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Overview of the talk

The plan is to look at special subsets in the real line and to try to
estimate their size (Hausdorff Dimension).

Part of the motivation will be the applications to:

1 The Zaremba Conjecture on finite continued fractions

2 The difference between the Lagrange and Markov Spectra in the
context of diophantine approximation
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Sets and their dimension

Let X ⊂ R be a (bounded zero Lebesgue measure) subset of the real line.

The Hausdorff dimension dimH(X ) ∈ [0, 1] quantifies the “size” of these
sets.

A single point, or any countable set X has zero Hausdorff dimension.

An interval X = [a, b] has Hausdorff dimension one.

If X ⊂ Y then dimH(X ) ≤ dimH(Y ).

3 / 29



A formal definition of the Hausdoff Dimension

Given a set X :

Fix a scale ε > 0.

X
εU1 U2 U3 U4

Consider (finite) covers of X by open intervals U = {Un} where each
interval has diameter at most ε (i.e., supn diam(Un) < ε).

For each exponent t > 0, denote H t
ε(X ) = infU {

∑
n diam(Un)t}

(where the infimum is over all of such covers).

Now we let the scale tend to zero and denote
H t(X ) = limε→0 H

t
ε(EN) ∈ [0,+∞].

+∞

0

H t(X )

t
dimH(X )

Finally, we let dimH(X ) = inf{t > 0 : H t(X ) = 0}.
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Easy example: Middle third Cantor set

The middle third Cantor set can be written in terms of ”deleted digits”

X =

{ ∞∑
n=1

in
3n

: i1, i2, i3, · · · ∈ {0, 2}

}

i.e., in the base 3 expansion we delete the digit 1

One can (almost) see that the definition that X has Hausdorff dimension

log 2

log 3
= 0.6309297535714573 . . .

When ε = 1
3k then we can use a cover U of 2k intervals of size

approximately 1
3k (i.e., after deleting “middle thirds” to level k).

Then H t
ε(X ) ≈ 2k/3tk → 0 as ε→ 0 (i.e., k → +∞) if t > log 2

log 3 , and

and H t
ε(X ) ≈ 2k/3tk → +∞ as ε→ 0 (i.e., k → +∞) if t < log 2

log 3 .

Thus dimH(X ) = inf{t > 0 : H t(X ) = 0} = log 2
log 3 .
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Our main setting: Continued fractions

To specify the Cantor sets X we want to study we will use continued
fractions. Recall the following classical result:

Lemma

Any irrational number x ∈ (0, 1) can be written in the form of a
continued fraction:

x = [a1, a2, a3, · · · ] :=
1

a1 +
1

a2 +
1

a3 + · · ·

with the coefficients a1, a2, a3, · · · ∈ N.

This essentially comes from the Euclidean algorithm.
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Continued fractions with bounded digits

Fix N ≥ 2. We can restrict our attention to those irrational x ∈ (0, 1)
whose coefficients are bounded by N, i.e.,

EN := {x = [a1, a2, a3, · · · ] : ai ∈ {1, 2, · · · ,N} for i ≥ 1} .

Example. Consider the case N = 2:

1
3
1
3

1
2

2
5

2
3

0 1

Since a1 ∈ {1, 2} we have x ∈ [ 1
3 , 1].

Since a1 ∈ {1, 2} and a2 ∈ {1, 2} we have x ∈ [ 1
3 ,

2
5 ] ∪ [ 1

2 ,
2
3 ].

More generally, ai ∈ {1, 2} for i = 1, · · · , n gives a family of 2n intervals
and intersecting these families (over n) gives the set E2.
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Dimension of the sets EN

Fix N ≥ 2. It is not very difficult to show that:

1 EN is a Cantor set; and

2 EN has Lebesgue measure zero (i.e., leb(EN) = 0).

Question

How “large” a set of zero measure is it? More precisely, what is the value
of the Hausdorff Dimension dimH(EN)?

Unfortunately, there is no closed form expression for dimH(EN).

Therefore, we need to find a numerical approximation - and we will
return to the motivation for this soon.

We begin with the example N = 2 and E2 (i.e., the Cantor set consisting
of points whose continued fraction expansion contains only the digits 1s
and 2s).
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Example 1: A Good estimate for E2

The first estimate when N = 2 appears in the thesis of Jack Good (under
the supervision of Hardy and Besicovitch) in 1941:

0.5306 < dim(E2) < 0.5320

During the war Good was a code breaker at Bletchley Park and
featured as a character in the 2014 movie about the life of Alan Turing,
as the guy in glasses who solves the recruitment puzzle at the same as
Kiera Knightley.

In another cinemagraphic connection, Good also worked with Stanley
Kubrick as a technical advisor for the movie 2001: A space odyssey
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A better then Good estimate for dim(E2)

With improved computational resources, but also because of the use of
better techniques, better estimates appeared.

Bumby (1985) showed that
dimH(E2) = 0.531 . . .

Hensley (1989) showed that
dimH(E2) = 0.531280 . . .

Falk and Nussbaum (2016) showed that
dimH(E2) = 0.53128050 . . .

Where the estimates are presented to the number of places they are
known to be accurate.

Question

How can we further improve on these estimates?
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A better estimate for dimH(E2)

In 2018, Oliver Jenkinson (QM-UL) and I used a zeta function approach
to compute this to 100 decimal places.

dimH(E2) = 0.5312805062 7720514162 4468647368 4717854930 5910901839

8779888397 8039275295 3564383134 5918109570 1811852398

8042805724 3075187633 4223893394 8082230901 7869596532

8712235464 2997948966 3784033728 7630454110 1508045191

3969768071 3± 10−201

In 2020, Polina Vytnova and I computed this to over 200 decimal places.

This isn’t a matter of having a “bigger computer”, the better estimates
come from a different approach which, in this case, happens to work
quite well.

“I am ashamed to tell you to how many figures I car-
ried these computations, having no other business”
- Isaac Newton (on computing 15 digits for π in
1666)
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Example 2: Estimates on dim(E5)

Let N = 5 then E5 is the Cantor set of numbers whose continued fraction
expansions whose digits all lie in {1, 2, 3, 4, 5}.

In 2018 Oliver Jenkinson (QM-UL) and I showed that

dimH(E5) = 0.836829445± 5 · 10−9

and in 2020 Polina Vytnova and I improved this to

dimH(E5) = 0.83682944368120882244159438727± 10−29.

The first estimate is sufficient for the application (on the next slide).

Question

Who cares about the Hausdorff dimension of these sets?
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Application I: Zaremba Conjecture

Any rational p
q ∈ Q (p,q coprime) can be written as a finite continued

fraction

p

q
= [a1, · · · , an] : =

1

a1 +
1

a2 +
1

· · ·+
1

an

where ai ∈ N.

(This uses the Euclidean algorithm cf. Hardy and Wright)

The Zaremba conjecture asks if we can still get all the denominators if
we bound the digits. More precisely:

Conjecture (Zaremba, 1972)

For any natural number q ∈ N there exists p (coprime to q) and
a1, · · · , an ∈ {1, 2, 3, 4, 5} such that

p

q
= [a1, · · · , an].

Unfortunately, this conjecture is still open. 13 / 29



The Bourgain-Kontorovich-Huang Theorem

However, the conjecture is true for most denominators, i.e., a density one
result.

Theorem (Bourgain-Kontorovich, Huang)

lim
Q→+∞

1

Q
Card

1 ≤ q ≤ Q |∃p ∈ N, with
p

q
= [a1, · · · , an]

with a1, · · · , an ∈ {1, 2, 3, 4, 5}

 = 1

However, the proof is conditional on the fact
dimH(E5) = 0.8368 · · · > 5

6 = 0.833 · · · .
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Computation and accuracy

For the applications we need to have complete confidence in the accuracy
of our estimates.

This depends on:

having a theoretical method which gives precise bounds; and

rigorously bounding errors in the actual numerical computation.

The latter is well understood.
The former is the more interesting.

“Fast is fine, but accuracy is everything.” - Wyatt Earp
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Estimates on dimH(EN) - Step 1: Enter the operator

The estimates on dimH(EN) come the study of bounded linear operators.

Consider the Banach space of continuous functions C ([0, 1]) and the
family of linear operators Lt : C ([0, 1])→ C ([0, 1]):

Ltw(x) =
N∑
i=1

w

(
1

x + i

)
1

(x + i)2t
(t > 0)

Let spr(Lt) denote the spectral radius of Lt .

t0

spr(Lt)

t
1

Lemma (after Bowen, Ruelle)

The map t → spr(Lt) is strictly monotone decreasing and the solution
spr(Lt) = 1 corresponds to t = dimH(EN)
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The operator and the dimension

The heuristic for the connection between dimH(EN) and the spectral
radius of the the operator Lt : C ([0, 1])→ C ([0, 1]) comes from
considering the n-power to get

Ln
tw(x) =

N∑
i1=1

· · ·
N∑

in=1

w

 1

i1 + 1
i2+··· 1

in+x

 1

i1 + 1
i2+··· 1

in+x

2t

w ∈ C ([0, 1])

Letting w = 1 (constant function) and x = 0 we can compare

Ln
t 1(0) ≈ H t

ε(X ) where we consider the (optimal) cover by Nn intervals

I =

 1

i1 + 1
i2+··· 1

in+1

,
1

i1 + 1
i2+··· 1

in

 with diam(I ) �

 1

i1 + 1
i2+··· 1

in+x

2

.

Therefore, we are left with having to estimate spr(Lt) for different t to
find t with spr(Lt) = 1.
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Step 2: Estimates on spr(Lt)

We can use a sort of “min-max” estimate:

Lemma

Let t0 < t1

1 If there exists (positive) polynomial f : [0, 1]→ R+ such that

inf
x

Lt0 f (x)

f (x)
> 1 =⇒ then spr(Lt0 ) > 1.

2 If there exists (positive) polynomial g : [0, 1]→ R+ such that

sup
x

Lt1g(x)

g(x)
< 1 =⇒ then spr(Lt1 ) < 1.

The two lemmas give us a way to estimate the dimension.

Corollary

If we can find f , g as above then t0 < dimH(Em) < t1.

Thus estimating dimH(Em) is reduced to finding polynomials f , g as
above.
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Summary - so far

Given N ≥ 2 and t0 < t1, to show that dimH(EN) ∈ [t0, t1] if suffices to
...guess (or construct) positive polynomials f , g : [0, 1]→ R+ such that

00 1

Lt0 f

f

00 1

Lt1g

g

Lt0 f ≥ f =⇒ t0 ≤ dimH(EN) Lt1g ≥ g =⇒ dimH(EN) ≤ t1

It only remains to try to find such functions f and g , which is the final
step.
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Step 3: Cooking up test functions

We could just try and guess the functions f and g (and hope we get
lucky) but a more systematic approach is to use a little interpolation
theory.

Fix a natural number m (e.g., m = 6).

We can denote
1 pk(x) ∈ C([0, 1]) be Lagrange polynomials (1 ≤ k ≤ m ), and
2 let xk ∈ [0, 1] be Chebyshev points (1 ≤ k ≤ m )

so that pi (xj) = δij . for 1 ≤ i , j ≤ m

Given t consider the m ×m matrix A(i , j) = (Ltpi )(xj) for
1 ≤ i , j ≤ m.

Let w = (w1, · · · ,wm) be a (left) eigenvector for the largest
eigenvalue.

Finally, choose f (x) =
∑m

k=1 wkpk(x) (or g(x) =
∑m

k=1 wkpk(x)).
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Application II: Diophantine approximation

Recall a classical result in number theory.

Theorem (Dirichlet, 1840)

There infinitely many rational numbers p
q (p, q ∈ Z, q 6= 0) satisfying∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

q2

Question

Can one improve on Dirichet’s theorem for individual x?
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Better approximations: Lagrange spectrum

For different irrational x we can choose the largest values c(x) > 1 such
that ∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

c(x)q2

still has infinitely many solutions with p
q ∈ Q i.e.,

c(x) = lim inf{|q|.|qx − p| : p,∈ Z, q 6= 0}.

For example, c
(

1+
√

5
2

)
=
√

5.

Definition

The Lagrange spectrum L ⊂ R+ is defined by

M = {c(x) : x ∈ R−Q}.
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Properties of the Lagrange spectrum L

Question

What does L ⊂ R+ look like?

0 3
√

5
√

8
√

221
5

4.5278 . . .

The smallest value for L is
√

5 and below 3 there countably many
values:

L ∩ [
√

5, 3] = {
√

5,
√

8,
√

221/5 · · · }

In 1947 Hall showed that [4.5278 . . . ,+∞) ⊂ L.

In between the set L ∩ (3, 4.5278 . . .) is complicated.

23 / 29



Markov spectrum M

To define another related subset of R+ consider those binary quadratic
forms

f (x , y) = ax2 + bxy + cy2 (a, b, c ∈ R)

with (discriminant) b2 − 4ac = 1.

Definition (Markov, 1879)

λ(f ) := inf{|f (x , y)| : (x , y) ∈ Z2 \ {(0, 0)}}.

The Markov spectrum is defined by M = {1/λ(f ) : f as above }.

Surprisingly (or not) the sets L and M are very similar. More precisely,

Tornheim (1955) showed L ⊂M;

Freiman (1968) showed L 6=M.

Question

How large is the difference M\L?
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A lower bound on dimH(M\L)

The difference M\L has zero Lebesgue, i.e., leb(M\L) = 0. Therefore
one can ask what is dimH(M\L)?

Theorem (Matheus-Moreira)

M\L contains a (diffeomorphic) copy of E2. In particular,
dimH(M\L) ≥ dim(E2)

Corollary

dimH(M\L) ≥ 0.513 · · · (to 200 decimal places ...)
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An upper bound on dimH(M\L)

Question

Can we get an upper bound on dimH(M\L)?

Matheus and Moreira developed a method which is based on the
Hausdorff dimension of sets given by continued fraction expansions with
restrictions. Using this they estimated.

Theorem (Matheus-Moreira)

dimH(M\L) < 0.9869...

They also conjectured

dimH(M\L) < 0.888

which is true:

Theorem (P.-Vytnova)

dimH(M\L) < 0.882325
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Bonus Application: Lowest Eigenvalue of the eigenvalue

The two dimensional hyperbolic space can represented as the Poincaré
disc

D2 = {z ∈ C : |z | < 1}
with the Poincaré metric ds2 = 4(1− |z |2)−2.

McMullen considered the group Γ = 〈R1,R2,R3〉 of isometries generated
by reflections R1,R2,R3 : D2 → D2 in three symmetrically placed
geodesics.

γ1

γ2

γ3

R2(γ1)

R3(γ1)

R1

R2

R3

XΓ

The limit set XΓ is the Cantor set accumulation points of Γ0 in ∂D.
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Lowest Eigenvalue of the Laplacian

The quotient space D2/Γ is a surface of constant curvature κ = −1.

The smallest eigenvalue λ of the Laplacian −∆ : L2(D2/Γ)→ L2(D2/Γ)
is related to dimH(XΓ) by

λΓ = min

{
dimH(XΓ) (1− dimH(XΓ)) ,

1

4

}
.

Using the method we have described one can easy compute:

Theorem

The dimension of the limits set of Γ satisfies

dimH(XΓ) = 0.295546475± 5 · 10−9

and the smallest value of the Laplacian satisfies

λΓ = 0.2081987565± 2.5 · 10−9

And the result can easily be made much more accurate.
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The end

Thank you for your time

29 / 29


