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Abstract

These notes correspond to two separate mini-lecture courses presented at the Banach Centre,
Warsaw, in the Spring of 2023. However, thery are united by a common theme was the study of
hyperbolic dynamical systems and ideas from Thermodynamic Formalism and its applications.
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Part I
Equilibrium measures, pressure and resonances

1 Introduction

We begin with some classical background and motivation on theomodynamic formalism, before devel-
oping these ideas in the particular context of the speed of mixing of hyperbolic systems and applications
to geodesic flows.

1.1 Overview of topics

In the first part of these notes we want to consider a selection of the following topics related to
Equilibrium states (or Gibbs measures) for Anosov systems.

1. Gibbs measures for Anosov diffeomorphisms (and how to construct them).

2. The pressure for functions (and what information it gives).

3. Examples of the speed of mixing (for toral auromorphisms).

4. Entropy and geodesic flows.

As a prelude to this we begin with some historical context.

1.2 A little statistical mechanics

The historical origins of Equilibrium measures (or Gibbs measures), pressure, transfer operators give
some insight into the dynamical applications, but let us begin with a dash of motivating statistical
mechanics. In particular the Ising model (from the PhD thesis of E. Ising (1925) which was supervised
and influenced by W. Lenz).

This was originally proposed as a model for “ferromagnetism”. Unfortuntately, it isn’t very suc-
cessful physically in this respect in one dimension (where it is easier to analyze) but instead leads to
a very successful dynamical application.

• Assume that we have N “sites” corresponding to Z/NZ = {0, 1, · · · , N − 1}.
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• Each site i is occupied with particles with one of two possible states (“spins”) denoted by σi ∈
{−1, 1}, for i ∈ Z/NZ.

Assume that only neighbouring particles (at sites i and i+ 1), say can interact and that their contri-
bution to the energy is −Jσiσi+1 ∈ {−J, J}, for some fixed value J > 0 (“the interactions”).

For each of the 2N possible configurations σ = (σ1, · · · , σn) ∈ {−1, 1}Z/NZ that can occur we can
associate their total contribution to the energy in the form

H(σ) = −J
N−1∑
i=0

σiσi+1.

The Boltzmann distribution is a probability distribution on the configurations σ ∈ {−1, 1}Z/NZ of the
form

exp (−βH(σ))

ZN

where β > 0 (related to the “inverse temperature”) and

ZN =
∑

σ∈{−1,1}Z/NZ

exp (−βH(σ))

is the normalizing constant (the “partition function”) coming from summing the exponential of this
quantity over the 2N possible states . In order to evaluate ZN explicitly, we can introduce a 2× 2 real
matrix (a “transfer matrix”) given by

T =

(
eJβ e−Jβ

e−Jβ eJβ

)
.

Finally, we can rewrite the partition function as

ZN =
∑

i1,··· ,iN−1

exp

(
−J

N−1∑
i=0

σiσi+1

)
= trace(TN ).

A simple calculation gives that the eigenvalues λ1 > λ2 are:

λ1 = 2 cosh(βJ) and λ2 = 2 sinh(βJ).

We can get rid of the value N by taking a limit (“thermodynamic limit” ):

lim
N→+∞

1

N
logZN = log λ1.

This quantity is called the free energy. In the present one dimensional setting it is disappointing from
the point of view of physicists that small changes in β never lead to abrupt changes in the system, e.g.,
the value λ1 (which would have been a “phase transition”). Although this phenomenon can occur in
higher dimensions, this is not the dynamical setting we want to consider.

Of course many of these concepts have evolved into familiar objects in the ergodic theory of so-called
thermodynamic formalism: Shift spaces (“the configuration spaces”); function spaces (“interactions”);
the pressure function (“free energy”); the transfer operator (“transfer matrix”); Gibbs measures (from
the “Boltzmann distribution”). Whereas this original source is interesting, it probably doesn’t help
directly in what now follows - and can now be safely forgotten.
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2 Hyperbolic diffeomorphisms and equilibrium states

We need a suitable family of transformations and measures which, inspired by the previous physical
motivation, lead to interesting results. The basic class are hyperbolic diffeomorphisms (particularly
Anosov diffeomorphisms).

2.1 Hyperbolic attractors and Anosov diffeomorphisms

We recall the general definition of a hyperbolic attractor. Let f : M →M be a C1+α diffeomorphism
on a compact Riemannian manifold, and let X ⊂M be a closed f -invariant set.

Definition 2.1. The C∞ map f : X → X is called a mixing hyperbolic attracting diffeomorphism if:

1. there exists a continuous splitting TXM = Es ⊕ Eu and C > 0 and 0 < λ < 1 such that

‖Dfn|Es‖ ≤ Cλn and ‖Df−n|Eu‖ ≤ Cλn

for n ≥ 0 (hyperbolicity);

2. there exists an open set X ⊂ U ⊂M such that X = ∩∞n=0f
nU (attractor);

3. For non-empty open sets U, V ⊂M there exists n ∈ Z with f−nU ∩V 6= ∅ ( topologically mixing);
and

4. the periodic orbits for f : X → X are dense in X.

In the particular case X = M the diffeomorphism f is a mixing Anosov diffeomorphism. In particular,
we have that:

Definition 2.2. A diffeomorphism f : M →M is called a mixing Anosov diffeomorphism if:

1. there exists a continuous splitting TM = Es ⊕ Eu and C > 0 and 0 < λ < 1 such that

‖Dfn|Es‖ ≤ Cλn and ‖Df−n|Eu‖ ≤ Cλn

for n ≥ 0; and

2. f : M →M is topologically mixing.

We will recall two simple examples. The first is the familiar example of the Arnol’d CAT map.

Example 2.3 (A CAT map). Let M = T1 × T1, writing T1 = {z ∈ C : |z| = 1}. We can then define
an Anosov diffeomorphism f : T1 × T1 → T1 × T1 by

f(z, w) = (z2w, zw).

This is one of many possible examples of linear hyperbolic toral automorphisms. Furthermore, any
nearby diffeomorphism will also be Anosov (by structural stability [45]). However, we can also consider
an explicit class of such (non-linear) maps which arise from replacing some of the terms by Blaschke
products. Thus a slightly more exotic example than the CAT map is the following.

Example 2.4 (Blacshke products). Let Bλ : T1 × T1 → T× T1 be defined by

Bλ(z, w) =

((
z + λ

1− λz

)
zw,

(
z + λ

1− λz

)
w

)
where |λ| < 1. Fortunately, Blaschke products are well known for preserving T1 making these maps
well defined. These maps Bλ can be shown to be Anosov and area preserving [44], [37]. In the special
case λ = 0 this reduces to Example 2.3.
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A classical example of an attracting hyperbolic diffeomorphism (which is not Anosov) is the
Solenoid. Let D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Example 2.5 (Solenoid). We can define M = D2 × T1 and f : X → X is the (natural) extension
of the doubling map on the circle. This can be constructed by mapping the solid torus M inside itself
(interior of M plays the role of the neighbourhood U) in Definition 2.1, see [47] and [17], §7.1. More
concretely, let f : M →M be defined by

f(z, x, y) =

(
z2,

x

10
+

cos θ

2
,
x

10
+

sin θ

2

)
.

It is easily seen that f(M) ⊂ int(M) and the f -invariant set Λ = ∩∞n=0f
nint(M) is an attractor (see

[17], Proposition 17.1.2). In this example the unstable bundle Eu is one dimensional and the stable
manifold is two dimensional. The SRB induces the usual Lebesgue measure on the unstable manifolds,
which are locally parameterized by the θ-coordinate and projects down to the Haar measure on the
circle.

2.2 Invariant measures and Equilbrium states

We briefly recall some background material. Let Mf (X) denote the space of f -invariant probability
measures, i.e., µ such that µ(f−1B) = µ(B) for any Borel set B ⊂ X.

Lemma 2.6 (Alaoglu’s Theorem). Mf is compact with respect to the usual weak star topology (i.e.,
a sequence of measures µn → µ in the weak star topology as n → +∞ if for any continuous function
F ∈ C(X,R) we have that

∫
Fdµn →

∫
Fdµ as n→ +∞).

We will be interested in a particular (sub)class of invariant probability measures, which will be the
equilibrium measures.

Given a (Hölder) continuous function G : X → R there are various ways to describe the associated
equilibrium measures. One standard approach (following Ruelle and Walters) is to use the following
variational principle.

Definition 2.7. Given a continuous function G : X → R we say that an f -invariant probability
measure µG ∈Mf is an equilibrium measure for G if

h(µG) +

∫
GdµG = sup

{
h(µ) +

∫
Gdµ : µ ∈Mf (X)

}
(2.1)

where h(µ) is the entropy (or Komogorov-Sinai invariant) for µ ∈Mf (X), i.e., µG is a measure which
maximizes the sum of the entropy and the integral of G, over all f -invariant measures. [38], [46].

The value attained by the supremum in (2.1) above is called the pressure and denoted P (G).

Remark 2.8. For hyperbolic maps the pressure is also characterized by the formula:

P (G) := lim
n→+∞

1

n
log

( ∑
Tnx=x

exp

(
n−1∑
k=0

G(T kx)

))

which looks reminiscent of the free energy for statistical physics described in §2.1.

There always exists at least one equilibrium state, and under an additional Hölder regularity as-
sumptions on G there will be a unique equilibrium state. We formally state this in the following
proposition.
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Proposition 2.9. If G : X → R is continuous then there is at least one measure µ = µG realizing
the supremum above. Furthermore, if G : X → R is Hölder continuous (e.g., the restriction of a C1

function on M) then there is a unique measure µ = µG realizing the supremum above.

The existence is a consequence of the map Mf (X) 3 µ 7→ h(µ) +
∫
Gdµ being upper semi-

continuous in the weak star topology and the spaceMf (X) being weak star compact (by Lemma 2.6).
(The uniqueness proof for Hölder functions can be found in [6].)

Remark 2.10. There are various ways other to construct µG when G is Hölder continuous. For
example we can consider the family of probability measures

µ
(n)
G =

∑
Tnx=x exp

(∑n−1
k=0 G(T kx)

)
δx∑

Tnx=x exp
(∑n−1

k=0 G(T kx)
) for n ≥ 1,

where δx is a Dirac measure supported on the periodic point x. Then µ
(n)
G converges to µG in the weak

star topology. This is reminiscent of the statistical mechanics background in §2.1.

In the next subsection we consider the best known example of an equilibrium state.

2.3 The SRB measure and its construction

There is a particular example of a natural invariant measures, namely the SRB measures (named after
Sinai-Ruelle-Bowen) which is a measure absolutely continuous on the unstable manifolds.

In the special case that f : M →M is an Anosov diffeomorphism which preserves the Riemannian
volume, say, then the SRB measure will be precisely the (normalized) volume. More generally, if f
does not preserve the volume then the SRB measure will be a f -invariant probability measure which
induces a measure equivalent to the volume on pieces of unstable More precisely, let W u

loc(x) be a small
piece of unstable manifold defined, for example, by

W u
loc(x) = {y ∈M : d(fnx, fny) ≤ ε,∀n ≥ 0}

(with ε > 0 chosen sufficiently small). This is an embedded disk of dimension dimEu.
The SRB measure is an equilibrium state for an appropriate Hölder continuous function, which we

now recall.

Theorem 2.11. Let G(x) = Φ(x) := − log | det(Df |Eux)| then the associated (unique) equilibrium state
µG is the SRB measure.

Remark 2.12. The potential Φ is sometimes called the expansion coefficient.

Let λ denote the (normalized) volume on W u
loc(x). It follows from the following very classical result

there always exists at least one invariant measure (which can be constructed using λ, or any other
[non-invariant] probability measures).

Theorem 2.13 (Krylov–Bogolyubov). For any homeomorphism f of a compact space, the weak star
limit points of

1

n

n−1∑
k=0

fk∗ λ, n ≥ 1,

are f -invariant. (Here we denote by fk∗ λ(A) = λ(f−kA) the push forward measure supported on
fkW u

δ (x).)
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However, in the context of hyperbolic attractors much more is true. There is a famous construction
due to Sinai (for the particular case of Anosov systems) and Ruelle (in the general setting of hyperbolic
attractors). This says that the Sinai-Ruelle-Bowen measure µSRB arises using the push forward of the
normalized volume λ on any piece of local unstable manifold W u

δ (x).

Theorem 2.14 (Sinai [42], Ruelle [38]). Let f : X → X be a C1+α topologically mixing hyperbolic
attractor. Given x ∈ X and δ > 0 consider a (normalized) volume measure λ = λWu

δ (x) on a piece of
local unstable manifold W u

δ (x), say. Then the averages

µSRBn =
1

n

n−1∑
k=0

fk∗ λ, n ≥ 1,

converge in the weak star topology to µSRB as n→ +∞1 [45].

2.4 Constructing other equilibrium measures

It is natural to ask about modifying the Sinai construction to construct other Equilibrium states.

Question. Let G : M → R be a Hölder continuous function. Can one construct the unique equilibrium
state µG by modifying the Sinai construction for the SRB measure?

One solution to this problem was presented by Climenhaga, Pesin and Zelerowicz who replaced the
volume λ on the unstable manifold by a new reference measure on W u

δ (x) defined in terms of G[?].
However, we want to consider an alternative approach where λ is instead replaced by a family of

absolutely continuous measures λn � λ (where the density dλn
dλ is defined in terms of G and changes

with n) [35]:

Theorem 2.15. Let f : X → X be a C1+α topologically mixing hyperbolic attracting diffeomorphism
and let G : X → R be a Hölder continuous function. Given x ∈ X and δ > 0 consider the sequence of
probability measures (λn)∞n=1 supported on W u

δ (x) and absolutely continuous with respect to the induced
volume λ = λWu

δ (x) with densities

dλn
dλ

(y) :=
exp

(∑n−1
i=0 (G− Φ)(f iy))

)
∫
Wu
δ (x) exp

(∑n−1
i=0 (G− Φ)(f iz)

)
dλ(z)

for y ∈W u
δ (x). (2.2)

Then the averages

µn :=
1

n

n−1∑
k=0

fk∗ λn, n ≥ 1, (2.3)

converge in the weak star topology to µG.

In some vague sense we are compensating for changing from the SRB measure (with potential Φ)
to another measure (with potential G) by changing the weighting by the difference.

Example 2.16 (SRB-measure). If we let G = Φ then λn = λ (n ≥ 1) and this just reduces to Sinai’s
theorem.

1Sinai and Ruelle actually show the stronger result that the measures fk∗ λ converge to µSRB in the weak star topology
without the need to average. Moreover, the topological mixing hypothesis is not restrictive because of the Smale spectral
decomposition theorem [45].
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Example 2.17 (Bowen-Margulis measure). If we let G = 0 be identically zero then

dλn
dλ

(y) :=
exp

(
−
∑n−1

i=0 Φ)(f iy)
)

∫
Wu
δ (x) exp

(
−
∑n−1

i=0 Φ(f iz)
)
dλ(z)

for y ∈W u
δ (x).

Then the averages

µn :=
1

n

n−1∑
k=0

fk∗ λn, n ≥ 1,

converge in the weak star topology to a measure µ0 which is precisely the measure which maximizes the
entropy (i.e., it is the Bowen-Margulis measure of maximal entropy).

It is clear from the statement that the construction is independent of the choice of x and δ > 0.

W u
δ (x)

fkW u
δ (x)

λn

fk∗ λn

Figure 1: A representation of the push forward of the measure λn on W u
δ (x) by fk.

The existence of limit points follows from the weak star compactness of Mf (X). One of the key
ingredients in the proof is:

Proposition 2.18. Let f : X → X be a mixing hyperbolic attracting diffeomorphism. For any contin-
uous function G : X → R we have

P (G) = lim
n→+∞

1

n
log

∫
Wu
δ (x)

exp

(
n−1∑
k=0

(G− Φ)(fky)

)
dλWu

δ (x)(y). (2.4)

The essence of the proof of the theorem is to show that if µ is a limit point of {µn} then it satisfies
h(µ)+

∫
Gdµ ≥ P (G) (and thus there must be equality by the definition of pressure, therefore implying

that µ = µG). To achieve this the idea is the following.

1. We recall a useful inequality for the entropy: Given a finite measurable partition P = {P1, · · · , Pk}
and a probablity measure ν we can write

qHλn

(
n−1∨
h=0

f−hP

)
≤ nHµn

(
q−1∨
i=0

f−iP

)
+ 2q2log Card(P)︸ ︷︷ ︸

=:k

. (2.5)

where Hν(P) = −
∑k

i=1 ν(Pi) log ν(Pi). and 0 < q < n. 2

2. One then has that if µnk → µ then combining (2.4) and (2.5) leads to

P (G) ≤ 1

q
Hµn

(
q−1∨
i=0

f−iP

)
+

∫
Gdµ.

2This follows the lines of the Misiurewicz proof of the variational principle [32].
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3. Finally, letting q → +∞ we have

P (G) ≤ 1

q
Hµ

(
q−1∨
i=0

f−iP

)
+

∫
Gdµ

→ hµ(P) +

∫
Gdµ ≤ hµ(f) +

∫
Gdµ,

since hµ(f) = supP{hµ(P)}.

Moreover, one sees even from this very short sketch that there is a slightly stronger result when we
assume only that G is continuous (and thus we know that equilibrium states exist, but we don’t know
that they are unique):

Theorem 2.19. If G : X → R is continuous then the weak star accumulation points for the measures
λn (n ≥ 1) are equilibrium states for G.

These constructions could also be done by using Markov partitions and proving a corresponding
result subshifts of finite type (although that is not how it was originally proved).

2.5 Results for attracting flows

The corresponding results are true for attracting hyperbolic flows. Moreover, the definitions and
statements are what one might expect. Let φt : M → M (t ∈ R) be a C1+α flow on a compact
Riemannian manifold, and let X ⊂M be a closed φ-invariant set (φt(X) = X for all t ∈ R).

Definition 2.20. The flow φt : X → X is called a mixing attracting hyperbolic flow if:

1. there exists a continuous splitting TXM = E0⊕Es⊕Eu where E0 is a one dimensional subbundle
tangent to the flow orbits and there exist C > 0 and 0 < λ < 1 such that

‖Dφt|Es‖ ≤ Cλt and ‖Dφ−t|Eu‖ ≤ Cλt

for t ≥ 0 (Hyperbolic);

2. there exists an open set X ⊂ U ⊂M such that X = ∩t∈RφtU (Attractor);

3. for non-empty open sets U, V ⊂ X there exists T > 0 such that φtU ∩ V 6= ∅ (Mixing)

4. the periodic orbits for φt : X → X are dense in X; and

5. X contains no fixed points and X is not a single closed orbit.

We can define equilibrium states and states for flows by analogy with those for diffeomorphisms.

Definition 2.21. Given a continuous function G : X → R we say that an f -invariant probability
measure µG ∈Mφ(X) is an equilibrium measure for G if

h(µG) +

∫
GdµG = sup

{
h(µ) +

∫
Gdµ : µ ∈Mφ(X)

}
(2.6)

where h(µ) is the entropy (or Komogorov-Sinai invariant) for µ ∈Mφ(X), i.e., µG is a measure which
maximizes the sum of the entropy and the integral of G, over all φ-invariant measures [38], [46].
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The value attained by the supremum in (2.1) above is called the pressure and denoted P (G).
We can associate a Hölder continuous function Φ : X → R defined by

Φ(x) = lim
t→0

1

t
log Jac(φt|Eux).

The associated equilibrium state for Φ : X → R is the Sinai-Ruelle-Bowen measure µΦ and we denote
by µuΦ the induced measure on unstable leaves W u

δ (x).
The corresponding result to Theorem 2.15 for constructing equilibrium states for hyperbolic flows

is the following:

Theorem 2.22. Let φt : X → X be a hyperbolic attracting flow and G : X → R a continuous potential.
For some δ > 0 sufficiently small we can define the measures supported on W u

δ (x) by

λT (A) =

∫
Wu
δ (x)∩A e

∫ T
0 (G−Φ)(φvy)dvdµuΦ(y)∫

Wu
δ (x) e

∫ T
0 (G−Φ)(φvy)dvdµuφ1(y)

for Borel sets A ⊂M . Taking the average of the push forwards,

µT =
1

T

∫ T

0
(φt)

∗λTdt, T > 0,

the weak star limit point of this sequence at T → +∞ are equilibrium states for G.

If G is only assumed to be continuous then we have the analogue of Theorem 2.19.

Theorem 2.23. If G : X → R is continuous then the weak star accumulation points for the measures
λT as T → +∞ are equilibrium states for G.

Remark 2.24. There are some similar results for partially hyperbolic maps and flows in the particular
case that the map(s) act as isometries on the neutral submanifolds.

Question What is the correct formulation of these results for general partially hyperbolic diffeomor-
phisms?

We should also address the more general hyperbolic setting. This leads to the following questions.

Question What happens if we take some other reference measure λ (e.g. Perhaps λ could be related
to the Hausdorff measure)? What happens if f is not an attractor?

In this spirit we can consider below the more general setting of subshifts of finite type and other
Gibbs measures. These then translate into results for more general hyperbolic sets (via Markov parti-
tions, for example).

3 Subshifts of finite type

The symbolic analogue of hyperbolic diffeomorphisms are subshifts of finite type. We briefly recall the
definition. Let A be a k × k matrix (k ≥ 2) with entries either 0 or 1.

Definition 3.1. We define the two sided shift space ΣA by

ΣA = {x = (xn)∞−∞ ∈ {1, . . . , k}Z : A(xn, xn+1) = 1, n ∈ Z},

where A is an aperiodic k × k matrix, and the shift map σ : ΣA → ΣA is defined by (σx)n = xn+1 (for
n ≥ 0).
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In particular, the shift map is topologically mixing if A is aperiodic (i.e., AN > 0, for N sufficiently
large). We will also need a metric on ΣA (in order to describe the Hölder properties of potentials):

Definition 3.2. For θ ∈ (0, 1), we will use the metric on ΣA defined by

d(x, y) =

{
θk when x 6= y and k = inf{|n| : xn 6= yn}
d(x, x) = 0.

In many cases we can model hyperbolic diffeomorphisms by subshifts of finite type and translate
results from this symbolic setting (via Markov partitions).

3.1 Equilibrium measures for subshifts

We recall that equilibrium states for (Hölder) continuous probabilities on subshifts can be defined in
much the same way as for hyperbolic diffeomorphisms.

Definition 3.3. Given a continuous function G : ΣA → R we say that an f -invariant probability
measure µG is an equilibrium state for G if

h(µG) +

∫
GdµG = sup

{
h(µ) +

∫
Gdµ : µ ∈Mσ(ΣA)

}
(3.1)

where we recall thatMσ(ΣA) denotes the space of f -invariant probability measures on ΣA, i.e., µG is a
measure which maximizes the sum of the entropy and the integral of G, over all σ-invariant measures.
[38], [46].

The value attained by the supremum in (3.1) is (again) called the pressure and denoted by P (G).
We can consider sets of a special form:

Definition 3.4. For each n ∈ N, we denote by

[i−n, . . . , in] = {x = (xn)∞−∞ ∈ ΣA : x−n = i−n, . . . , xn = in}

a cylinder in ΣA (where i−n, · · · , in ∈ {1, · · · , k} and A(ij , ij+1) = 1 for −n ≤ j ≤ n− 1).

There is an alternative characterization of the Equilibrium measures as Gibbs measures (which is
more reminiscent of the statistical mechanics origins) which we won’t need in the sequel:

Remark 3.5 (Gibbsian property of Hölder functions). Given a Hölder continuous potential φ : ΣA → R
we can deduce that the associated unique equilibrium state µφ has a Gibbsian property of the following
form. There exists C ≥ 1 such that for any x = (xn)∞−∞ ∈ ΣA and n > 0:

1

C
≤ µG ([i−n, . . . , in])

exp
(
−(2n+ 1)P (G) +

∑n
j=−nG(σjx)

) ≤ C.
3.2 Changing Equilibrium measures for subshifts

We can mimic Theorem 2.15 (by “generalizing” Sinai’s theorem from SRB measures to Equilibrium
states). However, here there may not be a canonical reference measure (on small pieces of unstable
manifolds).

The analogue of the (small) pieces of unstable manifold in the symbolic setting are the following.

11



Definition 3.6. For any δ > 0 sufficiently small there exists N = N(δ) such that x = (xn)∞n=−∞ we
have

W u
δ (x) = {y = (yn)∞n=−∞ ∈ ΣA : yi = xi for i ≤ N}

is a local unstable manifold (and diam(W u
δ (x)) < δ).

Remark 3.7. In the case that N = 0 then W u
δ (x) can be identified with sequences y = (yn)∞n=−∞ for

which xi = yi for i ≤ 0.

In the absence of a natural reference measure it is more natural to take two different equilibrium
states (for different Hölder continuous functions) and then try to convert one equilibrium state to
another.

We next need to define the analogue of the density of the sequence of measures. To this end we
introduce the following notation.

Definition 3.8. Given continuous potentials G1, G2 : ΣA → R we can consider the weights

Sn(G2 −G1)(x) :=

n−1∑
i=0

(G2 −G1)(σix) for x ∈ ΣA.

We can proceed as in the case of hyperbolic attractors. Assume that G1 is Hölder continuolus function
and G2 is continuous. Let µG1 be the unique equilibrium state for a function G1. Then

(i) We associate to µG1 the (normalized) induced measure λG1 supported on the unstable manifold
W u
δ (x) ⊂ ΣA.

(ii) We can consider the sequence of probability measures λn,G2−G1 on ΣA (n ≥ 1) by normalizing
eSn(G2−G1)λG1 .

Then the averages of the pushforwards of the measures λn,φ2−φ1 is an equilibrium state for φ2. This is
formulated more precisely in the following theorem.

Theorem 3.9. Let µG1 be the equilibrium state for a Hölder function G1. We can define a family of
measures λn,G2−G1 supported on W u

δ (x) ⊂ ΣA (x ∈ ΣA) by

dλn,G2−G1

dλG1

(y) =
eSn(G2−G1)(y)∫

Wu
δ (x)w

Sn(G2−G1)(y)dλuG1
(y)

, n ≥ 1.

for y ∈ ΣA. Then the averages

µn,G2−G1 =
1

n

n−1∑
i=0

(σi)∗λn,G2−G1 , n ≥ 1,

of pushforwards (supported on σiW u
δ (x)) converges to the unique equilibrium state µG2.

As before, if we assume that G1 : XA → R is Hölder continuous but only assume G2 : XA → R to
be continuous then we have the following.

Theorem 3.10. Assume G1 is Hölder continuous and G2 is a continuous function. Let µG1 be the
equilibrium state for the Hölder continuous function G1. We can define a family of measures λn,G2−G1

supported on W u
δ (x) ⊂ ΣA by

dλn,G2−G1

dλG1

(y) =
eSn(G2−G1)(y)∫

Wu
δ (x)w

Sn(G2−G1)(y)dλuG1
(y)

, n ≥ 1.

12



Then the weak star limit points of the averages

µn,G2−G1 =
1

n

n−1∑
i=0

(σi)∗λn,G2−G1 , n ≥ 1,

of pushforwards (supported on σiW u
δ (x)) are equilibrium states for G2.

On a more philosophical level we might take G1 = 0 and therefore µG1 to be the measure of maximal
entropy. Therefore Theorem 3.10 might be viewed as a new construction of Gibbs measure for (other)
Hölder continuous potentials.

To illustrate Theorem 3.9 we can consider a very simple example in the case of a full shift on two
symbols and simple locally constant functions G1, G2 : ΣA → R (i.e., functions that only depend on
finitely many terms from x = (xn)∞n=−∞ and thus are automatically Hölder continuous).

Example 3.11. Let Σ = {0, 1}Z and let σ : Σ→ Σ be the full shift on two symbols given by σ(xn)n∈Z =
(xn+1)n∈Z. Let G1 : X → R be the constant function G1 = − log 2, say3, then the associated unique

equilibrium measure is the Bernoulli measure µG1 =
(

1
2 ,

1
2

)Z
. For p ∈ (0, 1), we shall consider the

locally constant potential, G2 : Σ→ R defined at x = (xn)+∞
n=−∞ by

ϕ2(x) =

{
log p x0 = 0

log(1− p) x0 = 1

then the associated unique equilibrium measure associated to G2 is the Bernoulli measure µG2 =
(p, 1− p)Z. Given any point x = (xn)∞n=−∞ ∈ Σ we can let

W u
loc(x) = {y = (yn)∞n=−∞ : yi = xi for i ≤ −1}

which we can identify as W u
loc(x) = {x−} × Σ+ where Σ+ = {0, 1}Z+ and x− = (xn)−1

n=−∞. The induced

measure µG1 on Σ corresponds to the Bernoulli measure
(

1
2 ,

1
2

)Z+ on Σ+ = {0, 1}Z+
. We can explicitly

write

eSnG2(y)−SnG1(y) =
1

2n
p#{0≤i≤n−1 : yi=0}(1− p)#{0≤i≤n−1 : yi=1}

=
µG2 [y0, . . . , yn−1]

µG1 [y0, . . . , yn−1]

where we denote [y0, · · · , yn−1] = {(zk)∞k=−∞ : zi = yi for 0 ≤ i ≤ n − 1}. We can also assume the
simplifications

1. P (G1) = P (G2) = 0;

2. We can write ∫
Wu

loc(x)
eSnG2(y)−Snϕ1(y)dµuG1

(y)

=
∑

[y0,...,yn−1]

µG1([y0, . . . , yn])
µG2 [y0, . . . , yn−1])

µG1 [y0, . . . , yn−1])
= 1;

and

3We recall that adding a constant or coboundary doesn’t change the equilibrium, so we could have taken G1 = 0
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3. if we let A = [z−M , · · · , zN ] then for n ≥M we can write

(σn)∗λn(A) =
∑

[y0,...,yn−1]

µφ1(σ−n(A) ∩ [y0, . . . , yn−1])
µG2 [y0, . . . , yn−1])

µG1 [y0, . . . , yn−1])

=
∑

[y0,...,yn−1]

1

2N+M+1
p#{−M≤i≤N : zi=0}(1− p)#{−M≤i≤N : zi=1}

= µG2(A).

Thus we finally conclude that (σn)∗λn(A) = µG2(A) for n ≥M , which is consistent with Theorem 1.1.

The proof of Theorem 3.10 follows the same pattern as the proof of Gibbs measures for attractors.
The following result relates the difference of the two pressures P (G2), P (G1) to a certain growth rate
and is key to the proof of Theorem 3.10.

Proposition 3.12. Let G1, G2 : Σ+
A → R be (Hölder) continuous potentials. Then

P (G2) = P (G1) + lim
n→∞

1

n
log

∫
Wu

loc(x)
eSn(G2−G1)(y)dµuG1

(y).

3.3 Rigidity and flexability of pressure

The questions of rigidity (i.e., how much data specifies the system) and flexibility (i.e., which charac-
teristic properties can be achieved) are very popular in analysis and geometry. For example, a classical
example is the Kac problem: “Can you hear the shape of a drum?” (i.e, whether the spectrum of
the laplacian on a Riemann surface, with negative Euler characteristic, determines the metric). The
answer in this case is “no”. More recent dynamical formulations and results are due to Erchenko and
Katok (for Anosov systems) [9].

Inspired by these developments, we want to recall a wellknown problem.

Definition 3.13. Given a Hölder continuous function G : ΣA → R we can consider the function
pG : R+ → R defined by

pG(t) := P (tG) = sup

{
h(µ) + t

∫
Gdµ : µ ∈Mσ(ΣA)

}
for t > 0.

This can be viewed as a one parameter sub-family of P : Cα(ΣA) → R restricted to R+G :=
{tG : t ∈ R} ⊂ Cα(Σ).

Question. Does a knowledge of the function pG(t) on R determine G ∈ Cα(ΣA)?

The answer at this level of generality is clearly “no”: Clearly we can replace G by G = G+ u ◦ σ − u
for any u ∈ Cα(ΣA) and get the same function (i.e., pG(r) = pG+uσ−u(t)). Moreover, one can imagine
examples with “automorphisms” on symbols that also give the same function, etc.

Each function pG : R+ → R has a number of necessary properties:

1. The function t 7→ pG(t) is real analytic (i.e., there is a power series expansion with non-zero radius

of convergence at each point t ∈ R). In particular, it is C∞ and the derivatives p
(n)
G (t) := dnpG(t)

dtn

exist for all n ≥ 1. 4

4The proof of this result by Ruelle used families of transfer operators Lt and characterized the pressure in terms of
the isolated maximal eigenvalue of a such an operator operator.
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2. A second property is that pG(t) is convex, The convexity comes by showing that σ2(t) := p
(2)
G (t) ≥

0. In particular one can write

σ2(t) =
∑
n∈Z

(∫
G ◦ σn.GdµtG −

(∫
GdµtG

)2
)

= lim
n→+∞

1

n

∫ n−1∑
j=0

G(σjx)− n
∫
GdµtG

2

dµtG(x) ≥ 0.

3. Finally, the supporting line (i.e., tangent lines to (t, pG(t))) intersect the vertical axis in a closed
bounded subinterval in [0,+∞).

Remark 3.14. The value σ2(t) has an alternative interpretation in terms of a central limit theorem.
Let µtG be the Equilibrium measure for tG ∈ Cα(ΣA)→ R then for real numbers α < β we have that

µtG

x ∈ ΣA : α <
n−1∑
j=0

G(σinx)−
∫
GdµtG < β




→ 1√
2πσ2

∫ β

α
e−u

2/2σ2
du as n→ +∞.

The following is one of the more recent formulations of a well known question:

Question [Kucherenko-Quas]. Let α > 0. Can a convex analytic function F : (α,+∞) → R with its
supporting lines intersecting the vertical axis in a closed bounded interval in [0,+∞) always be realised
by the pressure function pG(t) = F (t) of some Hölder function G on a subshift of finite type?

Apparently, excluding 0 from the domain of F (t) helps eliminate extra conditions that F (0) corre-
spond to the topological entropy (and thus its exponential would be an algebraic integer).

Kucherenko and Quas established a somewhat surprising related result where they showed the
existence of a continuous function G corresponding to F (t) [21]:

Theorem 3.15 (Kucherenko-Quas). Given a convex analytic function F (t) with its supporting lines
intersecting the vertical axis in a closed bounded interval in [0,+∞) then it can be realised by the
pressure function pG(t) = F (t) of some continuous function G on a subshift of finite type.

However, this leaves open the original question of whether a Hölder function can always be found.
In this direction we have the following result relating the second, third and fourth derivatives of any
such function p(t) [26]:

Theorem 3.16. For any Hölder continuous function G on a full shift space there exists a constant
M = M(G) > 0 such that

√
2π3

(
p

(2)
G (t)

)3/2
|p(3)
G (t)| ≤ 9|p(3)

G (t)|+ 2|p(4)
G (t)|+ 3

√
2π3M

(
p

(2)
G (t)

)5/2

for any t > 0.

The proof is based on calculating formulae for P (n)(t) (n = 3, 4) which is based on expressions of
the form

P (3)(t) = lim
n→+∞

3

n

∫ n−1∑
j=0

G(f jx)− n
∫
Gdµt

3

H(x)dµ(x)

+ lim
n→+∞

1

n

∫ n−1∑
j=0

G(f jx)− n
∫
Gdµt

3

dµ(x)
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for some function H, and similar expressions for P (4)(t).
In particular, to answer the question of Kucherenko and Quas in the negative, it suffices to present

an example of a function F (t) whose derivatives do not satisfy point 1 above. An explicit example is

F (t) =
2t2 + 3t+ te−t

2
+ e−t

2

t
.

Kucherenko and Quas had an alternative approach to reach the same conclusion. [22].

4 Resonances

We now turn to the problem on how quickly mixing occurs in the hyperbolic diffeomorphism setting.

4.1 Speed of mixing

Given a diffeomorphism f : M → M and a f -invariant probability measure µ we can associate to
continuous “test functions” F1, F2 : M → R a correlation function

ρ(k) =

∫
F1 ◦ fk · F2 dµ−

∫
F1 dµ

∫
F2 dµ, k ≥ 0.

If µ is an equilibrium state for a Hölder continuous function and f is Anosov then the transformation
is mixing, i.e., ρ(k)→ 0 as k → +∞. Moreover, it is well known that when F1, F2 : M → R are Hölder
continuous, then this convergence is exponentially fast, i.e., there exist C > 0 and 0 < θ < 1 such that
|ρ(k)| ≤ Cθk for k ≥ 1.

Question. When can we say more about the convergence of ρ(k)→ 0 as k → +∞?

Ideally, we want to find cases such that for any ε > 0, there exist:

1. sequences of complex numbers {ρn}∞n=1 converging to 0; and

2. polynomials {pn}Nn=1

such that ∫
F1 ◦ fm · F2 dµ−

∫
F1 dµ

∫
F2 dµ =

N∑
n=1

pn(m)ρmn +O (εm) , for m ≥ 0 (4.1)

(where the degree of pn is determined by the multiplicity of ρn).

Definition 4.1. The values {ρn}∞n=1 can be called resonances

The following powerful result gives the existence of such expansions [11].

Theorem 4.2 (after Gouëzel-Liverani). For any C∞ mixing Anosov diffeomorphism f : M → M ;
a Gibbs measure µ for a C∞ potential G : M → R and C∞ test functions F1, F2 : M → R an
expansion of the above form (4.1) holds. Moreover, the values {ρn} are independent of the functions
F1, F2 : M → R.
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4.2 Examples

We can consider two examples of toral automorphisms described earlier. The first is particularly well
known.

Example 4.3 (Arnol’d CAT maps). In the case of the (linear) Arnol’d CAT map f : T1×T1 → T1×T1

given by f(z, w) = (z2w, zw) and the area µ we can consider F1, F2 : T1 × T1 → R. In this case, for
any ε > 0: ∫

F1 ◦ fk · F2 dµ−
∫
F1 dµ

∫
F2 dµ = O

(
εk
)
, for k ≥ 0

(i.e., there are no non-zero resonances). This example is easily analyzed using Fourier series for

F1(z, w) =
∑

(n,m)∈Z2

a(n,m)z
nwm and F2(x, y) =

∑
(n,m)∈Z2

b(n,m)z
nwm

and then ∫
F1 ◦ fm(z, w) · F2(x, y)dzdw −

∫
F1(x, y)dxdy

∫
F2(z, w)dzdw

=
∑

(n,m)∈Z2

an,mb(n,m)( 2 1
1 1 )

n .

The assumption C∞(T1×T1) guarantees that |a(n,m)|, |b(n,m)| = O
(
(n2 +m2)−N

)
for all N > 0 which

leads to an expression (4.1) where all the ρn vanish.

We would like to also examples where the values ρn are not identically zero. Interesting concrete
examples were introduced by Slipantschuk, Bandtlow and Just based on toral automorphisms and
Blaschke products [44]. We want to review some of these (and related) examples although we will take
a slightly different viewpoint.

Example 4.4 (Slipantschuk, Bandtlow and Just). Given λ with |λ| < 1, the Anosov diffeomorphism
Bλ : T1 × T1 → T1 × T1 defined by

Bλ(z, w) =

((
z + λ

1− λz

)
zw,

(
z + λ

1− λz

)
w

)
is area preserving. Moreover, the resonances {ρn} with respect to smooth functions f, g : T2 → R take
the form

{0, 1} ∪ {λl, λl : l ∈ N}.

We can also consider one parameter families based on of the simple(r) linear Anosov map (z, w) 7→
(zw, z) [37].

Example 4.5. For λ ∈ C with |λ| < 1 the Anosov map Tλ : T2 → T2 defined by

Tλ : (z, w) 7→
((

z + λ

1 + λz

)
w, z

)
.

is area preserving. (When λ = 0 this reduces to the linear map T0(z, w) = (zw, z).) For λ1 =
√
λ a

square root of λ we have

{0, 1} ∪ {ωmλ1λ
n | m,n ∈ N0, m+ n ≥ 1, ω = ±1}. (4.2)

Remark 4.6. Checking that the (perturbed) maps are still Anosov merely involves checking a condition
of Pujals-Shub [37].
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Figure 2: (i) A plot of the resonances of Tλ, for λ = 0.8e31iπ/50; (ii) The resonances of Tλ ◦ Tµ, for
λ = 0.9eiπ/4, µ = 0.65e6iπ/5; (iii) The resonances of Bλ, for λ = 0.99e37iπ/50.

We can also build new examples from these

Example 4.7. For λ, µ with |λ|, |µ| < 1 then under mild hypotheses Tλ ◦ Tµ has resonances

{0, 1} ∪
{
λmµn, λmµµn, λ

m
µµn, λ

m
µn | (m,n) ∈ N2

0 \ {(0, 0)}
}
.

The proof of these results is based on writing a suitable infinite matrix for the Koopman operator(s)
F ◦ F ◦ Tλ, etc., acting on suitable Banach spaces [44], [37].

5 Geodesic flows

An historically important example in ergodic theory is the geodesic flow on a surface of negative
curvature. This is a flow (hence the name) which takes place not on the two dimensional space V but
on the three dimensional space of tangent vectors of length 1 (with respect to the Riemannian metric
ρ).

γ

0 1

γ(0)

γ(1)

1

Figure 3: A geodesic arc on V

5.1 Definition of the geodesic flow

We can now introduce some dynamics. We actually want to define a flow on the compact three
dimensional manifold

M = SV := {v ∈ TV : ‖v‖ρ = 1}
which is the sphere bundle. To define a geodesic flow φt : M → M (t ∈ R) we can take v ∈ M
and choose the unique (unit speed) geodesic γv : R → V such that γ̇v(0) = v. We can then define
φt(v) := γ̇v(t).
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5.2 Topological entropy

For any flow φt : M → M we can associate the topological entropy h(φ) ≥ 0 (of the time one flow
φt=1) defined as follows [?].

Definition 5.1. Given T > 0 and ε > 0 we let N(T, ε) be the cardinality of the smallest finite set
X = X(ε) ⊂ M such that for any v ∈ M there exists v′ ∈ X such that sup0≤t≤T d(φtv, φtv

′) < ε. The
topological entropy is then given by

h(φ) := lim
ε→0

lim sup
T→+∞

1

T
logN(T, ε).

This value is always non-zero and finite.
Let us henceforth assume that V has a Riemannian metric of (strictly) negative curvature. In the

case of geodesic flows the topological entropy has a simple geometric interpretation.

Theorem 5.2 (Manning’s volume entropy, [27]). Let Ṽ be the universal cover for V (with the lifted

metric ρ̃). Fix any point x0 ∈ M̃ we let B(x0, R) := {x ∈ M̃ : d(x, x0) < R} and then

h(φ) = lim
R→+∞

1

R
log Areaρ̃(B(x0, R)).

Proof. In negative curvature when we consider the lift of the Riemannian metric to the universal cover
Ṽ . Then N(R, ε) can be used to give bounds on the area of an annulus in Ṽ with radius R and
width approximately ε. However, in negative curvature this has the same rate of growth as the area
Areaρ̃(B(x0, R)) of a ball of radius R

The following classical result shows the importance of topological entropy as an invariant.

Lemma 5.3. It two flows φ1,t : M1 → M1 and φ2,t : M2 → M2 are topologically conjugate then the
have the same topological entropy, i.e., h(φ1) = h(φ2).

5.3 Entropies of measures

Let µ be a φ-invariant probability measure (i.e., µ(φtB) = µ(B) for any Borel sets B ⊂ M and
µ(M) = 1). We can then associate the entropy 0 ≤ h(φ, µ) ≤ h(φ) of the measure µ (of the time one
flow φt=1).

Definition 5.4 (After A. Katok [15]). Given T > 0, δ > 0 and ε > 0 we let N(T, ε, δ) denote the
cardinality of the smallest finite set S = S(T, ε, δ) ⊂M such that

µ

({
v ∈M : ∃v′ ∈ S with sup

0≤t≤T
d(φtv, φtv

′) < ε

)
> 1− δ.

The entropy of the measure µ is then given by

h(φ, µ) := lim
δ→0

lim
ε→0

lim sup
T→+∞

1

T
logN(T, ε, δ).

We return to concentrating on geodesic flows. Our main example so far of an invariant measure so
far is the Liouville measure:

Example 5.5 (Liouville measure). We recall that the Liouville measure ν is the φ-invariant probability
measure equivalent to the volume . In the particular case that ρ0 is a metric of constant negative
curvature κ = −1 then h(φ, µ) = h(φ) = 1.
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There is another natural φ-invariant probability measure:

Example 5.6 (Measure of maximal entropy). There exists unique φ-invariant probability measure
µmax such that h(φ, µmax) = h(φ) . In the particular case, that ρ is a metric of constant negative
curvature then µmax is equal to the Liouville measure. (Moreover, they agree only when the metric ρ
has constant negative curvature).

There is now (another) classical result due to Katok relating entropies for different metrics.
Let us consider two metrics ρ1, ρ2 on a compact surface V . Let h(φ2) be the topological entropy for

the geodesic flow for (V, ρ1). Let h(φ1, µ1) be the entropy of the geodesic flow for (V, ρ1) with respect
to the measure µ1. We can then consider∫

‖v‖ρ1=1
‖v‖ρ2dµ1(v)

which measures the average change in the lengths of tangent vectors between different measures.

Lemma 5.7. There is an inequality

h(φ2) ≥

(∫
‖v‖ρ1=1

‖v‖ρ2dµ1(v)

)−1

h(φ1, µ1)

Proof. The idea of the proof is to get a lower bound on the topological entropy h(φ2) by constructing
orbit segments for φ2,t. This is done using ergodic theory for the geodesic flow φ1,t : M1 →M1 and ν1

and the function F : M1 → R
M1 3 v 7→ F (v) = ‖v‖ρ2 ∈ R

If we assume (for simplicity) that µ1 is ergodic then by the Birkhoff ergodic theorem then for almost
every (µ1) v ∈M1 and sufficiently large T :

1

T

∫ T

0
F (φ1,t(v)dt =

1

T

∫ T

0
‖φ1,t(v)‖ρ2dt→

(∫
‖v‖ρ1=1

‖v‖ρ2dµ1(v)

)
as T → +∞.

Thus for large T we have “most” orbit segments of φ1- length approximately T correspond to orbit
segments of φ2- length

T

(∫
‖v‖ρ1=1

‖v‖ρ2dµ1(v)

)
.

We can use these to get a lower bound on h(φ2).

This leads to the main rigidity result on entropy.

Theorem 5.8 (Katok Entropy Rigidity Theorem [16]). The topological entropy is minimised on metrics
of constant area at metrics of constant negative curvature (i.e., If ρ2 is a metric of negative curvature
and ρ1 is a metric of constant negative curvature with Areaρ1(V ) = Areaρ2(V ) then h(φ2) ≥ h(φ1)).

Proof. By Koëbe’s Theorem we can assume that ρ2 is conformally equivalent to a metric ρ1 of constant
negative curvature, i.e., ρ2 = f(x)ρ1, where f : V → R+ is a strictly positive smooth function.

Let ν1 be the Liouville measure for M1 (i.e., V with ρ1). By conformality we can write∫
‖v‖ρ1=1

‖v‖ρ2dν1(v) =

∫
V
f(x)dσ1(x) and

∫
V
f(x)2dσ1(x) = σ2(V ) = 1
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where σ1 and σ2 are the normalised areas on V (associated to ρ1 and ρ2, respectively). Thus∫
V
f(x)dσ1(x) ≤

(∫
V
f(x)2dσ1(x)

) 1
2

= 1

with equality if and only if ρ = 1.
If ρ1 is a metric of constant negative curvature then we know by Example 5.6 that h(φ1, µ1) = h(φ1).

We can then apply Lemma 5.7.

Remark 5.9. There are higher dimensional analogues of the Katok’s theorem due to Besson-Contreras-
Gallot [4].

5.4 Smoothness of entropy

Assume that we change the metric smoothly then we might expect the entropy to vary smoothly.
To this end we need to make sense of smooth changes of metrics. We can interpret the metric as

maps ρ ∈ Γ(V,S2) where S2 are positive symmetric 2 × 2-matrices and denote by φρ the associated
geodesic flow.

Theorem 5.10 (Katok, Knieper, Pollicott and Weiss [19]). Given a C∞ family (−ε, ε) 3 λ 7→ ρλ ∈
C∞(V,S2) the map

(−ε, ε) 3 λ 7→ h(φρλ) ∈ R+

is C∞.

There is also an interpretation for the derivative:

Theorem 5.11 (Katok, Knieper and Weiss [18]). We can write the first derivative

d

dλ
h(φρλ)|λ=0 = −1

2

∫
M0

d

dλ
‖v‖2ρλdµmax(v)

where µmax is the unique probability measure (such that h(φ, µmax) = h(φ)).

5.5 The Anosov property and Lyapunov exponents

The negative curvature gives rise to the the Anosov property through the negative curvature. One way
to see this is via the Jacobi and Riccati equations.

Let v ∈ V and let γv : R → V be the associated geodesic on V . Let us then denote by κ(t) :=
κ(γv(t)) < 0 the curvature at γv(t) ∈ V (i.e., after time t along the (geodesic) orbit). The expansion
and contraction in Eu and Es along the geodesic (or orbit) can be seen through these solutions to the
Jacobi equations.

Definition 5.12 (Jacobi equation). Consider solutions Jv : R→ R on the real line to

J ′′v (t) + κ(t)Jv(t) = 0.

The size of solutions |J(t)| either grow or contract exponentially (for Eu and Es) depending on
the initial conditions. If we define av(t) = J ′v(t)/Jv(t) then the Jacobi equation reduces to the Riccati
equation.

Definition 5.13 (Riccati Equation). Consider solutions av : R→ R on the real line to

a′v(t) + av(t)
2 + κ(t) = 0. (5.1)
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These determine the rate of growth (or contraction) for Eu and Es along the (geodesic) orbit for v.

Example 5.14 (κ = −1). In the case of constant negative curvature κ = −1 then one sees that there
are two solutions to (5.1):

1. av = 1 corresponding to an expansion et in Eu; and

2. av = −1 corresponding to a contraction e−t in Eu.

We can consider the average expansion along a typical (geodesic) orbit of the positive solution. Let
µ be any φ-invariant (ergodic) probability measure then by the Birkhoff ergodic theorem for a.e., (µ)
v ∈ V

lim
T→+∞

1

T

∫ T

0
av(t)dµ(v) =

∫
M
avdµ(v).

This is the (positive) Lyapunov exponent.

5.6 Ricci flow and entropy

Given a metric ρ and the associated curvature function κ : V → R then by a slight abuse of notation
we can also write κ : M → R where v ∈ TxV and κ(v) := κ(π(v)) where π : M → V is the canonical
projection. The average curvature satisfies:

κ :=

∫
κ(v)dν(v) = −π(g − 1),

where ν is the (normalised) Liouville measure on M , using the Gauss-Bonnet theorem.

Example 5.15 (Constant curvature metrics revisited). In the case of metrics ρ0 of constant curvature
κ(x) = κ we have that the entropy is

h(µρ0) =
√
|κ|.

By Katok’s theorem we have that for other metrics ρ of variable negative curvature and the same total
area we have that

h(φρ) > h(µρ0) =
√
|κ|.

It is fashionable to study how families of metrics ρt evolve under the Ricci flow. Recall that a
Riemannian metric can be thought of as ρ = {‖ · ‖ρ,x}x∈V , where ‖ · ‖ρ,x is a norm on TxV = {x}×R2.
With a suitable choice of coordinates we can write each norm in terms of (positive definite) 2 × 2
matrices (gij(x)) through the associated definite quadratic form

‖v‖2ρ,x = g(x)(v, v) := vT (gij(x))v.

We can now define the flow on the space of metrics (of fixed area).

Definition 5.16. We can define the Ricci flow on the space of metrics (of constant area) by

d

dt
gtij(x) = −2(κt(x)− κ)gtij for x ∈ V (5.2)

where κt(x) is the curvature of ρ(t) := (gtij).

There is a connection between solutions ρt = (gtij(x)) to the Ricci equation and the topological
entropy.

Theorem 5.17 (Manning [28]). Starting from a metric ρ = (gij) with non-constant negative curvature
then the topological entropy is strictly decreasing along the solution ρt to the Ricci equation (5.2).
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To prove the entropy is decreasing along the orbit ρt one can use the formula for the derivative of
the topological entropy (along the solution to the Ricci equation):

d

dt
h(φρ

t
)|t=0 = −1

2

∫
M

(
d

dt
gij |t=0

)
dµmax(v) =

∫
V

(κ− κ)dµmax(v)

where µmax is the measure of maximal entropy. We want to show the derivative is negative, i.e., that

−
∫
V
κ(v)dµmax(v) > κ

Step 1. By Katok’s theorem
√
κ < h(φρ).

Step 2. The solution av := av(0) > 0 to the Riccati equation (1) gives the Lyapunov exponent and
we have an inequality:

Lemma 5.18 (Ruelle [40]). We can write

h(φ) = h(φ, µmax) ≤
∫
M
avdµmax(v).

Step 3. By the Cauchy-Schwarz inequality we can write∫
M
avdµmax(v) ≤

(∫
M
a2
vdµmax(v)

) 1
2

.

Step 4. We can the substitute for a2
v from the Riccati equation and observe that∫

M
a2
vdµmax(v) = −

∫
M

da

ds
dµmax(v)︸ ︷︷ ︸
=0

−
∫
M
κ(x)dµmax(v)

=−
∫
M
κ(x)dµmax(v).

Comparing the above inequalities the result follows.

Part II
Estimating Dimension and Lyapunov exponents

We now turn to another class of problems associated to hyperbolic systems.

6 Introduction

In ergodic theory and dynamical systems there are natural characteristic values. We are particularly
interested in the Hausdorff dimension of dynamically defined sets and Lyapunov exponents for mea-
sures. We will begin by considering Hausdorff dimension of dynamically defined sets. Later we will
turn to Lyapunov exponents.

We take as our guiding philosophy that it is useful to know the “size” of some dynamically defined
sets and this will correspond to the numerical value of their Hausdorff dimension. However, typically,
the dimension doesn’t have an explicit expression. Therefore, we may want to compute the value
rigorously, efficiently and effectively.
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Figure 4: (i) The “Douady rabbit” Julia set, and (ii) the “basilica” Julia set

6.1 Classical Examples of sets and their dimensions

We can consider some classical examples (with connections to various areas of mathematics):

1. Julia sets (Dynamics). The Julia set J(T ) ⊂ Ĉ associate to (hyperbolic) rational maps
T : Ĉ→ Ĉ, i.e., the closure of the periodic repelling points

J(T ) = {z ∈ Ĉ : Tnz = z, |(Tn)′(z)| > 1}

for which we additionally require that infz∈J(T ) |T ′(z)| ≥ γ > 1. For example, when c ∈ C with
|c| sufficiently small we can consider T (z) = z2 + c. When c = 0 then J(T ) is a circle, but
otherwise J(T ) is a quasi-circle. On the other hand, for c = 1 we have that J(T ) is the so-called
Basilica Julia set.

2. Fuchsian group limit sets (Geometry). Let D = {z ∈ C : |z| < 1} and Ti : D → D
(i = 1, 2, 3) be Mobius maps which reflect in disjoint circular arcs (meeting the unit circle ∂D
perpendicularly). Following an example of McMullen, assume they are each symmetrically placed
and each subtends an angle θ at the origin. The accumulation points of the orbit of 0 are a Cantor
set in Xθ in ∂D. Moreover, we can estimate that for θ0 = 93.2857 . . . we have that dim(Xθ) = 1

2 .
5

3. Restricted digit continued fractions (Number Theory). Let A ⊂ N be a finite set and
consider the set

EA =

{
[a1, a2, a3, . . .] :=

1

a1 + 1
a2+···

: ai ∈ A

}
of numbers in the unit interval which have infinite continued fraction expansions whose digits all
lie in A. This is easily seen to be a Cantor set. Such sets have applications to the Density one
Zaremba Conjecture [5], Diophantine approximation and Lagrange spectra [29], etc.

6.2 General setting

Each of these sets described above are all variants on the limit set for an iterated function scheme (or
system). For convenience, we will consider the simplest one dimensional representative case:

5In some problems it may be convenient to know when the limit set has dimension larger than 1
2
.
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θ
θ

θ

Figure 5: Equi-placed circles used for the hyperbolic reflections defining the limit set in the unit circle

• Let T1, · · · , Tk : [0, 1] → [0, 1] (k ≥ 2) be C2 maps (of more generally C1+θ, i.e., the derivatives
T ′i are θ-Hölder continuous);

• The maps are contracting, i.e., ‖T ′i‖∞ = sup0≤x≤ |T ′i (x)| < 1 (1 ≤ i ≤ k);

• The images are disjoint, i.e., Ti([0, 1]) ∩ Tj([0, 1]) = ∅, for i 6= j (which is case of the strong
separation condition)

Remark 6.1. In higher dimensions we would also assume that the maps are conformal which, of
course, comes for free in one dimension.

The basic object of study is the following.

Definition 6.2. The limit set X ⊂ [0, 1] is the smallest non-empty closed set X satisfying

X = ∪ki=1Ti(X)

The existance and uniqueness of the set X exists by Hutchinson’s theorem [10].

Example 6.3 (Restricted digit continued fractions, revisited). In the case of the example of continued
fractions one considers maps Ta : [0, 1] → [0, 1] for a ∈ A defined by Ta(x) = 1

x+a . In particular,

|T ′(x)| = 1
|x+a|2 . 6 The other two examples are similar, except we need to work on regions in the

complex plane.

In this setting the Hausdorff dimension of the set X is equal to the easier to define Box (or
Minkowski) dimension, whose defintion we now recall.

Definition 6.4. Given ε > 0, let N(X, ε) ∈ N be the smallest number of ε-balls needed to cover X
then we let

dim(X) = lim
ε→0

logN(X, ε)

log ε

The above lemma exists in all of the examples we will consider.
We want to address the following problem:

6Formally, if a = 1 then T ′1(0) = 1 and the map is not strictly contracting. However, this is easily overcome
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Figure 6: The two contractions T1, T2 : [0, 1]→ [0, 1].

Problem 6.5. How can we estimate dim(X)?

We will discuss 3 different approachs:

(I) Approximation of {Ti}ki=1 by simpler affine maps. This is a classical approach which we include
for illustration.

(II) Using “determinants”. This is a method based on complex functions defined using composi-
tions of contractions. It has the most interesting mathematics and works quite well for good
approximations, but is most effective when the maps {Ti} are real analytic; and

(III) Using a min-max method. This method has very simple mathematics and is suprisingly effective.

We can compare each of these different methods in the context of a simple example.

Example 6.6 (Comparative example E1,2). Consider the example X = E1,2 corresponding to the maps
7

T1(x) =
1

1 + x
and T2(x) =

1

2 + x
.

In particular, X is the Cantor set consisting of points x with infinite continued fractions all of whose
digits are either 1 and 2.

Using Approach (I) (and variants):
Good (1941) computed dim(E12) to 2 decimal places.
Bumby (1985) computed dim(E12) to 6 decimal places.
Falk and Nussbaum (2018) computed dim(E12) to 12 decimal places.

Using Approach (II):
Jenkinson and Pollicott (2017) computed dim(E12) to 100 decimal places.

Using Approach (III):
Pollicott and Vytnova (2017) computed dim(E12) to 200 decimal places.

More details can be found in [36].

Perhaps one lesson here is that “getting a bigger computer” isn’t always enough: One needs to
develop appropriate approachs for different problems.

7 Different approachs to estimation dimension

In the next subsections we will describe in more detail the ideas behind these three approachs.

7.1 Approach I : Approximation by similarities

To set the scene, we begin again with the simplest approach. Consider first the special case Si :
[0, 1]→ [0, 1] of affine maps given by Six = rix+ di (i = 1, · · · , k) where 0 < ri < 1 and ri + di < di+1

(i = 1, · · · , k − 1) and rk + dk < 1. In this case we have the following classic result:

Theorem 7.1 (Moran, 1946 [10]). The dimension dim(X) of the limit set X = X({Si}) is the unique
solution to f(t) = 1 where f : R→ R is defined by f(t) =

∑k
i=1 r

t
i.
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1

0

0
1

k

t

f(t)

dim(X)

Figure 7: An illustration of the plot of the function f(t) in Moran’s theorem

For a more general C2 iterated function scheme {Ti}ki=1 we can set

ri := inf
0≤x≤1

|T ′i (x)| ≤ sup
0≤x≤1

|T ′i (x)| =: ri, (i = 1, · · · , k).

and associate two affine iterated function schemes {T i}ki=1 and {T i}ki=1 whose contractions are given
by {ri}ki=1 and {ri}ki=1, respectively. (The translational components are unimportant, except in as
much as they are chosen to give disjoint images.) The values d ≤ d can easily be seen to give upper
and lower bounds to the true dimension of the set X [33].

T1

T2

T 1

T 2

0

0
1

T1

T2

T 1

T 2

0

0
1

Figure 8: For nonlinear contractions {Ti}: (a) the linear maps {T i} with stronger contractions; and
(b) the linear maps {T i} with weaker contractions

Proposition 7.2. Solving for 0 < d ≤ d < 1 in the equations

k∑
i=1

(ri)
d = 1 =

k∑
i=1

(ri)
d

gives bounds d ≤ dim(X) ≤ d.

7Technically, when a = 1 then T1 isn’t contracting because T ′1(0) = 1, but this is easily accommodated
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These bounds are easy to establish, but may not be as good as required. There are a couple of
basic ways to improve these bounds.

(a) Fix m ≥ 2. Replace {Ti}ki=1 by the 2m contractions

Ti1 ◦ · · · ◦ Tim : [0, 1]→ [0, 1] (i1, · · · , im ∈ {1, · · · , k}).

We then have two simple observations:

(i) The two families of contractions have the same limit set, i.e., X({Ti}) = X({Ti1 ◦· · ·◦Tim});
and

(ii) New bounds dm ≤ dim(X) ≤ dm associated to the iterated function scheme with contrac-
tions {Ti1 ◦ · · · ◦ Tim} satisfy dm − dm → 0 [33].

These give us ways to improve the bounds but typically we only expect slow convergence with
an upper bound dm − dm = O(1/m)

(b) A second improvement comes by replacing [0, 1] by a union of image intergals Ti1 ◦ · · · ◦ Tim [0, 1]
and approximating

Ti : Ti1 ◦ · · · ◦ Tim [0, 1]→ Ti ◦ Ti1 ◦ · · · ◦ Tim [0, 1]

(i = 1, · · · , k and 1 ≤ i1, · · · , im ≤ k) by similarities (i.e., affine maps) cf.[30]. This might improve
matters by obtaining exponential convergence of dm − dm → 0 as m→ +∞.

However, we will turn instead to the other two methods.

7.2 The Bowen-Ruelle pressure formula

The remaining two approachs make use of the following standard definition and result.

Definition 7.3. We can define a pressure function P : R→ R by 8

P (t) := lim
n→+∞

1

n
log

 ∑
i1,··· ,in∈{1,··· ,k}

|(Ti1 ◦ · · · ◦ Tin)′(0)|t
 for t ∈ R.

The pressure function has a number of standard properties, which we now briefly summarized
below.

Lemma 7.4. The function P :→R satisfies the following:

1. P (t) is C∞ (in fact, real analytic);

2. P (t) is strictly decreasing; and

3. P (t) is convex (i.e., P ′′(t) ≥ 0 for all t ∈ R).

The role of P (t) in estimating dim(X) is explained by the following very useful result.

Proposition 7.5 (Bowen-Ruelle). The value 0 < dim(X) < 1 is the unique zero of P (t), i.e.,
P (dim(X)) = 0.

The basic idea for Proposition 7.5 was originally established by Bowen for limit set of certain
Kleinian groups (i.e., Quasi-Fuchsian groups) [7]. However, after Bowen’s early demise Ruelle put
forward the generalization to other settings [38], [48].

8We evaluate the derivatives at 0 for definiteness. We could replace it by any other value 0 ≤ x0 ≤ 1
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t

P (t)

dim(X)

Figure 9: A plot of the function P (t)

Remark 7.6. This is a natural generalization of Moran’s theorem. For similarities with contractions
{ri}ki=1 we have

P (t) = log

(
k∑
i=1

rti

)
.

In particular P (t) = 0 is equivalent to
∑k

i=1 r
t
i = 1.

7.3 Approach II : Determinants

This approach is described in a recent survey [14], but we will describe the basic ideas. We need an
additional hypothesis:

• We additionally assume that the maps Ti : [0, 1]→ [0, 1] are real analytic.

In particular, there is a neighbourhood in the complex plane [0, 1] ⊂ U ⊂ C and analytic extensions
Ti : U → U (with the closure of the image satisfying Ti(U) ⊂ U).

10

U

Ti(U)

10

U

Ti([0, 1])

Figure 10: The image of the extension of Ti to U has the closure of its image Ti(U) wholly contained
inside U
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d(z,dim(X))

d(z, t)

0

0

1

1

z

Figure 11: For each t we can plot d(z, t). When t = dim(X) the zero in z appears at 1.

Example 7.7 (Restricted digits: Continued fractions). Given Ti(x) = 1/(x+ i) (i = 1, · · · , k) and let

U =

{
z ∈ C : |z − 1| < 3

2

}
.

For i = (i1, · · · , in) ∈ {1, 2, . . . , k}n we can denote:

(a) |i| = n (length of string);

(b) Ti = Ti1 ◦ · · · ◦ Tin : [0, 1]→ [0, 1]; and

(c) xi = Ti(xi) is the unique fixed point.

We can combine this data to define a family of complex functions.

Definition 7.8. We can formally define the determinant function for any t ∈ R by

C 3 z 7→ d(z, t) := exp

− ∞∑
n=1

∑
|i|=n

|T ′i (xi)|
1− T ′i (xi)


Remark 7.9. These are reminiscent (and closely connected) to dynamical zeta functions, with a few
minor changes [35].

The following are basis properties of the function d(z, t) [?].

Lemma 7.10. Given t ∈ R:

1. the function d(z, t) converges for |z| sufficiently small;

2. The function z 7→ d(z, t) extends analytically to C; and

3. The function z 7→ d(z, t) has a zero at exp(−P (t)).

This lemma essentially reduces the problem of finding the value dim(X) to that of finding the value
t0(= dim(X)) for which the function C 3 z 7→ d(z, t0) has a zero at z = 1. (This uses the Bowen-Ruelle
pressure formula in Proposition 7.5.)
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Of course it would be impossible to compute d(z, t) precisely using a computer since it contains data
on infinitely many periodic points and an infinite amount of data. Therefore, we need to appoximate
this function. We can consider the power series expansion in z of the form

d(z, t) = 1 +
∞∑
n=1

an(t)zn

where an(t) ∈ R can be seen to be expressed in terms of the periodic points of period at most n. We
can break up the power series expansion as:

d(z, t) := 1 + a1(t)z + a2(t)z2 + · · ·+ a25(t)z25︸ ︷︷ ︸
(I)

+ a26(t)z26 + · · ·+ a500z
500︸ ︷︷ ︸

(II)

+ a501(t)z26 + a502z
502 + · · ·︸ ︷︷ ︸

(III)

where:

1. (I) can be expressed in terms of periodic points of period at most 25. This will be the approxi-
amtion to d(z, t) we use;

2. (II) can be bounded using numerical estimates on the terms an(t); and

3. (III) can be more crudely estimates using the original estimates of Ruelle (after Grothendeick).

More details can be found in [14].

Remark 7.11. The complex function d(z, t) is called a determinant because we can write it as d(z, t) =
det(T − zLt) where Lt is a transfer operator acting on Banach spaces (or Hilbert spaces) of analytic
functions.

7.4 Approach III : “min-max”

We now describe a method employed by the author and P. Vytnova. In this approach the transfer
operator is more to the fore. 9

Let C1([0, 1],R) be the Banach space of C1 functions f : C1([0, 1],R) with norm

‖f‖ = sup
0≤x≤1

|f(x)|︸ ︷︷ ︸
=:‖f‖∞

+ sup
0≤x≤1

|f ′(x)|︸ ︷︷ ︸
=:‖f‖∞

.

The following basic result connects the function P (t) to the operators.

Lemma 7.12. The operator Lt has a simple maximal eigenvalue eP (t), i.e., the rest of the spectrum
of the operator is contrained in a disc centred at 0 of radius strictly smaller than eP (t).

Thus the problem of finding the dimension dim(X) is reduced to that of finding t0 such that Lt0
has 1 as its largest eigenvalue.

Approach: Given two (nearby) values 0 < t1 < t2 < 1 we want to check if t0 = dim(X) ∈ [t1, t2]. By
the continuity and monotonicity of tP (t) and the Bowen-Ruelle theorem it suffices to show P (t1) >
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t1

t2

0
0

1
t

P (t)

dim(X)

P (t2)

P (t1)

Figure 12: If P (t1) > P (t2) then t1 ≤ dim(X) ≤ t2

0 > P (t2), by the intermediate value theorem. To confim this condition it is useful to use the following
very simple result.

Lemma 7.13. We can estimate the pressure as follows.

1. Assume f1 > 0, f1 ∈ C0([0, 1],R) with

Lt1f1(x) ≥ f1(x) for all x ∈ [0, 1]

then P (t1) ≥ 0

2. Assume f2 > 0, f2 ∈ C0([0, 1],R) with

Lt2f2(x) ≤ f2(x) for all x ∈ [0, 1]

then P (t2) ≤ 0

0 1

Lt1f1

f1

0 1

Lt2f2

f2

Figure 13: (i) The existance of f1 such that Lt1f1 ≥ f1; (ii) The existance of f2 such that Lt2f2 ≤ f2

Proof. We give the proof of part 1. Since Lt1 is a positive operator we have that

f1 ≤ Lt1f1 ≤ L2
t1f1 ≤ · · · ≤ Lnt1f1 ≤ · · · .

9This slightly fanciful name is meant to invoke the spirit of the Courant–Fischer–Weyl min-max principle for eigenvalues
of operators. However it is probably better to relate it to the Collatz–Wielandt formula and Birkhoff–Varga formula.
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Taking nth roots:

lim
n→+∞

‖f1‖
1
n∞︸ ︷︷ ︸

=1

= lim
n→+∞

‖Lnt1f1‖
1
n∞︸ ︷︷ ︸

=eP (t)

.

The proof of part 2 is similar.

At first sight if may seem that we haven’t gained very much, since we have replaced the problem
of estimating P (t) to one of finding functions f1 and f2. More precisely, we are left with the problems:

(a) Given t1 < t2, how to we find f1, f2 > 0 in C([0, 1])? and

(b) How do we choose (nearby) t1 < t2?

The solutions to these two problems are actually surprisingly straightforward. We merely import
some useful ideas from numerical analysis (for example colllocation) which allow us to construct the
test functions f1 and f2 as polynomials.

We briefly recall the main idea(s). Fix N ≥ 2 and consider Lagrange polynomials pn : [0, 1] → R
(n = 1, · · · , N) and Chebychev points (xn)Nn=1 ⊂ [0, 1], then pn(xm) = δn,m for 1 ≤ n,m ≤ N . We can
then associate N ×N matrices Mi (i = 1, 2) defined by

Mi(r, s) = (Ltipr)(xs) for 1 ≤ r, s ≤ N.

We can then let (vi1, · · · , viN ) be the maximal (left) eigenvector.

We can then try to apply Lemma 7.13 with fi(x) =
∑N

r=1 v
i
rpr(x) for i = 1, 2. In particular, we

need to check that for N sufficiently large:

(i) fi > 0 (i = 0, 1); and

(ii) Lt1f1 > f1 and Lt2f2 < f2.

We can use a bisection method to improve the choices of t1 < t2. More precisely, starting from

0 = t
(1)
1 < t

(1)
2 = 1 we can generate inductively sequences of pairs t

(n)
1 < t

(n)
2 (n ≥ 1) such that

0 < t
(n)
2 − t(n)

1 ≤ 2−(n−1) by successively replacing one of the points by their midpoint (t
(n)
2 + t

(n)
1 )/2.

Example 7.14 (Another illustrative example: Feigenbaum attractor). Feigenbaum conjectured (and
Lanford proved [23]) the existance of a real analytic real analytic unimodal map g : [−1, 1] → [−1, 1]
such that

(i) g(0) = 1;

(ii) g′(0) = 0 and g′(x) > 0 for x < 0 and g′(x) < 0 for x > 0;

(iii) g(x) = g(−x) and g(x) = α(g ◦ g)(x/α) where α = −1/g(1)

The attractor X = ∪∞n=0g
n(0) is the closure of the orbit of 0, but it is also given by an iterated

function scheme with contractions defined in terms of g (and α). Fortunately, the series expansion
for g(x) is known to high accuracy. (The other Feigenbaum constants are known rigorously to over a
thousand decimal places.)

We can compare estimates on the dimension of X using the different methods above.

Using Approach (I):
Grassberger (1985) computed dim(X) non-rigorously to 8 decimal places.
Bensimon et al (1986) computed dim(X) non-rigorously to 10 decimal places.
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Figure 14: A plot of the Feigenbaum functon g(x)

Using Approach (II):
Christiansen et al (1990) computed dim(X) non-rigorously to 27 decimal places.

Using Approach (I):
Falconer (1990) computed dim(X) rigorously to 1 decimal place.
Thurlby (2023) computed dim(X) rigorously to 2 decimal places.

Using Approach (III):
We can compute dim(X) (semi-)rigorously 10 to 50 decimal place.

8 Estimating Lyapunov exponents

We now move onto a second class of numerical values. There are (at least) two natural settings for
Lyapunov exponents. The first is associated to the dynamics of maps and the second associated to
finite families of matrices. For definiteness we consider the following simple settings.

1. Associate to a map f : M → M and an invariant ergodic probability measure (e.g., expanding
maps on [0, 1] and the absolutely continuous probability measure µ).

2. Random matrix products. (e.g., Families of matrices A1, · · · , Ak ∈ SL(2,R) (k ≥ 2) chosen
randomly with respect to a probability vector p = (p1, · · · , pk) with pi > 0 and

∑k
i=1 pi = 1).

8.1 Lyapunov exponents for interval maps

We begin with the Lyapunov exponent for maps. Let T : [0, 1] → [0, 1] be a piecewise C2 expanding
map, i.e., there exist 0 = x0 < x1 < · · · < xn+1 = 1 such that:

• T |(xj , xj+1) is C2;

• There exists β > 1, such that |T ′(x)| ≥ β for xj < x < xj+1 and j = 0, · · · , n− 1 (the map T is
piecewise expanding); and

• T (xk, xk+1) = (0, 1), for k = 0, 1, · · · , n− 1. 11

10We did the estimates using Mathematica, which since it is not an open source code means we have to reply on its
internal error estimates. Thus the “rigour” element might be questionable.

11More generally, we can consider Markov maps at the expense of more notation.
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The following standard result guarantees the existance of an absolutely continuous probability
measure [24].

Lemma 8.1 (Li-Yorke, [24]). There exists an absolutely continuous probability dµ = ρ(x)dx, where
ρ(x) ∈ C1([0, 1],R+) and the measure is ergodic.

The following is a simple illustrative example.

Example 8.2 (Lanford map). Let T : [0, 1]→ [0, 1] by

T (x) = 2x+
1

2
x(1− x) (mod 1).

Then |T ′(x)| ≥ 3
2 for 0 ≤ x ≤ 1.

Given a map T : [0, 1] → [0, 1] as above and the absolutely continuous ergodic measure µ we can
define the following numerical quantity.

Definition 8.3. We associate to µ the Lyapunov exponent

λ(T, µ) =

∫
log |T ′(x)|dµ(x)

This is equal to the entropy h(T, µ) of the measure µ by the Pesin equality.

Remark 8.4. By the Birkhoff ergodic theorem, for a.e. (µ) x we have that

λ(T, µ) = lim
n→+∞

1

n
log |(Tn)′(x)|.

In particular, we see that the derivative in the definition implies that λ(T, µ) measures the instability
of neighbouring orbits.

To proceed, we define the corresponding pressure function (now for expanding maps, rather than
contractions).

Definition 8.5. We can define a pressure function p : R→ R for T by

p(t) = lim
n→+∞

1

n
log

∑
Tnx=x

|(Tn)′|−t

where the summation is over periodic orbits. 12

This pressure function has the following extremely useful properties.

Lemma 8.6. The pressure function p(t) has the following properties:

(i) p(1) = 0;

(ii) t 7→ p(t) is real analytic and convex;

(iii) λ(T, µ) = −dp
dt |t=1; and

(iv) for ε > 0 we have

−p(1 + ε)

ε
≤ −dp

dt
|t=1 ≤

p(1− ε)
ε

.
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1− ε

1 + ε

0
0 t

p(t)

1

P (1 + ε)

P (1− ε)

Figure 15: The Lyapunov exponent is the absolute value of the slope of the tangent to p(t) at t = 0.

This lies in the interval
[
−p(1+ε)

ε , p(1−ε)ε

]
Briefly, Part (iii) does for Lyapunov exponents what the Bowen-Ruelle theorem did for dimension.

Part (iv) follows from convexity of p(t) in Part (ii). This is the key inequality for the estimates we
need.

To proceed we need to make a judicious choice of ε > 0 and to estimate p(1 + ε) and p(1 − ε)
as accurately as possible. To this end we use (another) transfer operator. Let Ti : [0, 1] → [0, 1]
(i = 1, · · · , k) be the inverse branches for T , i.e., T ◦ Ti(x) = x.

Definition 8.7. Given t ∈ R we define a transfer operator Lt : C1([0, 1],R)→ C1([0, 1],R) by

Ltf(x) =

k∑
i=1

|T ′i (x)|tf(Tix).

The role of the family of operators is explained by the following.

Lemma 8.8. Lt has a maximal eigenvalue ep(t).

To estimate λ(T, µ) we proceed as follows. Fix ε > 0 sufficiently small. If we can choose 0 < α < β
with

P (1− ε) ≤ β and P (1 + ε) ≤ −α.

then by parts (iii) and (iv) of the lemma we can deduce the inequality

α

ε
≤ λ(T, µ) ≤ β

ε
. (12.1)

To apply these bounds we need the following simple lemma.

Lemma 8.9. We have the the following bounds.

1. Assume there exists f1 ∈ C([0, 1],R) and f1 > 0 such that

L1+εf1 ≤ e−αf1

implies p(1 + ε) ≥ −α.

12There are various other equivalent definitions
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2. Assume there exists f2 ∈ C([0, 1],R) and f2 > 0 such that

L1−εf2 ≤ eβf2

implies p(1− ε) ≥ β.

0 1

Lt1f1

e−αf1

f1

0 1

Lt2f2

eβf2

f2

Figure 16: (i) The existance of f1 implies p(1 + ε) ≥ −α; (ii) The existance of f2 implies p(1− ε) ≥ β

Proof. For part 1, since eαL1+εf1 ≤ f1 and by positivity of the operator L1+ε gives that

· · · ≤ eαnL1+εnf1 ≤ · · · ≤ eαL1+εf1 ≤ f1.

Thus

eαep(1+ε) = lim
n→+∞

‖eαnL1+εnf1‖
1
n∞ ≤ lim

n→+∞
‖f1‖

1
n∞ = 1.

For part 2, since e−βL1−εf2 ≤ f2 and by positivity of the transfer operator

· · · ≤ e−βnL1−εnf2 ≤ · · · ≤ e−βL1−εf2 ≤ f2.

Thus

e−βep(1−ε) = lim
n→+∞

‖e−βnLn1−εf2‖
1
n∞ ≤ lim

n→+∞
‖f2‖

1
n∞ = 1.

The usefulness of this method is illustrated by some simple examples.

Example 8.10 (Lanford map revisited). Recall that T : [0, 1]→ [0, 1] defined by T (x) = 2x+ 1
2x(1−

x) (mod 1). We can choose
ε = 10−180

α = 6.5766 . . . 890× 10−181

β = 6.5766 . . . 898× 10−181.

Substituting into (12.1) leads to a value

λ(T, µ) = 0.65766 · · ·

which is accurate to 128 places.

Remark 8.11. As in the applications to dim(X) we can use ideas from numerical analysis to choose
f1 and f2.

37



8.2 Lyapunov exponents for random matrix products

We now turn to the second notion of Lyapunov exponents. Fix k ≥ 2. Assume we are given a finite
collection of matrices

A1, · · · , Ak ∈ SL(2,R), k ≥ 2

and a probability vector p = (p1, p2, · · · , pk) with pi > 0 and
∑k

i=1 pi = 1.
More generally we could consider matrices in GL(2,R), but for simplicity we consider matrices in

SL(2,R). Given matrices in GL(2,R) we can associate matrices in SL(2,R) by scaling the entries for
each matrix. The Lyapunov exponent for the new family of matrices differs from that of the original
family by an explicit constant, which comes from a simple application of the Birkhoff ergodic theorem.
Thus there is no loss in generality in considering SL(2,R).

Definition 8.12. We can associate the Lyapunov exponent defined by

λ = λ
(
{Ai}, p

)
= lim

n→+∞

∑
i1,··· ,in∈{1,··· ,k}

(pi1 · · · pin)
log ‖Ai1 · · ·Ain‖

n
.

The limit exists by subadditivity. We are restricting attention to the top Lyapunov exponents.
The value λ features in the work of Bellman, Furstenberg, Kesten, Kingman, Guivarc’h, Conze,

Le Page, etc. If the matrices don’t correspond to rotations 13 then it follows from a classical result of
Furstenberg that λ > 0.

More generally, we need to make assumptions on {A1, · · · , Ak}.

Definition 8.13. We say that {A1, · · · , Ak} is strongly irreducible if there don’t exist a finite set of
directions whose union is preserved by all Ai (1 ≤ i ≤ k).

We want to address the following problem.

Problem. How do we estimate λ > 0?

By analogy with the previous case we can consider a transfer operator acting on a Banach space. In
the present case we consider a Banach space of Holder functions on the unit circle S ⊂ R2. For α > 0
sufficiently small Cα(S) denote the Banach space of α-Holder continuous functions with the norm

‖f‖α = sup
x 6=y

|f(x)− f(y)|
|x− y|α

+ sup
x∈S
|f(x)|.

We can associate to the matrices Ai projective maps Ti : S→ S defined by

Ti(x) =
Ai(x)

‖Ai(x)‖2
for i = 1, · · · , k,

where ‖.‖2 is the usual pythagorian norm on R2.

Definition 8.14. We can then define a family of transfer operators Lt : Cα(S) → Cα(S)14 for t ∈ R
by

Ltf(x) =

k∑
i=1

pi|T ′i (x)|tf(Tix).

Of course, the operator also preserves more regular functions. However, by restricting to suitable
α-Hölder functions (for α > 0 sufficiently small) one can recover the valuable spectral gap in the
following useful and important result of Le Page [25].

13For d× d matrices we need proximality and strong irreducibility
14We could also consider the action on RP 1.
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1− ε

1 + ε

0
0 t

Q(t)

1

Q(1 + ε)

Q(1− ε)

Figure 17: The Lyapunov exponent is the absolute value of the slope of the tangent to Q(t) at t = 0.

This is lies in the interval
[
−Q(1+ε)

ε , Q(1−ε)
ε

]
Lemma 8.15 (Le Page). For α > 0 suitably small and |t| sufficiently small there is a maximal
eigenvalue eQ(t).

The value Q(t) plays the role previously taken by the pressure. The relationship between Q(t) and
the value λ of the Lyapunov exponent is described by the following simple lemma.

Lemma 8.16. For |t| sufficiently small:

(i) Q(0) = 1;

(ii) t 7→ Q(t) is real analytic and convex;

(iii) λ = −1
2
dQ
dt |t=0; and

(iv) for ε > 0 sufficiently small we have

Q(−ε)
ε
≤ dQ

dt
|t=0 ≤

Q(ε)

ε
.

We can now proceed to estimate λ as we did in the case of maps. In particular, we have an
analogous criterion in terms of positive continuous test functions f1, f2 : S → R+. However, since we
need to construct functions which are only Holder continuous function this approach proves to be less
efffective than for for expanding maps.

As before, it is illustrative to consider some specific examples. The following example follows the
elegant construction of Barany, Beardon, Carne, Diaconis, McMullen, etc. [3], [31].

Example 8.17 (Barymetric subdivision). Consider an (equilateral) triangle T ⊂ R2 in the plane. We
can first subdivide T into 6 subtriangles using medians. We then continue iteratively, then at the nth
step there are 6n triangles.

For a typical (Lebesgue) point x ∈ T we can denote by Tn(x) ∈ x the sub-triangle containing x at
the nth stage. This is well defined for almost all x with respect to Lebesgue measure. We are interested
in the following question.

Problem. What is the asymptotic shape of Tn(x) as n→ +∞?
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Figure 18: Triangles are successively subdivided by medians.

Since we are not concerned with the size of the triangles, merely their shape, we can quantify the
degeneration of such triangles by defining θn(x) ∈ [π3 , π) to be the largest internal angle of the triangle
Tn(x). The main result in this direction was the following:

Theorem 8.18 (Bárány-Beardon-Carne [3]). There exists λ > 0, a.e., x ∈ T such that

|θn(x)− π| = O(e−2λn)

In their proof, the value λ is ingeniously identified as the Lyapunov exponent for the 6 matrices

A1 =

(
1 0
0 1

)
A2 =

(
2√
6

2√
6

0 3√
6

)
A3 =

(
4√
6
− 2√

6
3√
6
− 3√

6

)

A4 =

(
2√
6

2√
6

3√
6

0

)
A5 =

(
− 2√

6
4√
6

− 3√
6

3√
6

)
A6 =

(
− 4√

6
2√
6

− 3√
6

0

)
,

which correspond to the affine maps from the original triangle to the first six subtriangles, chosen with
equal probability. Using the method described above we can estimate

0.007728 < λ < 0.07732.

A second application, this time to hyperbolic geometry rather than Euclidean geoemtry, is the
following.

Example 8.19 (Drift in hyperbolic space). Let D2 = {z = x+ iy : |z| < 1} be the unit disk equipped
with the usual Poincaré metric d defined by

ds2 =
dx2 + dy2

(1− x2 − y2)2
.

In particular, the space D2 has constant curvature κ = −1. Let Γ0 = {g1, · · · , gk} be a finite set
of isometries (which will take the form of Mobius maps which preserve the unit circle). Let p =
(p1, · · · , pk) be a probability vector.

Starting from a reference point x ∈ D2 we can randomly apply elements g ∈ Γ0 chosen with respect
to p. A typical sequence of steps g = (gin)∞n=0 ∈ Γ

Z+

0 (with respect to the Bernoulli measure pZ+) has
a limit (in the Euclidean sense) on the boundary (i.e., the unit circle S) which we denote by:

ξ = ξ(g) = lim
N→+∞

gi1gi2 · · · giNx ∈ ∂D
2 = S.
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Figure 19: The eight generators {gi}8i=1 are Mobius maps which preserve the unit circle and map the
sides of the hyperbolic octogon to sides of the same colour.

The hitting measure on R ∪∞ is the push forward ν = ξ∗(p
Z+). Moreover, the dimension of this

measure is given by

dimH(ν) =
Random walk entropy

Drift

where the Random walk entropy is defined in [2] and

Drift = lim
N→+∞

1

N

∑
i1,··· ,iN

pi1 · · · piNd(gi1 · · · giNx, x)

measures Moreover, the isometries Γ0 correspond to matrices in SL(2,R) and the drift corresponds to
λ (up to a factor of 2).

For definiteness, we can consider a surface group of genus 2 and a regular octogonal fundamental
domain we can choose Γ0 to consist of the eight maps in the standard side pairing.

We can estimate
Drift = 1.69± 10−2.

Moreover, there exists an estimate by Gouezel-Matheus-Maucourant that the Random Walk entropy of
1.45± 10−2 [12]. In particular, these combine with theabove estimate to give dimH(ν) = 0.85± 10−2.

8.3 Positive matrices

In the special case of matrices with positive entries it is possible to get much better estimates on the
lyapunov exponent. The reason is that when we consider the operator Lt it actually preserves the
space Cω(∆) of analytic functions on a small neighbourhood in the complex plane of ∆ = R2

+ ∩ S ⊂ S,
i.e., the intersection of the unit circle S with the positive quadrant R2

+. The greater regularity allows
a more effective choice of polynomials f1, f2 : ∆→ R.

The following matrices 2× 2 matrices were suggested by Vilma Orgoványi.

Example 8.20 (Positive matrices). We can consider the matrices

M1 =

(
1 0
2 2

)
,M2 =

(
2 1
1 2

)
,M3 =

(
2 2
0 1

)
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and p =
(

1
3 ,

1
3 ,

1
3

)
. We can change the matrices for those that each have determinant 1 by considering

A1 =
1√
2

(
1 0
2 2

)
, A2 =

1√
3

(
2 1
1 2

)
, A3 =

1√
2

(
2 2
0 1

)
.

For these matrices we can estimate the Lyapunov exponent λ0 for A1,A2 and A3 and p =
(

1
3 ,

1
3 ,

1
3

)
0.539 . . . < λ0 < 0.566 . . . .

Since (2 log 2 + log 3)/ = 0.828302 · · · we have that the Lyapunov exponent λ = λ0 + 0.828302 · · · for
the original matrices M1, M2 and M3 and p =

(
1
3 ,

1
3 ,

1
3

)
satisfies

1.3678 . . . . . . < λ < 1.3950 . . . .

Example 8.21 (Positive matrices). We can consider the matrices

A1 =

1 2 3
3 2 1
1 9 1

 and A2 =

3 2 4
1 7 1
1 5 1

 .

Let p =
(

1
2 ,

1
2

)
. We can estimate

λ = 3.76492± 10−5.

As before, the estimates are based on transfer operators and test functions based on colocation. For
(x, y) in the triangle ∆ with x, y ≥ 0 and x + y ≤ 1 we associate the vector (x, y, 1 − x − y) in the
standard simplex. We then apply FA1 and FA2 which are the linear actions of A1 and A2, respectively
to get vectors FA1 [x, y], FA2 [x, y] ∈ R3. We then project down to the triangle again to get maps fA1 [x, y]
and fA2 [x, y] are representative maps on the triangle. We can find test functions by collocation on the
triangle ∆. 15

8.4 Variations on themes

Many of the ideas described above could be applied in slightly different settings.

1. We could estimate the dimension of basic sets Λ for hyperbolic surface diffeomorphisms or three
dimensional hyperbolic flows. This would be approached by using Markov partitions and the
approach in [?].

2. We could estimate the Lyapunov exponents for Anosov flows. For example, we could estimate
the metric entropy for a given geodesic flow on a surface of negative curvature.

3. We could estimate the Lyapunov exponents of matrix valued cocycles rather than random matrix
products.
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