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Abstract. Recently, the first author and Tanaka obtained a large deviation principle compar-
ing two Green metrics on a non-elementary hyperbolic group Γ associated to finitely supported,
admissable probability measures. The aim of this article is to prove the corresponding central
limit theorem. Furthermore, our results apply to various other metrics including length func-
tions associated to Anosov representations and to group actions on hyperbolic metric spaces.

In the particular case that Γ is the fundamental group of a closed hyperbolic manifold
our work provides a statistical characterisation for the hitting measure of a finitely supported
random walk being in the same class as the Lebesgue measure.

1. Introduction

Suppose that Γ is a non-elementary hyperbolic group (for example, a free group, the funda-
mental group of negatively curved, closed Riemannian manifold, etc). Recently there has been
much interest in understanding the statistical behaviour of various natural real valued functions
on Γ. There has been particular attention given to limit theorems in which group elements in Γ
are ordered by their word length with respect to a finite generating set. More precisely, suppose
that Ψ ∶ Γ → R is a real valued function on Γ that counts or represents a quantity of interest
(for example a quasi-morphism or the displacement associated to the action of Γ on a metric
space) and that we have fixed a finite generating set S for Γ. Write Sn = {g ∈ Γ ∶ ∣x∣S = n}
for the collection of group elements of S word length n. Multiple authors have studied central
limit theorems for the sequence of counting distributions of the form

1

#Sn
#{g ∈ Sn ∶

Ψ(g) −Λn√
n

≤ t} where t ∈ R, n ≥ 1.

See for example [HS09], [Riv10], [CF10], [CL12], [GTT18], [GTT20], [CS22], [Can23] amongst
many other works.

This leads us to ask whether similar central limit theorems hold when we order group elements
by a different metric (other than a word metric). For example, is it possible to prove a central
limit theorem similar to the above but with the word metric ∣ ⋅ ∣S replaced with the displacement
function associated to the action of Γ on a metric space or with a Green metric associated to
a random walk? A result in this spirit was proved by the authors for the fundamental group
Γ of a negatively curved Riemannian surface. More precisely it was shown that a central limit
theorem holds for a word metric on Γ when we order the group elements (or conjugacy classes)
by their geometric length (coming from the manifold) [CP22]. Related results have been shown
in [SS93], [Lal89], [BL98] and more. In these works tools from thermodynamic formalism were
used and in particular, delicate Dolgopyat type estimates for norms of certain transfer operators
were exploited. These estimates are known to hold in only a few specific situations. The aim
of this work is to obtain counting central limit theorems where we count over metrics that
are not word metrics and for which we do not have access to Dolgopyat type estimates for
corresponding transfer operators.

A natural class of metrics to consider on Γ is the class of strongly hyperbolic metrics. These
are metrics that are ‘stable at infinity’: their Busseman functions are Hölder continuous cocycles
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(see Section 2 for the precise definition). In this context the first author and Tanaka [CT22] have
proved a large deviation principle with analytic rate function. Suppose Γ is a non-elementary
hyperbolic group and let DΓ denote the collection of Γ invariant metrics on Γ that are hyperbolic
and quasi-isometric to a word metric. Given two strongly hyperbolic metrics d, d∗ ∈ DΓ there
exists 0 < α1 ≤ α2 and an analytic function I ∶ R → R≥0 ∪ {∞} that is finite on [α1, α2] and
infinite otherwise such that for any open U ⊂ R and closed V ⊂ R

− inf
s∈U

I(s) = lim inf
T→∞

1

T
log( 1

#{g ∈ Γ ∶ d(o, g) < T}#{g ∈ Γ ∶ d(o, g) < T,
d∗(o, g)
d(o, g) ∈ U})

≤ lim sup
T→∞

1

T
log( 1

#{g ∈ Γ ∶ d(o, g) < T}#{g ∈ Γ ∶ d(o, g) < T,
d∗(o, g)
d(o, g) ∈ V })

= − inf
s∈V

I(s).

Furthermore, I has a unique 0 at a positive real number τ(d∗/d) > 0 that is obtained as the
following limit

τ(d∗/d) = lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

d∗(o, g)
T

(see Theorem 2.6 below).
In this work we prove the corresponding central limit theorem. Before stating our results

we introduce notation and recall some preliminary facts. Let Nσ ∶ R → R denote the normal
distribution with mean 0 and variance σ2:

Nσ(t) =
1√
2πσ
∫

t

−∞
e−u

2/2σ2

du.

Two metrics d, d∗ are called roughly similar if there is Λ,C > 0 such that ∣d(g, h)−Λd∗(g, h)∣ ≤ C
for all x, y ∈ Γ. The translation length function of d is defined as the limit

ℓd[g] = lim
n→∞

d(o, gn)
n

and is defined on conjugacy classes [g] in Γ. Here we use o ∈ Γ to denote the identity element.
We call Γ non-elementary if it does not contain a finite index cyclic subgroup and say that
Γ is virtually free if it contains a free group as a finite index subgroup. We say that d has
non-arithmetic length spectrum if ℓd does not take values lying in a lattice aZ for some a ∈ R.
When Γ is not virtually free, every strongly hyperbolic on Γ has non-arithmetic length spectrum
[GMM18] (also see [Can23, Theorem 1.4]). We write vd (respectively vd∗) for the exponential
growth rate of d (respectively d∗), i.e.

vd = lim sup
T→∞

1

T
log#{x ∈ Γ ∶ d(o, x) < T} and vd∗ = lim sup

T→∞

1

T
log#{x ∈ Γ ∶ d∗(o, x) < T}.

When comparing metrics d, d∗ a natural object to study is their Manhattan curve θd∗/d. This
curve is defined as follows, for each s ∈ R we define θd∗/d(s) to be the abscissa of convergence of

∑
x∈Γ

e−sd∗(o,x)−td(o,x)

as t varies. In [CT22] it was shown that for pairs of strongly hyperbolic metrics θd∗/d is analytic.
It was also shown that the constant −τ(d∗/d) is the derivative at 0 of θd∗/d(s), i.e. θ′d∗/d(0) =
−τ(d∗/d). By studying the Manhattan curve the first author and Tanaka proved various rigidity
results for pairs of metrics in DΓ. In particular they show that the following are equivalent (see
Theorem 2.6 below):

(1) d and d∗ are roughly similar;
(2) the Manhattan curve θd∗/d is a straight line;
(3) τ(d∗/d) = vd/vd∗ ; and,
(4) there exists τ > 0 such that ℓd[x] = τℓd∗[x] for all x ∈ Γ.
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When any of the above statements fail to hold it was shown that θd∗/d is a globally strictly
convex function and in fact θ′′

d∗/d(t) > 0 for all t ∈ R.
Our first result provides a further equivalence statement to this collection. It also allows

us to introduce a constant σ2(d∗/d) that will subsequently appear as the variance in a central
limit theorem. As with the constant τ(d∗/d) we can see σ2(d∗/d) in the Manhattan curve θd∗/d
and in this case as the second derivative θ′′

d∗/d(0).

Theorem 1.1. Suppose that Γ is a non-elementary hyperbolic group and take two strongly
hyperbolic metrics d, d∗ ∈ DΓ. Suppose either that Γ is not virtually free or that Γ is virtually
free and that d has non-arithmetic length spectrum. Let τ = τ(d∗/d) be the constant introduced
above. Then the following limit exists

σ2(d∗/d) ∶= lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

(d∗(o, g) − τT )2
T

≥ 0.

Furthermore σ2(d∗/d) = θ′′d∗/d(0) and the following are equivalent:

(1) σ2(d∗/d) = 0; and,
(2) d and d∗ are roughly similar.

Remark 1.2. When Γ is the fundamental group of a closed hyperbolic surface of genus g and
ρt for −ϵ < t < ϵ is a smooth (non-constant) family of Riemannian metrics on the surface then
the Weil-Petersson metric can be recovered as

∥ d
dt
∣
t=0
ρt∥

2

WP

= 3π(g − 1)
2

d2

dt2
∣
t=0
σ2(dt/d0)

where each dt for −ϵ < t < ϵ is the lift of ρt to Γ. This follows from Theorem 1.1 and [PS16,
Lemma 4.2].

The constant σ2(d∗/d) then appears as the variance in the following central limit theorem.

Theorem 1.3. Suppose that Γ is a non-elementary hyperbolic group and take two strongly
hyperbolic metrics d, d∗ ∈ DΓ. Suppose either that Γ is not virtually free or that Γ is virtually
free and that d has non-arithmetic length spectrum. Then there exist τ = τ(d∗/d) > 0 and
σ2 = σ2(d∗/d) ≥ 0 such that

1

#{g ∈ Γ ∶ d(o, g) < T}#{g ∈ Γ ∶ d(o, g) < T and
d∗(o, g) − τT√

T
≤ t} → Nσ(t)

as T →∞. Furthermore, σ2(d∗/d) = 0 if and only if d and d∗ are roughly similar.

We stress that this result is new even in the case when Γ is a free group or surface group.
In the rest of this introduction we briefly mention some applications of this theorem. Further
applications and results are included in the final section.

1.1. Random walks. Suppose that µ is a finitely supported probability measure, with sym-
metric support (i.e. µ(g) = µ(g−1) for all g ∈ Γ), on Γ such that the support of µ generates Γ
as a semi-group. Let G(⋅, ⋅) denote the corresponding Green function defined by

G(g, h) = ∑
g∈Γ
µ∗n(g−1h) for g, h ∈ Γ

where µ∗n denotes the nth convolution of µ. The Green metric is defined as

dµ(g, h) = − log(
G(g, h)
G(o, o) )

and intuitively dµ(g, h) represents the (minus logarithm of the) probability that a random walk
starting at g reaches h. Then dµ is a strongly hyperbolic metric in DΓ [NŠ16] with vdµ = 1.
Hence we obtain the following result.
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Theorem 1.4. Suppose that Γ is a non-elementary hyperbolic group and take two Green metrics
d, d∗ on Γ associated to finite, admissible probability measures µ,µ∗ both with symmetric support.
Suppose either that Γ is not virtually free or that Γ is virtually free and that d has non-arithmetic
length spectrum. Then there exists τ = τ(d∗/d) ≥ 1 and σ2 = σ2(d∗/d) ≥ 0 such that

1

#{g ∈ Γ ∶ d(o, g) < T}#{g ∈ Γ ∶ d(o, g) < T and
d∗(o, g) − τT√

T
≤ t} → Nσ(t)

as T →∞. Furthermore the following are equivalent

(1) d and d∗ are roughly similar;
(2) σ2 = 0; and,
(3) τ = 1.
In fact it is possible to weaken the assumption that µ,µ∗ have finite support to having super-

exponential moment by a result of Gouëzel [Gou15]. Furthermore, in the case when Γ is a free
group or surface group we can also remove the assumption that µ,µ∗ are symmetric.

1.2. Singularity conjecture. Our theorem provides an equivalent formulation of the Sin-
gularity Conjecture. Suppose that Γ is a surface group and that µ is a finitely supported
admissable probability measure on Γ. Let dµ be the corresponding (not necessarily symmetric)
Green metric and write d for (the lift of) a hyperbolic metric on Γ coming from the action of Γ
on H. The following is often referred to as the Singularity Conjecture or the Kaimanovich-Le
Prince Conjecture.

Conjecture [KP11]: For any µ as above the corresponding hitting measure on ∂Γ = S1 is mutu-
ally singular with respect to the Lebesgue measure.

This conjecture is equivalent to the assertion that for µ as above, dµ and d are never roughly
similar [GMM18]. Theorem 1.3 then provides an equivalent formulation of the singularity
conjecture. Let µ, dµ and d be as above.

Theorem 1.5. The metrics dµ and d satisfy a non-degenerate central limit theorem (i.e.
σ2(dµ/d) > 0) as in Theorem 1.3 if and only if the hitting measure of µ is not in the same
class as the Lebesgue measure (and in fact is mutually singular).

This result also generalises to higher dimensions.

1.3. Proof idea and structure of the paper. We now briefly outline our method of proof.
We note that our theorems do not readily follow from the works of the second author and
Tanaka [CT21], [CT22] in which the corresponding large deviation principle was proven. This
is because, although the methods and techniques introduced in those papers can be used to
study Manhattan curves, they can not be used to study versions of the Manhattan curve with
complex perturbations/parameters. Understanding complex versions of Manhattan curves is
vital as they are linked to the Fourier transforms of our counting distributions (and hence they
determine whether the central limit theorem holds). We also note that it does not appear
possible to tackle Theorem 1.3 using random walks on groups as in [GTT20] or Markov chains
as in [CS22]. This is because, unlike for counting over group elements of word length at most
T as in [GTT20] and [CS22], there does not seem to be a well understood probabilistic model
for counting over the group elements g satisfying d(o, g) < T .

To prove Theorem 1.3 we use the method of moments and techniques from thermodynamic
formalism. That is, we show that for each p ≥ 1 the pth moments of the sequence of distributions
in Theorem 1.3 converge as T →∞ to the appropriate limit (see equation (6)). To do this we

(1) introduce a two variable Poincaré series η that encodes information about d and d∗;
(2) prove results about the domain of analyticity and poles of η (this step relies on recent

results from [CT22], [Can23]); and,
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(3) extract the asymptotics we need for the method of moments using a Tauberian Theorem.

This method of proof was inspired by the work of Morris [Mor15] on the statistical properties
of the Euclidean algorithm and also the work of Hwang and Janson [HJ11]. In the second step
above we use ideas and techniques from thermodynamic formalism which can be introduced
via a symbolic coding for the group Γ. When Γ is a free group or surface group we have access
to better codings and the proof of the required result in part (2) is easier. One of the main
difficulties in this current work is proving similar results when Γ is a general hyperbolic group.
We note however that Theorem 1.3 is new and non-trivial even in the case that Γ is a free group
or surface group. Indeed, similar statistical limit laws to that in Theorem 1.3 (as for example in
[CP22]) have been proved for free groups and surface groups but only in cases in which strong
Dolgopyat bounds are known for certain transfer operators. The method used in this paper
removes the need for these bounds and so can be applied to a variety of new geometric settings.

Organisation. The paper is structured as follows. In Section 2 we cover preliminary material
related to hyperbolic groups and geometries. We also, in this section, state and prove the
technical domain of analyticity result mentioned in (2) above. The proof of this result (which
appears as Proposition 2.8) will occupy most of the second section. In Section 3 we use the
method of moments to deduce Theorem 1.3 and in the final section, we present some further
applications of our results.

2. Preliminaries

2.1. Hyperbolic groups and metrics. We only briefly introduce the required preliminary
materials concerning hyperbolic groups and metrics here. See Section 2 of [CT21] for a more
detailed account.

Definition 2.1. A metric space (X,d) is said to be δ-hyperbolic for some δ ≥ 0 if

(x, y)w ≥min{(x, z)w, (y, z)w} − δ for all x, y, z,w ∈X
where (x, y)w is the Gromov product:

(x, y)w =
1

2
(d(w,x) + d(w, y) − d(x, y)) for x, y,w ∈X.

A metric space is called hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

A hyperbolic group is a finitely generated group Γ such that the Cayley graph (Cay(Γ, S), ∣⋅∣S)
equipped with the word metric associated to a finite generating set S is a hyperbolic metric
space. All hyperbolic groups will be assumed to be non-elementary, i.e. they do not contain a
finite index cyclic subgroup. In the statement of Theorem 1.1 and Theorem 1.3 the assumption
of Γ not being virtually free means that Γ does not contain a free group as a finite index
subgroup.

Definition 2.2. We say that two metrics d, d∗ on Γ are quasi-isometric if there exist constants
L > 0 and C ≥ 0 such that

L−1 d(x, y) −C ≤ d∗(x, y) ≤ Ld(x, y) +C for all x, y ∈ Γ.

Throughout this work, DΓ will denote the set of metrics which are left-invariant, hyperbolic
and quasi-isometric to some (equivalently, any) word metric in Γ. Recall that for d ∈ DΓ we use
the notation vd for the exponential growth rate of d, i.e.

vd = lim
T→∞

1

T
log#{g ∈ Γ ∶ d(o, g) < T} (which is necessarily strictly positive).

Furthermore, for any d ∈ DΓ there exists C1,C2 > 0 such that

C1e
vdT ≤#{x ∈ Γ ∶ d(o, x) < T} ≤ C2e

vdT for all T > 0.



6 STEPHEN CANTRELL AND MARK POLLICOTT

We recall that two metrics d, d∗ ∈ DΓ have the property that there exists τ,C > 0 such that
∣τd(o, g) − d∗(o, g)∣ < C for all g ∈ Γ then we say that d, d∗ are roughly similar. We recall that
o ∈ Γ is the identity element. The translation length function of d ∈ DΓ is defined as the limit

ℓd[g] = lim
n→∞

d(o, gn)
n

and is defined on conjugacy classes [g] in Γ. The length spectrum of d is the collection {ℓd[g] ∶
g ∈ Γ} and we say that d has arithmetic length spectrum if this set is contained in a lattice aZ
for some a ∈ R. Otherwise we say that d has non-arithmetic length spectrum.
Fix a metric d in DΓ.

Definition 2.3. Given an interval I ⊂ R and constants L,C > 0 we say that a map γ ∶ I → Γ is
an (L,C)-quasi-geodesic if

L−1 ∣s − t∣ −C ≤ d(γ(s), γ(t)) ≤ L ∣s − t∣ +C for all s, t ∈ I,
and a C-rough geodesic if

∣s − t∣ −C ≤ d(γ(s), γ(t)) ≤ ∣s − t∣ +C for all s, t ∈ I.

A 0-rough geodesic is referred to as a geodesic. A metric space (Γ, d) is called C-roughly
geodesic if for each pair of elements x, y ∈ Γ we can find a C-rough geodesic joining x to y. We
say that (Γ, d) is roughly geodesic if it is C-roughly geodesic for some C ≥ 0. It is known that
every metric in DΓ is roughly geodesic [BS00].

Our main results are concerning the following class of metrics.

Definition 2.4. A hyperbolic metric d in Γ is called strongly hyperbolic if there exist positive
constants c,R0 > 0 such that for all R ≥ R0, and all x,x′, y, y′ ∈ Γ, if d(x, y)−d(x,x′)+d(x′, y′)−
d(y, y′) ≥ R, then

∣d(x, y) − d(x′, y) − d(x, y′) + d(x′, y′)∣ ≤ e−cR.

Remark 2.5. Examples of strongly hyperbolic metrics include:
(1) The Green metric associated to random walk on Γ as discussed in the introduction.
(2) The Mineyev hat metric introduced in [Min05].
(3) The orbit metric coming from a properly discontinuous, cocompact, free and isometric
action on a CAT(−1) metric space.
(4) Linear functions on the Cartan algebra associated to Anosov representations.

Hyperbolic groups can be compactified using their Gromov boundary ∂Γ which consists of
equivalence classes of divergent sequences. We fix a reference metric d ∈ DΓ and say that
sequence of group elements {gn}∞n=0 diverges if (gn∣gm)o (computed with respect to d) diverges
as min{n,m} tends to infinity. Two divergent sequences {gn}∞n=0 and {hn}∞n=0 are equivalent if
(gn∣hm)o diverges as min{n,m} tends to infinity. If d ∈ DΓ is C-roughly geodesic then for each
ξ in ∂Γ there exists a C-rough geodesic γ ∶ [0,∞) → Γ such that γ(0) = o and γ(n) → ξ as
n→∞.

The Busemann function βw(g, ξ) associated to d ∈ DΓ based at w ∈ Γ is given by

βw(g, ξ) = sup{lim sup
n→∞

d(g, ξn) − d(w, ξn) ∶ ξ = {ξn}∞n=0} .

When d is strongly hyperbolic βw is obtained as a limit

βw(g, ξ) = lim
n→∞
(d(g, xn) − d(w,xn)) = d(w, g) − 2(g∣ξ)w for (g, ξ) ∈ Γ × ∂Γ,

where ξ = {gn}∞n=0, and is continuous with respect to ξ in ∂Γ. Moreover in this case we have
the cocycle identity

βw(gh, ξ) = βw(h, g−1ξ) + βw(gw, ξ) for w, g, h ∈ Γ and γ ∈ Γ ∪ ∂Γ.
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Before moving on we recall the following results of the first author and Tanaka. Recall that
the Manhattan curve θd∗/d is defined as follows. For each s ∈ R define θd∗/d(s) to be the abscissa
of convergence of

∑
x∈Γ

e−sd∗(o,x)−td(o,x)

as t varies. In [CT21] and [CT22] it was shown that for pairs of strongly hyperbolic metrics
d, d∗, θd∗/d is analytic. The following was also shown.

Theorem 2.6 (Theorem 1 of [CT21]). Let d, d∗ ∈ DΓ be metrics. Then the limit

τ(d∗/d) ∶= lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

d∗(o, g)
T

> 0

exists and is called the mean distortion of d∗ with respect to d. We also have that τ(d∗/d) =
−θ′

d∗/d(0) and τ(d∗/d) ≥ vd/vd∗. Further, the following are equivalent:

(1) d and d∗ are roughly similar;
(2) θd∗/d is a straight line;
(3) τ(d∗/d) = vd/vd∗; and,
(4) there exists τ > 0 such that ℓd[x] = τℓd∗[x] for all x ∈ Γ.

We also recall one of the main results from [Can23]: for any strongly hyperbolic metric d ∈ DΓ

with non-arithmetic length spectrum there exists C > 0 such that

e−vdT #{g ∈ Γ ∶ d(o, g) < T} → C

as T →∞. This is usually referred to as the orbital counting asymptotic.

2.2. Poincaré series and domains of analyticity. Throughout the rest of this work we fix
two strongly hyperbolic metrics d, d∗ ∈ DΓ and assume that they have been chosen/scaled so
that the following conditions hold.

Standing assumptions: We assume Γ is not virtually free or that Γ is virtually free and d has
non-arithmetic length spectrum. Suppose that d, d∗ are not roughly similar and have been
scaled so that

(1) d has exponential growth rate 1; and,
(2) τ(d∗/d) = 1.

We will assume that these conditions hold unless otherwise stated.
We define the following function.

Definition 2.7. For s, t ∈ C we formally define the two variable Poincaré series

η(s, t) = ∑
g∈Γ
e−sd(o,g)−t(d∗(o,g)−d(o,g)).

Using recent results of the first author and Tanaka [CT22], [Can23] we analyse the domain
of analyticity of η to prove the following proposition.

Proposition 2.8. For each p ≥ 0 the series

ηp(s) = ∑
g∈Γ
(d∗(o, g) − d(o, g))pe−sd(o,g)

is analytic in the region Re(s) ≥ 1 except for a singularity at s = 1. The following then hold
depending on the parity of p.

(1) When p is odd this singularity consists of integer order poles that have orders bounded
above by (p + 1)/2; and
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(2) when p is even, in a neighbourhood U of 1, we can write

∑
g∈Γ
(d∗(o, g) − d(o, g))pe−sd(o,g) =

Rp(s)
(s − 1)1+ p

2

where Rp(s) is analytic in U . Furthermore when this is the case

Rp(1) =
Cp!σp

2
p
2

for each (even) p ≥ 0 where C,σ2 > 0 are constants independent of p.

To prove this result we will use tools from thermodynamic formalism. Fix a finite generating
set S for Γ.

Definition 2.9. Let A = (G,w,S) be a collection where

(1) G = (V,E,∗) is a finite directed graph with distinguished vertex ∗ which we call the
initial state; and,

(2) w ∶ E → S is a labelling such that for a directed edge path (x0, x1, . . . , xn) (where
(xi, xi+1) corresponds to a directed edge) there is an associated path in the Cayley
graph Cay(Γ, S) beginning at the identity: the path corresponds to

(o,w(x0, x1),w(x0, x1)w(x1, x2), . . . ,w(x0, x1)⋯w(xn−1, xn)).
Let ev denote the map that sends a finite path to the endpoint of the corresponding path
in Cay(Γ, S), ev(x0, . . . , xn) = w(x0, x1)⋯w(xn−1, xn). We say that A is a strongly Markov
structure for the pair Γ, S if

(1) for each vertex v ∈ V there exists a directed path from ∗ to v;
(2) for each directed path in G the associated path in Cay(Γ, S) is a geodesic; and,
(3) the map ev defines a bijection between the set of directed paths from ∗ in G and Γ.

It is well known that every hyperbolic group and finite generating set admits a strongly
Markov automatic structure (cf. [GdlH90], [Cal13, Section 3.2]) which we call a Cannon coding.

For technical reasons we augment Cannon codings by introducing an additional vertex la-
belled 0. We also add directed edges from every vertex x ∈ V ∪ {0}/{∗} to 0 and define
w(x,0) = o (the identity in Γ) for every x ∈ V ∪{0}/{∗}. We assume that every Cannon coding
has been augmented in this way and will abuse notation by labelling the augmented structure,
its edge and vertex set by G, V and E respectively. We use the notation 0̇ to denote the infinite
sequence consisting of only 0s.

Using G we introduce a subshift of finite type as follows. Let A be the k × k (where k is the
cardinality of V ), 0 − 1 transition matrix describing G. We use A(i, j) to denote the (i, j)th
entry of A. The one-sided subshift of finite type associated to A is the space of all infinite
one-sided sequences allowed by A:

ΣA = {(xn)∞n=0 ∶ xn ∈ {1,2, ..., k},A(xn, xn+1) = 1, n ∈ Z≥0}.
When A is clear, we will drop A from the notation in the definition of the shift spaces and
simply write Σ. As in the definition of ΣA, we write xn for the nth coordinate of x ∈ Σ. The
shift map σ ∶ ΣA → ΣA shifts the entires of a sequence to the left by one and deletes the initial
entry, i.e. it sends x to σ(x) = y where yn = xn+1 for n ∈ Z≥0. For each 0 < θ < 1 we can define a
metric dθ on ΣA: given x, y ∈ ΣA set

dθ(x, y) = {
θN if x0 = y0 and N ≥ 1 is the smallest integer n such that xn ≠ yn
1 if x0 ≠ y0.

We then define the vector space

Fθ(ΣA) = {r ∶ ΣA → C ∶ r is Lipschitz with respect to dθ}
which we equip with the norm ∥r∥θ = ∣r∣θ+∣r∣∞ where ∣r∣∞ is the usual sup-norm and ∣r∣θ denotes
the least Lipschitz constant for r. The space (Fθ(ΣA), ∥ ⋅ ∥θ) is a Banach space. Two functions
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r1, r2 ∈ Fθ(ΣA) are said to be cohomologous if there exists continuous ψ ∶ ΣA → C such that
r1 = r2 + ψ ○ σ − ψ. A well-known theorem of Livsic asserts that for r ∈ Fθ, r is cohomologous
to the constant function with value C if and only if the set {Snr(x) −Cn ∶ x ∈ ΣA, n ∈ Z≥0} is
bounded. Here Snr(x) = r(x)+r(σ(x))+...+r(σn−1(x)) denotes the nth Birkhoff sum evaluated
at x ∈ ΣA. We will use this notation for Birkhoff sums throughout this work.

It will be convenient to extend the map ev defined on finite paths in Definition 2.9 to infinite
paths. If x = (xk)∞k=0 ∈ Σ and n ∈ Z≥0 then we set

evn(x) = ev(x0, x1, . . . , xn) ∈ Γ.
We also define ev(x) to be the point in Γ∪ ∂Γ determined by the S geodesic corresponding to
x, which we think of as starting at the identity in the Cayley graph for Γ, S.

We say that a directed graph G is connected if there exists a (directed) path between any
pair of vertices in G. A connected component of a finite directed graph is a maximal, connected
subgraph. A Cannon coding G associated to a pair Γ, S will never be connected (as the ∗ state
has only outgoing edges). We can however decompose G into connected components and apply
techniques from symbolic dynamics to these components separately.

Given such a connected component C, there exists a maximal integer pC ≥ 1, known as the
period, such that the length of every closed loop in C has length divisible by pC. When pC = 1
we say that the component C is aperiodic. When C is aperiodic the corresponding subshift ΣC
is topologically mixing. In general we can only be sure that C is connected and that (ΣC, σ) is
topologically transitive. In this case pC > 1 and we can decompose the vertex set V (C) for C
into pC disjoint collections of vertices V1, . . . , VpC . Letting Σj for each j = 1, . . . , pC denote the
set of elements in ΣC that correspond to sequences starting with a vertex in Vj, we have that
σ(Σj) = Σj+1 where j, j+1 are taken modulo pC. Each sub-system (Σj, σpC) is a mixing subshift
of finite type.

Using the same notation as before, let (ΣC, σ) be the shift space defined over a component
C. For a function Ψ on ΣC we want to introduce the pressure of Ψ on ΣC (or C) and will do so
via the variational principle. In the followingM(C) denotes the set of σ-invariant probability
measures on ΣC and h(λ) denotes the measure theoretical entropy of (ΣC, σ, λ) (see Section 3
of [PP90]).

Proposition 2.10 (The Variational Principle, Theorem 3.5 [PP90]). For Ψ ∈ Fθ(ΣC) the supre-
mum

PC(Ψ) = sup
λ∈M(C)

{h(λ) + ∫
ΣC

Ψdλ}

is attained by a unique σ-invariant probability measure µC on ΣC. This quantity is referred to
as the pressure of Ψ over C.

The pressures can be related to the spectral radii of the following linear operators, known as
transfer operators. Fix Ψ ∈ Fθ(ΣC) and define LC ∶ Fθ(ΣC) → Fθ(ΣC) by

LCω(x) = ∑
σ(y)=x

eΨ(y)ω(y).

Then the spectral radius of this operator is ePC(Ψ) and furthermore, this operator has pC simple
maximal eigenvalues: e2πil/pCePC(Ψ) for l = 1, . . . , pC. The rest of the spectrum is contained in a
the disk in C centered at 0 with radius strictly smaller than ePC(Ψ) [PP90].
When we are considering a Cannon coding with multiple connected components and Ψ ∈

Fθ(ΣA), we will write

P(Ψ) =max
C

PC(Ψ),

where C runs over all components in G.

Definition 2.11. We call a component C maximal for Ψ (or Ψ-maximal) if P(Ψ) = PC(Ψ). If
C is maximal for the constant function with value 1 then we say that C is word maximal.
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Note that the word maximal components for a Cannon coding for Γ, S are precisely the
components that have spectral radius given by the growth rate of ∣ ⋅ ∣S.
Lemma 2.12 (Lemma 4.8 [CT21]). Take a strongly hyperbolic metric d in DΓ with exponential
growth rate 1. Then, for any Cannon coding and associated subshift Σ, the function Ψd ∶ Σ→ Σ
defined by Ψd(x) = βo(ev1(x),ev(x)) is a Hölder continuous function satisfying the following
properties:

(1) SnΨd(x) = ∑n−1i=0 Ψd(σi(x)) = d(o,evn(x)) +O(1) for all x ∈ Σ;
(2) P(−Ψd) = 0; and,
(3) when x0 = ∗ we have than SnΨd(x) = d(o,evn(x)).
We then have the following important result which was shown in [Can23] and relies on the

work in [CT22].

Proposition 2.13. Suppose that d ∈ DΓ is strongly hyperbolic (with exponential growth rate 1)
and let Ψd be the potential associated to d from Lemma 2.12. Then the −Ψd maximal components
are precisely the word maximal components.

We will need to exploit an additional combinatorial property of hyperbolic groups known as
growth quasi-tightness. Fix a finite generating set S for Γ a group element ω ∈ Γ and a real
number ∆ ≥ 0. We say that an S-geodesic word ∆-contains ω if it contains a subword ω̃ of the
form ω̃ = f1ωf2 for some f1, f2 ∈ Γ with ∣f1∣S, ∣f2∣S ≤ ∆. Let Yw,∆ be the set of group elements
x ∈ Γ for which x can be written as an S-geodesic word which does not ∆-contain ω. We then
have the following theorem of Arzhantseva and Lysenok.

Theorem 2.14 (Theorem 3 of [AL02]). Hyperbolic groups are growth quasi-tight. That is,
given a hyperbolic group and any generating set S there exists ∆0 > 0 such that for any ω ∈ Γ,

lim
n→∞

#(Yω,∆0 ∩ Sn)
#Sn

= 0.

Here Sn = {x ∈ Γ ∶ ∣x∣S = n} are the group elements in Γ of S length n.

It is crucial that ∆0 does not depend on ω. As an immediate consequence we deduce the
following result.

Lemma 2.15. Fix a word maximal component C in a Cannon coding (for a hyperbolic group Γ
and generating set S). Let ΓC denote the collection of group elements that correspond to a path
in C. That is, ΓC contains the elements in Γ that correspond to multiplying the edge labelings
along a path in C. Then there exists a finite set F ⊂ Γ such that FΓCF = Γ.
This was observed in the proof of Lemma 4.6 in [GMM18], see Section 4.5 of [CT21] for more

details.
Now take a pair d∗, d ∈ DΓ of non-roughly similar, strongly hyperbolic metrics satisfying the

assumptions introduced at the start of this section. Fix a generating set S for Γ and a Cannon
coding as introduced above. Let Φ be the potential in the coding given by Ψd∗ − Ψd where
Ψd,Ψd∗ are obtained as in Lemma 2.12. We will write Cj, j = 1, . . . ,m for the word maximal
(equivalently −Ψd maximal) components.

We define transfer operators for each maximal component Cj. Let pj denote the period of
the component Cj. Suppose the entire Cannon coding is described by the matrix A. Let, for
j = 1, . . . ,m the matrix Cj be the matrix with the same dimensions and entries as A except for
the fact that each word maximal component that is not Cj is replaced by the zero matrix. We
then define transfer operators Lj,s,t ∶ Fθ(ΣCj

) → Fθ(ΣCj
) by

Lj,s,tf(x) = ∑
σ(y)=x,y≠0̇

e−sΨd(y)−tΦ(y)f(y)

for s, t ∈ C. Recall that 0̇ ∈ Σ is the sequence consisting only of 0s. Note that by construction
each Cj has a unique maximal component for −Ψd. The following proposition records some of
the important properties of these operators.
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Proposition 2.16. For each j = 1, . . . ,m the operators Lj,s,t satisfy the following.

(1) Let χ ∈ Fθ(Σ) be the indicator function on the one-cyclinder for the initial vertex ∗ in
the Cannon coding. Then we have that

∑
∣g∣S∈Mj(n)

e−sd(o,g)−t(d∗(o,g)−d(o,g)) = Lnj,s,tχ(0̇)

where for n ≥ 1, Mj(n) ⊂ {g ∈ Γ ∶ ∣g∣S = n} is the collection of group elements in Γ whose
corresponding path in G starting at ∗ does not enter a word maximal component that is
not Cj.

(2) For s with Re(s) > 1 = vd, the spectral radius of each Lj,s,0 is strictly smaller than 1.
(3) There exits ϵ > 0 such that for all ∣s − 1∣ < ϵ, ∣t∣ < ϵ the spectrum of each operator

Lj,s,t is of the following form: Lj,s,t has pj simple maximal eigenvalues of the form
ePj(−sΨd−tΦ)e2πilψj and the rest of the spectrum is contained in a disk {∣s∣ < ρ < 1} for
some ρ independent of ∣s − 1∣ < ϵ, ∣t∣ < ϵ. Here Pj(−sΨd − tΦ) is a bi-analytic extension
to ∣s − 1∣ < ϵ, ∣t∣ < ϵ of the pressure obtained from the variational principle applied to a
fixed word maximal component Cj.

Proof. This is essentially the same as [Can23, Proposition 4.3] we leave the details to the
reader. □

In part (3) above the quanitites Pj(−sΨd − tΨ) represent the pressures of the potential
−sΨd − tΨ over the different maximal components Cj. We then have the following crucial result
which can be seen as a multivariable generalisation of Proposition 2.13.

Lemma 2.17. There is an open neighbourhood U ×V ⊂ C2 of (1,0) such that for (s, t) ∈ U ×V
we have that

Pi(−sΨd − tΦ) = Pj(−sΨd − tΦ)
for each i, j ∈ {1, . . . ,m}, i.e. the pressure of −sΨd − tΦ over the word maximal or equivalently
−Ψd-maximal components agree.

Proof. We first prove the lemma assuming that s and t are real (i.e. that U,V are sets of real
numbers) and then deduce the general case. We have that for each j = 1, . . . ,m we have that
Pj(−sΨd − tΦ) is the exponential growth rate

Pj(−sΨd − tΦ) = lim sup
n→∞

1

n
log
⎛
⎝ ∑
σn(x)=x∶x∈Σj

e−sΨ
n
d (x)−tΦ

n(x)⎞
⎠
.

We claim that each of these growth rates are the same as the exponential growth rate

lim sup
n→∞

1

n
log
⎛
⎝ ∑∣g∣S=n

e−sd(o,g)−t(d∗(o,g)−d(o,g))
⎞
⎠
.

This implies our desired conclusion as this latter quantity is independent of Cj.
To prove the claim we first observe the elementary inequality

∑
σn(x)=x∶x∈Σj

e−sΨ
n
d (x)−tΦ

n(x) ≤ Cs,t ∑
∣g∣S=n

e−sd(o,g)−t(d∗(o,g)−d(o,g))

which holds for each n ≥ 1 where Cs,t is a constant depending only on s and t. This follows
from Lemma 2.12 and the properties of the Cannon coding.

For the other inequality we use that hyperbolic groups are growth quasi-tight. Fix j ∈
{1, . . . ,m}. By Lemma 2.15 there exists a finite subset F ⊂ Γ such that for any g ∈ Γ we can
find a loop σn(x) = x in Σj such that the group element g̃ ∈ Γ corresponding to multiplying
the n labels in x is equal to f1gf2 for some f1, f2 ∈ F . Then the association g ↦ g̃ is at most
#F 2 to 1. Also we have that ∣g̃∣S = ∣g∣S +O(1), d(o, g̃) = d(o, g)+O(1), d∗(o, g̃) = d∗(o, g)+O(1)
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where the error terms are independent of g. Hence we see that there are R ∈ Z≥0 and Ms,t > 0
depending only on s and t such that

∑
∣g∣S=n

e−sd(o,g)−t(d∗(o,g)−d(o,g)) ≤Ms,t

R

∑
i=−R

∑
σn+i(x)=x∶x∈Σj

e−sΨ
n+i
d (x)−tΦn+i(x)

for each n ≥ 1. It follows easily from basic results in thermodynamic formalism that the right
hand side of the previous inequality has exponential growth rate Pj(−sΨd − tΨ). Hence, the
two inequalities then conclude the proof.

We now need to deduce the general case. Standard facts from analytic perturbation theory
guarantee that there is an open neighbourhood U × V ⊂ C2 of (1,0) such that the pressures
(s, t) ↦ Pj(−sΨd − tΦ) are bi-analytic in this neighbourhood. When (s, t) ∈ U × V and s, t ∈ R
we know that the pressure functions Pj(−sΨd − tΦ) coincide. However since these pressures
are bi-analytic on U ×V (and so can be expressed in the form of a 2 variable Taylor expansion
which is calculated from the partial derivatives at (1,0)) they are determined by their values
on the real values in (s, t) ∈ U × V and this concludes the proof. □

This lemma shows that, restricting to a neighbourhood of (1,0), the pressure functions
Pi(−sΨd − tΦ) for i = 1, . . . ,m coincide. This fact will be vital in the upcoming analysis.
Moving forward we will write P (s, t) for this function and define λ(s, t) = eP (s,t).

Lemma 2.18. For λ(s, t) as above we have that

λs(1,0) < 0, λt(1,0) = 0 and λtt(1,0) > 0.

Proof. Standard facts from thermodynamic formalism [PP90] imply that the derivatives satisfy

λs(1,0) = −∫
ΣC

Ψd dµC, and λt(1,0) = ∫
ΣC

Φ dµC = ∫
ΣC

Ψd∗ −Ψd dµC

where C is a fixed word maximal component and µC is the equilibrium state for −Ψd on C.
Further we know that

1 = τ(d∗/d) =
∫ΣC Ψd∗ dµC

∫ΣC Ψd dµC

by Theorem 5.4 in [CT22] and hence λt(1,0) = 0. We also have [PP90] that

λtt(1,0) = lim
n→∞

1

n ∫ΣC
(Φn)2 dµC ≥ 0

and that equality occurs if and only if Φ is cohomologous to a constant function on ΣC. If Φ is
cohomologous to a constant function then this constant must be 0 and so by Livsic’s Theorem
Φn(z) = 0 for all z ∈ ΣC with σn(z) = z. This happens if and only if d and d∗ have the same
translation length functions by [Can23, Corollary 3.6] and this occurs if and only if they are
roughly similar by Theorem 2.6. □

It will transpire that the quantity σ2 from Proposition 2.8 is given by

σ2(d∗/d) ∶= −
λtt(1,0)
λs(1,0)

> 0. (1)

Before we prove Proposition 2.8 we need one last result regarding the spectral properties of the
Lj,s,t.

Proposition 2.19. The assumption that either Γ is not virtually free or that Γ is virtually free
and d has non-arithmetic length spectrum guarantees the following property of the operators
Lj,s,t for j = 1, . . . ,m. For each s = 1 + il with l ≠ 0 there exists ϵ(s) > 0 such that each of the
operators Lj,s,t with ∣t∣ < ϵ(s) have spectral radius at most 1 and furthermore do not have 1 as
an eigenvalue.



CENTRAL LIMIT THEOREMS FOR GREEN METRICS ON HYPERBOLIC GROUPS 13

Proof. We recall that by Proposition [Can23, Proposition 1.13] under the assumptions on Γ,
d has non-arithmetic length spectrum. This guarantees that for each s = 1 + il for l ≠ 0 the
operators Lj,s,0 do not have 1 as an eigenvalue [Can23, Proposition 4.4]. There are then two
cases:
Case 1: Lj,s,0 has spectral radius strictly less than 1. In this case, by upper semi continuity of
the spectrum there exists ϵ(s) > 0 such that Lj,s,t has spectral radius strictly less than 1 when
s = 1 + il and ∣t∣ < ϵ(s).
Case 2: Lj,s,0 has spectral radius 1. In this case, by our above discussion Lj,s,0 has simple
maximal eigenvalues of modulus 1. Standard facts from analytic perturbation theory then
guarantee that there exists ϵ(s) > 0 such that Lj,s,t has the simple maximal eigenvalues when
s = 1+ il and ∣t∣ < ϵ(s) and furthermore that they vary analytically as t varies. In particular we
can take ϵ(s) small so that 1 is not an eigenvalue of Lj,s,t for any s = 1 + il, ∣t∣ < ϵ(s). Lastly by
Theorem 4.5 in [PP90] the spectral radius of each Lj,s,t is always at most 1. □

We are now ready to prove Proposition 2.8.

Proof of Proposition 2.8. We first show that each ηp is analytic on the region Re(s) ≥ 1 except
for s = 1. By part (1) of Proposition 2.16 we can write

η(s, t) = ∑
n≥1

k

∑
j=1
Lnj,s,tχ(0̇) + γ(s, t)

where γ(s, t) is a function that is bi-analytic for Re(s) > 1−ϵ for some ϵ > 0 and ∣t∣ is sufficiently
small depending on s. This is because the expression

k

∑
j=1
Lnj,s,tχ(0̇)

over counts group elements corresponding to paths in the coding (starting at ∗) that do not enter
a maximal component and by Proposition 2.13 on these components the restricted pressure of
−Ψd is strictly less than 1. We then note that for any fixed Re(s) > 1 and for ∣t∣ sufficiently
small depending on s the spectral radius of any of the Lj,s,t is strictly less than 1. Hence we
can differentiate η(s, t) at t = 0 for any s with Re(s) > 1 to deduce analyticity of ηp at s. When
s ≠ 1 has Re(s) = 1 we can apply Proposition 2.19 to deduce that each Lj,−sΨ either has spectral
radius strictly less than 1 or has pj (the period of Σj) simple maximal eigenvalues that does
not include 1. Hence for all such s and for all t sufficiently small η(s, t) admits an analytic
extension to (s,0) which we can differentiate to give the required extension for ηp at s.
We now consider the values of s close to 1. We know that there exists a complex neigh-

bourhood U × V of (1,0) such that for (s, t) ∈ U × V each of the operators Lj,s,t have pj simple
maximal eigenvalues of the form eπi/pjePj(−sΨd−tΦ) where pj represents the period of the jth
maximal component. The pressures Pj(−sΨd− tΦ) are bi-analytic in the neighbourhood U ×V .
Further, by Lemma 2.17 we know that Pj(−sΨd − tΦ) is independent of j for all (s, t) ∈ U × V .
We write P(s, t) for this function and λ(s, t) = eP(s,t) as before. It follows that for (s, t) ∈ U ×V
we can write

η(s, t) = ∑
n≥1

k

∑
j=1
Lnj,s,tχ(0̇) + γ(s, t) = ∑

n≥1

k

∑
j=1
enPj(−sΨd−tΦ)Qj,s,tχ(0̇) + α(s, t)

where α(s, t) is bi-analytic in a neighbourhood of (1,0). Since the pressures coincide, setting
Q(s, t) = ∑kj=1Qj,s,tχ(0̇) we see that

η(s, t) = Q(s, t)λ(s, t)
1 − λ(s, t) + α(s, t). (2)
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For later we note that Q(1,0) is a positive real number. Indeed, by part (3) of Proposition
2.16, we can realise it as the limit

Q(1,0) = lim
n→∞

1

n

n

∑
i=1

k

∑
j=1
Lij,1,0χ(0̇) = lim

n→∞

1

n
∑
∣g∣S≤n

e−d(o,g)

and there exists C1,C2 > 0 such that

C1 ≤ ∑
∣g∣S=n

e−d(o,g) ≤ C2

for all n ≥ 1 by [CT21, Lemma 2.8].
We now want to use expression (2) to deduce the required properties about the poles of ηp.

We begin by considering the pth derivative of (2). Writing F (s, t) = Q(s, t)λ(s, t) we see that

∂p

∂tp
∣
(s,0)

η(s, t) = ∂p

∂tp
∣
(s,0)
( F (s, t)
1 − λ(s, t)) + β(s)

for some function β that is analytic for s near 1. We then make the following claim.
Claim: For each p ≥ 1 there exists a function Rp than is bi-analytic on a neighbourhood of
(1,0) such that if p is even

∂p

∂tp
η(s, t) = p!λtt(s, t)

p
2

2
p
2 (1 − λ(s, t))1+ p

2

F (s, t) + Rp(s, t)
(1 − λ(s, t)) p2

(3)

and if p is odd

∂p

∂tp
η(s, t) = (p − 1)!(p + 1)λtt(s, t)

p−1
2 λt(s, t)

2
p+1
2 (1 − λ(s, t))1+ p+1

2

F (s, t) + Rp(s, t)
(1 − λ(s, t)) p+12

. (4)

Furthermore, for any p ≥ 1 the following hold. If p is even Rp(s,0)(1 − λ(s,0))−
p
2 has poles

of integer orders at most p/2 at (1,0) and is analytic otherwise. If p is odd then Rp(s,0)(1 −
λ(s,0))− p+1

2 has integer poles of order at most (p + 1)/2 at (1,0) and is otherwise analytic.
This claim can be proved using Lemma 2.18 (specifically the fact that λt(1,0) = 0) and by

induction. We leave the details to the reader.
We can now use the claim to conclude the proof. We now distinguish the cases of p being

odd and even.
Case 1: p is odd. Evaluating expression (4) at (s, t) = (s,0) and using the fact that λt(1,0) = 0
we see that ηp(s) has poles of integer order at most (p + 1)/2. This is precisely what we want
to show when p is odd.
Case 2: p is even. Evaluating expression (3) at (s, t) = (s,0) we see that

∂p

∂tp
∣
(s,0)

η(s, t) = p!λtt(s,0)p/2
2p/2(1 − λ(s,0))1+p/2F (s,0) +R(s) (5)

where R(s) is analytic in a neighbourhood of s = 1 except for possible poles of orders at most
p/2. Now recall that F (s,0) is analytic in a neighbourhood of s = 1 and also F (1,0) is a
strictly positive real number. Hence for s near 1, F (s,0) = F (1,0) + (s − 1)A(s) for some
analytic A. Similarly, by Lemma 2.18 we have that λtt(s,0) = λtt(1,0) + (s − 1)B(s) for some
analytic B near s = 1 and we have that λtt(1,0) is a strictly positive real number. Lastly since
λs(1,0) < 0 we have that 1 − λ(s,0) = (1 − s)C(s) where C is analytic in a neighbourhood of 1
and C(1) = λs(1,0) is a strictly negative real number. Substituting the functions A,B,C into
equation (5) then shows that

∂p

∂tp
∣
(s,0)

η(s, t) = F (1,0)p!λtt(1,0)p/2
2p/2C(1)1+p/2(1 − s)1+p/2L(s)
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where L(s) is an analytic function on a neighbourhood of s = 1 and L(1) = 1. To conclude we
note that

F (1,0)p!λtt(1,0)p/2
2p/2C(1)1+p/2(1 − s)1+p/2 =

F (1,0)p!σp
2p/2(−C(1))(s − 1)1+p/2

where σ2 is as defined in (1). This concludes the proof and shows that the constants C,σ2 in
part (2) of Proposition 2.8 are given by

C = −F (1,0)
λs(1,0)

and σ2 = σ2(d∗/d) = −
λtt(1,0)
λs(1,0)

,

both of which are strictly positive. □

3. Deducing the main theorems

In this section we operate under the same assumptions that we stated at the beginning of
Section 2.2. As mentioned earlier, we will use the method of moments. That is, we want to
study the limit of the pth moments

lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

(d∗(o, g) − T√
T

)
p

(6)

for each p ≥ 1. We would like to show that for each p ≥ 1 the moments written above in (6)
are equal to 0 if p is odd and to σp(p − 1)!! when p is even [Bil11, Theorem 30.2]. Here, given
k ∈ Z≥0, k!! represents the product of the numbers between 1 and k that have the same parity
as k. We need to be a little careful here: the method of moments applies to discrete sequence
of random variables and our central limit theorem has convergence in a continuous variable T .
We elaborate on this point during the proof of Theorem 1.3.

We will actually study slightly different limits in (6) in which d∗(o, g) − T is replaced by
d∗(o, x)−d(o, x). To extract the asymptotics we need from Proposition 2.8 we use the following
Tauberian Theorem due to Delange [Del54, Theorem III]. Throughout the rest of the paper,
given two functions f, g ∶ R→ R we write f(T ) ∼ g(T ) if f(T )/g(T ) → 1 as T →∞.

Proposition 3.1. For a monotone increasing function ϕ ∶ R>0 → R>0 we set

f(s) = ∫
∞

0
e−sT dϕ(T ).

Suppose that there is δ > 0 such that

(1) f(s) is analytic on {Re(s) ≥ δ}/{δ}; and,
(2) there are positive integers n, k ≥ 1, an open neighbourhood U ∋ δ, non-integer numbers

0 < µ1, . . . , µk < n and analytic maps g, h, l1, . . . , lk ∶ U → C such that

f(s) = g(s)
(s − δ)n +

k

∑
j=1

lj(s)
(s − δ)µj + h(s) for s ∈ U and such that g(δ) > 0.

Then

ϕ(T ) ∼ g(δ)
(n − 1)!T

n−1eδT

as T →∞.

It will be useful to make the following definition.

Definition 3.2. For each p ≥ 1 we set

πp(T ) = ∑
d(o,g)<T

(d∗(o, g) − d(o, g))p

for T > 0.



16 STEPHEN CANTRELL AND MARK POLLICOTT

Using πp we can write

∑
g∈Γ
(d∗(o, g) − d(o, g))pe−sd(o,g) = ∫

∞

0
e−sT dπp(T ).

When p is even Proposition 3.1 applies (as πp is monotone increasing) and we see that

πp(T ) ∼
Cp!σp

2p/2(p2)!
eTT

p
2 = Cσp(p − 1)!! eTT p

2 and π0(T ) ∼ CeT

as T →∞. Here C,σ2 > 0 are as in part (2) of Proposition 2.8. In now follows that

lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

(d∗(o, g) − d(o, g)√
T

)
p

= lim
T→∞

πp(T )
T

p
2π0(T )

= σp(p − 1)!!.

This is what we want to show in the case that p is even.
Before continuing with the proof of Theorem 1.3 we prove Theorem 1.1.

Proof of Theorem 1.1. Recall that we are assuming that d, d∗ are not roughly similar. Setting
p = 2 the previous display equation gives that

lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

(d∗(o, g) − d(o, g)√
T

)
2

= σ2(d∗/d). (7)

The limit in Theorem 1.1 is similar except that d∗(o, x) − d(o, x) is replaced by d∗(o, x) − T .
By splitting the sum over {x ∈ Γ ∶ d(o, x) < T} in (7) into sums over the sets {x ∈ Γ ∶ d(o, x) ≤
T − T 1/3} and {x ∈ Γ ∶ T − T 1/3 < d(o, x) < T} it is easy to deduce the required limit. This uses
the fact that

#{x ∈ Γ ∶ d(o, x) ≤ T − T 1/3}
#{x ∈ Γ ∶ d(o, x) < T} = O (e−T 1/3)

decays to zero faster than any polynomial as T →∞. We leave the details to the reader.
We also need to identify σ2(d∗/d) with the second derivative θ′′

d∗/d(0). To do this let w(t) be
the implicit solution to λ(w(t), t) = 0 which exists and is analytic for t in a neighbourhood of
0 by the Implicit Function Theorem (which we can apply due to Lemma 2.18). The Implicit
Function Theorem also tells us that

w′(t) = −λt(w(t), t)
λs(w(t), t)

(8)

from which it follows that w′(0) = 0. Now note that

P (w(t), t) = PC((t −w(t))Ψd − tΨd∗)
where C is any word maximal component by Theorem 5.4 of [CT22] and Proposition 2.13.
Hence when t ∈ R we see that for θd∗/d(t) = w(t) − t and in particular θ′′

d∗/d(0) = w
′′(0). Hence

to conclude the proof it suffices to show that w′′(0) = σ2(d∗/d). We now differentiate (8) which
shows that −w′′(t) is given by

(λtt(w(t), t) + λst(w(t), t)w′(t))λs(w(t), t) − (λts(w(t), t) + λss(w(t), t)w′(t))λt(w(t), t)
(λs(w(t), t))2

.

Evaluating at t = 0 and using the fact that w′(0) = λt(1,0) = 0 we see that

w′′(0) = −λtt(1,0)
λs(1,0)

which agrees with σ2(d∗/d) due to (1). To finish the proof we need to discuss the case that
d, d∗ are roughly similar. When this is the case it is easy to see that σ2(d∗/d) = 0 by Theorem
2.6. The equivalence statement in Theorem 1.1 then follows and the proof is complete. □

We now continue with the proof of Theorem 1.3 by studying the moments when p is odd.
To prove the following proposition we follow an argument due to Hwang and Janson [HJ11].
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Proposition 3.3. When p is odd we have that

lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

(d∗(o, g) − d(o, g)√
T

)
p

= 0.

Proof. Fix odd p ≥ 1. We define

G1(s) = ∑
g∈Γ
((d∗(o, g) − d(o, g))2p + d(o, g)p)) e−sd(o,g)

G2(s) = ∑
g∈Γ
((d∗(o, g) − d(o, g))p + d(o, g)

p
2 )2 e−sd(o,g)

G3(s) = ∑
g∈Γ
d(o, g) p2 (d∗(o, g) − d(o, g))pe−sd(o,g).

Note that G2 = G1 + 2G3 and that these three series are convergent in Re(s) > 1. We also have
that

G1(s) = η2p(s) − η(p)0 (s) =
g(s)

(s − 1)1+p + f(s)

where g(s), f(s) are analytic in Re(s) ≥ 1 and g(1) is a positive real number. Here the power

of p in parenthesise (in η
(p)
0 ) represents taking the pth derivative. We will use this notation

throughout the rest of the paper. It follows from Proposition 3.1 that

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

(d∗(o, g) − d(o, g))2p + d(o, g)p ∼
g(1)T p
p!

as T →∞.
We now want to show that G2 has a pole with the order poles at s = 1. We begin by

calculating

η
( p+1

2
)

p (s) = (−1)( p+12 ) ∑
d(o,g)<T

d(o, g) p+12 (d∗(o, g) − d(o, g))pe−sd(o,g).

Then using the identity

∫
∞

0
t−

1
2 e−tx dt =

√
π√
x

for x > 0 we can write

G3(s) =
1√
π
∑
g∈Γ
d(o, g) p+12 (d∗(o, g) − d(o, g))pe−sd(o,g)∫

∞

0
t−

1
2 e−td(o,g) dt

= (−1)
p+1
2

√
π
∫
∞

0

η
( p+1

2
)

p (s + t)√
t

dt.

It follows that G3 is analytic on Re(s) ≥ 1 except for a pole at s = 1. We also know that η
( p+1

2
)

p

has a pole of order at most p + 1 at s = 1. It follows that locally to s = 1 we can write

η
( p+1

2
)

p (s) =
p+1

∑
j=1

aj
(s − 1)j + h(s)

where h(s) is analytic and the a1, . . . , ap+1 are complex numbers (some of which could be 0).
Since

∫
∞

0

1

(s + t − 1)j
√
t
dt = π(2j − 2)!

22j−1((j − 1)!)2
1

(s − 1)k− 1
2

it follows that in a neighbourhood of s = 1

G3(s) =
p+1

∑
j=1

cj

(s − 1)j− 1
2

+ l(s)
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for some analytic function l and constants c1, . . . , cp+1. Then using the identity G2 = G1 + 2G3

we see that

G2(s) =
p+1

∑
j=1

aj
(s − 1)j +

bj

(s − 1)j− 1
2

+ r(s)

where aj, bj, r are analytic maps on Re(s) ≥ 1. Furthermore ap+1(1) = g(1) (where g is the
function from our expression for G1). We can then apply Proposition 3.1 to G2 to deduce that

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

((d∗(o, g) − d(o, g))p + d(o, g)
p
2 )2 ∼ g(1)T

p

p!

as T →∞. It then follows that
1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

d(o, g) p2 (d∗(o, g) − d(o, g))p = o(T p)

as T → ∞. To conclude the proof we need to show that the same estimate holds when we
replace d(o, g) p2 with T

p
2 , i.e. we want to show that πp(T ) = o(T

p
2 eT ). To do so, note that

∑
d(o,g)<T

d(o, g) p2 (d∗(o, g) − d(o, g))p = ∫
T

0
t
p
2 dπp(t) = T

p
2πp(T ) −

p

2 ∫
T

0
t
p
2
−1πp(t) dt. (9)

This follows from a standard integration by-parts formula for the Stiltjes integral. Now using

the fact that ∣πp(T )∣ ≤ πp−1(T ) +πp+1(T ) = O(T
p+1
2 eT ) (where we have used that p− 1 and p+ 1

are even and so our estimates on the even moments apply) it is a simple calculation to show
that

∣∫
T

0
t
p
2
−1πp(t) dt∣ = O (∫

T

0
tp−

1
2 et dt) = o(T peT )

as T →∞. Substituting this into (9) shows that

πp(T ) = T −
p
2

⎛
⎝ ∑d(o,g)<T

d(o, g) p2 (d∗(o, g) − d(o, g))p +
p

2 ∫
T

0
t
p
2
−1πp(t) dt

⎞
⎠
= o(T peT )

as T →∞, as required. □

We have shown the following.

lim
T→∞

1

#{g ∈ Γ ∶ d(o, g) < T} ∑
d(o,g)<T

(d∗(o, g) − d(o, g)√
T

)
p

= {0 if p is odd

σp(p − 1)!! if p is even.

We are now ready to conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. As mentioned, we would like to apply the method of moments [Bil11,
Theorem 30.2]. Considering the moments above along the integers n ≥ 1 we deduce that for
any t ∈ R

1

#{g ∈ Γ ∶ d(o, g) < n}#{g ∈ Γ ∶ d(o, g) < n and
d∗(o, g) − d(o, g)√

n
≤ t} → Nσ(t)

as n→∞ (in the discrete sense). Now note that there existsM > 0 such that when T ∈ [n,n+1)
and d(o, x) < T , ∣d∗(o, x) − d(o, x)∣ ≤M(n + 1) and so for each n ≥ 1 and so there exists R > 0
such that when T ∈ [n,n + 1)

∣d∗(o, x) − d(o, x)√
T

− d∗(o, x) − d(o, x)√
n

∣ ≤ R√
n

for all n ≥ 1. Writing

C(T, t) = 1

#{g ∈ Γ ∶ d(o, g) < T}#{g ∈ Γ ∶ d(o, g) < T and
d∗(o, g) − d(o, g)√

T
≤ t}

we therefore have that C(n, t) ≤ C(T, t) ≤ C(n, t + Rn−1/2) for each n ≥ 1, T ∈ [n,n + 1) and
t ∈ R. It follows that for each t ∈ R, C(T, t) tends to Nσ(t) as T →∞ (in the continuous sense).
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This is almost the statement of the central limit theorem in Theorem 1.3 except we would
like d∗(o, x) − d(o, x) replaced with d∗(o, x) − T . However, this follows easily as we have that

#{x ∈ Γ ∶ d(o, x) < T and ∣d(o, x) − T ∣ > T 1/3} = o(#{x ∈ Γ ∶ d(o, x) < T})
as T →∞. □

4. Further applications and examples

In this last section we include some further applications of our results and methods. In
particular we look at central limit theorems for real valued potentials (other than strongly
hyperbolic metrics) on Γ when we order elements by their length with respect to a strongly
hyperbolic metric. They key observation is that our arguments can be applied to potentials
φ ∶ Γ→ R that satisfies the following properties:

(i) there exists a finite, symmetric generating set S for Γ and constant C > 0 such that for
any g ∈ Γ and s ∈ S both ∣φ(gs) − φ(g)∣ < C and ∣φ(sg) − φ(g)∣ < C; and,

(ii) there exists a Cannon coding (for some generating set) with corresponding shift space Σ
and a potential Ψφ such that for x ∈ Σ with x0 = ∗, SnΨφ(x) = φ(evn(x)).

Once we have a function φ ∶ Γ → R that satisfies these conditions, our arguments apply and
we can deduce a central limit theorem for φ. This can be easily be verified from following our
proof of Theorem 1.3. The non-degeneracy criteria then becomes the following. The central
limit theorem comparing φ and a strongly hyperbolic metric d is degenerate if and only if there
exists C > 0, τ ∈ R such that ∣φ(g)−τd(o, g)∣ < C for all g ∈ Γ. We now discuss various examples
of φ satisfying the above conditions.

4.1. Word metrics and bi-combable functions. As mentioned in the introduction, there
has been much interest in counting central limit theorems when group elements are ordered
by a word metric. Our methods allow us to prove central limit theorems for word metrics but
when the ordering is done with respect to a different metric.

Theorem 4.1. Let Γ be non-elementary, non-virtually free hyperbolic group and d a strongly
hyperbolic metric in DΓ. Fix a word metric ∣ ⋅ ∣S on Γ associated to a finite generating set S.
Then there exists τ > vd/vS and σ2 > 0 such that for any t ∈ R,

1

#{g ∈ Γ ∶ d(o, g) < T}#{g ∈ Γ ∶ d(o, g) < T and
∣g∣S − τT√

T
≤ t} → Nσ(t)

as T →∞.

Here vS denotes the exponential growth rate of the word distance dS associated to S. Note
that here we know that σ2, the variance, is strictly positive.

Proof. We use a Cannon coding for the word metric S in the theorem. Then, the constant
potential with value 1 on this coding represents the word metric ∣ ⋅ ∣S in the sense of (ii) above.
It is also clear that (i) is satisfied for the map g ↦ ∣g∣S. We therefore have the required properties
needed to follow the same proof used to show Theorem 1.3. To conclude the proof we need to
know that d and dS are never roughly similar to guarantee that τ > vd/vS and that σ2 > 0. This
follows from and argument of Gouëzel, Matheus and Maucorant [GMM18] which shows that d
can not have arithmetic length spectrum (where as it is known that dS necessarily does have
arithmetic length spectrum). See [Can23, Proposition 1.13] for further explanation. □

In fact we can apply our result to the class of bi-combable functions introduced by Calegari
and Fujiwara in [CF10] (which include word metrics). These functions satisfy (i) and (ii)
above (by definition). An interesting example of bi-combable functions are Brook’s counting
quasi-morphisms. Our work applies and we deduce counting central limit theorems comparing
bi-combable functions with strongly hyperbolic metrics. Such central limit theorems are always
non-degenerate.
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4.2. Anosov representations. Recall that a representation ρ ∶ Γ → SLd(R) (of a finitely
generated group Γ) is projective Anosov if the first and second singular values of ρ separate
exponentially as word length increases, i.e. given a finite generating set S on Γ there exists
C,Λ > 0 such that

σ1(ρ(g))
σ2(ρ(g))

≥ CeΛ∣g∣S

for all g ∈ Γ. Here given A ∈ SLd(R), σ1(A) ≥ σ2(A) ≥ . . . σd(A) are the singular values of
A. This is not the original definition of projective Anosov introduced by Labourie [Lab06]
(for surface groups) and extended (to all groups) by Guichard and Wienhard [GW12] however
it is easy to state and is known to be equivalent by the work [BPS19]. Furthermore, groups
admitting a projective Anosov representation are necessarily hyperbolic [BPS19]. The Hilbert
length functional associated to ρ ∶ Γ→ SLd(R) is given by

α(g, h) ∶= logσ1(ρ(g−1h)) − logσd(ρ(g−1h)) for g, h ∈ Γ.
These are examples of strongly hyperbolic metrics: this can be seen by combining [CR22,
Lemma 3.14], [CR22, Lemma 6.3] and [CT22, Lemma 7.1]. We therefore deduce the following.

Theorem 4.2. Suppose that Γ is non-elementary, is not virtually free and that α,α∗ ∶ Γ→ R are
Hilbert length functions associated to two projective Anosov representations ρ ∶ Γ→ SLn(R), ρ∗ ∶
Γ→ SLm(R) as above. Then there exists τ = τ(ρ∗/ρ) > 0 and σ2 = σ2(ρ∗/ρ) ≥ 0 such that

1

#{g ∈ Γ ∶ α(o, g) < T}#{g ∈ Γ ∶ α(o, g) < T and
α∗(o, g) − τT√

T
≤ t} → Nσ(t)

as T →∞.

For Hitchin representations, the variance being 0 in the above theorem determines the rep-
resentation entirely (i.e. σ = 0 if and only if the representations are the same or are contragre-
dient). This also holds for Benoist representations. See [LCW22, Remark 7.11]. Similar limit
laws for Anosov representations will be considered in the upcoming work [CCDS24].

4.3. Quasi-Fuchsian representations. For our final example we compare two distances on
a surface group Γ, i.e. Γ is the fundamental group of a closed, negatively curved Riemannian
surface (V,g). Given such a group Γ we can lift the metric g on the surface to obtain a metric

dg on Γ. More precisely, if (Ṽ , g̃) is the universal cover of (V,g) and we fix a base point o ∈ Ṽ
then we can define

dg(g, h) = dg̃(g ⋅ o, h ⋅ o) for g, h ∈ Γ.
We can also take a representation ρ ∶ Γ → PSL2(C) ≃ Isom(H3) corresponding to convex
cocompact isometric action by Γ on H3. From such a representation we obtain a metric dρ on
Γ by lifting as we did for dg. We then have the following.

Theorem 4.3. Suppose that Γ is a surface group and that dg and dρ are as above. Then, there
exists τ > 0, σ2 ≥ 0 such that

1

#{g ∈ Γ ∶ dg(o, g) < T}
#{g ∈ Γ ∶ dg(o, g) < T and

dρ(o, g) − τT√
T

≤ t} → Nσ(t)

as T → ∞. Furthermore, σ2 = 0 if and only if g corresponds to a point in Teichmüller space
ρg ∶ Γ→ PSL2(R) (i.e. g has constant negative curvature) and ρ is a conjugate representations
in PSL2(C), i.e. there exists M ∈ PSL2(C) such that ρ(g) =M−1ρg(g)M for all g ∈ Γ.
Proof. Both metrics dρ and dg are strongly hyperbolic and so Theorem 1.3 applies and the
central limit theorem follows. The non-degeneracy equivalence statement follows from a result
of Fricker and Furman [FF22, Theorem A]. □

In the above theorem we could swap the roles of dg and dρ to obtain a central limit theorem
with possibly different mean and variance.
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4.4. Translation distance functions. To finish this work we briefly discuss versions of The-
orem 1.3 for translation distance functions. We begin with the following lemma.

Lemma 4.4. Let d ∈ DΓ be strongly hyperbolic. Then we have that

1

#{g ∈ Γ ∶ d(o, g) < T}#{x ∈ Γ ∶ d(o, g) < T, and ∣d(o, g) − ℓd(g)∣ > T
1/3} → 0

as T →∞.

Proof. Consider the set of elements

U(T ) = {g ∈ Γ ∶ d(o, g) < T, and ∣d(o, g) − ℓd(g)∣ > T 1/3}.
Now there exists C > 0 such that given x ∈ U(T ) we can find, by [CT21, Lemma 3.2], g′ ∈ [g] such
that ∣d(o, g′) − ℓd(g′)∣ = ∣d(o, g′) − ℓd(g)∣ ≤ C. Then we have that d(o, g′) ≤ ℓd(g) +C ≤ T − T 1/3.
Now note that by [CR23, Lemma 4.2] the association g ↦ g′ is at most K(d(o, g) + 1) to 1 for
some K > 0 independent of g (i.e it is at most K(T +1) to 1 for g ∈ U(T )). Hence we have that

#U(T ) ≤K (T + 1)#{g′ ∈ Γ ∶ d(o, g′) < T − T 1/3} = O (Tevd(T−T 1/3))

as T →∞ and the result follows. □

As a corollary of this lemma and Theorem 1.3 we deduce the following result. Recall that,
given d∗ ∈ DΓ and g ∈ Γ, ℓd∗[g] is stable translation length of (the conjugacy class containing)
g with respect to d∗.

Corollary 4.5. Suppose that Γ is a non-elementary hyperbolic group and take two strongly
hyperbolic metrics d, d∗ on Γ. Suppose either that Γ is not virtually free or that Γ is virtually
free and that d has non-arithmetic length spectrum. Then there exist τ = τ(d∗/d) > 0 and
σ2 = σ2(d∗/d) ≥ 0 such that

1

#{g ∈ Γ ∶ d(o, g) < T}#{g ∈ Γ ∶ d(o, g) < T and
ℓd∗[g] − τT√

T
≤ t} → Nσ(t)

as T →∞. Furthermore, σ2(d∗/d) = 0 if and only if d and d∗ are roughly similar.

Given this result it is natural to ask whether we can also replace d with ℓd and count over
conjugacy classes opposed to group elements. We are unsure how to approach this problem
and so end the paper with the following question.

Question 4.6. Let d, d∗ be strongly hyperbolic metrics on a non-elementary hyperbolic group
Γ. Does a central limit theorem hold that compares ℓd and ℓd∗ on conjugacy classes. That is,
does

1

#{[g] ∈ conj(Γ) ∶ ℓd[g] < T}
#{[g] ∈ conj(Γ) ∶ ℓd[g] < T and

ℓd∗[g] − τT√
T

≤ t}

converge to a normal distribution as T →∞?

Open access statement. For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from
this submission.
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[GdlH90] É. Ghys and P. de la Harpe, editors. Sur les groupes hyperboliques d’après Mikhael Gromov, volume 83
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