.

As x→ c,
g(x)− g(c)

x− c
→ g′(c)

while ε ◦ g is continuous at c so ε(g(x))→ ε(g(c)) = 0. Hence

f(g(x))− f(g(c))

x− c
→ f ′(g(c)).g′(c)

as required.

The Mean Value Theorem

In this section we prove one of the most useful facts about derivatives: the so-called Mean

Value Theorem (MVT). It provides a way to relate the values of a function to the values

of its derivative.

Theorem (Mean Value Theorem). Suppose f : [a, b]→ R is continuous on the closed

interval [a, b] and differentiable on the open interval (a, b). Then there is a point c ∈ (a, b)

where

f ′(c) =
f(b)− f(a)

b− a
.

The theorem says that between any pair of points a and b, there is a third point c where

the slope of the curve y = f(x) is equal to the slope of the chord joining (a, f(a)) and

(b, f(b)). Geometrically this is intuitively obvious as can be seen from the picture below.
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Another way to interpret the theorem, that explains its name, is this. Suppose you drive

a distance of 30 miles in one hour. Then your average (or mean) speed for the trip is

30mph. The theorem says that at some point in your trip your speed will be exactly

30mph: at some point the needle of your speedometer will point to 30.

To see why the MVT might be useful let’s deduce some immediate consequences.

Corollary (Functions with positive derivative). If f : I → R is differentiable on the

open interval I and f ′(x) > 0 for all x in the interval then f is strictly increasing on the

interval.

Proof If there were two points a and b with a < b but f(a) ≥ f(b) then we could find a

point c where

f ′(c) =
f(b)− f(a)

b− a
≤ 0

contradicting the hypothesis.

Corollary (Functions with zero derivative). If f : I → R is differentiable on the

open interval I and f ′(x) = 0 for all x in the interval then f is constant on the interval.

Proof Exercise.

The MVT has many uses in the theory of integration and the study of differential equa-

tions. The previous corollary can be regarded as the statement that the only solutions of

the differential equation f ′(x) = 0 are the constant functions.
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In a similar way we can obtain uniqueness of solutions to other differential equations.

Example (Uniqueness of solution to a Diff. Eq. I). The only functions f : R→ R

satisfying

f ′(x) = f(x)

are the functions f(x) = Aex for some constant A.

Proof We shall assume that ex is differentiable and is its own derivative (a fact that will

be proved in the next chapter). Suppose f is such a solution and let g(x) = e−xf(x).

Then by the chain rule we have

g′(x) = −e−xf(x) + e−xf ′(x) = e−x(−f(x) + f ′(x)) = 0.

By the corollary g is a constant function with value A (say). Then f(x) = exg(x) = Aex.

Example (Uniqueness of solution to a Diff. Eq. II). The only functions f :

(0,∞)→ R satisfying

f ′(x) +
1

x
f(x) = 2

are the functions f(x) = A/x+ x for some constant A.

Proof Let g(x) = xf(x)− x2 for positive x. Then

g′(x) = xf ′(x) + f(x)− 2x = x

(
f ′(x) +

1

x
f(x)− 2

)
= 0.

So g is constant A (say), and the formula for f follows.

In order to prove the MVT we shall start by proving the special case in which the slope

is 0.

Theorem (Rolle). Suppose f : [a, b]→ R is continuous on the closed interval [a, b] and

differentiable on the open interval (a, b) and that f(a) = f(b). Then there is a point c in

the open interval where f ′(c) = 0.
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Proof If f is constant on the interval then its derivative is zero everywhere. If not it takes

values different from f(a) = f(b). Assume it is somewhere larger than f(a).

Since f is continuous on the closed interval it attains its maximum value at some point

c and this cannot be a or b: so c lies in (a, b). If x > c then f(x)−f(c) ≤ 0 while x−c > 0

so the ratio
f(x)− f(c)

x− c
≤ 0.

So f ′(c) is a limit of non-positive values and so is not positive.

On the other hand if x < c then f(x)− f(c) ≤ 0 while x− c < 0 so the ratio

f(x)− f(c)

x− c
≥ 0.

So f ′(c) is a limit of non-negative values and so is not negative. Therefore f ′(c) = 0.

Notice that we found the point c without having any formula for f or its derivative. We

simply used a fact which has nothing to do with derivatives: that f attains its maximum.

This fact was proved in the Analysis I course using the Bolzano-Weierstrass Theorem

which does not construct the point in any computable way.

We now come to the proof of the MVT. We shall modify the function f by subtracting

a linear function whose slope is f(b)−f(a)
b−a . This new function will take the same values at

the two ends and so have a point with zero slope by Rolle’s Theorem. But at this point

the slope of f must be the same as the slope of the linear function that we subtracted

from it.
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Proof (of the MVT) Consider the function given by

g(x) = f(x)− xf(b)− f(a)

b− a
.

Then

g(b)− g(a) = f(b)− f(a)− (b− a)
f(b)− f(a)

b− a
= 0.

So by Rolle’s Theorem there is a point c where g′(c) = 0. But this implies

f ′(c) =
f(b)− f(a)

b− a
.

In the proof of Rolle’s Theorem we used the fact that if a differentiable function f : [a, b]→
R attains its maximum at a point of the open interval (a, b) then its derivative must be

zero at that point. This principle underlies the familiar method for finding maxima and

minima. For a function on a closed interval the cleanest statement of the principle is this.

Theorem (Extrema and derivatives). Suppose f : [a, b] → R is continuous and that

it is differentiable on the open interval. Then f attains its maximum and minimum either

at points in (a, b) where f ′ = 0 or at one of the ends a or b.

The second possibility can of course happen.

a b

Finding where f ′ = 0 doesn’t tell you where the maximum is but it narrows down the

options very considerably. Normally there will only be a few points where f ′ = 0 and so
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you only have to check those and the ends. Once you have found all these possibilities

(a, b and some points x1, x2, . . . where the derivative vanishes) the most reliable way to

find the maximum is just to calculate the values f(a), f(b), f(x1), f(x2) and so on. You

then just check which one is greatest and which is least.

It is customary in elementary calculus texts to suggest the use of the second derivative to

try to find maxima and minima. This method is sometimes useful but has two drawbacks:

• If f ′(c) = 0 and f ′′(c) < 0 it tells you that c is a local maximum but the function

may have several local maxima many of which are not the maximum.

• If f ′′(c) = 0 then it tells you nothing.

(On the other hand, the idea can often be useful in theoretical situations in the other

direction. If the maximum occurs at c in the open interval then you can conclude that

f ′(c) = 0 and f ′′(c) ≤ 0 which may be valuable information.)

If you have a function defined on an open interval, on (0,∞) or the whole of R there are

a number of options. Sometimes it is easy to see that the function has its maximum in

a certain closed interval and then use the closed interval version. Sometimes it is better

to use the derivative to see that the function increases up to the maximum and decreases

after it.

Example. Find the maximum of xe−x on R.

The derivative is x 7→ (1− x)e−x which is positive if x < 1 and negative if x > 1. By the

MVT the function increases until x = 1 and then decreases. So the maximum occurs at

x = 1 where the function is equal to e−1.

As a consequence we have proved that xe−x ≤ e−1 for all x. Actually we already knew

this.

x = 1 + x− 1 ≤ ex−1.

Derivatives of inverses

We saw earlier that if f is a continuous strictly increasing function then it has a continuous

inverse. An obvious question is whether the inverse is differentiable whenever the original

function is differentiable and how the derivatives are related.
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Actually the second question is not too hard to answer. Suppose f and g are inverses and

we know that they are differentiable: then

f(g(x)) = x

on the domain of g. We can differentiate this equation using the chain rule to get

f ′(g(x))g′(x) = 1

and thus we conclude that

g′(x) =
1

f ′(g(x))
.

Notice that the derivative of f is evaluated at g(x) which looks a bit complicated but as

we discussed when looking at the chain rule, it is the only thing that makes sense. It also

gives the right answers. Let’s see how this works in practice (ignoring for the moment the

fact that we don’t yet know that the exponential and trig. functions are differentiable).

Example (The derivative of x 7→
√
x). Let f : x 7→ x2 be the squaring function and g

the square root. Then

g′(x) =
1

f ′(g(x))
=

1

2g(x)
=

1

2
√
x
.

Example (The derivative of log). Let f be the exponential function and g the logarithm.

Then

g′(x) =
1

f ′(g(x))
=

1

exp(log x)
=

1

x
.

Example (The derivative of sin−1). Let f : [−π/2, π/2] → [−1, 1] be the function

x 7→ sinx and g the inverse sine. Then

g′(x) =
1

f ′(g(x))
=

1

cos(sin−1 x)
.

This is not the usual way you are accustomed to writing the derivative. In the homework

you are asked to confirm that it is 1√
1−x2 . Now let’s prove the general theorem.

Theorem (Derivatives of inverses). Let f : (a, b) → R be differentiable with positive

derivative. Then g = f−1 is differentiable and

g′(x) =
1

f ′(g(x))
.
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Proof Since f has positive derivative it is continuous and strictly increasing. Therefore it

has a continuous inverse. Let (c, d) be the range of f , let x be in the interval (c, d) and

g(x) = y. We want to calculate

lim
u→x

g(u)− g(x)

u− x
.

Let v = g(u) so that u = f(v). Then the quotient is

v − y
f(v)− f(y)

.

As u → x we know that v = g(u) → y = g(x) because g is continuous at x. So we want

to calculate

lim
v→y

v − y
f(v)− f(y)

.

We know that

lim
v→y

f(v)− f(y)

v − y
= f ′(y)

and that this limit is positive. So by the properties of limits we have

lim
u→x

g(u)− g(x)

u− x
= lim

v→y

v − y
f(v)− f(y)

=
1

f ′(y)
=

1

f ′(g(x))
.
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Chapter 3. Power series II

The differentiability of power series

We start this chapter by checking that power series are differentiable inside the radius

of convergence. Naturally the proof of this is more difficult than the proof of continuity.

Suppose f(x) =
∑
anx

n is a power series with radius of convergence R. We want to show

that for |x| < R the derivative exists and

f ′(x) =
∞∑
n=1

nanx
n−1.

In other words we want to know that we can differentiate the series term by term as if it

were a polynomial. The sum rule doesn’t tell us that we can, because an infinite sum is

not the same as a finite one.

We want to show that if |x| < R, the sum
∑∞

n=1 nan x
n−1 converges and∑∞

n=0 any
n −

∑∞
n=0 anx

n

y − x
→

∞∑
n=1

nanx
n−1

as y → x. The left side is

∞∑
n=0

an
yn − xn

y − x
=
∞∑
n=1

an(yn−1 + yn−2x+ · · ·+ xn−1).

This looks promising because if y is close to x the sum

yn−1 + yn−2x+ · · ·+ xn−1

is close to nxn−1 because we know that polynomials are continuous.

We want to conclude that

∞∑
n=1

an(yn−1 + yn−2x+ · · ·+ xn−1)→
∞∑
n=1

nanx
n−1.

The trouble is that because we have an infinite sum we want the two things to be close

together for every n at the same time and this is not something that follows from what

we already know. Let’s start gently.
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Lemma (The differentiability of power series I). Let
∑
anx

n be a power series with

radius of convergence R. Then the series
∑
nanx

n−1 has the same radius of convergence.

Proof We know that the absolute series
∑
|an|xn has the same radius of convergence as∑

anx
n. Now if 0 < x < R choose y with x < y < R. Then

∑
|an|xn and

∑
|an|yn both

converge and hence so does

∞∑
n=0

|an|
yn − xn

y − x
=
∞∑
n=1

|an|(yn−1 + yn−2x+ · · ·+ xn−1).

But the last sum is larger than
∑∞

n=1 |an|nxn−1 so the latter also converges. This means

that
∑
nanx

n−1 converges absolutely as required.

We now move on to the full theorem and use the existence of the derivative to control the

limits we are trying to evaluate.

Theorem (The differentiability of power series II). Let f(x) =
∑
anx

n be a power

series with radius of convergence R. Then f is differentiable on (−R,R) and

f ′(x) =
∞∑
n=1

nan x
n−1.

Proof Choose T with |x| < T < R. We know from the lemma that the series
∑
n|an|T n−1

converges so given ε > 0 there is a number N so that

∞∑
n=N+1

n|an|T n−1 <
ε

3
.

Now if 0 < |y − x| < T − |x| we have |y| < T as well as |x| < T and so∣∣∣∣∣
∞∑

n=N+1

nan x
n−1

∣∣∣∣∣ ≤
∞∑

n=N+1

n|an| |x|n−1 <
ε

3

and also ∣∣∣∣∣
∞∑
N+1

an
yn − xn

y − x

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
N+1

an(yn−1 + yn−2x+ · · ·+ xn−1)

∣∣∣∣∣
≤

∞∑
N+1

|an| (|y|n−1 + · · ·+ |x|n−1)

≤
∞∑
N+1

n|an|T n−1 <
ε

3
.
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The sum
N∑
n=1

an(yn−1 + yn−2x+ · · ·xn−1)

is a polynomial in y whose value at x is
∑N

1 nan x
n−1 so there is a δ0 > 0 with the property

that if 0 < |y − x| < δ0∣∣∣∣∣
N∑
1

an
yn − xn

y − x
−

N∑
1

nan x
n−1

∣∣∣∣∣
=

∣∣∣∣∣
N∑
1

an(yn−1 + yn−2x+ · · ·xn−1)−
N∑
1

nan x
n−1

∣∣∣∣∣ < ε

3
.

So if we choose δ to be the smaller of δ0 and T − |x| then whenever 0 < |y − x| < δ∣∣∣∣∣
∞∑
1

an
yn − xn

y − x
−
∞∑
1

nan x
n−1

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
N+1

an
yn − xn

y − x

∣∣∣∣∣+

∣∣∣∣∣
N∑
1

an
yn − xn

y − x
−

N∑
1

nan x
n−1

∣∣∣∣∣+

∣∣∣∣∣
∞∑
N+1

nanx
n−1

∣∣∣∣∣ < ε.

Corollary (The derivative of the exponential).

exp′(x) = exp(x).

Proof

exp(x) = 1 + x+
x2

2
+
x3

6
+ · · · .

We can differentiate term by term to get

exp′(x) = 0 + 1 + x+
x2

2
+ · · · = exp(x).

As promised we can now give a simple proof of the characteristic property of the expo-

nential.

Corollary (The characteristic property of the exponential). If x and y are real

numbers then exp(x+ y) = exp(x) exp(y).
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Proof For a fixed number z consider the function

x 7→ exp(x) exp(z − x).

We may differentiate this with respect to x using the product rule and the chain rule to

get

exp(x) exp(z − x)− exp(x) exp(z − x) = 0.

By the MVT the function is constant. At x = 0 the function is exp z so we know that for

all x

exp(x) exp(z − x) = exp(z).

Now if we set z = x+ y we get the conclusion we want.

We now know that the exponential function is differentiable, has the correct derivative

and satisfies the characteristic property. Using what we did earlier on the derivatives of

inverses we can also conclude that the logarithm has the correct derivative.

Corollary (The derivative of log). If f : x 7→ log x then

f ′(x) =
1

x
.

Example (Power series solution of a Diff Eq. I). Let f be defined on (−1, 1) by the

series

f(x) =
∞∑
n=1

xn

n2
.

Then f satisfies the differential equation

xf ′′(x) + f ′(x) =
1

1− x
.

Proof The series has radius of convergence 1 as you saw in the homework.

f ′(x) =
∞∑
n=1

xn−1

n

f ′′(x) =
∞∑
n=1

(n− 1)xn−2

n
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and so

xf ′′(x) =
∞∑
n=1

(n− 1)xn−1

n
.

So

xf ′′(x) + f ′(x) =
∞∑
n=1

nxn−1

n
=
∞∑
n=1

xn−1 =
1

1− x
.

Example (Power series solution of a Diff Eq. II). Consider the differential equation

xy′′ + y′ + xy = 0.

Suppose there were a solution given by a power series

y =
∞∑
0

anx
n.

Then

xy′′ =
∞∑
2

n(n− 1)anx
n−1 and y′ =

∞∑
1

nanx
n−1

while

xy =
∞∑
2

an−2x
n−1.

So

a1 +
∞∑
2

(n2an + an−2)x
n−1 = 0.

We can look at the coefficients of each power and set them to 0

a1, a0 + 4a2, a1 + 9a3, a2 + 16a4, . . . .

We can make these all zero by choosing all the odd numbered ai to be zero but then take

a0 = 1, a2 = −1

4
, a4 =

1

64
, . . .

and more generally

a2m =
(−1)m

4m(m!)2
.
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It is quite easy to see that if we define a function J0 by

J0(x) =
∞∑
0

(−1)m

4m(m!)2
x2m

then the series has infinite radius of convergence and the function satisfies the differential

equation.

xy′′ + y′ + xy = 0.

This function is called the Bessel function of order zero. Bessel functions turn up in the

modelling of the vibration of a drumhead.

The last item in this section will explain how we can determine the coefficients of a power

series if we know the function. Suppose I know that

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

on the interval (−R,R). From the coefficients I can build the function by carrying out the

sum. How can I go the other way? If I know the function f how can I find its coefficients?

The first one is easy a0 = f(0). The next one, a1 is not so obvious but we know that

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·

and so we can calculate a1 by differentiating f : we have a1 = f ′(0).

We can continue in this way

a0 = f(0)

a1 = f ′(0)

a2 =
f ′′(0)

2
...

You will recognise these numbers as the coefficients in the Taylor expansion for f to which

we shall return in the last chapter.
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The trigonometric functions

For the purposes of this course we shall define the trigonometric functions sine and cosine

by power series and then check that they have the properties we expect them to have. Our

aim will be to show that for each θ the point (cos θ, sin θ) lies on the circle of radius one

with centre 0 and that the radius through this point makes an angle θ with the horizontal.

0 1

(cos θ,sin θ)

θ

The first statement is just that cos2 θ + sin2 θ = 1. For the second we need to be clear

that we are measuring angle in radians so let us recall what that means.

The Babylonians were originally responsible for the division of the circle into 360 equal

parts: what we now call degrees. Measuring angle in degrees has the property that adding

two angles corresponds to the geometric process of rotating through one angle followed

by another.

� �

(��� θ���� θ)
(��� (θ+ϕ)���� (θ+ϕ))

θϕ
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This is a desirable property (also possessed by radians). However, degrees have a property

that is far from desirable. Below is the graph of y = sinx◦ drawn with the same scale on

both axes.

-π π � π � π � π

-�

�

-� � �� ��

-�

�

The slope of the graph at x = 0 is π/180 ≈ 0.0174533. So if we differentiate the function

we get 0.0174... cosx◦: we get a funny multiple of cos rather than cos itself. The choice

of radians removes this problem.

How do we measure the size of an angle in radians? We draw the circle of radius 1 and

then for a given angle we use the length of the circular arc that it spans as the measure

of the angle.

�

�

�

The size of the angle is the length of the arc it spans: simple.

So the second thing we will need to check is that for each t, the point on the circle whose

distance from the horizontal measured around the circle is t, has coordinates (cos t, sin t).
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(��� ����� �)

Definition (The trig functions). For x ∈ R we define

cosx = 1− x2

2
+
x4

24
− · · ·+ (−1)k

x2k

(2k)!
+ · · ·

sinx = x− x3

6
+

x5

120
− · · ·+ (−1)k

x2k+1

(2k + 1)!
+ · · ·

It is easy to check that these series converge everywhere by the ratio test. Cosine is

obviously an even function and sine is obviously odd. From our general theory we know

that both functions are differentiable and we can check that

d

dx
cosx = − sinx

and
d

dx
sinx = cosx.

Using these derivatives we can check the addition formulae quite easily.

Theorem (The addition formulae for the trig functions). For all real x and y

cos(x+ y) = cosx cos y − sinx sin y

sin(x+ y) = sinx cos y + cosx sin y

Proof We shall check the first: the second is similar. For a fixed z let

f(x) = cos x cos(z − x)− sinx sin(z − x).
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Using the derivatives above it is easy to check that f ′(x) = 0 for all x and so f is constant.

When x = 0 we have

f(0) = cos 0 cos z − sin 0 sin z = cos z.

Hence f(x) = cos z for all x. Now if we set z = x+ y we get

cosx cos y − sinx sin y = f(x) = cos z = cos(x+ y).

This immediately shows us that the point (cosx, sinx) lies on the circle for each x.

Corollary (The circular property). For all real x

cos2 x+ sin2 x = 1.

Proof Set y = −x in the addition formula for cos. We know that cos(−x) = cosx and

sin(−x) = − sinx and so we get

1 = cos 0 = cos(x− x) = cos x cos(−x)− sinx sin(−x) = cos2 x+ sin2 x.

The remaining thing we need to check is that as t increases the point (cos t, sin t) traces

out the circle at rate 1. Let L(t) be the length of the circular arc from (1, 0) to the point

(cos t, sin t). We want to show that L(t) = t for each t. By the MVT it suffices to show

that L′(t) = 1 at each point.

Consider the point (cos t, sin t) and a nearby point (cos(t+ h), sin(t+ h)).

0 1

(cos t,sin t)

(cos(t+h),sin(t+h))
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When h is very small, the (straight line) distance between these two points is approxi-

mately the same as the length of the circular arc between them. The straight line distance

is √
(cos(t+ h)− cos t)2 + (sin(t+ h)− sin t)2.

So our aim is to show that

lim
h→0+

1

h

√
(cos(t+ h)− cos t)2 + (sin(t+ h)− sin t)2 = 1

for every t.

If we knew that our power series do give the point at the correct angle then we could use

geometry to calculate the length:

0 1

(cos t,sin t)

(cos(t+h),sin(t+h))

The length is supposed to be 2 sin(h/2). That would be good because then

lim
h→0+

1

h

√
(cos(t+ h)− cos t)2 + (sin(t+ h)− sin t)2

= lim
h→0+

2 sin(h/2)

h
= lim

h→0+

sin(h/2)

h/2
= lim

p→0+

sin p

p
= 1

because the last expression is just the derivative of sin at 0.

However we don’t yet know that our functions cosine and sine correspond to the geometry

of the circle. So we have to check the limit using the properties that we do know.
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lim
h→0+

1

h

√
(cos(t+ h)− cos t)2 + (sin(t+ h)− sin t)2

= lim
h→0+

√(
cos(t+ h)− cos t

h

)2

+

(
sin(t+ h)− sin t

h

)2

=

√(
lim
h→0+

cos(t+ h)− cos t

h

)2

+

(
lim
h→0+

sin(t+ h)− sin t

h

)2

=

√
(− sin t)2 + (cos t)2 = 1.

This completes the proof.

We have now checked that our power series do produce the x and y coordinates of the

correct point on the circle. If we use the symbol π to denote half the circumference of

the circle then we know that cos π = −1, sin π = 0 and so on. We can also see that the

trig functions are periodic with period 2π although we could deduce that directly from

the addition formulae once we know that cos 2π = 1 and sin 2π = 0. For example

cos(x+ 2π) = cos x cos 2π − sinx sin 2π = cosx.

There are a number of special values that one has to know.

sin 0 = 0 cos 0 = 1

sin π/6 = 1/2 cos π/6 =
√

3/2

sin π/4 = 1/
√

2 cos π/4 = 1/
√

2

sin π/3 =
√

3/2 cos π/3 = 1/2

Interestingly, the existence of the series for sine and cosine predates the invention of

calculus by a couple of hundred years. As far as we can tell they were discovered by

Madhava. His work does not itself survive, but later scholars in the Kerala school were

clear that he was the original discoverer.
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The complex exponential

The proof of the addition formulae for the trig functions looks very much like the MVT

proof of the characteristic property of the exponential and the addition formulae have the

same “shape”. The cosine of the sum cos(x + y) is a product of the cosines of x and y

together with a product of sines. This is not coincidence. If we introduce the complex

number i whose square is −1 we can write

eit = 1 + it− t2

2
− it

3

6
+
t4

24
+ · · · = cos t+ i sin t.

This formula

eit = cos t+ i sin t

linking the exponential and trig functions was described by Feynman as “our jewel”. Now

we have

cos(x+ y) + i sin(x+ y) = ei(x+y) = eixeiy

= (cosx+ i sinx)(cos y + i sin y).

The last can be expanded as

cosx cos y − sinx sin y + i(sinx cos y + cosx sin y)

from which we can read off the addition formulae for cosine and sine.

In a similar way we can relate the derivatives of cos and sin to the derivative of the

exponential function.

We chose the exponential function and we chose to measure angle in radians in order to

make the derivatives work out right. We can now see that these two choices are really the

same choice. The formula

eit = cos t+ i sin t

only works if the angles are in radians and we use the correct exponential.
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The tangent

Once we have defined cos and sin we can define the tangent. We know that cosx = 0

whenever x is an odd multiple of π/2. For all other points we can define

tanx =
sinx

cosx
.

Using our knowledge of the derivatives of cos and sin we can find the derivative of tan.

In the HW you are asked to find the derivative of the inverse, tan−1 and from this to find

a power series for tan−1. You are also asked to derive the addition formula for tan from

those for cos and sin.

An obvious question: what is the power series for tanx for x close to 0? Assuming that

the power series exists you can find it by repeatedly differentiating tan. Here are the first

few terms

x+
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+

1382x11

155925
+ · · · .

The numerator 1382 has a prime factor 691. This suggests that you cannot write down

a simple formula for the coefficients: and indeed you can’t. They are related to values of

what is known as the ζ function.
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Chapter 4. Taylor’s Theorem

Cauchy’s Mean Value Theorem

We start this section with a more general form of the MVT known as Cauchy’s MVT.

The MVT says that under suitable conditions there is a point t between a and b with

f ′(t) =
f(b)− f(a)

b− a
.

This can be interpreted as saying that if g is the function given by g(x) = x then

f ′(t)

g′(t)
=
f(b)− f(a)

g(b)− g(a)

since g′(t) = 1 for every t. Cauchy’s MVT says that the same thing holds for any

differentiable function g for which the statement makes sense. This theorem will be of

interest to us solely in order to prove something called l’Hôpital’s Rule for finding limits.

Theorem (Cauchy’s Mean Value Theorem). If f, g : [a, b]→ R are continuous, are

differentiable on (a, b) and g′(t) 6= 0 for t between a and b then there is a point t where

f ′(t)

g′(t)
=
f(b)− f(a)

g(b)− g(a)
.

Proof Consider the function

x 7→ h(x) = f(x)(g(b)− g(a))− (f(b)− f(a))g(x).

At x = a the value of the function is

h(a) = f(a)g(b)− f(a)g(a)− f(b)g(a) + f(a)g(a) = f(a)g(b)− f(b)g(a).

Similarly

h(b) = f(b)g(b)− f(b)g(a)− f(b)g(b) + f(a)g(b) = f(a)g(b)− f(b)g(a).

So h(b) = h(a) and by Rolle’s Theorem there is a point t between a and b where h′(t) = 0.

Thus we have

h(x) = f(x)(g(b)− g(a))− (f(b)− f(a))g(x)

and there is a point t where h′(t) = 0. But this means that

f ′(t)(g(b)− g(a)) = (f(b)− f(a))g′(t).

Since g′ is non-zero on (a, b) Rolle’s Theorem applied to g shows that g(b)− g(a) 6= 0

as well and we can rearrange to get the conclusion of the theorem.
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L’Hôpital’s rule

It often happens that we wish to calculate limits such as

lim
x→0

sinx

1−
√

1− x

in which both the numerator and denominator converge to 0. So we can’t calculate the

limit just by substituting x = 0. An obvious example that we have already considered

and understood is the definition of f ′(c)

lim
x→c

f(x)− f(c)

x− c
.

It is not surprising that in the more general situation, derivatives can often provide an

answer. In the example above

lim
x→0

sinx

1−
√

1− x
we know that the derivative of sin at 0 is 1 and therefore that

sinx ≈ x

when x is close to 0. The derivative of x 7→
√

1− x at 0 is −1/2. Therefore

√
1− x ≈ 1− x/2

when x is close to 0. This in turn means that 1−
√

1− x ≈ x/2 and so it looks as though

sinx

1−
√

1− x
≈ x

x/2
= 2.

The figure shows the graphs of sinx (solid) and 1−
√

1− x (dashed). Both pass through

the origin. The slope of sin at the origin is 1. The slope of the other graph is 1/2. So

close to the origin the value of the sine graph is about twice as large as that of the other

graph.
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We can make this argument rigorous and streamline the calculation: the upshot is a

principle known as l’Hôpital’s rule.

Theorem (l’Hôpital’s rule). If f, g : I → R are differentiable on the open interval I

containing c and f(c) = g(c) = 0 then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

provided the second limit exists.

In the example above we take

f(x) = sin x for which f ′(x) = cos x

and

g(x) = 1− (1− x)1/2 for which g′(x) = 1/2(1− x)−1/2.

In order to compute the limit

lim
x→0

sinx

1−
√

1− x
we consider the ratio of the derivatives

lim
x→0

cosx

1/2(1− x)−1/2
= lim

x→0

2 cosx

(1− x)−1/2
= 2.
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Therefore according to l’Hôpital

lim
x→0

sinx

1−
√

1− x
= 2.

The advantage of expressing the theorem in the way we did, with a limit on the right,

is that it may be possible to use it repeatedly. If we find that f ′(c) = g′(c) = 0 then

we cannot calculate the limit of the derivatives just by substitution as we did with the

example. But we can apply the theorem a second time to get

lim
x→c

f ′′(x)

g′′(x)

provided that the functions are twice differentiable.

For example, suppose we want

lim
x→0

1− cosx

x2
.

The numerator and denominator both approach 0 as x → 0. Differentiating both with

respect to x we are led to consider the limit

lim
x→0

sinx

2x
.

The numerator and denominator of this fraction also approach 0 as x → 0 so we can

differentiate again and consider

lim
x→0

cosx

2
=

1

2
.

Proof (of l’Hôpital’s rule). Suppose that

lim
x→c

f ′(x)

g′(x)

does indeed exist. Then it cannot be that g′(x) = 0 at a sequence of points converging to

c. So there is some interval around c on which g′ is non-zero (except perhaps at c itself).

So g′ is non-zero on an interval each side of c. This enables us to apply Cauchy’s MVT.

Because f(c) = g(c) = 0

lim
x→c

f(x)

g(x)
= lim

x→c

f(x)− f(c)

g(x)− g(c)
.
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As long as x is in the region around c where g′ 6= 0 Cauchy’s MVT ensures that there

is a point t (depending upon x) between c and x where

f(x)− f(c)

g(x)− g(c)
=
f ′(t)

g′(t)
.

As x→ c the corresponding t is forced to approach c as well and so

f(x)

g(x)
=
f(x)− f(c)

g(x)− g(c)
→ lim

t→c

f ′(t)

g′(t)
.

There is also a version of l’Hôpital at infinity.

Theorem (l’Hôpital’s rule at infinity). If f, g : R→ R are differentiable and

lim
x→∞

f(x) = 0 and lim
x→∞

g(x) = 0

or

lim
x→∞

f(x) =∞ and lim
x→∞

g(x) =∞

then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

provided the second limit exists.

Example.

lim
x→∞

x

ex
= lim

x→∞

1

ex
= 0.

l’Hôpital’s rule is included in this chapter because it takes the form of an extended mean

value theorem. However the main topic of the section will be Taylor’s Theorem.

Taylor’s Theorem with remainder

At school you met Taylor expansions. You saw a statement something along the lines of

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · · .

For most purposes we need something a bit more precise. It isn’t clear from the statement

above how good the approximation is. Let us recall the example from the introduction.

(1 + x)1/2 ≈ 1 +
x

2
− x2

8
.
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If x = 1 for example we can check that the error is
√

2− (1 + 1/2− 1/8) =
√

2− 11/8 = 0.0392....

But this depends upon knowing the value
√

2 which is the number we are trying to

approximate. Can we estimate the error without actually calculating the thing we want

to approximate? The error will depend in a complicated way on the particular function

that we are approximating. So we will have to express the error in terms of the function:

the aim is to find an expression which we can (usually) estimate.

The first such expression is contained in the following theorem.

Theorem (Taylor’s Theorem, Lagrange Remainder). If f : I → R is n times

differentiable on the open interval I containing a and b then

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2
(b− a)2 + · · ·

+
f (n−1)(a)

(n− 1)!
(b− a)n−1 +

f (n)(t)

n!
(b− a)n

for some point t between a and b.

The number t depends upon the function f as well as upon a and b so we don’t have any

way of determining what it is in general. The error is given in terms of the nth derivative

of the function. If we can calculate this derivative we may be able to show that it can’t be

too big anywhere between a and b and so it won’t matter that we don’t know the exact

value of t.

We will give two proofs of this theorem. The first is the “natural” proof. The second is

a trick proof which allows us to prove several different versions of the theorem which are

useful for different purposes. The first proof is an extension of our original proof for the

MVT in which we modified f by a linear function. In this argument we shall modify f

(to get a new function h) by a polynomial of degree n.

Proof The function g given by

g(x) = f(x)−
(
f(a) + f ′(a)(x− a) + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1

)
satisfies g(a) = 0, g′(a) = 0 and so on up to g(n−1)(a) = 0. It also satisfies g(n)(x) = f (n)(x)

for all x because f and g differ by a polynomial of degree only n− 1.
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If we put

h(x) = g(x)− g(b)
(x− a)n

(b− a)n

then h also has its first n−1 derivatives vanishing at a but in addition it satisfies h(b) = 0.

We now proceed inductively. Since h(b) = h(a) = 0 there is a point t1 in (a, b) where

h′(t1) = 0 by Rolle’s Theorem. Since h′(t1) = h′(a) = 0 there is a point t2 in (a, t1) with

h′′(t2) = 0. Continuing in this way we eventually get a point t = tn where h(n)(t) = 0. In

terms of g this says that

g(n)(t) = g(b)
n!

(b− a)n
.

g(x) = f(x)−
(
f(a) + f ′(a)(x− a) + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1

)
so

g(b) =
g(n)(t)

n!
(b− a)n =

f (n)(t)

n!
(b− a)n

or

f(b)−
(
f(a) + f ′(a)(b− a) + · · ·+ f (n−1)(a)

(n− 1)!
(b− a)n−1

)
=
f (n)(t)

n!
(b− a)n

which is exactly the statement of the theorem.

Example.

Let us try to estimate the error in the Taylor approximation at 0

(1 + x)1/2 ≈ 1 +
x

2
− x2

8

for x = 1/2 say. If f(u) = (1 + u)1/2 then

f ′(u) = 1/2(1 + u)−1/2

f ′′(u) = −1/4(1 + u)−3/2

f ′′′(u) = 3/8(1 + u)−5/2

so when u is zero we get

f(0) = 1

f ′(0) = 1/2

f ′′(0) = −1/4.
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The theorem tells us that

(1 + x)1/2 = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(t)

6
x3 = 1 +

x

2
− x2

8
+
f ′′′(t)

6
x3

for some t between 0 and x. Now

f ′′′(u) = 3/8(1 + u)−5/2

so when x = 1/2 the error is

f ′′′(t)

6
x3 =

3/8(1 + t)−5/2

6

(
1

2

)3

=
1

16× 8(1 + t)5/2
=

1

128(1 + t)5/2
.

We don’t know the value of t but we do know that it lies between 0 and 1/2. So 1 + t > 1

and hence the error cannot be more than 1/128. In fact the error is about 0.006 so our

estimate 1/128 = 0.0078... is quite good.

Taylor’s Theorem can be used to prove inequalities like the ones we have seen before:

ex ≥ 1 + x and so on.

Example. If 0 ≤ x ≤ π then sinx ≤ x.

0 π

1

2

Proof Let f(x) = sin x. We have f ′(x) = cos x and f ′′(x) = − sinx. So

f(0) = 0, f ′(0) = 1

and by Taylor’s Theorem with n = 2

f(x) = f(0) + f ′(0)x+
f ′′(t)

2
x2.
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This says

sinx = 0 + x− sin t

2
x2

for some t between 0 and x. As long as 0 ≤ x ≤ π we have 0 < t < π and so sin t > 0.

In the Homework you showed that for |x| < 1

− log(1− x) = x+
x2

2
+
x3

3
+ · · ·

which can be rewritten as a series for the logarithm near 1:

log x = (x− 1)− (x− 1)2

2
+ · · · .

In our next example we shall derive this using Taylor’s Theorem.

Example (Taylor Series for log).

Let f be the function f : x 7→ log x. Then we know

f ′(x) = x−1

f ′′(x) = −x−2

f ′′′(x) = 2x−3

...

f (n)(x) = (−1)n−1 (n− 1)!x−n.

Let us find the Taylor approximations at x = 1.

f(1) = 0

f ′(1) = 1

f ′′(1) = −1

f ′′′(1) = 2
...

f (n)(1) = (−1)n−1 (n− 1)!.
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The nth Taylor formula at 1 is therefore

log x = 0 + (x− 1)− (x− 1)2

2
+ · · ·+ (−1)n−2

(x− 1)n−1

n− 1

+(−1)n−1t−n
(x− 1)n

n

= (x− 1)− (x− 1)2

2
+ · · ·+ (−1)n−2

(x− 1)n−1

n− 1

+(−1)n−1
1

n

(
x− 1

t

)n
where t is a number between 1 and x.

If 1 ≤ x ≤ 2 then 0 < x−1 ≤ 1 ≤ t. Hence the error term is at most 1
n

which tends to

0 as n→∞. This means that we can take a limit and conclude that we have an infinite

series for log x

log x = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

as long as 1 ≤ x ≤ 2. If we set x = 2 then the series becomes

1− 1

2
+

1

3
− · · ·

which converges by the alternating series theorem. In the homework you will see another

proof that it converges to log 2 which the earlier proof didn’t give.

The same argument works with a bit more care if 1/2 ≤ x < 1. But if x < 1/2 then it

might go wrong: for example if x = 1/3 and t = 1/2 then

x− 1

t
= −4

3

and so the powers of this number increase very fast. It turns out that the series does

converge to the logarithm for 0 < x < 1/2 but the Lagrange Remainder is the wrong tool

for proving this. (To put it another way, the error term is in fact small and so the number

t that actually gives the remainder will be bigger than x− 1 but the theorem doesn’t tell

us this.)

Cauchy came up with a different form of the remainder that works nicely in some cases.

We will deduce it from the following version of Taylor’s Theorem.
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Theorem (Taylor’s Theorem, Trick Proof). If f : I → R is n times differentiable

on the open interval I containing a and b and 0 ≤ k ≤ n− 1 then

f(b) = f(a) + f ′(a)(b− a) + · · ·+ f (n−1)(a)

(n− 1)!
(b− a)n−1

+
f (n)(t)

(n− 1)!(n− k)
(b− t)k(b− a)n−k

for some point t between a and b.

Proof Let R be the remainder for which we are trying to find a formula

R = f(b)−
(
f(a) + f ′(a)(b− a) + · · ·+ f (n−1)(a)

(n− 1)!
(b− a)n−1

)
.

This time we define

h(x) = f(b)− f(x)− f ′(x)(b− x)− · · · − f (n−1)(x)

(n− 1)!
(b− x)n−1 −R(b− x)n−k

(b− a)n−k
.

Obviously h(b) = 0. Also h(a) = 0 because of the definition of R. So by Rolle’s Theorem

there is a number t between a and b where h′(t) = 0. So

h′(x) = −f ′(x) + f ′(x)− f ′′(x)(b− x) +
f ′′(x)

2
2(b− x)− f ′′′(x)

2
(b− x)2

+ · · · − f (n)(x)

(n− 1)!
(b− x)n−1 + (n− k)R

(b− x)n−k−1

(b− a)n−k

= − f (n)(x)

(n− 1)!
(b− x)n−1 + (n− k)R

(b− x)n−k−1

(b− a)n−k

where for each term we use the product rule, and most of the sum cancels out. If we now

substitute t and set the expression equal to 0 we get

R =
f (n)(t)

(n− 1)!(n− k)
(b− t)k(b− a)n−k

which is the statement we wanted.

The Lagrange remainder form of Taylor’s Theorem follows immediately by setting k = 0.

The most useful other consequence of the theorem is the case k = n− 1 which is known

as Taylor’s Theorem with Cauchy remainder.
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Theorem (Taylor’s Theorem, Cauchy Remainder). If f : I → R is n times differ-

entiable on the open interval I containing a and b then

f(b) = f(a) + f ′(a)(b− a) + · · ·+ f (n−1)(a)

(n− 1)!
(b− a)n−1

+
f (n)(t)

(n− 1)!
(b− t)n−1(b− a)

for some point t between a and b.

The point is that we have replaced (b−a)n by (b−t)n−1(b−a) and t is closer to b than a is.

Let us return to the logarithm and try to check the error for 0 < x < 1. We have

f(x) = log x and we set a = 1 and b = x. The Taylor formula is

log x = (x− 1)− (x− 1)2

2
+ · · ·+ (−1)n−2

(x− 1)n−1

n− 1

+(−1)n−1
(x− t)n−1(x− 1)

tn

We now have an error term which apart from (−1)n−1 is

(x− t)n−1(x− 1)

tn
=
x− 1

t

(
x− t
t

)n−1
=
x− 1

t
(−1)n−1

(
1− x

t

)n−1
where 0 < x < t < 1. Since x < t < 1 we have that 0 < 1− x/t < 1− x and so the error

tends to zero as n→∞ as fast as the exponential (1−x)n−1. Therefore the infinite series

converges for 0 < x < 1.

Theorem (The log series). If 0 < x ≤ 2

log x = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · .

Equivalently, if −1 ≤ t < 1

− log(1− t) = t+
t2

2
+
t3

3
+ · · · .

The second form tends to be the one we use most often. You already saw a different proof

of this in the homework (except in the case t = −1).
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Example (Binomial Series).

We know the Binomial Theorem which allows us to expand a power

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 + · · ·+ xn

if n is a non-negative whole number. We also know that

(1 + x)−1 = 1− x+ x2 − x3 + · · ·

provided −1 < x < 1.

It is not altogether surprising that we can find a series expansion for every power

(1 + x)s = 1 + sx+
s(s− 1)

2
x2 +

s(s− 1)(s− 2)

6
x3 + · · ·

provided |x| < 1. (The series will be infinite unless n is a non-negative integer.) In the

homework you are asked to prove this (without using Taylor series).

Instead you can employ a programme that we have used several times.

• You define a function by a power series.

• You check that the series converges.

• You show that the function satisfies a differential equation.

• You use the MVT to prove that the function has the properties you want.
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Chapter 5. The Riemann integral

The last chapter will be devoted to the construction of the integral, its relationship to

derivatives and some applications.

The geometric picture is familiar to

you. We have a function f : [a, b]→
[0,∞) and we want to calculate the

area under the curve y = f(x).

�=�(�)

� �

The simplest thing to try is to

cut up the interval [a, b] into equal

pieces and place a rectangle on each

piece, underneath the curve, which

just touches the curve.

�=�(�)

� �

We calculate the total area of the rectangles and as the number of pieces increases, the

total should approach the area we want. This is essentially the Newton construction.
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There are a couple of problems with this approach. Firstly it isn’t very easy to see that

the total areas of the rectangles do approach a limit as the number of intervals increases.

Secondly, with this definition you can find a pair of functions f and g with∫
(f + g) 6=

∫
f +

∫
g.

We shall use something that avoids this problem and is a bit more flexible.

The construction

A partition P of the interval [a, b] will be a finite sequence of numbers

a = x0 < x1 < · · · < xn = b

the first and last of which are the end points.

These points divide the interval into

n pieces. For example if n = 4.

�=�(�)

� ��� �� ��

Now suppose that f : [a, b]→ R is a bounded function. For each i let

mi = inf{f(x) : xi−1 ≤ x ≤ xi}

and

Mi = sup{f(x) : xi−1 ≤ x ≤ xi}

be the “lowest” and “highest” values that f takes on the ith piece.
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We identify the inf and sup of f on

each interval.

This tells us the height of a rect-

angle below the curve based on the

interval and the height of one above

the curve.

� ��� �� ��

��

��

The total area of the rectangles be-

low the curve is

n∑
1

mi (xi − xi−1).

The total area of those above is

n∑
1

Mi (xi − xi−1).

�=�(�)

� ��� �� ��

Definition (Upper and lower sums). Let f : [a, b] → R be bounded and P =

{x0, x1, . . . , xn} be a partition of [a, b]. The upper and lower Riemann sums of the function

f with respect to P are

U(f, P ) =
n∑
1

Mi (xi − xi−1) and L(f, P ) =
n∑
1

mi (xi − xi−1)
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respectively, where for each i

mi = inf{f(x) : xi−1 ≤ x ≤ xi}

and

Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.

Exercise Suppose f : [a, b] → R is constant: say f(x) = K for each x. Show that for

every partition P

U(f, P ) = L(f, P ) = K(b− a).

HW I, Q6 Let f : [0, 1] → [0, 1] be given by f(x) = x for each x. For a partition

P = {x0, x1, . . . , xn} the lower sum is

n∑
1

xi−1(xi − xi−1).

Without using facts about area and integrals show that this is less than 1/2.

This is similar to what you looked at in ‘A’-level, except that now the pieces on which

we build the rectangles are not necessarily of equal length and we sandwich the integral

between the upper and lower sums.

We now ask “How large can we make the lower sums” and “how small can we make the

upper sums”? How much can we push upwards on the function from below and downwards

from above? We take the sup of the lower sums and the inf of the upper sums. To do

so we need to know that the lower sums are bounded above and similarly that the upper

sums are bounded below.

Lemma (The upper sum is bigger than the lower). Suppose f : [a, b] → R is

bounded,

m = inf{f(x) : a ≤ x ≤ b}
and

M = sup{f(x) : a ≤ x ≤ b}.
Then for any partition P

m (b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M (b− a).
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Proof Clearly for each i, we have m ≤ mi ≤Mi ≤M and so

m (b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M (b− a).

We can now take the sup and inf.

Definition (Upper and lower integrals). Let f : [a, b] → R be bounded. The upper

and lower Riemann integrals of the function f are∫
f = inf

P
U(f, P )

and ∫
f = sup

P
L(f, P )

where the sup and inf are taken over all partitions of the interval [a, b].

Definition (The Riemann integral). Let f : [a, b]→ R be bounded. Then f is said to

be Riemann integrable if ∫
f =

∫
f

and in this case we write ∫ b

a

f(x) dx

for the common value.

The point of the word “if” is that the upper and lower integrals might not be the same

and in that case we don’t define the integral.

Example (A function that is not integrable). Let f : [0, 1]→ R be given by

f(x) =


1 if x ∈ Q

0 if x /∈ Q.

67



Then every lower sum of f is 0 and every upper sum is 1. So f is not integrable. It

is functions of this sort that cause the problem mentioned earlier
∫

(f + g) 6=
∫
f +

∫
g.

By insisting that the upper and lower integrals have to be equal we prevent this problem

from occurring.

By taking the sup of the lower sums and the inf of the upper sums we also avoid the

problem of checking whether there is a limit. However, the definition as it stands looks

disgusting. The family of all partitions is fantastically complicated. It is hugely big and

has a complicated structure. How can we hope to compare the lower sum for one partition

with the upper (or even the lower) sum for another? We can’t unless...

Definition (Refinements). If P and Q are partitions of an interval [a, b] then Q is said

to be a refinement of P if every point of P belongs to Q.

So we get Q by starting with P and cutting its intervals into more pieces.

Lemma (More refined partitions are better). Suppose f : [a, b]→ R is bounded, P

and Q are partitions of [a, b] and Q refines P . Then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof We will just check the lower sums: the upper ones are similar. Suppose I is an

interval in P and that Q breaks it into intervals J1, J2, . . . , Jm. Then the infimum of f on

I will be at most the infimum on each Jj. So the sums in L(f,Q) based on the Jj have a

total at least as big as the sum in L(f, P ).

If P and Q are partitions of an interval [a, b] then we can find a common refinement

of P and Q by including all points of P and Q.

Lemma (All upper sums are bigger than all lower sums). Suppose f : [a, b]→ R

is bounded and P and Q are partitions of [a, b].

Then

L(f, P ) ≤ U(f,Q).
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Proof Choose R to be a refinement of both P and Q. Then

L(f, P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q).

At this point you have enough information to compute some integrals. For example if you

look at the function x 7→ x2 on [0, 1] you can compute upper and lower sums using equal

intervals quite easily. You can check that as the number of intervals goes to infinity both

sums approach 1/3. HW

This means for example that ∫
f ≥ 1

3

but to check that the supremum of the lower sums over all partitions is not more than

1/3 you need the upper bound provided by the previous lemma or the next one.

Corollary (The upper integral is bigger than the lower). Suppose f : [a, b] → R

is bounded. Then ∫
f ≤

∫
f.

Proof Exercise.

We now create the crucial test that will enable us to prove that functions (such as con-

tinuous functions) are integrable.

Lemma (The integrability condition). Suppose f : [a, b]→ R is bounded. Then f is

Riemann integrable if (and only if) for every ε > 0 we can find a partition P of [a, b] with

U(f, P )− L(f, P ) < ε.

Proof We check the easy direction first. Suppose that the condition holds. Then for any

partition P

L(f, P ) ≤
∫
f
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and ∫
f ≤ U(f, P ).

Therefore ∫
f −

∫
f ≤ U(f, P )− L(f, P ).

Since the right side can be made smaller than any positive ε the left side must be 0.

For the other direction suppose f is integrable. Then∫
f =

∫
f = inf

Q
U(f,Q)

so we can choose a partition Q1 with

U(f,Q1) <

∫
f +

ε

2
.

Similarly we can choose Q2 so that

L(f,Q2) >

∫
f − ε

2
.

Now choose P to be a common refinement of Q1 and Q2. It will satisfy both inequalities

and hence

U(f, P )− L(f, P ) < ε.

Note that common refinements did the work in proving this criterion.

Before proving some of the basic properties of the integral we need to return to continuous

functions.

Uniform continuity

A function f : I → R is continuous on the interval I if for every c ∈ I and for every

ε > 0, there is a δ > 0 so that if x ∈ I and |x− c| < δ then

|f(x)− f(c)| < ε.

The value of δ depends upon ε and also upon c. On an open interval it might be that you

cannot use the same δ for every c.
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For example if f : (0, 1) → R is given by f(x) = 1/x then if c is close to 0 you need a

very small δ.

ϵ

δ���� ���� ���� ���� ���� ����

�

��

��

��

Definition (Uniform continuity). A function f : I → R defined on an interval I is

said to be uniformly continuous on I if for every ε > 0, there is a δ > 0 so that if x, y ∈ I
and |x− y| < δ then

|f(x)− f(y)| < ε.

The same δ works for every pair x and y wherever they are in I. The square root function

has an infinite derivative at 0 but there is a δ that works:

ϵ

ϵ� ��� ��� ��� ��� �

���

���

���

�
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If |x− y| < ε2 then |
√
x−√y| < ε.

Proof Exercise.

The “perfect” example of a function on (0, 1) which is not uniformly continuous is x 7→
sin 1/x.

��� ��� ��� ��� ���

-���

-���

���

���

The function jumps a fixed amount on arbitrarily small intervals. By now you probably

can guess that this cannot happen on a closed bounded interval: any continuous function

on a closed bounded interval is uniformly continuous.

Theorem (Uniform continuity). Let f : [a, b]→ R be continuous. Then f is uniformly

continuous on the interval.

Proof Suppose that f is not uniformly continuous. Then for some ε and every n we can

find points xn and yn with

|xn − yn| < 1/n

but

|f(xn)− f(yn)| ≥ ε.

|xn − yn| < 1/n but |f(xn)− f(yn)| ≥ ε.

Now choose a subsequence xnk
which converges to x say. Since the interval [a, b] is closed

we must have x ∈ [a, b]. By the first condition, ynk
→ x as well. By continuity

f(xnk
)→ f(x) and f(ynk

)→ f(x).

But this means that

f(xnk
)− f(ynk

)→ 0.
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The basic properties of the integral

Our first goal will be to check that continuous functions are integrable. Given such a

function we want to find a partition on which the upper and lower sums are almost the

same. So we want to cut into intervals on which f doesn’t vary much. We have a tool

that does it for us: uniform continuity.

Theorem (Uniform continuity rewritten). If f : [a, b] → R is continuous then for

any ε > 0 we can find δ so that if |x− y| < δ then

|f(x)− f(y)| < ε.

The point is that the number δ does not depend upon x or y. It works for all pairs in the

interval. Now partition the interval into pieces of length less than δ. Then on any piece

the function changes by less than ε.

Theorem (Integrability of continuous functions). If f : [a, b] → R is continuous

then it is integrable.

Proof The function is certainly bounded so we just need to show that the integrability

condition is satisfied. Given ε > 0 choose δ so that if x, y ∈ [a, b] satisfy

|x− y| < δ

then

|f(x)− f(y)| < ε

b− a
.

Now let P be a partition of the interval with each gap xi − xi−1 less than δ. Then for

each i

Mi −mi = sup{f(x) : xi−1 ≤ x ≤ xi} − inf{f(x) : xi−1 ≤ x ≤ xi}

≤ ε

b− a
.

Therefore

U(f, P )− L(f, P ) =
n∑
1

(Mi −mi) (xi − xi−1)

≤ ε

b− a

n∑
1

(xi − xi−1) = ε.
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The proof shows that for a continuous function it would be enough to consider partitions

into equal pieces. If we use n equal pieces and 1/n < δ then we get the estimate we want.

Why do we use more general partitions? Wait and see...

Interestingly enough we can quite easily prove that monotone (increasing or decreasing)

functions are integrable.

Theorem (Integrability of monotone functions). If f : [a, b] → R is bounded and

either increasing or decreasing, then it is integrable.

Proof Suppose f is increasing. Then for any partition, on each interval Mi = f(xi) and

mi = f(xi−1). The maximum occurs at the right and the minimum at the left. Therefore

U(f, P )− L(f, P ) =
n∑
1

(f(xi)− f(xi−1)) (xi − xi−1) .

Now suppose we take a partition into n equal intervals.

U(f, P )− L(f, P ) =
n∑
1

(f(xi)− f(xi−1)) (xi − xi−1)

=
b− a
n

n∑
1

(f(xi)− f(xi−1))

=
b− a
n

(f(xn)− f(x0))

=
b− a
n

(f(b)− f(a)) .

This approaches 0 as n→∞.

It is beginning to look as though we could compute Riemann integrals just by looking at

partitions into equal pieces. The mesh size of a partition is the length of the longest

interval in the partition. In fact...

Theorem (Small mesh). If f : [a, b] → R is integrable and we pick a sequence of

partitions Pn whose mesh sizes tend to 0 then

U(f, Pn)→
∫ b

a

f(x) dx
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and similarly for the lower sums.

Seriously! Why are not just looking at partitions into equal pieces?

We would now like to check that sums and products of integrable functions are integrable

and that the integral is linear ∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx

and ∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

The first will be left as an exercise. If λ ≥ 0 it is obvious. For negative λ you swap sup

and inf so it is slightly more subtle.

The second may be trickier than you think. You would like to say that on each interval

the sup for f + g is the sum of the sups for f and g. In fact what we have is this.

Lemma. For any functions f and g on an interval I

sup
I

(f + g) ≤ sup
I
f + sup

I
g

but the two may not be equal.

Proof For any x in the interval f(x) ≤ sup f and g(x) ≤ sup g so

f(x) + g(x) ≤ sup
I
f + sup

I
g.

So

sup
x∈I

(f(x) + g(x)) ≤ sup
I
f + sup

I
g.

To see that the two sides might not be equal consider f : x 7→ x and g : x 7→ 1− x on

the interval [0, 1]. In this case

sup f = sup g = sup(f + g) = 1.
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Theorem (Linearity of the integral). If f, g : [a, b] → R are integrable and λ ∈ R

then λf and f + g are integrable and∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx

and ∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Proof We shall prove the second and leave the first as an exercise. By the lemma we

immediately get that for any bounded f, g : [a, b]→ R and any partition P

U(f + g, P ) ≤ U(f, P ) + U(g, P )

and the reverse for the lower sums. We would like to prove that∫
(f + g) ≤

∫
f +

∫
g =

∫
f +

∫
g ≤

∫
(f + g)

since that would force the upper and lower integrals of f + g to be equal, and equal to∫
f +

∫
g.

Given ε > 0 choose P and Q so that

U(f, P ) ≤
∫
f +

ε

2

and

U(g,Q) ≤
∫
g +

ε

2
.

Now if R is a common refinement of P and Q we have∫
(f + g) ≤ U(f + g,R) ≤ U(f,R) + U(g,R)

≤ U(f, P ) + U(g,Q)

≤
∫
f +

∫
g + ε.

Since ε > 0 was arbitrary we have∫
(f + g) ≤

∫
f +

∫
g.
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Another important property of the integral is monotonicity: if f ≤ g at each point then∫
f ≤

∫
g. This is much easier than additivity and is left as an exercise.

Theorem (Monotonicity of the integral). If f, g : [a, b] → R are integrable and for

all x ∈ [a, b] we have f(x) ≤ g(x) then and∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Checking that products work is also a bit trickier than you might think. If you can show

that f 2 is integrable then you are home because

fg =
1

2

(
(f + g)2 − f 2 − g2

)
.

Since f 2 is a product of two integrable functions we had better be able to prove it inte-

grable. This is not very different from proving that φ ◦ f is integrable for an arbitrary

continuous function φ.

Theorem (Continuous function of an integrable function). If f : [a, b] → R is

integrable and φ : R→ R is continuous then φ ◦ f is integrable on [a, b].

Proof f is a bounded so φ restricted to the image f([a, b]) is bounded and uniformly

continuous. Suppose |φ(u)| ≤ K if u ∈ f([a, b]) and given ε > 0 choose δ so that if

u, v ∈ f([a, b]) and |u− v| < δ then

|φ(u)− φ(v)| < ε.

Given η > 0 depending upon ε, δ and K we can choose a partition P = {x0, x1, . . . , xn}
of [a, b] for which

U(f, P )− L(f, P ) < η.

On most intervals of this partition the function f will not change by more than δ, so φ◦f
won’t change by more than ε. On the other intervals φ ◦ f won’t change by more than

2K whatever f does.
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For each i consider Mi and mi, the sup and inf of f on the interval [xi−1, xi]. Let B

be the set of indices for which Mi −mi ≥ δ and G be the set of the other indices. Then

η >

n∑
1

(Mi −mi)(xi − xi−1)

≥
∑
i∈B

(Mi −mi)(xi − xi−1)

≥ δ
∑
i∈B

(xi − xi−1).

The total length of the bad intervals is at most η/δ.

For each i let Ni and ni be the sup and inf of φ ◦ f on the ith interval. Now

U(φ◦f, P )−L(φ◦f, P )

=
n∑
1

(Ni − ni)(xi − xi−1)

=
∑
i∈G

(Ni − ni)(xi − xi−1) +
∑
i∈B

(Ni − ni)(xi − xi−1)

≤ ε
∑
i∈G

(xi − xi−1) + 2K
∑
i∈B

(xi − xi−1)

≤ ε(b− a) + 2K
η

δ
.

If we choose η = δε/(2K) we get

U(φ ◦ f, P )− L(φ ◦ f, P ) ≤ ε(b− a+ 1)

and this can be made as small as we wish by choosing ε small.

So the integrability condition is satisfied and φ ◦ f is integrable.

Corollary (The integrability of products). If f, g : [a, b]→ R are integrable then f.g

is integrable on [a, b].

Of course we have no formula for the integral of a product in terms of the integrals of the

factors.

An important consequence of what we have done so far is a version of the triangle in-

equality for integrals rather than sums.
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Corollary (The triangle inequality). If f : [a, b]→ R is integrable then |f | is integrable

and ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

The only real issue is to prove that |f | is integrable but we can take φ(x) = |x| in the

“Continuous function of an integrable function” theorem. Once we have that then because

f ≤ |f | and also −f ≤ |f | the montonicity theorem gives∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx and −
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx

which gives the inequality.

We have one principle for integrals that has no analogue for derivatives. This is really the

first place we get a payoff from having arbitrary partitions.

Corollary (The addition of ranges). Let f : [a, c] → R be bounded and a < b < c.

Then f is integrable on [a, c] if and only if it is integrable on [a, b] and [b, c] and if so∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Proof (Sketch) Given ε > 0 we can choose a partition P of [a, c] with

U(f, P )− L(f, P ) < ε.

We can now refine P by including the point b and then regard the new partition as a

partition of [a, b] together with a partition of [b, c]. The upper sums for these partitions

will add up to the upper sum for the refinement (and similarly the lower sums).

On the other hand if we start with partitions of [a, b] and [b, c] we can put them

together to form a partition of [a, c].

If we were restricting ourselves to partitions into equal intervals then we would find things

very irritating if for example a = 0, b = 1 and c =
√

2. Because of the irrationality of
√

2

it isn’t possible to find partitions of the two subintervals into equal parts that give equal

parts for the whole interval. For almost all other issues it wouldn’t make much difference

if we used equal parts. But note that we are using the sup and inf of upper and lower

sums rather than asking about a limit as the number of pieces goes to ∞. Once you use
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sup and inf you need the common refinement idea and at that point having equal intervals

isn’t much simpler than having arbitrary ones.

We now come to the machinery that made it possible to integrate some functions easily.

As you know there are many standard functions whose integrals cannot be written as

standard functions∫
1

log x
dx,

∫
e−x

2

dx,

∫
1√

1− α2 sin2 θ
dθ.

At school: “you can differentiate everything but integrate almost nothing”.

At university: “you can differentiate almost nothing and integrate a lot.”

But you can differentiate the standard functions and write down the derivatives whereas

you can’t write down the integrals of the standard functions.

The Fundamental Theorem of Calculus

We want to show that integration and differentiation are “opposites” of one another so

that we can calculate integrals by un-differentiating.

Can we prove that if F is differentiable, then F ′ is integrable and gives F? No, because

the derivative might be unbounded. HW

Can we prove that if F is differentiable with bounded derivative, then F ′ is integrable

and gives F? No, for subtle reasons.

Can we prove that if f is integrable then

x 7→
∫ x

a

f(t) dt

is differentiable with derivative f . No. If f : [−1, 1]→ R is −1 on [−1, 0) and 1 on [0, 1]

then the integral is x 7→ |x| − 1.
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Theorem (The Fundamental Theorem of Calculus I). Let f : [a, b] → R be inte-

grable. Then the function

F : x 7→
∫ x

a

f(t) dt

is continuous. If f (the integrand) is continuous at a point u ∈ (a, b) then F is differen-

tiable at that point and

F ′(u) = f(u).

Proof If x and x+ h are in [a, b] with h > 0 then

F (x+ h)− F (x) =

∫ x+h

x

f(t) dt.

Let M be a bound for f : so |f(x)| ≤M for all x ∈ [a, b]. Then

|F (x+ h)− F (x)| =
∣∣∣∣∫ x+h

x

f(t) dt

∣∣∣∣ ≤ ∫ x+h

x

|f(t)| dt ≤Mh.

Similarly for |F (x− h)− F (x)|. So F is continuous.

Now if f is continuous at u then given ε > 0 choose δ > 0 so that if |t − u| < δ we

have |f(t)− f(u)| < ε. Then if 0 < h < δ∣∣∣∣F (u+ h)− F (u)

h
− f(u)

∣∣∣∣ =

∣∣∣∣1h
∫ u+h

u

f(t) dt− 1

h

∫ u+h

u

f(u) dt

∣∣∣∣
=

∣∣∣∣1h
∫ u+h

u

(f(t)− f(u)) dt

∣∣∣∣
≤ 1

h

∫ u+h

u

|f(t)− f(u)| dt

≤ 1

h

∫ u+h

u

ε dt = ε.
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Similarly for h < 0. Hence F ′(u) exists and equals f(u).

Now suppose we have a nice function like f(t) = t2. We know that

F (x) =

∫ x

0

t2 dt

satisfies F ′(u) = u2 for all u and F (0) = 0. By the MVT we know that F is of the form

F (x) = x3/3 + C and then by the second condition we get F (x) = x3/3.

More generally FTC I and MVT show that if F is differentiable and F ′ = f is continuous

then ∫ b

a

f(t) dt = F (b)− F (a).

Actually something a bit stronger is true. We rarely need it but it is very instructive.

Theorem (The Fundamental Theorem of Calculus II). Let F : [a, b] → R be

continuous on [a, b] and differentiable on (a, b) with F ′ = f . Then if f is Riemann

integrable we have ∫ b

a

f(t) dt = F (b)− F (a).

In other words we don’t need to assume that f is continuous, merely that it is integrable.

Earlier I remarked that we do need some condition. Strictly speaking I need f to be

defined on the closed interval [a, b] to make sense of the hypothesis but we can extend f

by defining it to be 0 (say) at a and b without affecting the value of the integral. See HW

10 Q 7.

Proof It suffices to show that for each partition P

L(f, P ) ≤ F (b)− F (a) ≤ U(f, P )

because we then get ∫
f ≤ F (b)− F (a) ≤

∫
f

and if f is integrable the upper and lower integrals are equal. This is where we use the

integrability of f .
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Let P = {x0, x1, . . . , xn} be a partition of [a, b]. For each i, the function F is continuous

on [xi−1, xi] and differentiable on (xi−1, xi) so by the MVT there is a point ci ∈ (xi−1, xi)

with

F (xi)− F (xi−1) = F ′(ci)(xi − xi−1) = f(ci)(xi − xi−1).

Hence for each i

mi(xi − xi−1) ≤ F (xi)− F (xi−1) ≤Mi(xi − xi−1).

Summing over all i gives

L(f, P ) ≤ F (b)− F (a) ≤ U(f, P ).

This is very similar to the HW problem

n∑
1

xi−1(xi − xi−1) ≤
1

2
.

Note that the proof is actually shorter than the one for continuous functions but the one

for continuous functions tells us more: that integrals of continuous functions are in fact

differentiable.

Note also that both arguments (continuous using FTC I and integrable using FTC II)

use the sledge hammer: MVT. This is the theorem that relates derivatives to the values

of the function. It’s not surprising you need it to prove∫ b

a

F ′(t) dt = F (b)− F (a).

We can now integrate the usual functions: polynomials, exponentials and rational func-

tions in partial fractions. In particular we have

log x =

∫ x

1

1

t
dt.

We can also check the integrated versions of the product and chain rules: integration by

parts and integration by substitution.
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Theorem (Integration by parts). Suppose f, g : [a, b] → R are differentiable on an

open interval including [a, b] and that f ′ and g′ are integrable on [a, b]. Then∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx.

Proof By the product rule (fg)′ = f ′g + fg′ and each term is integrable. So∫ b

a

f(x)g′(x) dx+

∫ b

a

f ′(x)g(x) dx =

∫ b

a

(fg)′(x) dx = f(b)g(b)− f(a)g(a).

In order to state the natural form of integration by substitution we need to adopt a

convention. If b > a then ∫ a

b

f = −
∫ b

a

f.

This fits with what we already proved because by the addition of ranges formula∫ a

b

f +

∫ b

a

f =

∫ b

b

f = 0.

The FTC works fine with this convention.

Theorem (Integration by substitution). Suppose u : [a, b] → R is differentiable on

an open interval including [a, b] and that u′ is integrable on [a, b]. Suppose that f is a

continuous function on the bounded set u([a, b]). Then∫ b

a

f(u(x))u′(x) dx =

∫ u(b)

u(a)

f(t) dt.

Proof For each x in u([a, b]) define

F (x) =

∫ x

u(a)

f(t) dt.

By FTC I we know that F is differentiable and F ′(x) = f(x) for each x. By the chain

rule we have
d

dx
F (u(x)) = F ′(u(x))u′(x) = f(u(x))u′(x).
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The function f ◦ u is continuous and u′ is integrable so this derivative is integrable

and by FTC II we have∫ b

a

f(u(x))u′(x) dx = F (u(b))− F (u(a))

=

∫ u(b)

u(a)

f(t) dt−
∫ u(a)

u(a)

f(t) dt

=

∫ u(b)

u(a)

f(t) dt.

At school you used integration by substitution to evaluate things like∫ x

0

1√
1− t2

dt

and integration by parts to evaluate ∫ x

1

t log t dt.

But this is not the main mathematical value of these theorems: after all, you could just

look up the integrals.

Often, substitution enables us to rewrite integrals that we cannot evaluate, in more useful

forms. We shall have one example.

Suppose we want to estimate ∫ 1

0

1√
1− x4

dx.

This isn’t actually Riemann integrable because the function isn’t bounded but we shall

explain how to get around that in the next section.
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We might like to use the trapezium

rule to estimate the integral. But

the function is unbounded!

��� ��� ��� ��� ��� ���

�

�

�

�

�

�

Make the substitution x = 1− u2.∫ 1

0

1√
1− x4

dx =

∫ 1

0

1√
1− (1− u2)4

2u du

=

∫ 1

0

1√
4u2 − 6u4 + 4u6 − u8

2u du

=

∫ 1

0

2√
4− 6u2 + 4u4 − u6

du.

We want to estimate the integral

∫ 1

0

2√
4− 6u2 + 4u4 − u6

du.

The integrand is now well-behaved

��� ��� ��� ��� ��� ���

���

���

���

���
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Thus we have used substitution on an integral that we cannot evaluate exactly, to put it

into a more tractable form.

Improper integrals

How do we handle integrals like∫ 1

0

1√
x
dx or

∫ ∞
1

1

x2
dx

in which the integrand or the range of integration is unbounded?

We take a limit.

Definition (Improper integrals). Suppose f : [a, b] → R is integrable on each subin-

terval [c, b]. We say that f is improperly Riemann integrable on [a, b] if

lim
c→a+

∫ b

c

f(x) dx

exists and in that case we call the limit∫ b

a

f(x) dx

and say that the latter improper integral converges.

We do the same at the top end of an interval and the same for a half infinite interval:

Definition (Improper integrals). Suppose f : [a,∞)→ R is integrable on each subin-

terval [a, b]. We say that f is improperly Riemann integrable on [a,∞) if

lim
b→∞

∫ b

a

f(x) dx

exists and in that case we call the limit∫ ∞
a

f(x) dx

and say that the latter improper integral converges.
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Warning We define improper integrals like∫ ∞
−∞

f(x) dx

as ∫ 0

−∞
f(x) dx+

∫ ∞
0

f(x) dx.

In other words we insist that each half converges separately. We want to avoid things like∫ K

−K
x dx = 0

leading to a “cancellation of infinities”.

Example (Integrals of powers). If p > −1 and x > 0∫ x

0

tp dt =
xp+1

p+ 1
.

If p < −1 and x > 0 ∫ ∞
x

tp dt = − x
p+1

p+ 1
.

Proof Let’s do the first.

lim
c→0+

∫ x

c

tp dt = lim
c→0+

xp+1 − cp+1

p+ 1
=

xp+1

p+ 1
.

Several of our previous theorems do not hold for improper integrals. x 7→ 1/
√
x is

improperly integrable on [0, 1] but its square 1/x is not.

It is possible for ∫ ∞
1

f(x) dx

to converge but not ∫ ∞
1

|f(x)| dx

in the same way as a convergent series may not be absolutely convergent. HW

We have an analogue of the comparison test.
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Theorem (Comparison test for improper integrals). Suppose f, g : [a,∞)→ R are

integrable on each interval [a, b], that |f(x)| ≤ g(x) for all x ≥ a and that∫ ∞
a

g(x) dx

converges. Then ∫ ∞
a

f(x) dx

converges.

A similar statement works for improper integrals as one of the limits of integration ap-

proaches a number (rather than ∞).

Proof The functions |f | and f + |f | are integrable on each interval [a, b]. For each b∫ b

a

|f(x)| dx ≤
∫ b

a

g(x) dx ≤
∫ ∞
a

g(x) dx.

and ∫ b

a

(f(x) + |f(x)|) dx ≤ 2

∫ b

a

g(x) dx ≤ 2

∫ ∞
a

g(x) dx.

Both functions |f | and f + |f | are non-negative so the functions

b 7→
∫ b

a

|f(x)| dx

and

b 7→
∫ b

a

(f(x) + |f(x)|) dx

are bounded increasing functions of b. So both have limits as b → ∞ and hence so does

their difference

b 7→
∫ b

a

f(x) dx.

Example. For each λ > 0 ∫ ∞
0

e−λx dx =
1

λ
.
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Proof Exercise.

Example. ∫ ∞
0

e−x xp dx

converges for all p > −1.

Proof Remember we must handle the two ends separately (at least if p < 0 so that xp is

unbounded). For the left hand end, ∫ 1

0

e−x xp dx

converges for all p > −1 because the function is dominated by xp.

For the right hand end ∫ ∞
1

e−x xp dx,

there is a constant K for which

e−xxp ≤ Ke−x/2

because

e−x/2xp → 0

as x→∞. We already saw that ∫ ∞
1

e−x/2 dx

converges.

The Gamma function

In the previous section we saw that we can make sense of the integrals∫ ∞
0

e−x xs−1 dx
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for every s > 0. It is easy to show by integration by parts that for each non-negative

integer n ∫ ∞
0

e−x xn dx = n!

This will be HW. If we define

Γ(s) =

∫ ∞
0

e−x xs−1 dx

for s > 0 we then have

Γ(n+ 1) = n!

for each non-negative integer n.

We thus have an extension of the

factorial function to the interval

(−1,∞).

-� � � � � �
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So Γ(s) is like (s− 1)! It is quite easy to check that for all s,

Γ(s+ 1) = sΓ(s).

There is an alternative representation found by Gauss which is in many ways the most

natural form.

Theorem (Gauss’ definition of the gamma function). For each s > 0

Γ(s) = lim
n→∞

ns n!

s(s+ 1) · · · (s+ n)
.

Proof (outline) We want to show that

Γ(s)s(s+ 1) · · · (s+ n)

n!ns
→ 1
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as n→∞. This says
Γ(s+ n+ 1)

n!ns
→ 1

or in other words that
1

n!ns

∫ ∞
0

e−x xs+n dx→ 1.

We want that ∫ ∞
0

e−x xn

n!

(x
n

)s
dx→ 1.

We make the substitution x = nu and ask∫ ∞
0

nn+1e−nuun

n!
us du→ 1?

or ∫ ∞
0

fn(u)us du→ 1?

where

fn(u) =
nn+1e−nuun

n!
.

The integral of fn is 1. What does the function look like?

��� ��� ��� ���

�

�

�

�

The graph shows f20 and f100.
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Appendix. The radius of convergence formula

In this last section we shall produce a formula for the radius of convergence of a general

power series. In order to do so we shall need to recall the definition of the lim sup. If (xn)

is a sequence of real numbers which is bounded above we can examine the suprema of the

tails

um = sup {xn : n ≥ m} .

The further out the starting point m the fewer terms we are looking at. So these suprema

decrease. So either they converge to some number L or they decrease to −∞. In the first

case we say that

lim supxn = L

and in the second that

lim supxn = −∞.

If the sequence is not bounded above we write

lim supxn =∞.

Whatever the value of the lim sup it can be characterised in the following way. If

lim supxn = L then for every t < L there are infinitely many terms of the sequence

above t, while if t > L there is some point beyond which all terms are below t. Thus the

lim sup tells you how high the sequence reaches over and over again.

Now suppose that we have a power series
∑
an x

n and consider the sequence whose terms

are |an|1/n. Let its lim sup be L and note that L is non-negative (or∞) because the terms

are non-negative. Suppose |x| > 1/L and hence 1/|x| < L. Then for infinitely many

values of n

|an|1/n > 1/|x|

and hence

|an| > 1/|x|n.

So for infinitely many values of n the terms of the power series satisfy |anxn| > 1. So the

terms do not tend to zero and the series diverges.

On the other hand suppose |x| < 1/L. Choose a number t with |x| < 1/t < 1/L. Since
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t > L we know that from some point onward

|an|1/n < t

and hence

|an| < tn.

From this point on the terms of the series satisfy |anxn| < (t|x|)n. We chose t in such

a way that t|x| < 1 so the power series has terms which are dominated by a convergent

geometric series and hence it converges.

The upshot is that the series diverges if |x| > 1/L and converges if |x| < 1/L. So the

radius of convergence is 1/L. The formula we get is sometimes called the Hadamard

formula.

Theorem (The radius of convergence formula). The power series
∑
anx

n has radius

of convergence
1

lim supn→∞ |an|1/n
.

Example. The series
∑

2nxn has radius of convergence 1/2.

Example. The series
∑
xk

2
has radius of convergence 1.

Proof The coefficients are given by

an =


1 if n is a square

0 if not.

Then

|an|1/n =


1 if n is a square

0 if not.

So

lim sup
n→∞

|an|1/n = 1.

It is worth noting that the Power series I Lemma showing that
∑
nanx

n−1 has the same
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radius of convergence as
∑
anx

n follows easily from the theorem above. As an exercise,

check it by showing that

lim sup
n→∞

|an|1/n = lim sup
n→∞

|nan|1/n.
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