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Inverse problem

Given a (possibly corrupted) observation y ∈ Y of G(x), recover x ∈ X .

Inverse problems are usually ill-posed, so minimising the misfit

argmin
x∈X

Φ(x ; y), Φ(x ; y) :=
1

2
∥G(x)− y∥2Y

is unstable and affected by observational noise.



Classical approaches to inverse problems use regularisation
[Tikhonov, 1943; Engl, Hanke & Neubauer 1996]

Tikhonov regularisation Pick a penalty functional Ω: X → [0,+∞], a regularisation
parameter α > 0, and minimise

I (x ; y) = Φ(x ; y) + αΩ(x).

Theorem

Under suitable functional-analytic assumptions on X , Y , G, and Ω,
there exists a minimiser of I which stably depends on the data y .

Adding “prior information” through Ω restores well-posedness!



Prior information can be naturally integrated in the Bayesian approach
[Stuart, 2010]

Additive-noise Bayesian inverse problem

Infer x ∈ X from data y ∈ Y given the model

y = G(x) + ξ,

ξ ∼ τ0,

x ∼ µ0.



Model y = G(x) + ξ,

ξ ∼ τ0,

x ∼ µ0.

Theorem (Bayes’ rule for functions) [Dashti & Stuart, 2017]

Assume:

• mild measurability and integrability assumptions;

• τG(x) = τ0(· − G(x)) is absolutely continuous wrt. τ0 for µ0-almost all x .

Then the distribution µy of x | y is absolutely continuous with respect to µ0, and

dµy

dµ0
(x) =

1

Z (y)
exp

(
−Φ(x ; y)

)
, Φ(x ; y) = − log

dτG(x)
dτ0

(y).



Example: observations corrupted by additive Gaussian noise

Model y = G(x) + ξ, ξ ∼ N(0,Σ).

Prior Centred nondegenerate Gaussian measure µ0.

Posterior Given by Bayes’ rule:

dµy

dµ0
(x) =

1

Z (y)
exp

(
−Φ(x ; y)

)
, Φ(x ; y) =

1

2

∥∥∥Σ−1/2
(
G(x)− y

)∥∥∥2 .



Tikhonov regularisation
Regularisation functional Ω and misfit term

Minimiser x† of Tikhonov functional

Bayesian inference
Prior µ0 and likelihood y | x

Posterior µy given by Bayes’ rule

Maximum a posteriori (MAP) estimator for absolutely continuous µy on X = Rd

A MAP estimator is a maximiser of the posterior density ρy : Rd → [0,+∞].

When X = Rd , Y = Rn, µ0 ∼ N(0,Θ), ξ ∼ N(0,Σ),

dµy

dLd
(x ; y) ∝ exp

(
−1

2

∥∥∥Σ−1/2
(
G(x)− y

)∥∥∥2 − 1

2

∥∥∥Θ−1/2x
∥∥∥2),

so a maximiser of the density minimises the Tikhonov functional

I (x ; y) =
1

2

∥∥∥Σ−1/2
(
G(x)− y

)∥∥∥2 + 1

2

∥∥∥Θ−1/2x
∥∥∥2 .

Question: how can we extend this connection beyond the finite-dimensional setting?



Modes can be defined using small-ball probabilities
[Dashti, Law, Stuart & Voss, 2013]

Assumptions X is a separable Banach space and µ is a Borel probability measure on X .

Idea Look for points which asymptotically attain the supremal ball mass

Mr = sup
x∈X

µ(Br (x)).

Definition: strong mode

Any point x⋆ ∈ supp(µ) such that

lim
r→0

Mr

µ(Br (x⋆))
= 1.



Modes can be defined using small-ball probabilities
[Helin & Burger, 2015; Ayanbayev, Klebanov, Lie & Sullivan, 2022a]

Another approach is to compare balls around x⋆ with those around any other x ∈ X .

Definition: (global) weak mode

Any point x⋆ ∈ supp(µ) such that, for all x ∈ X ,

lim sup
r→0

µ(Br (x))

µ(Br (x⋆))
≤ 1.

This also admits an order-theoretic interpretation. [L. & Sullivan, 2023]



Proposition

Any strong mode is a weak mode.

Proposition [Lie & Sullivan, 2018; Ayanbayev, Klebanov, Lie, Sullivan, 2022a]

There exist measures with a weak mode that is not strong.

“Strong” or “weak” is really a regularity condition on the measure.

Proposition: strong–weak dichotomy [L., 2023]

If µ has a strong mode, then all weak modes are strong modes.



Definition: Onsager–Machlup functional

Let ∅ ≠ E ⊆ X . Then I : E → R is an OM functional for µ if

lim
r→0

µ(Br (x))

µ(Br (y))
= exp

(
I (y)− I (x)

)
for all x , y ∈ E .

Definition: property M(µ,E ) [Ayanbayev, Klebanov, Lie & Sullivan, 2022a]

Property M(µ,E ) holds if there exists x⋆ ∈ E such that, for all x /∈ E ,

lim
r→0

µ(Br (x))

µ(Br (x⋆))
= 0.



Theorem [Ayanbayev, Klebanov, Lie & Sullivan 2022a]

Assume µ admits an OM functional I : E → R and property M(µ,E ) holds. Then:

x⋆ is a weak mode ⇐⇒ x⋆ minimises I .

Theorem

Assume µ0 has OM functional I0 : E → R and property M(µ0,E ) holds.
Suppose µy ≪ µ0 and, for some continuous potential Φ, has density

dµy

dµ0
(x) = exp

(
−Φ(x)

)
.

Then µy has OM functional I y (x) = I0(x) + Φ(x) and property M(µy ,E ) holds.



Example: Gaussian measures on separable Hilbert spaces

Let γ be a centred Gaussian on a separable Hilbert space X . The measure is
characterised by its covariance operator C : X → X , which can be written as

Cx =
∑
n∈N

σ2
n⟨x , en⟩en, (en)n∈N orthonormal basis of X , (σ2

n)n∈N decreasing.

We can treat γ as a product measure in the basis (en)n∈N:

γ =
⊗
n∈N

N(0, σ2
n).

The Cameron–Martin space E consists of all h ∈ X for which

∥h∥2E :=
∑
n∈N

σ−2
n ⟨h, en⟩2X < ∞.

It is classical that γ has OM functional I (x) = 1
2∥x∥

2
E defined on E ,

and property M(γ,E ) is implicit in results of Dashti, Law, Stuart & Voss (2013).



With the definition established, how can we prove Bayesian inverse
problems have MAP estimators?

We restrict to the following class of measures, motivated by Bayesian posteriors.

Problem statement

Let X be a separable Banach space and let µ0 be a centred nondegenerate Gaussian.
Suppose that, for some continuous potential Φ: X → R,

dµy

dµ0
(x) = exp

(
−Φ(x)

)
.

When does µy have a strong MAP estimator?



We just need to prove the existence of at least one strong mode. Then:
• strong and weak modes coincide;
• if the M-property also holds, then strong modes coincide with minimisers of I y .

Theorem [Dashti, Law, Stuart & Voss, 2013]

Suppose also that X is Hilbert and that Φ is bounded below and locally Lipschitz.
Then µy has a strong mode.

Theorem [Kretschmann 2019, 2023]

Suppose X is Hilbert and that Φ is locally Lipschitz and satisfies the lower cone
condition, i.e. there exists L > 0 such that

Φ(x) ≥ Φ(0)− L∥x∥X for all x ∈ X .

Then µy has a strong mode.



Theorem [Klebanov & Wacker, 2023]

Let X = ℓp(N;R), 1 ≤ p < ∞, and let µ0 be a diagonal Gaussian measure:

µ0 =
⊗
n∈N

N(0, σ2
n).

Suppose that Φ is bounded below and locally Lipschitz. Then µy has a strong mode.



Proof strategy
1. Take an asymptotic maximising family (AMF) (xr )r>0 for µy , i.e. a net satisfying

µy (Br (xr )) >
(
1− ε(r)

)
sup
x∈X

µy (Br (x)) for some ε(r) → 0.

2. Show that (xr )r>0 has a bounded subsequence using an explicit Anderson inequality.

Theorem: explicit Anderson inequality [Dashti, Law, Stuart & Voss, 2013]

Let X be Hilbert and let γ be a centred Gaussian. There exists a > 0 such that

γ(Br (x))

γ(Br (0))
≤ exp

(
a
(
r2 − (∥x∥ − r)2

))
for any x ∈ X and r > 0.

Using density for µy and that (xr )r>0 is an AMF for µy , can show

0 < lim inf
r→0

µ0(Br (xr ))

µ0(Br (0))
≤ lim inf

r→0
exp

(
a
(
r2 − (∥xr∥ − r)2

))
.

3. Extract weakly convergent subsequence of (xr )r>0 and show convergence is also strong.

4. Use the regularity of µy to show the limit point is a strong mode.



Theorem [L., 2023]

Let X be any separable Banach space, and suppose Φ is continuous and
for each η > 0, there exists K (η) ∈ R such that

Φ(x) ≥ K (η)− η∥x∥2X .

Then µy has a strong mode.

To prove this, we upgrade a couple of steps in the proof strategy.

1. Take an AMF (xr )r>0 for µy .
2. Approximate it by an AMF lying in E with a bounded subsequence in X in E .
3. Extract X -weakly E -weakly convergent subsequence, and show convergence is X -strong.
4. Use regularity of µy to show the limit point is a strong mode.



The original explicit Anderson inequality is of the form

γ(Br (x))

γ(Br (0))
≤ exp

(
a
(
r2 − (∥x∥ − r)2

))
for any x ∈ X and r > 0.

This complicates matters when X doesn’t have Hilbert structure.

Theorem: explicit Anderson inequality in Cameron–Martin norm

Suppose X is a separable Banach space and γ is a centred nondegenerate Gaussian.
Then

γ(Br (x))

γ(Br (0))
≤ exp

(
−1

2
min

h∈Br (x)∩E
∥h∥2E

)
for any x ∈ X and r > 0.

A similar result can be found in Ghosal & van der Vaart (2017).

Corollary: this also proves property M(γ,E ) in separable Banach spaces.



Suppose X is a separable Banach space and γ is a centred nondegenerate Gaussian.
Then

γ(Br (x))

γ(Br (0))
≤ exp

(
−1

2
min

h∈Br (x)∩E
∥h∥2E

)
for any x ∈ X and r > 0.

Using the inequality, we can show any AMF is approximated by another with a
bounded subsequence in the Hilbert space E .

We can therefore extract an E -weakly convergent subsequence and push it through
the compact embedding of E in X .



This extends the correspondence between MAP estimators and minimisers
of a Tikhonov functional to Banach spaces

Corollary

When X is a separable Banach space and µ0 is a centred nondegenerate Gaussian,
the posterior µy of the Bayesian inverse problem

y = G(x) + ξ, ξ ∼ N(0,Σ), x ∼ µ0

has at least one strong MAP estimator, and strong MAP estimators are minimisers of

I y (x) =
1

2

∥∥∥Σ−1/2
(
G(x)− y

)∥∥∥2 + 1

2
∥x∥2E .

The analysis for non-Gaussian priors seems much harder — no general theory.
Similar results do exist for Besov priors. [Agapiou, Burger, Dashti & Helin, 2018]



In inverse problems, MAP estimators connect classical and Bayesian approaches.
This is well known in finite dimensions, but hard to prove in the nonparametric setting.

Modes of probability measures can be defined in very general settings using small balls.
This overcomes a lack of posterior Lebesgue density in infinite dimensions.

Bayesian inverse problems with Gaussian priors on Banach spaces have MAP estimators.
The proof exploits an explicit Anderson inequality in Cameron–Martin norm
and there is much work to be done beyond the Gaussian case.

Thank you!

Slides and paper available at
warwick.ac.uk/htlambley

https://warwick.ac.uk/htlambley


References

Ayanbayev, Klebanov, Lie & Sullivan (2022a). Γ-convergence of Onsager–Machlup
functionals: I. With applications to maximum a posteriori estimation in Bayesian
inverse problems. Inverse Probl. 38.2, 025005, doi:10.1088/1361-6420/ac3f81.

Agapiou, Burger, Dashti & Helin (2018). Sparsity-promoting and edge-preserving
maximum a posteriori estimators in non-parametric Bayesian inverse problems. Inverse
Probl. 34.4, 045002, doi:10.1088/1361-6420/aaacac.

Dashti, Law, Stuart & Voss (2013). MAP estimators and their consistency in Bayesian
nonparametric inverse problems. Inverse Probl. 29.9, 095017,
doi:10.1088/0266-5611/29/9/095017.

Dashti & Stuart (2017). The Bayesian approach to inverse problems. In Handbook of
Uncertainty Quantification, Springer, pp. 311–428, doi:10.1007/978-3-319-12385-1 7.

Engl, Hanke & Neubauer (1996). Regularization of inverse problems. Vol. 375 of
Mathematics and Its Applications, Springer, ISBN 9780792341574.

Ghosal & van der Vaart (2017). Fundamentals of nonparametric Bayesian inference.
CUP, doi:10.1017/9781139029834.

https://doi.org/10.1088/1361-6420/ac3f81
https://doi.org/10.1088/1361-6420/aaacac
https://doi.org/10.1088/0266-5611/29/9/095017
https://doi.org/10.1007/978-3-319-12385-1_7
https://doi.org/10.1017/9781139029834


Helin & Burger (2015). Maximum a posteriori probability estimates in
infinite-dimensional Bayesian inverse problems. Inverse Probl. 31.8, 085009,
doi:10.1088/0266-5611/31/8/085009.

Klebanov & Wacker (2023). Maximum a posteriori estimators in ℓp are well-defined for
diagonal Gaussian priors. Inverse Probl. 39.6, 065009, doi:10.1088/1361-6420/acce60.

Kretschmann (2019). Nonparametric Bayesian inverse problems with Laplacian noise.
PhD thesis, Universität Duisberg-Essen, doi:10.17185/duepublico/70452.

Kretschmann (2023). Are minimizers of the Onsager–Machlup functional strong
posterior modes? SIAM/ASA JUQ 11.4, pp. 1105–1138, doi:10.1137/23M1546579.

Lambley (2023). Strong maximum a posteriori estimation in Banach spaces with
Gaussian priors. Inverse Probl. 39.12, 125010, doi:10.1088/1361-6420/ad07a4.

Lambley & Sullivan (2023). An order-theoretic perspective on modes and maximum a
posteriori estimation in Bayesian inverse problems. SIAM/ASA JUQ 11.4,
pp. 1195–1224, doi:10.1137/22M154243X.

Lie & Sullivan (2018). Equivalence of weak and strong modes of measures on
topological vector spaces. Inverse Probl. 34.11, 115013,
doi:10.1088/1361-6420/aadef2.

https://doi.org/10.1088/0266-5611/31/8/085009
https://doi.org/10.1088/1361-6420/acce60
https://doi.org/10.17185/duepublico/70452
https://doi.org/10.1137/23M1546579
https://doi.org/10.1088/1361-6420/ad07a4
https://doi.org/10.1137/22M154243X
https://doi.org/10.1088/1361-6420/aadef2


Stuart (2010). Inverse problems: a Bayesian perspective. Acta Numer. 19,
pp. 451–559, doi:10.1017/S0962492910000061

Tikhonov (1943). On the stability of inverse problems [in Russian]. Dokl. Akad. Nauk.
SSSR 39, pp. 195–198.

https://doi.org/10.1017/S0962492910000061

