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Abstract

We begin by giving an introduction to basic homological algebra: chain complexes and
homology are discussed with illustrative examples. Likewise, we introduce double complexes and
the homotopy theory of chain complexes, followed by a short discussion of spectral sequences.
We then proceed to the topic of simplicial objects, first discussing the simplex category ∆,
then defining the notion of a simplicial object, with illustrative examples. This is followed by a
discussion of the notion of the geometric realization of a simplicial set, as well as the notion of
a combinatorial simplicial complex. We then define some basic operations on simplicial objects,
and discuss the homotopy theory of simplicial objects. Then, assembling all the previous work,
we state and prove the Dold-Kan Correspondence. We then define cyclic objects, and the cyclic
homology associated to them, before defining duplicial objects and mixed complexes. We then
state and prove the Dwyer-Kan Correspondence. In the concluding section of the main body of
the paper, we give some directions for further study. Many categorical terms and results used
in the main body of the text without comment are discussed in the Appendix.
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1 Introduction

All through mathematics, one encounters notions of correspondence: in other words, ways to recognise
when mathematical objects are similar in some respect. This ranges from the very simplest cases,
such as when two numbers are equal, through to more complex situations, such as when two groups
are isomorphic. As the setting gets more complex, the number of ways in which we can recognise
similarity tends to increase. For example, one can define a notion of isomorphism in the setting
of category theory: two categories C and D are isomorphic if there exist functors F : C → D and
G : D → C such that GF = idC and FG = idD. However, this turns out to be too strong a condition
to be often considered or used. The central notion of correspondence for categories is the slightly
weaker equivalence of categories, in which the composite functors above are only required to be
naturally isomorphic to the appropriate identity functors. This extra subtletly is a consequence of
the shift from set-theoretic to category-theoretic statements: we have no general notion of a morphism
between functions, but the notion of natural transformations between functors is ubiquitous. With
this in mind, we say that C and D are equivalent categories if they are isomorphic up to a natural
isomorphism.

The notion of equivalence of categories turns out to be strong enough to imply big resemblances
between the structures of the categories involved, but weak enough so that the recognised similarities
actually provide new insight. To give one example, the vast field of algebraic geometry is built around
an equivalence of categories between sets of zeroes of polynomials and finitely-generated algebras over
a field. Another example comes from functional analysis: the category of commutative C∗-algebras
with unity is contravariantly equivalent to the category of compact Hausdorff spaces. This is known
as the Gelfand representation.

The present paper is primarily concerned with two equivalances in particular: the Dold-Kan
Correspondence, an equivalence between simplicial objects and chain complexes, and the Dwyer-
Kan Correspondence, an equivalence between duplicial objects and mixed complexes. The Dold-Kan
Correspondence can be thought of as a vast generalization of the notion of simplicial homology from
algebraic topology, a fact we will illustrate with an example.

The figure below shows a possible triangulation of the torus.

Such pictures emerge when computing the simplicial homology of the torus, which is done as follows:
first, we view the torus as a simplicial complex, consisting of 0-simplices (points), 1-simplices (lines),
and 2-simplices (triangles). We then build a chain complex C of abelian groups: in degree 0, C
has the free abelian group generated by the set of 0-simplices, and the other degrees are completely
analogous. Now, let v = [v0, . . . , vn] be an n-simplex. The differential dn : Cn → Cn−1 is given by

dn(v) =
n∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vn),

where the addition of a hat to a vertex denotes deletion. So, for example, (v0, . . . , v̂k, . . . , vn) is the
kth face of v, which we obtain by deleting the kth vertex.
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As the nomenclature may suggest, the collection of n-simplices (where n ∈ {0, 1, 2}) of the torus
is a kind of simplicial object, and, in fact, the notion of a simplicial object is a generalization of the
combinatorial structure of a simplicial complex. In this more abstract language, when we compute
the simplicial homology of some simplicial complex X, we start with a simplicial set, then create
a simplicial abelian group from it, then, finally, use this simplicial abelian group to build a chain
complex: the chain complex whose homology is the simplicial homology of X.

The last step of the above example, where we construct a chain complex from a simplicial abelian
group, is a kind of early premonition of the Dold-Kan Correspondence, which we will now state.

Theorem (Dold-Kan). Let A be an abelian category, let SA be the category of simplicial objects in
A, and let Ch≥0(A) be the category of non-negatively graded chain complexes in A. Then there exist
functors N : SA → Ch≥0(A) and K : Ch≥0(A)→ SA such that KN ∼= idSA and NK ∼= idCh≥0(A).

The bulk of the paper deals with the preliminary material required for a full understanding of the
Dold-Kan Correspondence, as well as its proof. For this, we draw primarily on Chapter 8 of Charles
A. Weibel’s An Introduction to Homological Algebra [17]. For more information on the Dold-Kan
Correspondence, the reader may wish to consult [5], [8], or [9].

The Dwyer-Kan Correspondence is an extension of the Dold-Kan Correspondence, in the sense
that a duplicial object can be built from a simplicial object with the addition of extra structure,
and a mixed complex can be built from a chain complex again by the addition of extra structure.
The functors which form the Dwyer-Kan Correspondence are extensions of those which form the
Dold-Kan Correspondence, and for this reason we also denote them by N and K:

Theorem (Dwyer-Kan). Let A be an abelian category, let DA be the category of duplicial objects
in A, and let Mix≥0(A) be the category of non-negatively graded mixed complexes in A. Then
there exist functors N : DA → Mix≥0(A) and K : Mix≥0(A) → DA such that KN ∼= idDA and
NK ∼= idMix≥0(A).

Additionally, we discuss ways in which the correspondences are even stronger than simple equiv-
alences of categories.

In Section 2 we discuss chain complexes, as well as the homological algebra necessary to prove
the Dold-Kan Correspondence. In Section 3, we discuss simplicial objects. In Section 4, we state
and prove the Dold-Kan Correspondence. In Section 5, we introduce duplicial objects and mixed
complexes, then state and prove the Dwyer-Kan Correspondence. Finally, in Section 6, we briefly
discuss some possible directions for further research. Various category-theoretic terms and results
used in the main body of the paper are explained in the Appendix.

2 Basic homological algebra

To begin, it will be necessary to cover some of the basics of homological algebra, starting with the
central notion of the subject: chain complexes.

2.1 Chain complexes

Definition 2.1.1. Let A be an abelian category. A chain complex (C, d) is a sequence of objects and
morphisms in A with dn : Cn → Cn−1 and the property that dn ◦ dn+1 = 0 for all n. For convenience,
we will often write C for (C, d) and d2 for dn ◦ dn+1.

Remark. One can dualize the previous definition, obtaining the notion of a cochain complex, which
is exactly the same, except that the maps dn go upward in degree, rather than downward.
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This definition is valid in any abelian category, but the following theorem, known as the Freyd-
Mitchell Embedding Theorem, implies that we can consider the objects in question to be modules
over a ring R, without any loss of generality. As this viewpoint will be notationally convenient, as
well as allowing us to use element-theoretic proofs, we will adopt it from this point on.

Theorem 2.1.2 (Freyd-Mitchell). Let A be a small abelian category. Then there exists a unital ring
R, not necessarily commutative, and a functor F : A → R-mod which is full, faithful, and exact,
where R-mod denotes the category of left R-modules.

Proof. See [15].

Each chain complex of R-modules gives rise to two further sequences of R-modules Zn = ker dn
and Bn = im dn+1 which are called, respectively, the cycles and boundaries. Since dn ◦ dn+1 = 0, we
have the inclusions Bn ⊆ Zn ⊆ Cn. This motivates the following definition, which is valid since we
can quotient by any submodule.

Definition 2.1.3. Let C be a chain complex of R-modules. The quotient module Zn/Bn is known
as the nth homology of C. It is denoted Hn(C). A chain complex whose homology is trivial for all
n is known as acyclic.

Example 2.1.4. Consider the diagram

· · · → Z8
·4−→ Z8

·2−→ Z8 → 0

The notation here means that each object of non-negative degree is Z8, that each object of negative
degree is 0, and that d alternates between ·2 and ·4 over the whole complex. This is a chain complex;
wherever the differential is not simply 0, it is a multiple of 8, which means that any argument of d2

will be congruent to 0 mod 8. Computing the homology is simple:

H0 = ker d0/im d1 = Z8/Z4
∼= Z4

H1 = ker d1/im d2 = Z2/Z2
∼= {0}

H2 = ker d2/im d3 = Z4/Z4
∼= {0}

This pattern will repeat. So the chain complex has trivial homology except in degree 0.

We can form a category, denoted Ch(R), whose objects are chain complexes of R-modules. To
do so, however, we must define the notion of a morphism of chain complexes.

Definition 2.1.5. A chain map f : C → D is a collection of morphisms (in R-mod) fn : Cn → Dn

such that fn−1 ◦ dn = dn−1 ◦ fn. The last condition can be summed up by stating that the following
diagram commutes:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

d

fn+1

d

fn

d

fn−1

d

d′ d′ d′ d′

We will often denote the chain map as a whole by {fn}. The category Ch(R) has chain complexes
of R-modules as objects and chain maps as morphisms.

A map of chain complexes f : C → D maps boundaries to boundaries and cycles to cycles, and
hence induces maps Hn(C)→ Hn(D). These induced maps make each Hn into a functor from Ch(R)
to R-mod. This motivates the following definition.
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Definition 2.1.6. Let f : C → D be a map of chain complexes. We refer to f as a quasi-isomorphism
if each induced map Hn(C)→ Hn(D) is an isomorphism.

The category Ch(R) inherits some of the structure of R-mod, in that it is also an additive
category. To see this, we must, per Definition A.4.1, show that the hom-sets of Ch(R) have an
abelian group structure over which composition of morphisms distributes, that Ch(R) has a zero
object, and that binary products and coproducts exist. The first condition is certainly true; if {fn}
and {gn} are two chain maps, we can simply add their individual components degreewise, because
each one is a morphism in R-mod, which is itself an additive category. The sum of the two chain
maps is the family {fn + gn}.
The zero object in Ch(R) is the trivial complex, which is {0} in each degree and has the zero map
for each differential. The product and coproduct are defined degreewise. The differentials are as
follows: ∏

dα :
∏
α

Aα,n →
∏
α

Aα,n−1

⊕
dα :

⊕
α

Aα,n →
⊕
α

Aα,n−1

Definition 2.1.7. Let B and C be chain complexes. We refer to B as a subcomplex of C if, for every
n, Bn is a submodule of Cn and the differential on B is the restriction of the differential on C; that
is to say, the family of inclusions {in} of Bn in Cn is a chain map B → C. If this is the case, we can
build a chain complex using the quotient modules:

· · · → Cn+1/Bn+1
d−→ Cn/Bn

d−→ Cn−1/Bn−1
d−→ · · ·

This complex has the same differential as C, is denoted C/B, and is called the quotient complex.

Definition 2.1.8. Let C be a complex, let n be an integer, and let τ≥nC denote the subcomplex of
C defined as follows:

(τ≥nC)i =


0 if i < n

Zn if i = n

Ci if i > n

By construction, Hi(τ≥nC) = 0 for i < n and Hi(τ≥nC) = Hi(C) for i ≥ n. We refer to the
subcomplex τ≥nC as the good truncation of C below n, and we refer to the complex τ<nC = C/(τ≥nC)
as the good truncation of C above n; Hi(τ<nC) = Hi(C) for i < n and 0 for i ≥ n.

Remark. Related to the definition above, there exist the less refined brutal truncations, denoted
σ<nC and σ≥nC = C/(σ<nC). By construction, σ<nC is Ci if i < n and 0 if i ≥ n. These are
easier to describe directly, but, disadvantageously, they are not acyclic, having a homology group
Hn(σ≥nC) = Cn/Bn.

Another operation which can be performed on chain or cochain complexes is shifting indices, or
translation.

Definition 2.1.9. Let C be a complex and let p be an integer. From this, we can form a new
complex, denoted C[p] and defined as follows:

C[p]n = Cn+p if C is a chain complex, C[p]n = Cn−p if C is a cochain complex.

The differential is given by (−1)pd. This sign convention is used to simplify notation in some situa-
tions. We refer to C[p] as the p-th translate of C.
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Note that translation shifts homology in the expected manner:

Hn(C[p]) = Hn+p(C) Hn(C[p]) = Hn−p(C).

We can view translation as a functor from Ch(R) to Ch(R) by translating the degrees of chain maps;
if f : C → D is a chain map, then f [p] is the chain map defined as follows:

f [p]n = fn+p.

The situation is similar for maps of cochain complexes.

Definition 2.1.10. Let f : B → C be a chain map. The mapping cone of f is the chain complex,
denoted cone(f), whose entry in degree n is Cn−1 ⊕ Cn. In the name of consistence with other sign
conventions, the differential of cone(f) is given by the formula

dcone(b, c) = (−d(b), d(c)− f(b))

where b ∈ Bn−1, c ∈ Cn. Predictably, there is a dual notion for a map B → C of cochain complexes;
the mapping cone is a cochain complex whose entry in degree n is Bn+1 ⊕ Cn. The differential is
given by the same formula as for chain complexes.

2.2 Double complexes

We proceed now to the key notion of a double complex or bicomplex. These can be thought of as
chain complexes whose objects are themselves chain complexes.

Definition 2.2.1. A double complex or bicomplex in R-mod is a family {Cp,q} of objects of R-mod,
together with maps

d : Cp,q → Cp−1,q and b : Cp,q → Cp,q−1

which, for reasons which will become clear, are often referred to as the horizontal and vertical
differentials. Further, these maps are subject to the conditions that d2 = b2 = db + bd = 0. This
construction is best viewed as a lattice:

· · · · · · · · ·

· · · Cp−1,q+1 Cp,q+1 Cp+1,q+1 · · ·

· · · Cp−1,q Cp,q Cp+1,q · · ·

· · · Cp−1,q−1 Cp,q−1 Cp+1,q−1 · · ·

· · · · · · · · ·

b

d

b

d

b

b

d

b

d

b

d d

This viewpoint is the reason for the use of the terms ‘horizontal’ and ‘vertical’. The requirement
that db + bd = 0 means that each square in the lattice anticommutes. We call a double complex C
bounded if it has only finitely many nonzero terms along each diagonal; one example of this is if C
is zero everywhere except the first quadrant of the plane.

7



Remark. The anticommutativity of the squares means that the maps b are not chain maps, but we
can form chain maps f∗,q : C∗,q → C∗,q−1 from them by introducing sign changes:

fp,q = (−1)pbp,q : Cp,q → Cp,q−1

Using this ‘sign trick’ allows us to identify double complexes in R-mod with chain complexes in
Ch(R).

Definition 2.2.2. Given a double complex C∗∗, we can construct a pair of chain complexes, which
we call the total complexes of C, denoted by TotΠ(C)n and Tot⊕(C)n, and defined as follows

TotΠ(C)n =
∏

p+q=n

Cp,q and Tot⊕(C)n =
⊕
p+q=n

Cp,q.

Due to the anticommutativity of the squares, the formua dTot = d+ b defines maps

dTot : TotΠ(C)n → TotΠ(C)n−1 and dTot : Tot⊕(C)n → Tot⊕(C)n−1

such that d2
Tot = 0, which means that the two total complexes are chain complexes. Notice that, due

to finite direct sums and products being the same in an additive category, TotΠ(C) = Tot⊕(C) if C
is bounded.

2.3 Chain homotopies

We proceed now to discuss the notion of chain homotopy ; this is an equivalence relation of chain maps
which, as the nomenclature suggests, shares many properties with the classical notion of homotopy
of continuous maps from topology.
We begin, by way of motivation, with a special case, of historical importance. Let C be a chain
complex of vector spaces, that is to say, a chain complex of R-modules where the ring R is a field.
In this situation, we can always choose the following vector space decompositions:

Cn = Zn ⊕B′n
B′n
∼= Cn/Zn = d(Cn) = Bn−1

Zn = Bn ⊕H ′n
H ′n
∼= Zn/Bn = Hn(C).

We can therefore form the compositions

Cn → Zn → Bn
∼= B′n+1 ⊆ Cn+1

to obtain maps sn : Cn → Cn+1, such that for each s in the family, d = dsd.
The compositions ds and sd are, respectively, projections from Cn onto Bn and B′n: therefore, the
sum ds + sd is a map from Cn to Cn whose kernel H ′n is isomorphic to the homology Hn(C). Both
the kernel and the cokernel of ds + sd are the acyclic chain complex H∗(C), and both chain maps
H∗(C)→ C and C → H∗(C) are quasi-isomorphisms. In addition, C is an exact sequence (a sequence
where ker dn = im dn+1 if and only if ds+ sd is equal to the identity map.
If R is an arbitrary ring and hence not necessarily a field, it is not always possible to split chain
complexes in this fashion, so we give a name to the situation in which we are able to do so.

Definition 2.3.1. A chain complex C is called split if there are maps sn : Cn → Cn+1 such that
d = dsd for all n. We call the maps sn the splitting maps, and, if C is acyclic, we say that C is split
exact.
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Example 2.3.2. Let R be Z or Z4, and let C be the complex

· · · ·2−→ Z4
·2−→ Z4

·2−→ Z4
·2−→ · · ·

It is obvious that this complex is acyclic, but it is not split exact; there is no family of maps {sn} such
that ds+sd is the identity for each member s of the family, nor is there any direct sum decomposition
Cn ∼= Zn ⊕B′n.

Now, suppose that we are given two chain complexes C and D, together with arbitrary maps
sn : Cn → Dn+1. Let fn be the map from Cn to Dn given by the formula fn = dn+1sn + sn−1dn :

Cn+1 Cn Cn−1

Dn+1 Dn Dn−1

d

s f

d

s

d d

Forgetting the subscripts for concision, we compute

df = d(ds+ sd) = dsd+ (ds+ sd)d = fd

Therefore, f is a chain map from C to D. This motivates the following definition.

Definition 2.3.3. A chain map f : C → D is called null homotopic if there are maps sn : Cn → Dn+1

such that f = ds+ sd. The maps {sn} are called a chain contraction of f.

Definition 2.3.4. Let f and g be two chain maps mapping from C to D. We say that f and g
are chain homotopic, and write f ' g, if their difference f − g is null homotopic. That is to say,
f − g = ds + sd. We refer to the maps {sn} as a chain homotopy from f to g. Finally, we refer to
f : C → D as a chain homotopy equivalence if there is a map g : D → C such that g ◦ f ' idC and
f ◦ g ' idD.

Remark. This choice of terminology is inspired by topology, via the following observation. A map
f : X → Y of topological spaces induces a map f∗ : S(X) → S(Y ) of chain complexes between the
corresponding singular chain complexes. It can be shown that f being topologically null homotopic
(or, respectively, a topological homotopy equivalence) implies that the chain map f∗ is chain null
homotopic (or, respectively, a chain homotopy equivalence.) Furthermore, if two maps f and g are
topologically homotopic, then f∗ and g∗ are chain homotopic.

We shall now prove a lemma which will be required later; the result corresponds to the fact that
if the identity on a topological space X is null homotopic, X is contractible.

Lemma 2.3.5. Let f : C → D be null homotopic. Then every induced map f∗ : Hn(C)→ Hn(D) is
zero. In particular, if id : C → C is null homotopic, C is acyclic.

Proof. Suppose that f = ds + sd. Every element of Hn(C) is represented by an n-cycle x, but
f(x) = d(sx). That is to say, f(x) is an n-bounday in D. Therefore, f(x) represents 0 in Hn(D).

We proceed now to a topic of vast computational usefulness: the theory of spectral sequences.
Because of the subject’s complexity, we will cover only the very small amount necessary for a proof
of the Dold-Kan Correspondence. For a full and proper treatment of spectral sequences, consult
Chapter 5 in [17].
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2.4 Spectral sequences

By way of motivation, first consider the problem of computing the homology of the total chain
complex, denoted T∗, of a double complex E∗∗ which is zero everywhere except for the first quadrant
in the plane. (We will refer to such a double complex as a first quadrant double complex for concision.)
As a first step, it will be useful to temporarily forget the existence of the horizontal differentials,
denote the act of doing so by the addition of a superscript 0, and consider only the vertical differentials
b along the columns E0

p∗:

E0
∗∗ :

...
...

...
...

...

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

Now, if we write E1
pq for the vertical homology Hq(E

0
p∗) at the position (p, q), we can arrange this

information in another lattice, this time using the horizontal differentials d:

E1
∗∗ :

...
...

...
...

...

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

We have just performed the first two steps of an algorithim for computing the homology H∗(T ),
which is called a spectral sequence. To see how the algorithim progresses, we write E2

pq for the
hoizontal homology Hp(E

1
q∗) at the position (p, q). Predictably, this data can once again be arranged
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in a lattice with the differentials going left by two positions and up by one position:

E2
∗∗ :

...
...

...
...

...

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

The pattern continues in this fashion; we form a lattice E3
∗∗ using the “L-shaped” homology from

the diagram above, with differentials as in the diagram below:

E3
∗∗ :

...
...

...
...

...

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

With this in mind, we now make the formal definition of a spectral sequence.

Definition 2.4.1. A homology spectral sequence (starting with Ea) in R-mod consists of the fol-
lowing data:

1. A family {Er
pq} of R-modules which are defined for all integers p, q and r ≥ a.

2. Maps dpq
r : Er

pq → Ep−r q−r+1 which are differentials in the sense that drdr = 0 so that the lines

which we think of of having ‘slope’ −(r−1)
r

in the lattice Er
∗∗ form chain complexes (compare

the diagrams above).

3. Isomorphisms between Er+1
pq and the homology of Er

∗∗ at the position Er
pq:

Er+1
pq
∼= ker(drpq)/im(drp+r,q−r+1)

The total degree of the term Er
pq is n = p + q. The terms which have total degree n lie on a

line of ‘slope’ −1, and each differential drpq decreases the total degree by 1.

Remark. One can form a category whose objects are homology spectral sequences. A morphism
f : E → E ′ is a family of maps f rpq : Er

pq
′ → Er

pq in R-mod, for suitably large r, with drf r = f rdr

such that f r+1
pq is the map induced by f rpq on homology.
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Example 2.4.2. A first quadrant homology spectral sequence is a homology spectral sequence Er
pq

such that Er
pq = 0 for p < 0 or q < 0; that is to say, the spectral sequence is concentrated in the

first quadrant of the plane. For a fixed p and q, Er
pq = Er+1

pq for all sufficiently large r, because the
differentials which map to the module in the position (p, q) will come from the fourth quadrant, and
the differentials which map from the module in the position (p, q) will land in the second quadrant,
which means all differentials eventually become 0. We denote this stable value of Er

pq by E∞pq .

Remark. One can define the dual notion of a cohomology spectral sequence; the modules are reindexed
via Er

pq = Er
−p−q so that the differentials increase, rather than decrease, the total degree p + q by

one. As with homology spectral sequences, there is a category of cohomology spectral sequences.

A first quadrant spectral sequence is a special case of a bounded spectral sequence; before dis-
cussing this, we require a supporting definition.

Definition 2.4.3. Let C be an R-module. A filtration of C is a set {FiC} of submodules of C,
indexed by i ∈ I. The index set I is totally ordered, and the filtration is subject to the condition
that if i ≤ j in I, FiC ⊆ FjC.

Definition 2.4.4. Let E be a homology spectral sequence. We say that E is bounded if, for each n,
there are only finitely many non-zero terms of total degree n in Ea

∗∗. If this is the case, then, for each
p and q, there exists some r0 such that Er

pq = Er+1
pq for all r ≥ r0. As in the case of a first quadrant

spectral sequence, of which this case is a generalization, we write E∞pq for this stable value of Er
pq. We

say that a bounded spectral sequence converges to H∗ if we have a family of R-modules Hn, each
having a finite filtration

0 = FsHn ⊆ · · · ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ · · · ⊆ FtHn = Hn

and if we have isomorphisms
E∞pq
∼= FpHp+1/Fp−1Hp+q.

This situation is denoted thus:
Ea
pq =⇒ Hp+q

This covers the basics of the theory of spectral sequences. For the proof of the Dold-Kan Cor-
respondence, we now require a little material on the relationship between spectral sequences and
filtrations of chain complexes. To begin, a filtration of a chain complex corresponds to the definition
for modules above, except that that family FiC are chain subcomplexes of a chain complex C. Our
goal is to associate a spectral sequence to every such filtration, as well as establish conditions under
which these spectral sequences converge; doing so will be crucial to the proof of a lemma which is
itself crucial to the proof of the Dold-Kan Correspondence.

Definition 2.4.5. A filtration FiC is called exhaustive if C = ∪FiC. When we perform the con-
struction of the spectral sequence associated to a given filtration, it will be clear that FiC and ∪FiC
both give rise to the same spectral sequence. We therefore, in practice, insist that filtrations are
exhaustive; from the perspective of spectral sequences, we can do so without loss of generality.

Definition 2.4.6. A filtration on a chain complex C is called bounded if, for each n, there are
integers s < t such that FsCn = 0 and FtCn = Cn. If this is the case, there are only finitely many
nonzero terms of total degree n in E0

∗∗, so the spectral sequence is bounded.
A filtration on a chain complex C is called bounded below if, for each n, there is an integer s such
that FsCn = 0, and it is called bounded above if, for each n, there exists a t such that FtCn = Cn.
Bounded filtrations are both bounded above and bounded below. A bounded above filtration is
trivially exhaustive. The Classical Convergence Theorem, which we will discuss shortly, says that the
spectral sequence always converges to H∗(C) when the filtration is bounded below and exhaustive;
hence, bounded filtrations of C always have an associated spectral sequence which converges to
H∗(C).
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Example 2.4.7. We call the filtration canonically bounded if F−1C = 0 and FnCn = Cn for each
n. We will see that the construction of the associated spectral sequence begins with the identity
E0
pq = FpCp+q/Fp−1Cp+q; every canonically bounded filtration thus gives rise to a first quadrant

spectral sequence.

We will now formally construct the spectral sequence arising from a filtered chain complex.

Theorem 2.4.8. A filtration F of a chain complex C naturally determines a spectral sequence start-
ing with E0

pq = FpCp+q/Fp−1Cp+q and E1
pq = Hp+q(E

0
p∗).

Proof. For concision, we will temporarily ignore the subscript q and write ηp for the surjection
FpC → FpC/Fp−1C = E0

p . We next introduce

Arp = {c ∈ FpC | d(c) ∈ Fp−rC},

which consists of the elements of FpC that are cycles module Fp−rC. We also introduce their images
Zr
p = ηp(A

r
p) in E0

p and Br+1
p−r = ηp−r(d(Arp)) in E0

p−r. This indexing is chosen so that Zr
p and Br

p =

ηp(d(Ar−1
p+r−1)) are subobjects of E0

p . We now set Z∞p = ∩∞r=1Z
r
p and B∞p = ∪∞r=1B

r
p. Assembling these

definitions shows that we have defined a tower of subobjects of each E0
p :

0 = B0
p ⊆ B1

p ⊆ · · · ⊆ Br
p ⊆ · · · ⊆ B∞p ⊆ Z∞p ⊆ · · · ⊆ Z1

p ⊆ Z0
p = E0

p .

Note that Arp ∩ Fp−1C = Ar−1
p−1, so that Zr

p
∼= Arp/A

r−1
p−1. Hence

Er
p =

Zr
p

Br
p

∼=
Arp + Fp−1(C)

d(Ar−1
p+r−1) + Fp−1(C)

∼=
Arp

d(Ar−1
p+r−1) + Ar−1

p−1

Let drp : Er
p → Er

p−r be the map induced by the differential of C. To define the spectral sequence, it
is now necessary only to give the isomorphism between Er+1 and H∗(E

r).

Towards this goal, we will show that the map d determines isomorphisms Zr
p/Z

r+1
p

∼=−→ Br+1
p−r/B

r
p−r.

First, note that d(Arp) ∩ Fp−r−1C = d(Ar+1
p ), so that Br+1

p−r
∼= d(Arp)/d(Ar+1

p ) and hence Br+1
p−r/B

r
p−r is

isomorphic to d(Arp)/d(Ar+1
p +Ar−1

p−1). Now, the other term Zr
p/Z

r+1
p is isomorphic to Arp/(A

r+1
p +Ar−1

p−1).
As the kernel of d : Arp → Fp−rC is contained in Ar+1

p , the two sides are isomorphic.
In light of this, we can continue constructing the spectral sequence. The kernel of drp is

{z ∈ Arp | d(z) ∈ d(Ar−1
p−1) + Ar−1

p−r−1}
d(Ar−1

p+r−1) + Ar−1
p−1

=
Ar−1
p−1 + Ar+1

p

d(Ar−1
p+r−1) + Ar−1

p−1

∼=
Zr+1
p

Br
p

.

Now, the map drp factors as

Er
p = Zr

p/B
r
p → Zr

p/Z
r+1
p

∼=−→ Br+1
p−r/B

r
p−r ↪→ Zr

p−r/B
r
p−r = Er

p−r.

This shows that the image of drp is Br+1
p−r/B

r
p−r; replacing p with p + r shows that the image of drp+r

is Br+1
p /Br

p. This provides the isomorphism

Er+1
p = Zr+1

p /Br+1
p
∼= ker(drp)/im(drp+r)

required to complete the construction of the spectral sequence.

For our purposes, we now require only the following theorem, which gives a condition under which
a spectral sequence associated to a filtration converges.

Theorem 2.4.9. Suppose that we have a bounded filtration on a chain complex C. Then the asso-
ciated spectral sequence is bounded and converges to H∗(C) :

E1
pq = Hp+q(FpC/Fp−1C) =⇒ Hp+q(C)

Proof. See [17], Chapter 5.

Bibliographical Note. The preceding section is based primarily on Chapter 5 of [17]. [16] was also
consulted.
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3 Simplicial objects

We proceed now to simplicial objects. Intuitively, these can be thought of as a vast generalization
of the notion of a simplex from topology. In fact, as we will see, one can construct a topological
space from a simplicial object in a fairly natural way. There are similarities between this approach
to modelling topological spaces and the approach of CW complexes: one crucial difference is that
simplicial objects, considered alone, are not imbued with any topology, whereas each CW complex
is a topological space.

3.1 The simplex category

Definition 3.1.1. Let ∆ be the category whose objects are the finite ordered sets

[n] := {0 < 1 < · · · < n} for integers n ≥ 0,

and whose morphisms are the nondecreasing functions between them. We call ∆ the simplex category.
Let A be any category. Then a simplicial object A in A is a contravariant functor from ∆ to A.
Dually, a cosimplicial object A in A is a covariant functor A : ∆ → A. A morphism of simplicial
objects is a natural transformation and the category SA of all simplicial objects in A is the functor
category A∆op

.

Remark. We stipulate that morphisms of ∆ must be nondecreasing to preserve the order structure
on the sets. For concision, we will use the notational convention of writing An for the image of [n] in
A, reflecting the standard notation for the objects of a chain complex. Our notational convention for
the case of a cosimplicial object is to write An for the image of [n], reflecting the standard notations
for the objects of a cochain complex.

Example 3.1.2. Let A be some fixed object of a category A. The functor ∆ → A which sends each
[n] to A and each morphism in ∆ to idA is called the constant simplicial object at A.

It will be useful in some situations to take a view of simplicial and cosimplicial objects more
directly rooted in combinatorics. To develop this viewpoint, it will be necessary to deal with ∆
directly, starting with the notion of face maps and degeneracy maps. These can be thought of, in a
sense which will become apparent, as “generating” the morphisms of ∆.

Definition 3.1.3. For each n and i ∈ {0, 1 . . . n} the i-th face map, which maps from [n−1] to [n], is
the unique nondecreasing injective map which does not contain i in its image. We will denote these
by εi. Similarly, the i-th degeneracy map, mapping from [n + 1] to [n], is the unique nondecreasing
surjective map which “hits” i twice. We will denote these by ηi.

Due to the nature of the face and degeneracy maps, as well as the fact that they must be
nondecreasing, we have the following formulae:

εi(j) =

{
j if j < i

j + 1 if j ≥ i

ηi(j) =

{
j if j ≤ i

j − 1 if j > i

Proposition 3.1.4. The following identities hold in ∆:

εjεi = εiεj−1 if i < j

ηjηi = ηiηj+1 if i ≤ j

14



ηjεi =


εiηj−1 if i < j

id if i = j or i = j + 1

εj−1ηj if i > j + 1

Proof. We will use the formulae above to verify the first identity directly. All the others may be
verified in a similar fashion. Begin by letting i < j. We will compare the functions εjεi(x) and
εiεj−1(x) for all possible values of x. Firstly, let x < i. Then εjεi(x) = εj(x) = x, and εiεj−1(x) =
εi(x) = x.
Secondly, let i ≤ x < j. Then εjεi(x) = εj(x+ 1) = x+ 1, and εiεj−1(x) = εi(x+ 1) = x+ 1.
Finally, let x ≥ j. Then εjεi(x) = εj(x+ 1) = x+ 2, and εiεj−1(x) = εi(x+ 1) = x+ 2.
Since we have shown the two composite functions to be equal on all possible values of x, we have
verified the first identity.

Lemma 3.1.5. Every morphism α : [n] → [m] in ∆ has a unique epi-monic factorization α = εη,
where the monic ε has a unique factorization consisting of face maps

ε = εi1 · · · εis with 0 ≤ is < · · · < i1 < m

and the epi η has a unique factorization consisting of degeneracy maps

η = ηj1 · · · ηjt with 0 ≤ j1 · · · < jt < n.

Proof. Let is < · · · < i1 be the elements of [m] which are not in the image of α, and let j1 < · · · < jt
be the elements of [n] such that α(j) = α(j + 1). Now, let p = n − t = m − s. The morphism α
factors thus:

[n]
η−→ [p]

ε−→ [m]

Let η = ηj1 · · · ηjt and ε = εi1 · · · εis . Then η is the unique map from [n] to [m] which “hits” each of
j1 < · · · < jt twice, and ε is the unique map from [p] to [m] which ’misses’ all of is < · · · < i1. This
makes their composition the unique map from [n] to [m] which hits all of j1 < · · · < jt twice and
misses all of is < · · · < i1, which is α. The uniqueness comes from the uniqueness of the face and
degeneracy maps.

Proposition 3.1.6. To determine a simplicial object A in A, it is necessary and sufficient to give
a sequence of objects A0, A1, . . . of A together with face operators ∂i : An → An−1 and degeneracy
operators σi : An → An+1, where i can range from 0 to n. Furthermore, these operators satisfy the
following “simplicial” identities:

∂i∂j = ∂j−1∂i if i < j

σiσj = σj+1σi if i ≤ j

∂iσj =


σj−1∂i if i < j

id if i = j or i = j + 1

σj∂i−1 if i > j + 1

.

Considering A as a functor from ∆ to A, ∂i = A(εi) and σi = A(ηi).

Proof. For the first direction of the proof, let A be a simplicial object in A. If this is the case, we
obtain the data above naturally by setting An = A([n]). The identities follow from the identities of
Proposition 3.1.4, using the assumption that A is a contravariant functor.
Conversely, assume we are given the data above. Let α be a map in ∆, and write it in the form of
Lemma 3.1.5: α = εi1 · · · ηjt . Set A(α) = σjt · · · ∂i1 , where A is a map from ∆ to A. The fact that the
simplicial identities of Proposition 3.1.4 govern the behaviour of morphism composition in ∆ means
that A is a contravariant functor; in other words, a simplicial object of A.
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Corollary 3.1.7. To determine a cosimplicial object A in A, it is necessary and sufficient to give
a sequence of objects A0, A1, . . . , together with coface operators ∂i : An−1 → An and codegeneracy
operators σi : An+1 → An (i = 0, . . . , n) which satisfy the following “cosimplicial” identities:

∂j∂i = ∂i∂j−1 if i < j

σjσi = σiσj+1 if i ≤ j

σj∂i =


∂iσj−1 if i < j

id if i = j or i = j + 1

∂j−1σj if i > j + 1

Example 3.1.8. Recall the definition of the standard n-simplex, denoted by ∆n:

∆n = {(v0, . . . , vn) ∈ Rn+1 | 0 ≤ xi ≤ 1,Σxi = 1}

So that the standard 1-simplex is a line, the standard 2-simplex is a triangle, the standard 3-simplex
is a tetrahedron, and so on. If we identify the elements of the ordered set [n] with the vertices
v0 = (1, 0, . . . , 0), v2 = (0, 1, . . . , 0), . . . , vn = (0, . . . , 0, 1) of ∆n, a morphism α : [n] → [p] in ∆
induces a morphism α∗ which sends the vertices of ∆n to the vertices of ∆p, defined by the rule
α∗(vi) = vα(i). Extending linearly, so that α∗ has the whole simplex in its image rather than just the
vertices, gives a map α∗ : ∆n → ∆p. This means that the sequence ∆0,∆1, . . . ,∆n, . . . , together with
the face and degeneracy maps obtained by factoring α in the usual manner, defines a cosimplicial
object in the category of topological spaces. (We will, for brevity, refer to these as cosimplicial
topological spaces. A similar convention will be used for other categories.)
Geometrically speaking, the face map εi induces ∂i, the inclusion of ∆n−1 in ∆n as the ith face,
which is the face opposite the vertex vi. The degeneracy map ηi induces σi, which is the projection
∆n+1 → ∆n onto the ith face, identifying vi and vi+1.

Remark. This is example is, in some ways, prototypical; as one may expect, its geometric interpre-
tation gave the general notions of face and degeneracy maps their names.

3.2 Geometric realization and combinatorial simplicial complexes

We proceed now to discuss a variety of simplicial structures, as a way of gaining intuition; chief among
them are the notion of the geometric realization of a simplicial set, and the notion of a combinatorial
simplicial complex.

Definition 3.2.1. Let X be a simplicial set. Its geometric realization, which we will denote by |X|,
is a topological space constructed in the following manner.
For each n ≥ 0, make the product Xn×∆n into a topological space by viewing it as the disjoint union
of a number of copies of ∆n. We index these copies by the elements x of Xn, so that the number
of copies is equal to the cardinality of Xn. Now, consider the disjoint union of each Xn × ∆n as a
topological space, and denote this larger space by X̄. Define the equivalence relation ∼ on X̄ by the
rule that (x, s) ∈ Xm × ∆m and (y, t) ∈ Xn × ∆n are equivalent if and only if there exists a map
α : [m]→ [n] in ∆ such that α∗(y) = x and α∗(s) = t. That is to say:

(α∗(y), s) ∼ (y, α∗(s))

The space X̄/ ∼ is the geometric realization |X|.
Remark. Geometric realization is the way of constructing topological spaces from simplicial objects
discussed at the beginning of the section.
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In constructing |X|, for obvious reasons, we refer to elements of the form σ(y) for some y as
degenerate. Elements not of this form are called non-degenerate. Lemma 14.2 in [14] implies that,
for the purposes of forming |X|, elements of the form (σ(y), t) can be ignored. Another consequence
of Lemma 14.2 in [14] is that for any X, |X| is a CW complex, whose n-cells are indexed by the
non-degenerate elements of Xn.

Remark. Geometric realization defines a functor from SSet to Top.

Example 3.2.2. Let G be a group, and let BG be the simplicial set defined as follows.
BG0 = {1}, BG1 = G, . . . , BGn = Gn, and so on. The face and degeneracy maps are defined by
insertion of identities, deletion, and multiplication:

σi(g1, . . . , gn) = (g1, · · · , gi, 1, gi+1, . . . , gn)

∂i(g1, . . . , gn) =


(g2, . . . , gn) if i = 0

(g1, . . . , gigi+1, . . . , gn) if 0 < i < n

(g1, . . . , gn−1) if i = n

A routine verification shows that BG is indeed a simplicial set. The geometric realization |BG| is
called the classifying space of G.

Definition 3.2.3. A combinatorial simplicial complex is a collection, denoted K, of non-empty finite
subsets of some set V (called the vertex set) such that if τ ⊂ σ ⊂ V and σ ∈ K, τ ∈ K. If the set V
is ordered, we call K an ordered combinatorial simplicial complex.

Example 3.2.4. Let K be an ordered combinatorial simplicial complex. From K, we can construct a
simplicial set SS(K) in the following manner.
Let SSn(K) be the set consisting of all ordered (n + 1)-tuples (v0, . . . , vn) of vertices, possibly in-
cluding repetitions, such that the underlying set of distinct vertices {v0, . . . , vn} is in K.
Let α : [n] → [p] be a map in ∆, and define α∗ : SSp(K) → SSn(K) by α∗(v0, . . . , vp) =
(vα(0), . . . , vα(n). Note that v0 ≤ · · · ≤ vn, and that

∂i(v0, . . . , vn) = (v0, . . . , vi−1, vi+1, . . . , vn)

σi(v0, . . . , vn) = (v0, . . . , vi, vi, . . . , vn)

Intuitively, there is an obvious correspondence between combinatorial simplicial complexes and
geometric n-simplices; if ∆n is the standard n-simplex, there is a combinatorial simplicial complex
K whose elements are the faces of ∆n, and whose vertex set V corresponds to the vertices of ∆n.
The following two propositions make this explicit.

Proposition 3.2.5. Let K be an ordered combinatorial simplicial complex. Then SS(K) determines
K, because there exists a bijection between K and the subset of SS(K) consisting of non-degenerate
elements.

Proof. Let a member of K be denoted by {v0, . . . , vn}. This is a set, so it can have no repetitions
in its elements. Let f be the function which maps a tuple in SS(K) to its underlying set; that is
to say, it maps a tuple to an ordered set whose elements are the vertices which appear in the tuple.
For example, f(v0, v1, . . . , vi, vi, . . . , vj, vj, . . . , vn) = {v0, v1, . . . , vi, . . . , vj, . . . , vn}. Notice that, if any
vertex appears multiple times, all of the positions in which it appears must be directly next to each
other, because the tuple is ordered.
This function is surjective. However, if its domain is the whole of SS(K), it fails to be injective: to
give one example, the elements (v0, . . . , vi, . . . , vn) and (v0, . . . , vi, vi, . . . , vn), distinct in SS(K), are
both mapped to {v0, . . . , vi, . . . , vn} in K. If we restrict the domain of f to non-degenerate elements

17



of SS(K), however, there can be no repetitions, because any tuple with repetitions can be viewed
as a member of the image of some appropriate degeneracy map. Therefore, f , when restricted to
non-degenerate elements of SS(K), is surjective and injective.

Proposition 3.2.6. Let K be the collection of non-empty subsets of a vertex set V having n + 1
elements. The geometric realization |SS(K)| is homeomorphic to the standard n-simplex ∆n.

Proof. In forming the geometric realization, we can ignore the degenerate elements of SS(K), and,
from the above proposition, we have a bijection between the set of non-degenerate elements of SS(K)
and the members of K. In general, the number of members of K with cardinality k is

(
n+1
k

)
, which

is the number of k-faces in ∆n. We now must check that the information on how to “glue” the faces
together, which is encoded by the face maps, gives us a topological space homeomorphic to ∆n. We
will consider the situation for the elements of SS0(K) and SS1(K): the rest of the result follows by
similar arguments.
Now, elements of SS0(K) are of the form (v0), (v1), (v2), and so on. Likewise, elements of SS1(K) are
of the form (v0, v1), (v0, v2), (v1, v2), and so on. In forming the geometric realization, we have n + 1
copies of the 0-simplex ∆0, and

(
n+1

1

)
copies of the 1-simplex ∆1. Consider one identification made

in forming |SS(K)|:
(∂0(v0, v1)×∆0

0) ∼ ((v0, v1)× ∂0(∆0
0))

That is to say, ∆0
0 is identified with its inclusion in a copy of ∆1. But this happens for each copy of

∆0, and going further, each copy of ∆1 is identified with its inclusion in a copy of ∆2. This continues
inductively until all is included in ∆n; therefore, |SS(K)| ∼= ∆n.

Definition 3.2.7. Let ∆S be the subcategory of ∆ whose morphisms are the injective morphisms
in ∆. A semi-simplicial object K in a category A is a contravariant functor from ∆S to A.

Example 3.2.8. Every simplicial object becomes a semi-simplicial object if we simply ignore the
degeneracy maps.

We shall now discuss various operations on simplicial objects, beginning with a way to construct
a chain complex from a simplicial object in R-mod.

3.3 Operations on simplicial objects

Definition 3.3.1. Let A be a simplicial or semi-simplicial R-module. The unnormalized chain
complex associated to A, which we will denote by C(A) or simply C, is defined as follows. In each
degree, Cn = An, and the differential dn : Cn → Cn−1 is given by the alternating sum of the face
operators ∂i : Cn → Cn−1 :

dn = ∂0 − ∂1 + · · ·+ (−1)n∂n.

Note that the unnormalized complex does meet the definition of a chain complex, because the
simplicial identities ensure that d squares to 0. We will demonstrate this for the first two compositions.
Firstly, consider d0 ◦ d1 = (∂0)(∂0− ∂1). This is equal to ∂0∂0− ∂0∂1, but, by the simplicial identities,
∂0∂1 = ∂0∂0. So the composition is 0.
Secondly, consider d1 ◦ d2 :

d1 ◦ d2 = (∂0 − ∂1)(∂0 − ∂1 + ∂2)

= ∂0∂0 − ∂0∂1 + ∂0∂2 − ∂1∂0 + ∂1∂1 − ∂1∂2

By the result for d0 ◦ d1 and the simplicial identities, this expression is equal to ∂1∂0− ∂1∂0 + ∂1∂1−
∂1∂1 = 0. The case for any other composition of differentials may be verified similarly.
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Remark. Recall Theorem 2.1.2: although we discussed simplicialR-modules in the previous definition,
and will continue to do so, everything we write applies, via the Freyd-Mitchell Embedding Theorem,
to abelian categories in general.

A useful observation is that applying a functor F : A → B to a simplicial object A in A returns
a simplicial object in B. This is the case because composing F with the contravariant functor
A : ∆→ A gives another contravariant functor ∆→ B, which is the definition of a simplicial object
in B. This observation is also true of cosimplicial and semi-simplicial objects, by similar reasoning.

Example 3.3.2. Let R be a ring. Then the functor which sends a set X to the free R-module with
basis X, denoted R[X], is a functor mapping from Set to R-mod. (This is another instance of the
situation discussed in Example A.3.2.) By the above observation, whenever X = {Xn} is a simplicial
set, R[X] = {R[Xn]} is a simplicial R-module. In light of this, we define the simplicial homology
H(X;R) of a simplicial set X as the homology of the unnormalized chain complex of the simplicial
module R[X].

Example 3.3.3. Let X be a topological space, and consider the contravariant functor HomTop(−, X),
which maps from Top to Set. If we apply this functor to the cosimplicial topological space {∆n}, the
result is a simplicial set S(X) with Sn(X) = HomTop(∆n, X). We call S(X) the singular simplicial
set of X. The singular chain complex associated to X, used to calcuate the singular homology of X
is, by definition, the unnormalized chain complex of R[S(X)].

Remark. There exists a natural continuous map |S(X)| → X which is a homotopy equivalence if and
only if X is homotopy equivalent to a CW complex. It is induced by maps from Sn(X) ×∆n to X
which map (f, t) to f(t). In fact, the functor S and the geometric realization functor form an adjoint
pair: for every simplicial set Y , HomTop(|Y |, X) ∼= HomSSet(Y, S(X)). These assertions are proven
in Chapter III of [14].

Example 3.3.4. For every n ≥ 0, a simplicial set ∆[n] is determined by the functor Hom∆(−, [n]).
These are universal in the following sense. For every simplicial set A, the Yoneda Lemma (discussed in
Section A.5) gives a one-to-one correspondence between elements a ∈ An and natural transformations
from ∆[n] to A. The morphism f determines the element af = f(id[n]). Conversely, fa is defined on
λ ∈ Hom∆([m], [n]) by fa(λ) = λ∗(a) ∈ Am.

Definition 3.3.5. Let A and B be simplicial objects in a category with products. Their product
A×B is defined as follows. In each degree n, (A×B)n = An×Bn. The face and degeneracy operators
are defined componentwise; for (a, b) ∈ A×B, ∂i(a, b) = (∂ia, ∂ib) and σi(a, b) = (σia, σib).

Remark. We can also define A×B if B is a simplicial set and A is a simplicial object in a category
with products. We do this by setting (A × B)n equal to the product of m copies of An, where m
is the cardinality of the set Bn. This is most useful when each Bn is a finite set, in which case the
category containing A only has to have finite products.

From a homotopy-theoretic point of view, it is useful to restrict attention to a certain class of
simplicial sets, which we will now define.

Definition 3.3.6. Let X be a simplicial set satisfying the following criterion, which is known as the
Kan condition: for every n and k with 0 ≤ k ≤ n+1, we have that if x0, . . . , xk−1, xk+1, . . . , xn+1 ∈ Xn

are such that ∂ixj = ∂j−1xi for all i < j (i, j 6= 0), then there exists some y ∈ Xn+1 such that
∂i(y) = xi for all i 6= k. If X satisfies the Kan condition, we call X a fibrant simplicial set.

Lemma 3.3.7. Let G be a simplicial object in Grp, that is to say, a simplicial group. Then G is
fibrant when considered as a simplicial set. In particular, this means that simplicial abelian groups
and simplicial R-modules are all fibrant when considered as simplicial sets.
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Proof. Suppose we are given xi ∈ Gn (i 6= k) such that ∂ixj = ∂j−1xi for i < j. We will use induction
on r to find an element gr ∈ Gn+1 such that ∂i(gr) = xi for all i ≤ r, i 6= k. We begin the induction
by setting g−1 = 1 ∈ Gn+1 and suppose, for the inductive step, that the case where g = gr−1 is given.
If r = k, set gr = g. If r 6= k, consider u = x−1

r (∂r(g)). If i < r and i 6= k, then ∂i(u) = 1 and hence,
∂i(σru) = 1. Hence gr = g(σru)−1 satisfies the inductive hypothesis. The element y = gn therefore,
has ∂i(y) = xi for all i 6= k, so the Kan condition is satisfied.

Definition 3.3.8. A map π : E → B of simplicial sets is called a fibration if, for every n, b ∈ Bn+1

and k ≤ n + 1, if x0, . . . , xk−1, xk+1, . . . , xn+1 ∈ En are such that ∂ib = π(xi) and ∂ixj = ∂j−1xi for
all i < j(i, j 6= k), then there exists an element y ∈ En+1 such that π(y) = b and ∂i(y) = xi for all
i 6= k.

Remark. The notion of a fibration generalizes the notion of a fibrant simplicial set X; another way of
saying X is fibrant is to say that X is a simplicial set such that X → ∗ is a fibration, where ∗ means
the constant simplicial object which sends every object in ∆ to a singleton set and every morphism
in ∆ to the identity on that set. To see this, let X → ∗ be a fibration. This means that for every
n, b ∈ ∗ and k ≤ n + 1, if x0, . . . , xk−1, xk+1, . . . , xn+1 ∈ Xn are such that ∂i∗ = ∗ and ∂ixj = ∂j−1xi
for all i < j(i, j 6= k) then there exists an element y ∈ Xn+1 such that π(y) = ∗ and ∂i(y) = xi. But
these are exactly the conditions for X to be fibrant.

Consider the involution (in this context, ‘involution’ means a functor which is its own inverse)
denoted byˇon ∆, and defined as follows. For every [n] in ∆, ˇ[n] = [n]. Its effect on the morphisms
is as follows:

∂̌i = ∂n−i : [n− 1]→ [n]

σ̌i = σn−i : [n+ 1]→ [n]

Intuitively, we may think of the involution as reversing the ordering of [n] = (0 < 1 < · · · < n),
which results in the ordering(n < · · · < 1 < 0). For a map α : [m]→ [n], α̌(i) = n− α(m− i). This
motivates the following definition.

Definition 3.3.9. Let A be a simplicial object in a category A. Then the front-to-back dual Ǎ is
the composition of A with the involutionˇdefined above.

3.4 Simplicial homotopy groups and simplicially homotopic maps

Above, before we defined the notion of a fibrant simplicial set, it was stated that such simplicial sets
are useful from a ‘homotopy-theoretic’ point of view, implying that we have some idea of homotopy
theory for the category SSet, just as we have for Top. We will now discuss some of this theory for
SSet, beginning with the simplicial analogue of the homotopy groups πn of a based space (X, x0.)

Definition 3.4.1. Let X be a fibrant simplicial set and choose a basepoint ∗ ∈ X0, forming the
based fibrant simplicial set (X, ∗). In what follows we will, in a useful abuse of notation, write ∗ for
the element σn0 (∗) of Xn. Form the family of subsets Zn = {x ∈ Xn | ∂i(x) = ∗ for all i = 0, . . . , n}.
Now, let x and x′ be two elements of Zn. We say that x and x′ are homotopic, and write x ∼ x′, if
there exists an element y ∈ Xn+1 (which we call a homotopy from x to x′) such that the following is
true:

∂i(y) =


∗ if i < n

x if i = n

x′ if i = n+ 1

Remark. Notice the connection with the notion of homotopy of paths from topology. With this in
mind, we would expect to be able to quotient by the relation ∼, obtaining a group. This is indeed
the case, but we must first verify that ∼ is an equivalence relation.
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Lemma 3.4.2. Let X be a fibrant simplicial set. Then the relation ∼ is an equivalence relation.

Proof. We must first verify that ∼ is reflexive. This is true since y = σnx is a homotopy from x to
itself. To see that ∼ is symmetric and transitive, suppose we are given homotopies y′ and y′′ from
x to x′ and from x to x′′. Because X is fibrant, we can apply the Kan condition to the elements
∗, . . . , ∗, y′, y′′ of Xn+1 with k = n + 2 yields an element z ∈ Xn+2 with ∂nz = y′, ∂n+1z = y′′, and
∂iz = ∗ for i < n. Then the element y = ∂n+2z is a homotopy from x′ to x′′. Therefore, x′ ∼ x′′ and
hence, ∼ is both symmetric and transitive.

Definition 3.4.3. For a fibrant simplicial set X, we set πn(X) = Zn/ ∼ .

Remark. If X is fibrant, then, for all n ≥ 0, πn(X) is isomorphic to the topological homotopy group
of the geometric realization of X. (See [14], Theorem 16.1.) Since πn(|X|) ∼= πn(S(X)), where S(X)
is the singular simplicial set associated to the space |X|, we can define πn(X) to be πn(S(X)) when
X is not fibrant. Therefore, π1(X) is a group, and πn(X) is an abelian group for n ≥ 2. For an
explicit description of the group structure of πn(X), see Chapter 1 of [9].

Definition 3.4.4. For X a simplicial set, we define π0(X) to be X0/ ∼, where, for each y ∈ X1, we
define ∼ by ∂0(y) ∼ ∂1(y). As is the case for topological spaces, π0(X) need only be a set and is not
necessarily a group.

Example 3.4.5. Recall the notion of the classifying space |BG| of a group G. Our goal is to compute
the simplicial homotopy groups of the simplicial set BG, which means we will also have computed
the topological homotopy groups of the space |BG|. Firstly, let n = 0. Then Z0 = BG0 = {1}, so
π0(BG) is the trivial group. Now let n > 1. Then Zn = {g ∈ Gn | ∂i(g) = (1, 1, . . . , 1) = id ∈ Gn−1}.
This is because our only choice of basepoint in BG0 is the identity on G, and degeneracies simply
insert a copy of the identity. By inspection, the only element which is sent to the identity in Gn−1

by every face map is the identity on Gn. So, for n > 1, Zn = πn(X) = {1}. Finally, consider the case
where n = 1. Here, Z1 = {g ∈ G | ∂i(g) = 1}, but this is clearly the whole of G since G0 = {1}.
From this, we deduce that:

πn(|BG|) = πn(BG) =

{
G if n = 1

{1} if n 6= 1

Definition 3.4.6. Let G be a group. An Eilenberg-MacLane space of type K(G, n) is a topological
space X such that πn(X) = G and πi(X) = 0 for i 6= n. Due to the isomorphisms between simplicial
and topological homotopy groups, we will sometimes also refer to a simplicial set with geometric
realization X using the same terminology. The immediately preceding example shows that |BG| (or
BG) is an Eilenberg-MacLane space of type K(G, 1).

If G is a simplicial group or a simplicial module, considered as a fibrant simplicial set (by Lemma
3.3.7) with basepoint ∗ = 1, it is helpful to consider the subgroups

Nn(G) = {x ∈ Gn | ∂ix = 1 for all i 6= n}

In light of this, Zn = ker(∂n : Nn → Nn−1) and we define the image of the homomorphism ∂n+1 :
Nn+1 → Nn to be the subgroup Bn = {x | x ∼ 1}. Thus, πn(G) is the same as the homology group
Zn/Bn of the corresponding chain complex:

{1} ← N0
∂1←− N1

∂2←− · · ·

With this observation, we can generalize the definition of the homotopy groups of a simplicial object
to any abelian category A, even if the objects of A have no underlying set structure. (If this is the
case, our previous definition is not valid, since it relies on identifying and comparing specific elements
of sets.)
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Definition 3.4.7. Let A be a simplicial object in an abelian category A. The normalized chain
complex N(A) is defined as follows. In each degree, Nn(A) =

⋂n−1
i=0 ker(∂i : An → An−1). The

differential d is given by (−1)n∂n. By construction, N(A) is a chain subcomplex of the unnormalized
complex C(A), and we define the simplicial homotopy groups thus:

πn(A) = Hn(N(A)).

If A is Ab or R-mod, this definition is the same as Definition 3.4.3, which we obtained by regarding
A as a fibrant simplicial set.

Definition 3.4.8. Consider C(A), the unnormalized chain complex of a simplicial object A. Let
D(A) denote the ‘degenerate’ chain subcomplex of C(A) which is generated by the images of the
degeneracies σi so that Dn(A) =

∑
σi(Cn−1(A)).

Lemma 3.4.9. Let A be a simplicial object, let C(A) be the associated unnormalized chain complex,
let D(A) be the associated degenerate chain complex, and let N(A) be the normalized chain complex.
Then we have the following identity:

C(A) = N(A)⊕D(A)

Hence N(A) ∼= C(A)/D(A).

Proof. We will use an element-theoretic proof, which is valid by the Freyd-Mitchell Embedding
Theorem 2.1.2. A general element of Dn(A), which we will denote by y, is a sum y = Σσj(xj), with
xi ∈ Cn−1(A). If y ∈ Nn(A) and i is the smallest integer such that σi(xi) 6= 0, then y = y−σi∂i(y) =
Σj>iσj(x

′
j). By induction, y = 0. Hence, Dn ∩Nn = 0.

To see that Dn ⊕ Nn = Cn, we choose some y ∈ Cn and use downward induction on the smallest
integer j such that ∂j(y) 6= 0. The element y is the same, modulo Dn, as y′ = y − σj∂j(y), and for
i < j the simplicial identities yield

∂i(y
′) = ∂i(y)− σj−1∂j−1∂i(y) = 0

Since ∂i(y
′) = 0, y′ is equal, modulo Dn, to an element of Nn by induction; thus, Dn⊕Nn = Cn.

Theorem 3.4.10. The homotopy π∗(A) of a simplicial object A in R-mod is naturally isomorphic
to the homology H∗(C) of the unnormalized chain complex C = C(A) :

π∗(A) = H∗(N(A)) ∼= H∗(C(A)).

Proof. By the lemma above, it suffices to show that D(A) is acyclic, as homology is preserved by
taking direct sums. To see this, filter D(A) by setting F0Dn = 0, FpDn = Dn if n ≥ p, and
FpDn = σ0(Cn−1)+ · · ·+σp(Cn−1) otherwise. The simplicial identities show that each FpD is a chain
subcomplex of D(A). Recall from Section 2.4 that this filtration meets the criteria to be canonically
bounded, which means that we have a convergent first quadrant spectral sequence

E1
pq = Hp+q(FpD/Fp−1D) =⇒ Hp+q(D).

It shall therefore suffice to show that each subcomplex FpD/Fp−1D is acyclic.
First, note that (FpD/Fp−1D)n is a quotient of σp(Cn−1) and is zero for n < p. In element-theoretic
language, if x ∈ Cn−1(A), the simplicial identities yield the following equalities in FpD/Fp−1D :

dσp(x) =
n∑

i=p+2

(−1)iσp∂i−1(x)
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dσ2
p(x) + σpdσp(x) =

n+1∑
i=p+2

(−1)iσp∂i−1σp(x) +
n∑

i=p+2

(−1)iσ2
p∂i−1(x)

= (−1)pσp(x)

Hence, {sn = (−1)pσp} is a chain contraction of the identity map on FpD/Fp−1D which is null
homotopic. Hence, by Lemma 2.3.5, FpD/Fp−1D is acyclic.

Example 3.4.11. Let X be a fibrant simplicial set, and let Z[X] be the simplicial abelian group which,
in degree n, is the free abelian group with basis Xn. The map of simplicial sets h : X → Z[X] which
sends x ∈ X to the corresponding basis element in Z[X] is called the Hurewicz homomorphism since,
on homotopy groups, it is the map

π∗(X)→ π∗(Z[X]) ∼= H∗(Z[X]) = H∗(X;Z)

which corresponds to the topological Hurewicz homomorphism π∗(|X|) → H∗(|X|;Z). To see this,
represent an element ϕ of πn(|X|) by a map f : ∆n → |X| and view f as an element of Sn(|X|). The
class of h(f) in Hn(Z[S(|X|)]) = Hn(|X|;Z) is the topological Hurewicz element h(ϕ).

Proposition 3.4.12. Let A be a simplicial abelian group. Then the Hurewicz map h∗ : π∗(A) →
H∗(A;Z) = H∗(|A|;Z) is a split monomorphism; that is to say, there exists a map r : H∗(A;Z) →
π∗(A) such that r ◦ h∗ = idπ∗(A).

Proof. For every abelian group G, there is a natural surjection from Z[G], the free abelian group
generated by the elements of G, to G, defined to be the identity on the basis elements. There therefore
exists a natural surjection of simplicial abelian groups j : Z[A]→ A. Thus, the composite simplicial
set map j ◦h : A→ Z[A]→ A is equal to the identity on A, so, passing to maps of homotopy groups,
j∗h∗ : π∗(A)→ π∗(Z[A])→ π∗(A) is the identity, by functoriality.

Having defined the notion of chain homotopic maps in the previous section, and, bearing in mind
the classical notion of homotopy of maps from topology, we proceed now to define the equivalent
notion for simplicial maps.

Definition 3.4.13. Let A and B be simplicial objects in a category A. Two simplicial maps f and
g, both mapping from A to B, are said to be homotopic if there are morphisms hi : An → Bn+1 in
A (i = 0, . . . , n) such that ∂0h0 = f and ∂n+1hn = g. In addition, the following should hold:

∂ihj =


hj−1∂i if i < j

∂ihi−1 if i = j 6= 0

hj∂i−1 if i > j + 1

,

σihj =

{
hj+1σi if i ≤ j

hjσi−1 if i > j

We refer to the family of maps {hj} as a simplicial homotopy from f to g and write f ' g.

Proposition 3.4.14. Simplicial homotopy is an additive equivalence relation on maps between sim-
plicial objects in R-mod. That is to say, if f, f ′, g, and g′ are simplicial maps from A to B the
following conditions hold:

1. f ' f ,

2. If f ' g and f ′ ' g′, then (f + f ′) ' (g + g′),
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3. If f ' g, then (−f) ' (−g), (f − g) ' 0 and g ' f ,

4. If f ' g and g ' h, f ' h.

Proof. 1. Let hj = σjf. Now, we simply check that each condition for {hj} to be a homotopy is
true. Firstly, we have, by the simplicial identities,

∂0h0 = ∂0σ0 = id ◦ f = f,

amd, again by the simplicial identities:

∂n+1hn = ∂n+1σnf = id ◦ f.

Next, we check the equations for ∂ihj above. Firstly, let i < j. Then we have, by the simplicial
identities,

∂ihj = ∂iσjf = σj−1∂if.

However, because f is a simplicial map, it commutes with all face and degeneracy maps, so the
above is equal to σj−1f∂i which is itself equal to hj−1∂i, as required.
Secondly, let i = j 6= 0. Then ∂ihj = ∂iσjf = f , by the simplicial identities. We also have
∂ihi−1 = ∂iσi−1f = f , again by the simplicial identities. So ∂ihj = ∂ihi−1, as required.
Thirdly, let i > j + 1. By a combination of the simplicial identities and the assumption that f
is a simplicial map, we have

∂ihj = ∂iσjf = σj∂i−1f = σjf∂i−1 = hj∂i−1

as required.
To finish the proof that simplicial homotopy is a reflexive relation, we must check that the
equations above for σihj hold. First, let i ≤ j. Then, again by the simplicial identities and the
assumption that f is a simplicial map, we have

σihj = σiσjf = σj+1σif = σj+1fσi = hj+1σi

as required.
Finally, let i > j. By the definition of hj, we have σihj = σiσjf. This expression cannot be
rewritten directly by using the simplicial identities; however, we require it to be equal to hjσi−1.
Once again, by the simplicial identities and the assumption that f is a simplicial map, we have

Hj = σi−1 = σjfσ−1 = σjσi−1f = σiσjf

as required. Therefore, {hj} = {σjf} fulfils every condition to be a homotopy from f to f :
f ' f.

2. We have that f ' g and f ′ ' g′, so we have a homotopy {hj} from f to g and a homotopy
{h′j} from f ′ to g′. We wish to construct a homotopy {Hj} from f + f ′ to g + g′. Simply let
{Hj} = {hj +h′j}. Then, by the assumption that {hj} and {h′j} are homotopies and by the fact
that function composition distributes over addition in R-mod, we have ∂0(h0 + h′0) = f + f ′

and ∂n+1(hn + h′n) = g + g′. The rest of the conditions for {Hj} to be a homotopy can be
verified in an exactly analogous fashion.

3. Assuming that f ' g, we must verify three things. The first is that (−f) ' (−g). To see this,
let {hj}, be a homotopy from f to g, and consider {−hj} . Because {hj} is a homotopy, we
have σ0(−h0) = −σ0h0 = −f and ∂n+1(−hn) = −∂n+1hn = −g. The rest of the conditions for
{−hj} to be a homotopy from (−f) to (−g) can be verified similarly.
The second thing to be verified is that f − g ' 0. To see this, let h′j = (hj − σjg), where hj
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is a homotopy from f to g. We claim that {h′j} is a homotopy from f − g to 0. This can be
verified by checking each condition. For example, ∂0h

′
0 = ∂0(h0 − σ0g) = ∂0σ0 − g = f − g,

by the simplicial identities and the conditions for {hj} to be a homotopy from f to g. By a
similar argument, ∂n+1h

′
n = g − g = 0. As another example, we shall check the first equation

for ∂ihj. First, let i < j. Then ∂ih
′
j = ∂i(hj − σjg) = ∂ihj − ∂iσjg = hj−1∂i − σj−1g∂i = h′j−1∂i,

by the simplicial identities, the assumption that g is a simplicial map, and by the assumption
that {hj} is a homotopy. The rest of the conditions for {h′j} to be a homotopy can be verified
similarly.
The final thing to be verified is that g ' f. This can be done using the results we have proved
so far. Firstly, we know that f ' g =⇒ (f − g) ' 0. We also know that this implies that
(g − f) ' 0. By the first part of this proof, we know that f ' f , so, by the second part, we
can add f to both sides of (g − f) ' 0, which gives g ' f , as required.

4. This can be verified easily using results already proven. If f ' g and g ' h, (g − f) ' 0 and
(h − g) ' 0. By part two above, we can add these two equivalances to obtain h − f ' 0 and,
adding f to both sides of this, we obtain h ' f. So f ' h as required.

We now proceed to a key lemma, forming part of the Dold-Kan Correspondence, which establishes
a connection between simplicial homotopy and chain homotopy.

Lemma 3.4.15. Let f and g be two simplicially homotopic maps A → B, where A and B are
simplicial R-modules. Then f∗, g∗ : N(A) → N(B), the induced maps between the corresponding
normalized chain complexes, are chain homotopic.

Proof. By Proposition 3.4.14 above, we can assume that f = 0, by replacing g with g − f. Let {hj}
be a simplicial homotopy from 0 to g, and define sn = Σ(−1)jhj, which is a map from An to Bn+1.
Now, the image of the restriction of sn to Zn(A) is contained in Zn(B), so it is enough to show that
ds+ sd = −g. To see this, first consider the expression ∂n+1sn − sn−1∂n. We have the expansion

∂n+1(h0 − h1 + h2 − h3 + · · · (−1)nhn)− (h0 − h1 + h2 − h3 + · · ·+ (−1)n−1hn−1)∂n

by the definition of sn. Expanding the brackets yields

∂n+1h0 − ∂n+1h1 + ∂n+1h2 − · · ·+ (−1)n∂n+1hn − h0∂n + h1∂n − h2∂n + · · · − (−1)nhn−1∂n.

The identities of Definition 3.4.13 cause cancellations such that the only remaining term is (−1)n∂n+1hn,
but, again by 3.4.13, this is simply (−1)ng. So we have the identity

∂n+1 − sn−1∂n = (−1)ng (3.1)

We will use this identity to show that ds+ sd = −g. First, recall the definition of d: dn = (−1)n∂n.
Therefore,

ds+ sd = (−1)n+1∂nsn + sn−1(−1)n∂n.

Taking out a common factor of (−1)n, we have

(−1)n(−∂nsn + sn−1∂n) = (−1)n(−1)n+1g

by (3.1) above. But this is equal to (−1)2n+1g = −g. Therefore, {sn} is a chain homotopy from 0∗
to g∗.
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We will shortly define a notion which will be key to the proof of the Dold-Kan Correspondence.
We require a preliminary discussion first: consider the functor P : ∆→ ∆ such that P [n] = [n+ 1],
and such that the map ε0 : [n]→ [n+1] = P [n] is a natural transformation from the identity functor
on ∆ to P. At the level of the elements of the objects of ∆, we obtain P [n] from [n] by formally
adding an initial element, which will be denoted by 0′, to each set [n] and identifying the new set
(0′ < 0 < · · · < n) with [n + 1]. The effect that this has on the face and degeneracy maps is to
translate everything one position to the right; P (εi) = εi+1 and P (ηi) = ηi+1. Having defined the
functor P , we can proceed.

Definition 3.4.16. Let A be a simplicial object in a category A. The path space, denoted PA, is the
simplicial object obtained by composing A with P. Thus (PA)n = An+1, ∂i in A is ∂i+1 in PA, and
likewise for the degeneracy maps. Moreover, in accordance with ε0 being a natural transformation
id∆ → P , the maps ∂0 : An+1 → An form a simplicial map from PA to A.

The notion of the path space is important to the proof of the Dold-Kan Correspondence via the
following lemma.

Lemma 3.4.17. Let A be a simplicial R-module, and let ΛA denote the simplicial R-module which
is the kernel of the simplicial map ∂0 : PA → A. Furthermore, let A0[1] denote the chain complex
which has A0 in degree −1 and 0 elsewhere. Then Nn(ΛA) ∼= Nn+1(A) for all n ≥ 0, and we have
the exact sequence:

0→ A0[1]→ NA[1]→ N(ΛA)→ 0,

where, as in Definition 2.1.9, NA[1], is NA translated by one degree.

Proof. Let n ≥ 0. The simplicial R-module ΛA = ker ∂0, where ∂0 is the simplicial map from PA→ A
formed by each ∂0 : An+1 → An. Therefore

Nn(ΛA) =
n⋂
i=1

ker(∂i : An+1 → An),

with differential d = (−1)n+1∂n+1. Because the simplicial object to which N is being applied is ΛA,
everything must be in the kernel of ∂0. So we can include ker ∂0 in the intersection, which gives

n⋂
i=0

ker(∂i : An+1 → An)

which is the definition of Nn+1(A).
Now, to prove the existence of the exact sequence, we will compare NA[1] and N(ΛA). By juxtaposing
NA and NA[1] like so

· · · → NA3 → NA2 → NA1 → NA0 → 0

· · · → NA4 → NA3 → NA2 → NA1 → NA0 → 0,

we see that NA[1] has NA0, which is isomorphic to A0 by the definition of N , in degree −1. The
simplicial object N(ΛA), however, has 0 in degree −1, because it is a subobject of the path space;
for the path space to have a non-zero entry in degree −1, it would be necessary for a set [−1] to exist
in ∆. As this is clearly not the case, we can conclude that N(ΛA) has 0 in degree −1. As NA[1] and
N(ΛA) are isomorphic except for degree −1, we can obtain N(ΛA) from NA[1] by quotienting by
A0[1]. Therefore, we can form the exact sequence

0→ A0[1]→ NA[1]→ N(ΛA)→ 0,

which completes the proof.

Bibliographical Note. The preceding section is based primarily on Chapter 8 of [17]. Some exercises in
Weibel become propositions or lemmas in the present paper, with the proofs given being solutions of
the exercises: specifically, Proposition 3.4.14 and Lemma 3.4.17. Chapter 1 of [14] was also consulted.
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4 The Dold-Kan Correspondence

In light of all the preliminary work done so far, we are now ready to tackle the Dold-Kan Cor-
respondence itself. The theorem contains enough information to make attempts to prove it all at
once difficult to follow; we will therefore state it first, then prove it in a piecewise manner. Before
the statement, recall that, given a simplicial R-module, the normalized chain complex N(A) gives
rise to a functor N which maps from the category of simplicial R-modules to the category of chain
complexes of R-modules.

4.1 Statement of the theorem

Theorem 4.1.1 (Dold-Kan). Let SR-mod be the category of simplicial R-modules, and let Ch≥0(R)
be the category of chain complexes in R-mod, with Cn = 0 for all n < 0. The functor N which sends a
simplicial R-module to its normalized chain complex is an equivalence of categories between SR-mod
and Ch≥0(R). Moreover, under this equivalence, simplicial homotopy corresponds to the homology
of the normalized chain complex, and simplicially homotopic maps correspond to chain homotopic
maps.

We can immediately dualize the theorem, to obtain the following.

Corollary 4.1.2. For the category R-mod, there is an equivalence between the category of cosim-
plicial objects in R-mod and the category of non-negatively graded cochain complexes in R-mod.
This is realized by a functor N∗, which is a summand of the unnormalized cochain complex CA of A.
Maps which are homotopic as cosimplicial maps correspond to maps which are homotopic as cochain
maps.

4.2 Proof of the theorem

The Dold-Kan Correspondence is an equivalence of categories. This means that we require a functor,
which will be denoted by K, which maps from Ch≥0(R) to SR-mod, such that KN is naturally
isomorphic to the identity on SR-mod and such that NK is naturally isomorphic to the identity on
Ch≥0(R). The functor K can be explicity defined as follows. Given a chain complex C, we define
Kn(C) to be the finite direct sum

⊕
p≤n
⊕

η Cp[η], where, for a fixed p ≤ n, the index η ranges over
the surjections [n]→ [p] in ∆, and Cp[n] denotes a copy of Cp. For a given chain complex C, the first
few parts of Kn(C) are as follows:

K0(C) = C0

K1(C) = C0 ⊕ C1

K2(C) = C0 ⊕ C1 ⊕ C1 ⊕ C2

K3(C) = C0 ⊕ (C1 ⊕ C1 ⊕ C1)⊕ (C2 ⊕ C2 ⊕ C2)⊕ C3

To make K into a simplicial object, we must define how it induces maps in SR-mod. To see this,
first let α : [m] → [n] be a morphism in ∆. We will define K(α) : Kn(C) → Km(C) by defining
its restrictions K(α, η) : Cp[η] → Km(C). Recall from Lemma 3.1.5 that each map in ∆ has an
epi-monic factorization. For each surjection η : [n]→ [p], find the epi-monic factorization εη′ of ηα,
as indicated by the following diagram:

[m] [n]

[q] [p]

α

η′ η

ε
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If p = q, in which case ηα = η′, we define K(α, η) to be the natural identification of Cp[η] with the
summand Cp[η

′] of Km(C). If p = q + 1 and ε = εp, in which case the image of ηα is the subset
(0 < 1 · · · < p− 1) of [p], we define K(α, η) to be the map

Cp
d−→ Cp−1 = Cq[η

′] ⊆ Km(C).

In every other case, we define K(α, η) to be zero.

Lemma 4.2.1. For a given C in Ch≥0(R), K(C) is a simplicial R-module; furthermore, because K
is natural in C, K is a functor from Ch≥0(R) to SR-mod.

Proof. We will show that K(C) is a contravariant functor from ∆ to R-mod. We have already seen
how K(C) associates a simplicial R-module to each object in ∆: K(C)([n]) = Kn(C), which is
defined above. So we must check the rest of the conditions for K(C) to be a contravariant functor.
First, let the map α be id[n], and let η be a surjection in ∆ from [n] to [p]. In this situation, in terms of
the diagram above, ε = id, α = id, and η = η′. Therefore, by definition, K(α, η) is the identification
of Cn[η] in Kn(C) with Cn[η] in Kn(C), which is the identity on Kn(C). So K preserves identity
morphisms.
We must also verify that K(βα, η) = K(α, η) ◦K(β, η). To see this, we begin with the diagram

[m] [n] [t]

[q] [q′] [p]

α

ηα

β

ηβ η

εα εβ

where εαηα is the epi-monic factorization of ηβα, and εβηβ is the epi-monic factorization of ηβ. Using
this, we construct εβεαηα, which is the epi-monic factorization of ηβα. We will use this factorization
to show that, for each possible situation, K(βα, η) = K(α, η) ◦K(β, η).
We will consider first the situations where K(βα, η) is nonzero. For the first case, let p = q. Then,
as monics in ∆ must either be the identity or have a codomain with a greater cardinality than their
domain, εα = εβ = id. Therefore, ηβα = ηα, so we take K(βα, η) to be the identification of Cp[n]
with the summand Cp[ηα] of Km(C). Now consider the right square in the diagram; this gives us
that K(β, η) is the identification of Cp[η] in Kt(C) with Cp[ηβ] in Kn(C). Similarly, the left square
gives us that K(α, ηβ) identifies Cp[ηβ] in Kn(C) with Cp[ηα] in Km(C). Therefore, composing the
two gives the identification of Cp[n] in Kt(C) with the summand Cp[ηα] of Km(C), which is the same
as K(βα, η).
For the second case, let p = q + 1, and let εβεα = εp. In this situation, either εα = id and εβ = εp,
or vice versa. As the two cases are almost exactly similar, we will write only the proof for the case
where εα = id. This means that q = q′. We know, by definition, that K(βα, η) is the map

Cp
d−→ Cp−1 = Cq[ηα] ⊆ Km(C),

and that K(β, η) is the map

Cp
d−→ Cp−1 = Cq′ [ηβ] ⊆ Kn(C).

Furthermore, we know that K(α, η) is the identification of Cq′ [ηβ] with Cq[ηα] ⊆ Km(C). Therefore,
K(βα, η) = K(α, η) ◦K(β, η).
We will now turn our attention to the situations where K(βα, η) = 0. The first of these is when
p = q + 1, but εβεα 6= εp. This means that, because either εα or εβ is equal to the identity, either εα
or εβ is equal to some face map which is not εp. This means that either K(α, η) or K(β, η) is equal
to 0, which means that K(βα, η) = K(α, η) ◦K(β, η).
Next, consider the case where p = q + 2. If q = q′, K(β, η) = 0 because the difference between q′
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and p is greater than 1. So K(βα, η) = K(α, η) ◦K(β, η). If q′ = p, the situation is the same, except
that K(α, η) = 0. If q′ = q + 1 = p − 1, assume that εα = εq′ and εβ = εp. (Otherwise, K(α, ηβ) of
K(β, η) will be 0 by definition.) We have

K(α, ηβ) ◦K(β, η) = d ◦ d : Cp → Cp−2

which is equal to 0 because C is a chain complex.
Lastly, consider the case where p = q+ i, where i ≥ 3. The condition for K(C) to be a contravariant
functor holds here too, because either K(α, ηβ) or K(β, η) must be 0; this is because either q′ > q+1,
or p > q′+1. So, in every possible case, all the conditions for K(C) to be a contravariant functor from
∆ to A, that is, a simplicial R-module, hold. As this is natural in C, K is a functor from Ch≥0(R)
to SR-mod: a chain map f : C → D is sent to a natural transformation K(C)→ K(D).

Having shown that K is a functor, we will prove one half of the statement that N and K form
an equivalence of categories.

Lemma 4.2.2. Let C be a non-negatively graded chain complex in R-mod, and let the functors N
and K be as defined above. Then NK(C) ∼= C.

Proof. Let η : [n]→ [p] be a surjection, with n 6= p. Then there is a factorization of degeneracy maps
η = ηi1 · · · ηit . We can use this to extend the diagram

[m] [n]

[q] [p]

α

η′ η

ε

downwards, forming t similar diagrams, with η replaced by one of the degeneracy maps in the factor-
ization. From this, we see that Cp[η] = σit · · ·σi1(Cp[idp]), which lies in the degenerate subcomplex
D(K(C)). If η is the identity on [n], then ∂0 restricted to Cn[id[n]] is K(εi, id[n]), which is 0 if
i 6= n and the differential d if i = n. Thus, Nn(KC) = Cn[id[n]] and the differential is d. Therefore
NK(C) ∼= C.

In light of this, in order to prove the Dold-Kan Correspondence, we must show that KN(A)
is naturally isomorphic to A, for every simplicial R-module A. First, we shall construct a natural
simplicial map ψA : KN(A) → A. If, as above, η : [n] → [p] is a surjection in ∆, the corresponding

summand of KNn(A) is Np(A), and the restriction of ψA to this summand is Np(A) ⊂ Ap
η−→ An.

Let the situation be as at the beginning of the subsection, with a map α : [m] → [n] in ∆ and
the epi-monic factorization εη′ of ηα in ∆. In this case, the diagram

KNn(A) Np(A) Ap An

KNm(A) Nq(A) Aq Am

α∗ ε∗

η∗

ε∗ α∗

η′∗

commutes, because, from the definition of the normalized chain complex, ε∗ : Np(A) → Nq(A) is
equal to 0 unless ε∗ = ∂p. Therefore, ψA is a simplicial map from KN(A) to A which is natural in A.
To prove the equivalence of categories, we must show that ψA is an isomorphism for all A. It follows
from the definition of ψA that NψA : NKN(A)→ N(A) is the above isomorphism NK(NA) ∼= NA.
The following lemma states that ψA is an isomorphism; proving it, therefore, is equivalent to proving
that N and K form two halves of an equivalence of categories.

Lemma 4.2.3. Let f : B → A be a simplicial map such that N(f) : N(B) → N(A) is an isomor-
phism. Then f is an isomorphism.
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Proof. We shall prove that each fn : Bn → An is an isomorphism by induction on n. Begin with
n = 0; by the definition of N,B0 = N0B ∼= N0A = A0. Recall from Lemma 3.4.17 the object ΛA, the
kernel of ∂0 : PA→ A, where (PA)n = An+1. Recall also that N(ΛA) is equal to NA[1]/A0[1]. By our
initial assumption, NΛf : N(ΛB) → N(ΛA) is an isomorphism, and, by the inductive hypothesis,
both fn and (Λf)n are isomorphisms. An application of the 5-lemma to the following diagram shows
that fn+1 is an isomorphism, proving the lemma, and hence, that N and K form an equivalence of
categories.

0 (ΛB)n Bn+1 Bn 0

0 (ΛA)n An+1 An 0

Λfn fn+1

∂0

fn

∂0

To complete the proof of the Dold-Kan Correspondence, we must show that simplicially homotopic
maps correspond to chain homotopic maps. We are already halfway towards this; in Lemma 3.4.15,
we showed that if f and g are simplicially homotopic, N(f) and N(g) are chain homotopic. On the
other hand, suppose that we have two chain maps f and g mapping from C to D, and that we have
a chain homotopy {sn} between them. Our aim is to define a family of maps hi : K(C)n → K(D)n+1

which form a simplicial homotopy from K(f) to K(g). We shall do so as follows.
On the summand Cn of K(C)n which corresponds to η = id, define

hi =


σif if i < n− 1

σn−1f − σnsn−1d if i = n− 1

σn(f − sn−1d)− sn if i = n

On the summand Cp[η] of K(C)n which corresponds to η : [n]→ [p] with n 6= p, we will define hi by
induction on n− p. To begin, let j be the largest element of [n] such that η(j) = η(j + 1), and write
η = η′ηj. Then σj maps Cp[η

′] isomorphically onto Cp[η], and we have already defined the maps hi
on Cp[η

′]. Writing h′i for the composite of Cp[η] ∼= Cp[η
′] with hi restricted to Cp[η

′], we define

hi on Cp[η] =

{
σjh

′
i−1 if j < i

σj+1h
′
i if j ≥ i.

Performing calculations similar to those in Proposition 3.4.14 shows that the family {hj} forms a
simplicial homotopy from K(f) to K(g). This completes the proof of the Dold-Kan Correspondence.

Proposition 4.2.4. Let G be an abelian group and denote by G[−n] the chain complex which is
G concentrated in degree n. Then the simplicial abelian group K(G[−n]) is an Eilenberg-MacLane
space of type K(G, n) in the sense of Definition 3.4.6.

Proof. We must show that πn(K(G[−n])) is isomorphic to G, and that πm(K(G[−n])) is trivial
for all n 6= m. By Definition 3.4.7, this amounts to showing that Hn(K(G[−n])) = G and that
Hm(K(G[−n])) = 0 for m 6= n. However, this follows from the definition of K(G[−n])).

Remark. The preceding proposition, an immediate consequence of the Dold-Kan Correspondence, is
quite powerful; it allows one to construct an Eilenberg-Maclane space of type K(G, n) for any abelian
group G and n ≥ 1.

Bibliographical Note. The preceding section is based primarily on Chapter 8 of [17]. Various details
of the proof left as exercises by Weibel have been filled in.
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5 Cyclic homology and the Dwyer-Kan Correspondence

So far, we have dealt with simplicial objects, chain complexes, and the Dold-Kan Correspondence,
which links them. However, it is possible for a simplicial object A to have extra structure, in the
form of an action of the cyclic group Zn+1 on each An, which interacts with the face and degenercy
maps in a certain way. Simplicial objects of this kind are known as cyclic objects. Additionally, cyclic
objects in the category R-mod have an associated cyclic homology. Cyclic objects form part of a
larger class of objects called duplicial objects : there is an equivalence of categories between duplicial
objects in R-mod and mixed complexes in R-mod, which will both be defined in the sequel. This
equivalence is called the Dwyer-Kan Correspondence, and is the main subject of this section.

5.1 Cyclic objects and cyclic homology

We begin with a motivating example: a simplicial module which can be viewed as a cyclic module
in a natural way.

Example 5.1.1. Fix a commutative ring k, let R be a k-algebra, let M be an R−R bimodule, and let
all tensor products in what follows be over the ring k. We can build a simplicial k-module M ⊗R⊗∗
(where R⊗n is the n-fold tensor product R ⊗ · · · ⊗ R) with [n] 7→ M ⊗ R⊗n by defining face and
degeneracy maps as follows:

∂i(m⊗ r1 ⊗ · · · ⊗ rn) =


mr1 ⊗ r2 ⊗ · · · ⊗ rn if i = 0

m⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn if 0 < i < n

rnm⊗ r1 ⊗ · · · ⊗ rn−1 if i = n

σi(m⊗ r1 ⊗ · · · ⊗ rn) = m⊗ · · · ⊗ ri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn
These formulas are k-multilinear, which means that the ∂i and σi are well-defined k-module homo-
morphisms, and the simplicial identities can be verified directly. Our specific interest is in the case
R = M . If this is the case, a generator of R ⊗ R⊗n has the form r0 ⊗ r1 ⊗ · · · ⊗ rn. We can now
define an action of the cyclic group Zn+1 on R ⊗ R⊗n: to do so, denote the generator of Zn+1 by t
and define the action of t by t(r0 ⊗ · · · ⊗ rn) = rn ⊗ r0 ⊗ r1 · · · ⊗ rn−1. When the action is defined in
this way, we have the identities ∂it = t∂i−1 and σit = tσi−1 for i > 0. When i = 0, we have ∂0t = ∂n
and σot = t2σn: the operator t interacts with the face and degeneracy maps in a manner reminiscent
of the simplicial identities. This motivates the following definition.

Definition 5.1.2. Let A be a category. A cyclic object A in A is a simplicial object with an
automorphism tn of order n+ 1 on each An such that ∂it = t∂i−1 and σit = tσi−1 when i > 0. Also,
∂0tn = ∂n and σot

2
n+1 = σn.

Remark. Paralleling the terminology for simplicial objects, we will, for example, write “cyclic module”
for a cyclic object in the category R-mod. This should not be confused with the identically-named
notion of a module with one generator. We will follow a similar naming convention for cyclic objects
in other categories.

Example 5.1.3. Recall the simplicial set BG associated to a group G, as defined in Example 3.2.2.
We can make BG into a cyclic set by defining the action of tn on BGn = Gn to be t(g1, . . . , gn) =
(g0, g1, . . . , gn−1), where g0 = (g1 . . . gn)−1.

In another parallel with simplicial objects, we will now construct a category, denoted ∆C and
containing the simplicial category ∆, such that a cyclic object in a category A is the same thing as a
contravariant functor from ∆C to A. We call ∆C, which was first defined by Connes in [2], is called
the cyclic category. In what follows, we will denote the objects and morphisms of ∆ as in Section 3.
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In addition, we will denote by tn the “cyclic” automorphism of the set [n] given by tn(0) = n and
tn(j) = j − 1 for j 6= 0.

To begin the construction, let Hom∆C([n], [p]) be the family of formal pairs (α, ti), where 0 ≤ i ≤ n
and α : [n]→ [p] is a morphism in ∆. Let HomC([n], [p]) denote the family of all functions ϕ : [n]→ [p]
which factor as ϕ = αtin for some pair (α, ti) in Hom∆C([n], [p]). Note that, if this is the case,
ϕ(i) ≤ ϕ(i + 1) ≤ · · · ≤ ϕ(i − 1), due to the cyclic action of the automorphism t. This means that
the obvious surjection from Hom∆C([n], [p]) to HomC([n], [p]) is a bijection, except when the map ϕ
is constant: ϕ uniquely determines (α, ti) whenever ϕ is not constant. This means that the map
between the hom-sets is an injection onto the subset consisting of non-constant functions ϕ. In the
case where ϕ is constant, α = ϕ and all n+ 1 of the pairs (ϕ, ti) yield the set map ϕ. In this setting,
Hom∆([n], [p]) is the subset consisting of pairs of the form (α, 1) in Hom∆C([n], [p]).

As suggested by our choice of notation above, there exists a subcategory C of Set, containing ∆,
whose objects are the finite ordered sets [n] and whose morphisms are the functions in HomC([n], [p]).
To see this, we must verify that the composition of φ = βtjm and ϕ = αtin is in C. This can be verified
using the following identities, which are obtained from the formulas for the face and degeneracy maps
in ∆ (see Definition 3.1.3):

tnεi =

{
εn i = 0

εi−1tn−1 i > 0
and tnηi =

{
ηnt

2
n+1 i = 0

ηi−1tn+1 i > 0

The following proposition verifies that the category ∆C relates to cyclic objects in the same way
that the category ∆ relates to simplicial objects.

Proposition 5.1.4. The sets Hom∆C([n], [p]) form the morphisms of a category ∆C which contains
∆. The objects are the finite ordered sets [n] for n ≥ 0. Furthermore, a cyclic object in a category A
is the same as a contravariant functor from ∆C to A.

Proof. We wish to define the composition (γ, tk) of (β, tj) ∈ Hom∆C([m], [n]) and (α, ti) ∈ Hom∆C([n], [p])
such that i = j = 0 implies that (γ, tk) = (αβ, 1). If β is a non-constant map of sets, the compo-
sition tiβtj in C is not constant, so there exists a unique (β′, tk) such that tiβtj = β′tk: we set
(γ, tk) = (αβ′, tk). In the case where β is constant, we set (γ, tk) = (αβ, tj). By construction, the
projections from Hom∆C to HomC are compatible with composition: because C is a category, the
maps of the form (id, 1) are two-sided identity maps and composition in ∆C is associative. Therefore,
∆C is a category and the maps ∆ → ∆C → C are functors. The final assertion is easily verified
using the identities for tεi and tηj above.

Definition 5.1.5. Let A be a cyclic object in R-mod. The unnormalized chain complex Ch
∗ (A)

of the underlying simplicial object of A is called the Hochschild complex of A. We will denote the
differential of Ch

∗ (A) by b, so that b = ∂0−∂1+· · ·±∂n is a map from Ch
n(A) = An to Ch

n−1(A) = An−1.
The Hochschild homology HH∗(A) of A is the homology of CH

∗ (A). The acyclic complex of A, Ca
∗ (A)

is the complex obtained from Ch
∗ (A) by omitting the final face operator. Thus Ca

n(A) = An, and we
denote the resulting differential ∂0 − ∂1 + · · · ∓ ∂n−1 by b′.

Remark. The acyclic complex is so named because it is indeed acyclic: it is chain homotopic to the
zero chain complex with contracting homotopy given by σn+1.

Drawing on Section 2.2, we can associate a double complex to each cyclic object in R-mod.

Definition 5.1.6. Let A be a cyclic object in R-mod. There exists an associated first quadrant
double complex CC∗(A), which is commonly referred to as Tsygan’s double complex, after its first
discoverer. The columns of CC∗(A) are periodic of order 2: if p is even, the p-th column is the
Hochschild complex Ch

∗ of A. If p is odd, the p-th column is the acyclic complex Ca
∗ with differential

−b′, where the multipication of the differential by −1 stems from the “sign trick” discussed in
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Section 2.2. Thus, CCpq(A) is Aq and hence independent of p. The q-th row of CC∗∗(A) is the
periodic complex associated with the action of the cyclic group Cq+1 on Aq, where the generator
acts as multiplication by (−1)qt. Therefore, the differential Aq → Aq is multipliciation by 1− (−1)qt
when p is odd; when p is even it is multiplication by the norm operator

N := 1 + (−1)qt+ · · ·+ (−1)iti + · · ·+ (−1)qtq

Combining all of this information, the following diagram depicts Tsygan’s double complex:

· · · · · · · · ·

A2 A2 A2 · · ·

A1 A1 A1 · · ·

A0 A0 A0 · · ·

b −b′ b

b

1−t

−b′
N

b

1−t

b

1−t

−b′
N

b

1−t

1−t N 1−t

Definition 5.1.7. Recalling the notion of the total complex of a double complex from Definition
2.2.2, the cyclic homology HC∗(A) of a cyclic object A is the homology of Tot⊕CC∗∗(A). The cyclic
homology HC∗(R) of a k-algebra R is the cyclic homology of the cyclic object R⊗R⊗∗.

Proposition 5.1.8. CC∗∗(A) is a double complex.

Proof. To begin, set η = (−1)q. We must show that b(1− ηt) = (1 + ηt)b′ and Nb = b′N considered
as maps from Aq to Aq−1. Now b − b′ = η∂q and the cyclic relations impy that bt = ∂q − tb′, which
yields the first relation, B(1− ηt) = (1 + ηt)b′. In addition, the cyclic relations imply that

b′ =

q−1∑
i=0

(−t)i∂qtq−i and b =

q∑
i=0

(−t)q−i∂qti

Now, since (1− ηt)N = 0, we have T iN = ηiN on Aq. Since N(1 + ηt) = 0, we have Nti = (−η)iN
on Aq−1. Therefore

ηNb = η

q∑
i=0

N(η)q−i∂qt
i = ηq+1N∂q

∑
(ηt)i = N∂qN,

ηb′N = η

q−1∑
i=0

(−t)i∂qηq−iN = ηq+1
∑

(ηt)i∂qN = N∂qN.

This yields the relation Nb = b′N.

5.2 Duplicial objects and mixed complexes

We proceed now to duplicial objects, a more general notion than cyclic objects. In fact, a cyclic
module is nothing other than a duplicial module which is subject to certain additional identities.

Bibliographical Note. From this point on, we draw primarily on the work of Dwyer and Kan in [6]
and [7].
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Definition 5.2.1. Let A be a simplicial object in a category A. We refer to A as a duplicial object
if, in each degree n ≥ 0, there exists an extra degeneracy map σn+1. Moreover, the maps are subject
to the following relations:

∂i∂j = ∂j−1∂i if i < j

σiσj = σj+1σi if i ≤ j

∂iσj =


σj−1∂i if i < j ≤ n

id if i = j or i = j + 1

σj∂i−1 if i > j + 1

Remark. The identities defining a duplicial object are exactly those defining a simplicial object,
except for one subtle difference: in general, contrary to what one may expect, ∂0σn+1 6= σn∂0. The
name “duplicial” was invented by Dwyer and Kan, based on the fact that removing the face maps
∂0 : An+1 → An leaves a cosimplicial object, with the degeneracy maps as coface maps and the
remaining face maps as codegeneracy maps.

Paralleling our procedures for dealing with simplicial and cyclic objects, we can characterize
duplicial objects as functors from a certain category into our category of interest.

Definition 5.2.2. The duplicial category, which we will denote by ∆D, is the category with objects
[n] for n ≥ 0, and generating maps

εi : [n]→ [n− 1] 0 ≤ i ≤ n

ηi : [n]→ [n+ 1] 0 ≤ i ≤ n+ 1

subject to the relations

εjεi = εiεj−1 if i < j

ηjηi = ηiηj+1 if i ≤ j

ηjεi =


εiηj−1 if i < j ≤ n

id if i = j or i = j + 1

εj−1ηj if i > j + 1

so that a duplicial object in a category A is a contravariant functor from ∆D to A.

Analogously to the way we considered ∆ to be the category consisting of finite ordered sets
and the non-decreasing maps between them, we can view ∆D as the category whose objects are
copies of the ordered set of non-negative integers N+, with morphisms being functions which are
both nondecreasing and “periodic”. To describe this with full precision, let P be the category whose
objects consist of one copy pn of N+ for each integer n ≥ 0. The morphisms pn → pn′ consist of the
non-decreasing functions f which are periodic in the sense that f(j + n + 1) = f(j) + n′ + 1 for all
j ∈ N+. With this information in place, it is easily verified that P is isomorphic to ∆D: agreeing
with the formulas for the face and degeneracy maps in Section 3, the map εi : [n] → [n + 1] ∈ ∆D
corresponds to the function pn−1 → pn given by j 7→ j for j < i and j 7→ j + 1 for j ≥ i. There is
a completely analagous correspondence between ηi : [n] → [n − 1] ∈ ∆D and the map pn → pn−1

given by j → j when j ≤ i and j 7→ j − 1 if j > i. Taken together, these correspondences give a
correspondence between the map ηn+1ε0 : [n]→ [n] and the map pn → pn given by j 7→ j+1 for all j.
This motivates the following proposition, which establishes the aforementioned connection between
cyclic and duplicial objects.

34



Proposition 5.2.3. The cyclic category ∆C can be obtained from the duplicial category ∆D by
adding the “cyclic” relations

(ηn+1ε0)n+1 = id : [n]→ [n]

Proof. We will verify this directly by letting tn = (ηn+1ε0)n. Recall from Definition 5.1.2 that a cyclic
object is a simplicial object with an order n+1 automorphism tn in each degree such that ∂it = t∂i−1

and σit = tσi−1 when i > 0, and such that ∂0t = ∂n and σ0t = t2σn when i = 0. We also verified in
Proposition 5.1.4 that a cyclic object in a category A is the same as a contravariant functor from
∆C to A. Therefore, it is enough to show that tn = (ηn+1ε0)n is an order n+ 1 automorphism such
that tεi = εi−1t and tηi = ηi−1t when i > 0 and such that tε0 = εn and tη0 = ηnt

2 when i = 0.
By construction, (ηn+1ε0)n is of order n + 1. We will verify that (ηn+1ε0)nε0 = εn : the other

identities can be verified similarly. First, write (ηn+1ε0)nε0 as (ηn+1)n(ε0)n+1. Then, because εi(j) =
j + 1 if j ≥ i, εn+1

0 (j) = j + n+ 1. Similarly, because ηi(j) = j − 1 if j > i, ηnn+1(j + 1 + n) = n+ 1 if
j ≥ n and n otherwise. That is to say, (ηn+1ε0)nε0 = εn.

We have now defined two ways to build an object with extra structure from a simplicial object,
one of which is a special case of the other. We can, in fact, perform a similar procedure for chain
complexes.

Definition 5.2.4. A mixed complex (M, b, d) is a sequence of R-modules and R-module homomor-
phisms, with bn : Mn → Mn−1 and dn : Mn → Mn+1. Also, b2 = d2 = 0 in each degree n. In
other words, M is simultaneously a chain complex and a cochain complex. Consequently, it has both
homology Hn(M) and cohomology Hn(M).

Example 5.2.5. Every chain complex (C, b) or cochain complex (C, d) can be made into a mixed
complex in a trivial way: for the chain complex, simply define dn : Cn → Cn+1 to be 0, and similarly
for bn : Cn → Cn−1 in the second case.

Example 5.2.6. Consider the diagram

· · · Zi2 Zi1 Zi0 0
b3

d2

b2

d1

b1

d0

where in is an integer for all n, and the maps bn and dn represent multiplication by some integer.
The diagram depicts a mixed complex if in−1|bnbn+1 and in+2|dn+1dn for all n.

Each mixed complex M has an associated homology and cohomology, obtained by considering b
and d separately. It is natural at this stage to wonder whether one can, in some way or other, define
a notion of homology by considering both differentials. This, with a little thought, turns out to be
the case, and we will now proceed to define this notion. Beforehand, we will define the operator
ξn : Mn →Mn by ξn = bn+1dn + dn−1bn in each degree n.

Definition 5.2.7. Let (M, b, d) be a non-negatively graded mixed complex, and define M̂ := M/im ξ.
From the mixed complex (M̂, b, d), form the chain complex

CMn := M̂n ⊕ M̂n−2 ⊕ M̂n−4 · · ·

whose differential ∂ is given by

∂(m,mn−2,mn−4, . . . ) = (bmn + dmn−2, bmn−2 + bmn−4, . . . )

We refer to the homology of this chain complex, denoted HM(M), as the mixed homology of M.
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When constructing the mixed homology, we work with M̂ rather than M. The reason for this is
that the chain complex from which we calculate the mixed homology is the total complex of a certain
double complex associated to M : this is called the triangle complex and is depicted by the following
diagram

· · · · · · · · ·

M2 M1 M0

M1 M0

M0

b b b

b

d

b

d

b

d

Quotienting by im ξ ensures that the squares of this double complex anticommute as required. In
fact, some authors have the condition ξ = bd+ db = 0 as part of the definition of a mixed complex,
for this reason.

The usual convention is to call the mixed homology the “cyclic homology”, so that there is a
notion of cyclic homology both for mixed complexes and for cyclic objects. The reason for this
naming convention is that, as well as Tsygan’s double complex CC(A), one can associate a triangle
complex to a cyclic object A. Per Theorem 2.5.11 in [12], the total complexes of the triangle complex
and Tsygan’s double complex have isomorphic homology. We deviate from convention here to avoid
confusion in Section 6, where we will discuss two homology theories both of which would be called
“cyclic” if we stuck rigidly to the usual terms.

5.3 The Dwyer-Kan Correspondence

We proceed now to discuss the main result of the section: the Dwyer-Kan Correspondence. This
result, first proved by Dwyer and Kan in [6], generalizes the normalization of simplicial objects to
duplicial objects. We fix some notation before proceeding: let DR-mod be the category of duplicial
modules over a ring R, and let Mixn≥0(R) be the category of non-negatively graded mixed complexes
of R-modules.

Definition 5.3.1. Let A be a duplicial R-module. The associated unnormalized mixed complex
C(A) is given by C(A)n = An for all n ≥ 0. The differentials are as follows:

bnx =
n∑
i=0

(−1)i∂ix and dnx =
n+1∑
i=0

(−1)iσn+1−ix for x ∈ An.

Analogously to the simplicial case, we also have two subcomplexes of C(A), called the normalized
mixed complex, which we will again denote by N(A), and the degenerate mixed complex, which we
will again denote by D(A). The normalized and degenerate complexes are defined exactly as in the
chain complex case.

Proposition 5.3.2. The mixed complex C(A) is isomorphic to D(A)⊕N(A).

Proof. This is completely analogous to the chain complex case.

Generalizing the functor K from the Dold-Kan Correspondence, we now define its duplicial ana-
logue.
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Definition 5.3.3. Let M be a non-negatively graded mixed complex of R-modules. Then the functor
K which sends M to the duplicial object K(M) is defined as follows. In degree n, K(M) is exactly
the same as in the simplicial case. The maps are once again determined by the procedure used in
the proof of Dold-Kan, except for the final degeneracy operator σn+1. This is determined by the
requirement that, for all x ∈Mn,

σn+1x = dx−
n+1∑
i=1

(−1)iσn+1−ix,

which comes from the definition of the unnormalized mixed complex. The fact that K is a functor can
be verified in a manner analogous to the simplicial Dold-Kan case, except for the extra degeneracy
map σn+1: this is a matter of straightforward calculation.

With K defined, we can now state the Dwyer-Kan Correspondence.

Theorem 5.3.4 (Dwyer-Kan). Let DR-mod be the category of duplicial R-modules, and let Mix≥0(R)
be the category of mixed complexes in R-mod, with Mn = 0 for all n < 0. The functor N which
sends a duplicial R-module to its normalized mixed complex is an equivalence of categories between
DR-mod and Mix≥0(R).

Proof. As above, this is simply a combination of the Dold-Kan Correspondence and its cosimplicial
version in Corollary 4.1.2: we only need to check the behaviour of the extra degeneracy map, and
this is, again, a matter of straightforward calculation.

6 Further directions

We have now, after introducing the necessary preliminary concepts, stated and proved the Dold-Kan
and Dwyer-Kan Correspondences. In this concluding section, we discuss, briefly and informally, some
possible directions for further study and research.

6.1 Model categories

One notion underlying the paper is that of a model category. The rigorous definition can be found
in Chapter 7.1 of [10], but it is rather technical. Informally, a model category is a category with
some extra structure in the form of three distinguished classes of morphisms, which are all subject
to certain conditions, and are known as weak equivalences, fibrations, and cofibrations. Even more
informally, a model category can be thought of as a setting in which it “makes sense” to do homotopy
theory of some kind. It will be instructive at this point to consider some examples.

Example 6.1.1. The classic example of a category which admits a model category structure is the
category of topological spaces and continuous maps, Top. With the most common structure, we
stipulate that the weak equivalences are maps which induce isomorphisms on all homotopy groups,
the fibrations are maps which have the homotopy lifting property with respect to all spaces, and the
cofibrations are retracts of relative CW complexes.

Example 6.1.2. Another category which admits a model category structure is Ch≥0(R). Here, the
weak equivalences are the quasi-isomorphisms, the fibrations are maps which are epimorphisms in
each degree with injective kernel, and the cofibrations are maps which are monomorphisms in each
non-zero degree.

Remark. Generally, there are multiple possible model category structures on a given category. The
previous two examples merely represent two possibilities on their respective categories.
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With this information about model categories in mind, it will be instructive to consider the Dold-
Kan and Dwyer-Kan Correspondences again. Recall that, given a simplicial object A, the simplicial
homotopy modules πn(A) are isomorphic to the homology of the normalized chain complex N(A).
In addition, consider the model category structure on Ch≥0(R) which we have just discussed. It
is natural, given the equivalence of categories, to attempt to describe a model category structure
on SR-mod which corresponds with the one on Ch≥0(R). This is done in a natural way: one
can define a model category structure on SR-mod in which the weak equivalences are those maps
which induce isomorphisms on all simplicial homotopy modules, and this model category structure
is respected by the Dold-Kan Correspondence. The terminology for this situation is that there is a
Quillen equivalence between the two model category structures.

The situation becomes more complicated when we deal with duplicial objects and mixed com-
plexes. In [7], Dwyer and Kan detail three candidates for weak equivalences of duplicial R-modules:
firstly, maps of duplicial modules which induce isomorphisms on all of the homotopy modules of the
underlying simplicial modules; secondly, maps which induce isomorphisms on all of the cohomotopy
modules of the underlying cosimplicial modules, and, finally, maps which induce isomorphisms on
both the homotopy and the cohomotopy modules. The main concern of the paper of Dwyer and Kan
was to show that each of these classes of weak equivalences corresponds to a class of weak equiv-
alences of differential graded R-modules, and, hence, of mixed complexes. Predictably, the maps
which induce isomorphisms on homotopy modules correspond to homological quasi-isomorphisms of
mixed complexes, with the other two cases being completely analogous. This correspondence between
possible weak equivalences is also discussed in [6].

Another class of interesting possible candidates for weak equivalences of mixed complexes incor-
porating both homology and cohomology, which Dwyer and Kan did not consider, is the class of
maps which induce isomorphisms on mixed homology. As the following simple example shows, this
is certainly a different class from the third of the three previously mentioned.

Example 6.1.3. Let M be the mixed complex

· · · C C C 0
id

0

0

0

id

0

Clearly, Hn(M) = 0 and Hn(M) = C for all n. Also, ξn = 0 for all n. Then, because dn = 0 for all
n, the following diagram depicts the chain complex CM ,

· · · id−→ C⊕ C⊕ C 0−→ C⊕ C id−→ C⊕ C 0−→ C id−→ C→ 0.

Therefore, the mixed homology HMn(M) is 0 for all n. This means that the map 0 : M →M induces
isomorphisms on homology and mixed homology, but not on cohomology. This suggests that there
may be a fourth model category structure, not considered by Dwyer and Kan, in which the weak
equivalences are those maps which induce isomorphisms on mixed homology.

6.2 Cyclic homology and mixed homology

Mixed homology, as well as possibly giving an interesting class of weak equivalences, is an active
area of research in its own right. Parallel to the present paper, the author and his supervisor have
undertaken work on a research paper entitled Cyclic VS Mixed Homology [11]. Broadly speaking,
the paper concerns the mixed homology of mixed complexes. By way of a conclusion, we will now
give an overview of this paper’s motivation and results.

To begin, it will be necessary to make a definition.

Definition 6.2.1. Let (M, b, d) be a mixed complex. We refer to (M, b, d) as a homological (resp.
cohomologial) skyscraper if the canonical map

M → M̂ = M/im ξ
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is a quasi-isomorphism of chain (resp. cochain) complexes.

A common class of motivating examples for mixed complexes, of which a full treatment can be
found in Section 2.6 of [12], are the noncommutative differential forms over an associative algebra,
with the De Rham differential d and the Hochschild boundary map b. These do not form a skyscraper
with respect to d, but they do so with respect to the coboundary operator B, first defined by Connes
in [3] (Part II, Section 3), which defines cyclic homology.

The program of the paper, inspired by some results of Cuntz and Quillen in [4], is to examine
the analogous situation for a general mixed complex of R-modules. To this end, we view the mixed
complex M as a k[x]-module, where k is the centre of the ring R and x acts by the operator ξ. We
also, by making the following definition, view B as a kind of deformation of d.

Definition 6.2.2. Given a mixed complex of R-modules (M, b, d) and a sequence of polynomials
cn ∈ k[x], we define a new map

Bn = cndn

and we, in line with the convention of Connes, call the mixed homology of (M, b,B) the cyclic
homology, and denote it by HC(M).

The main theorem of the paper describes the interactions between HM(M) and HC(M) when
(M, b,B) is a homological skyscraper.

Theorem 6.2.3. Let (M, b, d) be a mixed complex of R-modules, and assume that the polynomials
cn ∈ k[x] defined above are invertible in k[[x]]. Assume also that (M, b,B) is a homological skyscraper.
Then there exists a graded R-module X ⊂ HC(M̂) and short exact sequences

0→ Xn → HMn(M)→ HCn(M̂)/Xn → 0,

0→ HCn(M)→ HCn(M̂)→ HCn−1(im ξ)→ 0.

Thus, if the two short exact sequences split, then choosing a split for both yields an isomorphism

HMn(M) ∼= HCn(M)⊕HCn−1(im ξ)

Work on the paper is ongoing: at present, we are working towards building interesting examples
which exhibit the behaviour described in the main theorem.

A Categorical language

In this section we give definitions and examples of various category-theoretic terms used in the main
body of the paper. Basic familiarity with categories and functors is assumed. We begin with a
central notion: that of a natural transformation. Intuitively, just as a functor is a kind of structure-
preserving map between categories, we can think of natural transformations as structure preserving
maps between functors.

A.1 Natural transformations and functor categories

Definition A.1.1. Let F and G be two functors from C to D, either both covariant or both con-
travariant. A natural transformation η : F → G is a family of morphisms, with a morphism
ηX : F (X)→ G(X) in D for every object X in C such that the following diagram commutes:

F (X) F (X ′)

G(X) G(X ′)

ηX

F (f)

G(f)

ηX′
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We call the map ηX the component of η at X. If F and G are both contravariant, the directions of
the horizontal arrows are reversed. If each component of η is an isomorphism, we call η a natural
isomorphism and write η : F ∼= G.

Example A.1.2. Consider the category Grp, consisting of all groups and group homomorphisms,
and let (G, ·) be a particular group. We now define the notion of the opposite group, denoted
(Gop, ·op) : Gop = G, and a ·op b = b · a. The process of forming the opposite group, if we set f op = f
for a homomorphism f : G → H, defines an endofunctor of Grp. To see this, we must verify that
f op is a group homomorphism from Gop to Hop :

f op(a ·op b) = f(b · a) = f(b) · f(a) = f op(a) ·op f op(b).

We claim that the opposite functor Grp → Grp is naturally isomorphic to the identity functor on
Grp. To show this, we require isomorphisms ηG : G→ Gop for every group G such that the following
diagram commutes:

Gop Hop

G H

ηG

f op

f

ηH

Set ηG(a) = a−1 for all G. The identities (ab)−1 = b−1a−1 and (a−1)−1 = a show that ηG is a group
homomorphism which is its own inverse. We now must show that the diagram commutes. To do so,
we will consider a group homomorphism f : G→ H and show that ηH ◦ f op = f ◦ ηG :

ηH ◦ f op(a) = ηH ◦ f(a) = (f(a))−1 = f(a−1) = f ◦ ηG.

Therefore, the identity functor on Grp is naturally isomorphic to the opposite functor Grp→ Grp.

Definition A.1.3. Let C be a small category (that is to say, one whose objects and morphisms form
sets rather than proper classes) and let D be a general category. We can form a category, which we
will denote by DC, whose objects are the covariant functors from C to D, and whose morphisms are
the natural transformations between them. The composition of morphisms in DC is the composition
of natural transformations, which is defined in the expected way, via composition of the individual
components.

We will now define a crucial notion; the notion of an equivalence of categories.

Definition A.1.4. Let F : C → D be a functor. We will call F an equivalence of categories if there
exists a functor G : D → C such that there are natural isomorphisms idC ∼= G ◦ F and idD ∼= F ◦G.

Remark. Although the notion of an equivalence of categories somewhat resembles classical notions
of isomorphism, the distinction is important: G ◦ F and F ◦ G are only idC and idD up to natural
isomorphism. In this respect, equivalences of categories are more akin, to give one example, to
homotopy equivalences of topological spaces. One can define the stricter notion of isomorphism of
categories, in which natural isomorphisms of functors are replaced by equalities, but this condition
is very strong and is hence seldom satisfied in practice. For categories, the most useful notion of
“sameness” is equivalence, not isomorphism.

We now proceed to a discussion of products and, dually, coproducts : these generalize such con-
structions as the direct sum of abelian groups and the cartesian product of topological spaces.
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A.2 Products and coproducts

Definition A.2.1. Let {Ci} be a set of objects in a category C, indexed by some set I. Their product,
when it exists, is an object of C, denoted

∏
i∈I Ci, together with maps πj :

∏
i∈I Ci → Cj (j ∈ I)

such that, for every object A in C and every family of morphisms αi : A→ Ci there exists a unique
morphism α : A→

∏
i∈I Ci such that πjα = αj for every j ∈ I. We call the family of maps (πj) the

projections. In a familiar use of notation, if I is a two-element set, we write C1×C2 for the product.
This situation is indicated by the following commutative diagram:

A

C1 C1 × C2 C2

α1
α

α2

π1 π2

In the general case, we have a family of commutative diagrams, indexed by I, all of which have the
form: ∏

i∈I Ci

A Ci

πiα

αi

Remark. Notice that we referred to the product in singular terms above. Technically, a family of
objects can have more than one product. However, as is usual for universal constructions, any two
products of a family of objects are isomorphic; furthermore, the isomorphism is unique.

Example A.2.2. The prototypical example comes from Set: in this category, the product is the
familiar cartesian product of sets. If Xi is a family of sets, we define πj :

∏
i∈I Xi → Xj by

πj((xi)i∈I) = xj. Given any set Y with a family of functions αi : Y → Xi, the unique morphism
α : Y →

∏
i∈I Xi making everything commute is given by α(y) = (αi(y))i∈I .

Example A.2.3. In Top, the product of a family of spaces is the space whose underlying set is the
Cartesian product. The topology we choose on this space is known as the product topology; it is
the coarsest topology (that is to say, the topology with the fewest open sets) which ensures all the
projections are continuous maps.

Example A.2.4. In Grp, the product is the direct product of groups.

As is done commonly in category theory, we can dualize the above discussion, which means that
we reverse the direction of each morphism. This leads to the following definition:

Definition A.2.5. Let {Ci} be a set of objects in a category C, indexed by some set I. Their coprod-
uct, when it exists, is an object of C, denoted

∐
i∈I Ci, together with maps ιj : Cj →

∐
i∈I Ci (j ∈ I)

such that, for every object A in C and every family of morphisms αi : Ci → A there exists a unique
morphism α :

∐
i∈I Ci → A such that αιj = αj for all j ∈ I.. We call the family of maps (ιj) the

coprojections. If I is a two-element set, we write C1

∐
C2 for the product. This situation is indicated

by the following commutative diagram:

A

C1 C1

∐
C2 C2

α1

ι1

α

ι2

α2

In the general case, we have a family of commutative diagrams, indexed by I, all of which have the
form: ∐

i∈I Ci

A Ci

α

αi

ιi
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Example A.2.6. • In Set, the coproduct is the disjoint union operation. The coprojections are
the standard inclusion functions.

• In Grp, the coproduct is the free product of groups. In Ab, the category consisting of abelian
groups with group homomorphisms, the coproduct of the direct sum, which coincides exactly
with the direct product when the family of abelian groups under consideration is finite. This
will be discussed further in Section A.4.

• In Top∗, the category of based topological spaces, the coproduct is the wedge sum.

We will now discuss a central concept: the concept of adjointness of two functors. As the examples
will go some way towards making clear, this notion is ubiquitous.

A.3 Adjoint functors

Definition A.3.1. Let L : C → D and R : D → C be a pair of functors. We call this pair adjoint if,
for every pair of objects C and D in C and D respectively, we have the following bijection:

τ = τCD : HomD(L(C), D)
∼=−→ HomC(C,R(D))

Furthermore, this bijection is required to be natural in C and D in the sense that, for each f : C → C ′

in C and g : D → D′ in D the following diagram commutes:

HomD(L(C ′), D) HomD(L(C), D) HomD(L(C), D′)

HomC(C
′, R(D)) HomC(C,R(D)) HomC(C,R(D′))

τ

Lf∗

τ

g∗

τ

f∗ Rg∗

In other words, τ is a natural isomorphism between the bifunctors HomD(L(−),−) and HomC(−, R(−))
which map from Cop×D to Set. As well as referring to (L,R) as an adjoint pair, we will also call L
the left adjoint of R, and R the right adjoint of L. Here, f∗ and g∗ are symbols for the maps induced
on the hom-sets by f : C → C ′ and g : D → D′.

Example A.3.2. Let K be a field, and consider L : Set → VectK , the functor which sends a set X
to the vector space with basis the elements of X. This functor is left adjoint to the forgetful functor
U : VectK → Set which sends every K-vector space to its underlying set. This is due to the fact
that HomVectK (L(X), V ) has the same number of elements as HomSet(X,U(V )).

Remark. The preceding example is a particular case of a very general phenomenon: whenever we
have a free object generated by a set, be it an abelian group, an R-module, an algebra over a field,
or any other type of algebraic structure, the functor determined by forming the free object from its
generating set is left adjoint to the forgetful functor which sends the free object to its underlying set.
This is one contributing factor to the ubiquity of adjoint pairs.

Example A.3.3. Let R be a ring, and let B be a left R-module. For every abelian group A,
HomAb(B,A) is a right R-module with action given by (fr)(b) = f(rb). This defines a functor
HomAb(B,−) : Ab→mod-R, which, together with the functor −⊗RB : mod-R→ Ab, forms an
adjoint pair.

Example A.3.4. Consider the inclusion functor Ab → Grp, along with the abelianization functor
Grp→ Ab, which sends a group G to its abelianization G/[G,G] These two functors form an adjoint
pair.
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A.4 Abelian categories

Definition A.4.1. A category C is called additive if the following conditions hold:

1. Each hom-set has an abelian group structure, which we will write additively. Furthermore,
the composition of morphisms distributes over the addition; that is to say, for any morphisms
f : A→ B, f ′ : A→ B, g : B → C, and g′ : B → C, we have the following identities:

(g + g′) ◦ f = g ◦ f + g′ ◦ f
g ◦ (f + f ′) = g ◦ f + g ◦ f ′

2. C has a zero object; in other words, an object which is both initial and terminal.

3. Given any two objects, their product and coproduct both exist.

We call categories where the first condition holds preadditive.

Example A.4.2. Ab is an additive category, as is R-mod for any ring R.

Example A.4.3. Any unital ring can be viewed as a preadditive category with one object: this is
because of the abelian group structure and distributive law on the single hom-set, which consists of
all endomorphisms of the category’s single object.

Definition A.4.4. Let A and B be preadditive categories. A functor F : A → B is called additive
if each f : HomA(A,A′)→ HomB(F (A), F (A′)) is a homomorphism of abelian groups.

Remark. In the two examples of additive categories previously mentioned, finite direct products are
the same as finite direct sums. This is also true for the category of all vector spaces over a field
K, denoted VectK . It is a fact, proven in Section 2.2 of [13], that this property is possessed by all
additive categories.

Definition A.4.5. Let A be an additive category, and let f : B → C be a morphism in A. A kernel
of f , if it exists, is an object A together with a map i : A → B such that fi is equal to the 0
morphism from A to C. That is to say, the following diagram commutes for a unique g′:

B

A C

f
i

0AC

In addition, every morphism g : A′ → B in A such that fg = 0 factors through A as g = ig′ for
a unique g′ : A′ → A. That is to say, the following diagram commutes:

B

A C

A′

f

0AC

i
g

g′

0A′C

Reversing all the arrows in the above diagrams, we obtain the dual notion of the cokernel of a map.
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Remark. As is the case with the products and coproducts of Definitions A.2.1 and A.2.5, any two ker-
nels or cokernels of a map f are uniquely isomorphic. Furthermore, every kernel is a monomorphism,
and each cokernel is an epimorphism. In categories such as Ab, R-mod, and VectK , kernel and
cokernel have their usual meanings, except that we often take the simplifying measure of identifying
the kernel or cokernel with the object, which, in actuality, only comprises a part of it: for example,

we often say that the kernel of the abelian group homomorphism Z ·2−→ Z2 is merely 2Z, rather than
2Z together with its inclusion in Z.

Using the notions we have discussed in this section, we are now ready to make the definition on
which the section hinges; that of an abelian category.

Definition A.4.6. Let A be an additive category. Then A is an abelian category if the following
conditions are true:

1. Every morphism in A has a kernel and a cokernel.

2. Every monomorphism in A is the kernel of some morphism.

3. Every epimorphism in A is the cokernel of some morphism.

The prototypical examples of abelian categories are those which we have often discussed in ex-
amples: R-mod,VectK , and Ab. Chain complexes are often seen to come from these categories
precisely because they are abelian. If A is any abelian cateory, we can form chain complexes in A,
and chain maps between these chain complexes. These form an additive category, which we denote
by Ch(A); homology is then a functor from Ch(A) to A.

The following lemma is a famous result of homological algebra, which has myriad applications,
although we will only use it once.

Lemma A.4.7 (The 5-Lemma). Let the diagram

A B C D E

A′ B′ C ′ D′ E ′

f

l

g

m

h

n

j

p q

r s t u

be commutative in an abelian category. If the two rows are exact, m and p and isomorphisms, l is
an epimorphism, and q is a monomorphism, n is an isomorphism.

Proof. See Chapter 2 of [16].

A.5 The Yoneda Embedding

We now proceed to briefly discuss the famous Yoneda lemma; if C is a locally small category, this
provides a way to “represent” the structure of C in terms of the familiar category Set.

Lemma A.5.1 (Yoneda). Let C be a locally small category, and let F be an arbitrary functor from
C to Set. For each object C of C, the natural transformations from the hom-functor Hom(C,−) to
F are in one-to-one correspondence with the elements of F (C).

Proof. See [1], Chapter 8.

Of particular importance is the case where the functor F is another hom-functor, say Hom(D,−).
In this situation, the natural transformations between the two hom-functors are in one-to-one corre-
spondence with the set Hom(D,C).
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