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Abstract

We show how to derive an asymptotic estimates for the number of closed arcs γ on
a surface V of (variable) negative curvature with non-empty geodesic boundary which
lie in a given non-trivial conjugacy class.

1 Introduction

There are many asymptotic counting results for geodesic arcs on negatively curved surfaces,
dating back to the work of Huber and Margulis [6] for closed surfaces. Motivated by in-
teresting recent work of Parkkonen-Paulin [7] and Kenison-Sharp [4], one can ask whether
there are analogous results when we count only geodesic arcs in a fixed conjugacy class.
More precisely, let V be a compact surface with (variable) negative curvature. Let ξ ∈ V
be a fixed reference point then the fundamental group π1(V, ξ) consists of homotopy classes
c of closed curves on V beginning and ending at ξ. By additionally assuming that V has
non-empty geodesic boundary (i.e., ∂V 6= ∅) we can assume that π1(V ) is a free group.

ξ

c

V

Figure 1: A geodesic arc c based at ξ on a surface V , represented by a “pair of pants”.

Let us now fix some notation.

Notation 1.1. Given c ∈ π1(V, ξ) we denote by γc the unique geodesic arc γc : [0, L]→ V in
the homotopy class c of length L = Lc starting and finishing at ξ (i.e., γc(0) = γc(L) = ξ).
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2 SOME PRELIMINARY LEMMAS

We denote by h = h(V ) > 0 the topological entropy of the geodesic flow φt : SV → SV
associated to V . In particular, h is the growth rate of the number of such geodesic arcs when
ordered by length. Moreover, there is the stronger asymptotic estimate in the following
classical result.

Theorem 1.2 (after Margulis). For each ξ ∈ V there exists C = C(V, ξ) > 0 such that

#{c ∈ π1(V, ξ) : Lc ≤ T} ∼ CehT as T → +∞

(i.e., limT→+∞#{c ∈ π1(V, ξ) : Lc ≤ T}e−hT = C).

This result was originally proved when the surface is without boundary [6], but is also
valid for surfaces with geodesic boundary too (see [9]).

Example 1.3 (Pair of pants). We can consider the concrete case of a pair of pants V . This is
a compact surface of (variable) negative curvature with three geodesic boundary components,
as illustrated in Figure 1. In this case the fundamental group is a free group on two generators
α, β ∈ π1(V, ξ), say (i.e., π1(V, ξ) = 〈α, β〉).

We want to consider the restricted counting problem where we impose the additional
restriction that we only count those elements c ∈ π1(V, ξ) which are conjugate to a fixed
element a ∈ π1(V, ξ)− {e}, say, i.e., bab−1 ∈ π1(V, ξ) for some b ∈ π1(V, ξ).

The main result of this note is the following.

Theorem 1.4 (Counting geodesic arcs in a fixed conjugacy class). Given a ∈ π1(M)− {e}
and ξ ∈ V there exists Ca = C(V, ξ, a) > 0 such that

#{b ∈ π1(V, ξ) : Lbab−1 ≤ T} ∼ Cae
hT/2 as T → +∞

(i.e.,limT→+∞#{b ∈ π1(V, ξ) : Lbab−1 ≤ T}e−hT/2 = Ca).

In the case of graphs, this problem has been studied by a number of authors including
Kenison-Sharp [4], Parkkonen-Paulin [7], Broise-Alamichel-Parkkonen-Paulin [1], Douma [2]
and Guillopé [3]. In proving corresponding results for geodesics on surfaces the additional
difficulty is introducing the geometric lengths of the geodesic arcs.

2 Some preliminary lemmas

We begin with some preliminary results on free groups and the lengths of geodesic arcs. Let
us assume for (notational) simplicity that V is a pair of pants. In particular, this means that
π1(V ) is a free group on two generators α, β, say (i.e., π1(V ) = 〈α, β〉). We can then fix an
element a = a1 · · · am ∈ π1(V ) and conjugate elements b−1ab, where b = b1 · · · bn (presented
in reduced form in terms of generators ai, bi ∈ {α∓1, β∓1}).

It is convenient to denote the word lengths by |a| = m and |b| = n.
It suffices to consider only those conjugate elements for which bab−1 is already in reduced

form, since otherwise the same conjugacy class would already be accounted for by an element
of shorter (word) length. Thus without loss of generality we may assume that b1 6= am and
bn 6= a−1

1 .
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3 PROOF OF THEOREM 1.4 (ASSUMING LEMMAS 2.2, 2.3 AND 2.4)

Notation 2.1. If l < n then we will denote bl1 = b1 · · · bl and bnn−l+1 = bn−l+1 · · · bn.

The first lemma counts geodesic arcs subject to restrictions on the beginning and end of
the presentations of the corresponding group elements.

Lemma 2.2. Let u, v ∈ π1(V ) with |u| = |v| = l and satisfying u1 6= am and vl 6= a−1
1 . There

exists a constant Cuv such that

#{b ∈ Γ : bl1 = u, bnn−l+1 = v, Lb ≤ T} ∼ Cuve
hT as T → +∞ (1)

The next lemma is more geometric in flavour and compares the lengths of (piecewise)
geodesics arcs.

Lemma 2.3. There exist:

1. values τl(u, v) > 0, associated to pairs of words with |u| = |v| = l and satisfying
u1 6= am and vl 6= a−1

1 , for each l ≥ 1; and

2. K > 0 and 0 < ρ < 1,

so that for any b ∈ Γ with |b| ≥ 2l and satisfying bl1 = u and bnn−l+1 = v we have that

|Lbab−1 − La − 2Lb + τl(u, v))| ≤ Kρl

Finally, it easy to see that the constants in Lemma 2.2 satisfy Cuv → 0 as l → +∞.
However, we have the following additional estimate.

Lemma 2.4. The following limit exists

lim
l→+∞

∑
|u|=|v|=l
u1 6=am
vl 6=a−1

1

Cuve
−τl(u,v) =: C > 0.

We will postpone the proof of these three lemmas to Section 5. In the meantime, we will
use them in the next section to derive the Theorem.

3 Proof of Theorem 1.4 (assuming lemmas 2.2, 2.3 and

2.4)

We can prove the Theorem using Lemmas 2.2, 2.3 and 2.4 and an approximation argument.
Let us denote by

Na(T ) := #{b ∈ π1(V, ξ) : Lbab−1 ≤ T}

the counting function in Theorem 1.4. Given u, v ∈ π1(V ) with |u| = |v| = l satisfying
u1 6= am and vl 6= a−1

1 we can write

Nu,v(T ) := #{b ∈ Γ : bl1 = u, bnn−l+1 = v, Lb ≤ T}.
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4 CODING AND TRANSFER OPERATORS

Fix δ > 0. Writing εl := Kρl and using Lemma 2.3 and then Lemma 2.2 we have that

Na(T ) ≤
∑

|u|=|v|=l
u1 6=am
vl 6=a−1

1

Nu,v

(
T − La + τl(u, v) + εl

2

)

≤

(1 + δ)e−La/2eεl/2
∑

|u|=|v|=l
u1 6=am
vl 6=a−1

1

Cuve
−τl(u,v)

 ehT/2,

for sufficiently large T . Let η > 0. We can then assume that l was chosen sufficiently large
that ∑

|u|=|v|=l
u1 6=am
vl 6=a−1

1

Cuv ≤ (1 + η)C

by Lemma 2.4. In particular, for T sufficiently large we have

Na(T ) ≤
(
(1 + η)(1 + δ)e−La/2eεl/2C

)
eT/2.

Similarly, we can get a lower bound

Na(T ) ≥
(
(1− η)(1− δ)e−La/2e−εl/2C

)
eT/2.

Comparing these two inequalities, and since η, δ > 0 can be chosen arbitrarily small provided
l and T are sufficiently large, then Theorem 1.4 follows with Ca = e−La/2C.

4 Coding and transfer operators

Before proving the three lemmas from Section 2 in Section 5, we need to recall some pre-
liminary results on the use of symbolic dynamics and lengths of geodesic arcs. We will use
a dynamical approach to the counting problem. The particular method we will employ uses
symbolic dynamics.

For definiteness we will continue to concentrate on the case of a pair of pants. We first
introduce a matrix

B =


0 0 0 0 1
1 1 0 1 1
1 1 1 0 1
0 1 1 1 1
1 0 1 1 1


where we label the rows and columns by S = {0, a, b, a−1, b−1}.

Definition 4.1. We can associate a compact metric space

ΣB = {x = (xn)∞n=1 ∈ S : B(xn, xn+1) = 1, n ∈ N}.

A shift map σ : ΣB → ΣB defined by (σx)n = xn+1, for n ∈ N.
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4 CODING AND TRANSFER OPERATORS

Observe that ΣB contains the fixed point 0̇ = (0, 0, 0, · · · ).
We can define a natural metric on ΣB by

d(x, y) =
∞∑
n=1

e(xn, yn)

2n

where x = (xn)∞n=1, y = (yn)∞n=1 and

e(i, j) =

{
1 if xn 6= yn

0 if xn = yn.

We can now relate the lengths of geodesic arcs to certain sequences in ΣB.

Lemma 4.2 (after Lalley). There exists a Hölder continuous function r : ΣB → R such that
for any sequence

x = (x1, x2, x3, · · · , xn, 0, 0, . . .) ∈ ΣB

finishing with infinitely many 0s the associated group element

g = x1x2 · · ·xn ∈ Γ

corresponds to a geodesic arc of length Lg = rn(x) :=
∑n−1

k=0 r(σ
kx).

This result was proved by Lalley in the case of constant negative curvature (see [5], p. 41)
and generalized to the present context of variable negative curvature in [9]. For completeness,

we briefly outline the construction. Let Ṽ be the Universal Cover for V with the lifted
metric d̃. Elements g ∈ π1(V ) have a natural action on Ṽ as covering transformations. Let

ξ̃ ∈ Ṽ be a lift of ξ ∈ V . The function r : ΣB → R is defined on the dense set of points
x = (x1, x2, · · · , xn, 0, 0, . . .) by

r(x) =


d̃(x1x2 · · ·xnξ̃, ξ̃)− d̃(x2 · · ·xnξ̃, ξ̃) if n ≥ 2

d̃(x1ξ̃, ξ̃) if x = (x1, 0, 0, · · · )
0 if x = (0, 0, 0, · · · )

and then extends (as a Hölder continuous function) to ΣB.
This function can now be used to define a useful linear operator. Let 0 < α < 1 be the

Hölder exponent of r and let Cα(ΣB,C) be the Banach space of complex valued α-Hölder
continuous functions.

Definition 4.3. There exists 0 < α < 1 such that for each s ∈ C, we can associate a transfer
operator Ls : Cα(ΣB,C)→ Cα(ΣB,C) defined by

Lsw(x) =
∑
σy=x

e−sr(y)w(y), w ∈ Cα(ΣB,C).

We have the following properties for these operators.

Lemma 4.4. Let s = σ + it.
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5 PROOF OF LEMMAS 2.2, 2.3 AND 2.4.

1. The operator Lσ has a simple maximal positive eigenvalue eP (−σr) with an eigenfunction
ψσ satisfying ψσ(0̇) and an eigenmeasure µσ. The rest of the spectrum is contained in
a disc of strictly smaller radius than eP (−σr).

2. For t 6= 0, the spectrum of the operator Ls is contained in a disc of strictly smaller
radius than eP (−σr).

Proof. The proof is essentially contained in [9]. The key observation is that spectral prop-
erties of the transfer operator in the statement coincide with those of the transfer operator
L̃s : Cα(ΣA)→ Cα(ΣA) associated to the larger transitive component

A =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


of B, the associated space ΣA ⊂ ΣB and subshift σ : ΣA → ΣA, the restriction r̃ : ΣA → R
of function r : ΣB → R and defined in the same way as Ls.

For the first part of the Lemma the corresponding results on the spectra for ΣA correspond
to the well known Ruelle Operator Theorem for Lσ (see [8]). The property that ψσ(0̇) > 0
follows by first showing ψσ ≥ 0 and considering the dense set ∪∞n=1σ

−n(0̇).
For the second part of the lemma it suffices to show that the restriction r̃ : ΣA → R

doesn’t satisfy {r̃n(x) : σnx = x} ⊂ aZ for some a > 0. However, these values correspond
to lengths of closed geodesics and a simply geometric argument shows this cannot hold.

The value P (−σr) appearing in Lemma 4.4 is called the pressure and the characterization
in terms of the maximal eigenvalue of the positive transfer operator is but one of many
equivalent definitions. Furthermore, we have the following standard result (see [8] for details).

Lemma 4.5. The function R 3 t 7→ P (−tr) is a real analytic function such that:

1. P (−hr) = 0;

2. P (−σr) < 0 for σ > h; and

3. d
dt
P (−tr)|t=h 6= 0.

5 Proof of Lemmas 2.2, 2.3 and 2.4.

It remains is to complete the proofs of the lemmas, all of which are fairly straightforward
variants on standard arguments.

Proof of Lemma 2.2. This follows by analogy with the argument in [9]. For each l ≥ 1, we
can formally define the complex function

ηuv(s) =
∞∑
n=2l

∑
b:|b|=n
bl1=u

bnn−l+1=v

e−sLb , s ∈ C.
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5 PROOF OF LEMMAS 2.2, 2.3 AND 2.4.

We associate to u the cylinder set in ΣB defined by

[u]ΣB
= {x = (xn)∞n=1 ∈ ΣB : xi = ui for 1 ≤ i ≤ l}

and its characteristic function

χ[u]ΣB
(x) =

{
1 if x ∈ [u]

0 otherwise.

Using Lemma 4.2 and the definition of the transfer operator we can write that∑
b:|b|=n
bl1=u

bnn−l+1=v

e−sLb =
∑
b:|b|=n
bl1=u

bnn−l+1=v

e−sr
n(b0̇) = e−sr

l(v0̇)Ln−ls χ[u](0̇),

since rn(b0̇) = rn−l(b0̇) + rl(v0̇), where b0̇ denotes the concaternation of the finite word b
and the infinite sequence 0̇. By Lemma 4.4 and the first part of Lemma 4.5 we can deduce
that ηuv(s) converges for Re(s) = σ > h (since then eP (−σr) < 0, as we remarked above).
Moreover, by using both parts of Lemma 4.4 one can easily show (following [9]) that ηuv(s)
has a meromorphic extension

ηuv(s) =
Cuv
s− h

+R(s),

where R(s) is analytic in a neighbourhood of Re(s) ≥ h and, using the first and last part of
Lemma 4.5, we can write

Cuv = −e
−srl(v0̇)µ([u])ψh(0̇)

d
dt
P (−tr)|t=h

> 0.

where µ := µh.
If we write

η(s) =

∫ 1

0

e−sTdNuv(T )

as a Riemann-Stieltjes integral then we can apply the Ikehara-Wiener tauberian theorem to
deduce the asymptotic result (cf. [9]).

The dependence of Cuv on v can be made more explicit using the symmetry in the
counting function Nuv(T ). First, note that if we denote

[u]ΣA
= {x = (xn)∞n=1 ∈ ΣA : xi = ui for 1 ≤ i ≤ l}

then it is easy to see that µ([u]ΣA
) = µ([u]ΣB

). Next consider the right shift map on

Σ−A =
{
x = (xn)−1

n=−∞ : A(xn, xn+1) = 1 for n ≤ −2
}

then we can write

[v]Σ−
A

=
{
x = (xn)−1

n=−∞ ∈ Σ−A : xi = vn+1+i for − l ≤ i ≤ −1
}

then there exists a constant K > 0 and a probability measure µ− on Σ−A such that

Cuv = Kµh([u]ΣA
)µ−([v]Σ−

A
). (2)
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5 PROOF OF LEMMAS 2.2, 2.3 AND 2.4.

Proof of Lemma 2.3. The geodesic arcs γa, γb−1 and γb on V , each starting and finishing at
ξ, can each be lifted to geodesic arcs γ̃a, γ̃b−1 and γ̃b on the Universal Cover Ṽ . Moreover,
fixing a lift ξ̃ of ξ we can choose the lifts γ̃a, γ̃b−1 , γ̃b on V such that

γ̃b(0) = ξ̃,

γ̃b(Lb) = γ̃a(0) and

γ̃a(La) = γ̃b−1(0).

On the other hand, bab−1 ∈ π1(V, ξ) corresponds to a geodesic arc γbab−1 and we can choose
a lift γ̃bab−1 with

γbab−1(0) = ξ̃ and γbab−1(Lbab−1) = γ̃b−1(Lb−1).

This is illustrated in Figure 2.

γ̃a

γ̃b

ξ̃

γ̃b−1 γ̃bab−1

Figure 2: The lifts of the geodesics corresponding to a and b

The conclusion of the lemma follows from the properties of negative curvature. The
side γ̃a of the rectangle is fixed. Specifying the first and last l generators of b determines
the angle between the sides corresponding to γb−1 and γa, and the angle between the sides
corresponding to γb and γa, up to an exponentially small error (in l). In particular, the
relative difference Lbab−1−La−2Lb in the lengths of the sides is determined up an exponential
small error (in l). This allows us to choose a value τl(u, v) with the required property.

Proof of Lemma 2.4. From (5.1) we know that we can write that∑
|u|=|v|=l
u1 6=am
vl 6=a−1

1

Cuve
−τ(u,v) = K

∑
|u|=|v|=l
u1 6=am
vl 6=a−1

1

µ([u]ΣA
)µ−([v]Σ−

A
)e−τ(u,v).

We can define

∆ :=
{(

(xn)∞n=0, (yn)−1
−∞
)
∈ ΣA × Σ−A : x0 6= am, y−1 6= a−1

1

}
and for each l ≥ 1 we can define a locally constant function Tl : ∆→ R by

Tl(x, y) =
∑

|u|=|v|=l

e−τ(u,v)χ[u]ΣA
(x)χ[v]

Σ−
A

(y).
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Letting l tend to infinity this converges to a continuous function T : ∆→ R by Lemma 2.3
and

lim
l→+∞

∑
|u|=|v|=l
u1 6=am
vl 6=a−1

1

Cuve
−τ(u,v) =

∫
∆

T (x, y)dµ(x)dµ−(y)

showing that the limit exists.

Remark 5.1. There are a number of questions that naturally arise.

1. The proof can probably be modified without too much difficulty to count geodesic arcs
with certain additional restrictions. For example, those for which b is null in homology
or where γ̃b(Lb) lies in a sector. One can also show other equidistribution results for
the geodesic arcs on V .

2. The same arguments would apply in higher dimensions, provided what we can still
assume that the fundamental groups is a free group. For, example if V is the quotient
of d-dimensional hyperbolic space by a Kleinian Schottky group.

3. It is natural to ask if Theorem 1.4 is still valid in the case that V is a closed surface
with ∂V = ∅ (or where π1(V ) is not a free group). However, there are significant
additional difficulties in analysing the conjuhacy classes of a when π1(V ) is not a free
group.
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