Effective extension of the pressure function

Mark Pollicott

September 28, 2024

1 Introduction

Let us assume that we have matrices $A_1, \dots, A_k \in GL(d, \mathbb{R})$ $(d \geq 2)$. Let $\mathbb{R}P^{d-1}$ be the (d-1)-dimensional real projective space then we can naturally associate the projective actions $\widehat{A}_i : \mathbb{R}P^{d-1} \to \mathbb{R}P^{d-1}$ on the (d-1)-dimensional real projective space $\mathbb{R}P^{d-1}$ (for $i = 1, \dots, k$ and $k \geq 2$).

Let $C^{\alpha}(\mathbb{R}P^{d-1})$ (for $0 < \alpha \leq 1$) be the Banach space of α -Holder continuous functions $f: \mathbb{R}P^{d-1} \to \mathbb{R}$ with respect to the norm $||f|| := \max\{||f||_{\alpha}, ||f||_{\infty}\}$ where

$$||f||_{\alpha} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} \text{ and } ||f||_{\infty} = \sup_{x \in \mathbb{R}P^{d-1}} |f(x)|.$$

We are interested in the following operators (which feature in the work of Le Page [3], Guivarc'h-Le Page [2], etc.).

Definition 1.1 (Transfer operator) For each $t \in \mathbb{R}$ and a probability $vector(p_1, \dots, p_k)$ we define a linear operator $\mathcal{L}_t : C^{\alpha}(\mathbb{R}P^{d-1}) \to C^{\alpha}(\mathbb{R}P^{d-1})$ by

$$L_t f(x) = \sum_{i=1}^k p_i |\det(D\widehat{A}_i)|^t f(\widehat{A}_i x)$$

where $x \in \mathbb{R}P^{d-1}$ and $f \in C^{\alpha}(\mathbb{R}P^{d-1})$.

The operator is well defined for any $0 < \alpha \le 1$, but to have useful spectral properties we may require a relatively small choice of α .

We need the following technical hypothesis (when t = 0):

Hypothesis 1.2 (DFLY:Doeblin-Fortet, Lasota-Yorke) There exists $0 < \alpha \le 1$, $0 < \theta < 1$ and C > 0 such that

$$||L_0^n f||_{\alpha} \leqslant C||f||_{\infty} + \theta^n ||f||_{\alpha} \tag{1}$$

for all $n \ge 1$ and all $f \in C^{\alpha}(\mathbb{R}P^{d-1})$.

We can assume without loss of generality that $C \ge 1$ in (1), say.

It follows from the work of Le Page (and subsequently others) that the operator L_0 satisfies the DFLY condition if the family $\{A_1, \dots, A_k\}$ is strongly transitive and proximal [3]. A consequence of this is that it follows that the operator L_0 has a simple maximal eigenvalue 1 (corresponding to the eigenspace of constant functions).

The aim of this note it to show the following.

Theorem 1.3 Given matrices A_1, \dots, A_k satisfying Hypotheis 1.2 there exists an explict $\epsilon > 0$ such that the operator \mathcal{L}_t has a simple eigenvalue $\lambda(t) \in \mathbb{R}$ of maximal modulus for $t \geq -\epsilon$.

The result is known by work of Guivarc'h and Le Page for $t \ge 0$ [?]. It remains to find a value of ϵ for which the result holds for $-\epsilon \le t < 0$.

Corollary 1.4 For an explict $\epsilon > 0$ such that $\lambda(t) \in \mathbb{R}$ for $t \ge -\epsilon$.

When t = 0 we have that $\lambda(0) = 1$.

2 Proof of Theorem 1.3

For our purposes it suffices to get bounds on the "spectral gap" of \mathcal{L}_0 (i.e., showing that the rest of the spectrum of \mathcal{L}_0 is contined in a disk centred at 0 of radius strictly smaller than $\lambda(t)$) and then using an Implicit Fuction Theorem.

Step 1 (The quotient space). We can consider the quotient space $B = C^{\alpha}(\mathbb{R}P^{d-1})/\mathbb{C}$ where the induced norm is $||f|| = ||f||_{\alpha} + \text{var}(f)$ where

$$var(f) = \sup_{x} f(x) - \inf_{x} f(x).$$

We would like to effectively bound the spectral radius of the quotient operator $\mathcal{L}_0: B \to B$, since

$$\operatorname{spectrum} (\mathcal{L}_0: B \to B) = \operatorname{spectrum} \left(\mathcal{L}_0: C^{\alpha}(\mathbb{R}P^{d-1}) \to C^{\alpha}(\mathbb{R}P^{d-1}) \right) - \{1\}.$$

We observe that on B the DFLY condition reduces to

$$\|\mathcal{L}_0^n f\|_{\alpha} \leqslant C \operatorname{var}(f) + \theta^n \|f\|_{\alpha}. \tag{2}$$

Step 2 (A simplifying assumption). Given $f \in B$ with ||f|| = 1 then we can assume henceforth that $\text{var}(f) \geqslant \frac{1-\theta}{2C}$ since otherwise $\text{var}(f) \leqslant \frac{1-\theta}{2} < 1$ (since we are assuming $C \geqslant 1$) and the DFLY inequality with n = 1 gives

$$\|\mathcal{L}_0 f\|_{\alpha} \leqslant C \operatorname{var}(f) + \theta \|f\|_{\alpha} \leqslant \frac{1-\theta}{2} + \theta = \frac{1+\theta}{2} < 1.$$

immediately leading to a uniform bound on the norm of the operator on the quatient operator, and this of the spectral gap of the original operator.

Step 3 (A bound on the $\|\cdot\|_{\alpha}$ -semi-norm in terms of $\operatorname{var}(\cdot)$). By replacing f by $\mathcal{L}_0^m f$ (with a value of m yet to be specified) in (2) we have that

$$\|\mathcal{L}_0^{n+m} f\|_{\alpha} \leqslant C \operatorname{var}(\mathcal{L}_0^m f) + \theta^n \|\mathcal{L}_0^m f\|_{\alpha}$$

$$\leqslant \theta^{n+m} \|f\|_{\alpha} + \theta^n C \operatorname{var}(f) + C \operatorname{var}(\mathcal{L}_0^m f)$$
(3)

and since we are assuming $||f||_{\alpha}$, $var(f) \leq 1$ we can bound this last expression in (3) by

$$\underbrace{\theta^{n+m} + \theta^n C}_{0 \text{ as } n \to +\infty} + C \text{var}(\mathcal{L}_0^m f).$$

In particular, providing $n > |\frac{\log(C+1)}{\log \theta}|$ then $\theta^n(C+1) < 1/3$ and we can bound the first part by $\frac{1}{3}$.

Step 4 (Bounds on $var(\mathcal{L}_0^m f)$). We claim that we can choose m such that for all f with

$$\operatorname{var}(f) \geqslant \frac{1-\theta}{2C}, \operatorname{var}(f) \le 1 \text{ and } ||f||_{\alpha} \leqslant 1$$
 (4)

we have that the second term in (3) is bounded by $C \operatorname{var}(\mathcal{L}_0^m f) \leqslant \frac{1}{2}$. Then combining these bounds we would have a bound for (3) given by $\|\mathcal{L}_0^{n+m} f\|_{\alpha} \leqslant \frac{5}{6}$.

To establish the claim we can fix

$$\delta^{\alpha} < \frac{1 - \theta}{8C} (\leqslant \frac{1}{4} \operatorname{var}(\mathcal{L}_0^m f)) \tag{5}$$

and then choose $m \geqslant n$ sufficiently large that for any $x \in \mathbb{R}P^{d-1}$ we have that the set $X = \{\widehat{A}_{i_1}\widehat{A}_{i_2}\cdots\widehat{A}_{i_m}x\}$ is δ -dense. Given any f as above we can choose two points $x_{\min}, x_{\max} \in \mathbb{R}^{d-1}$ such that

$$f(x_{\text{max}}) = f_{\text{max}} := \max_{\xi} f(\xi) \text{ and } f(x_{\text{min}}) = f_{\text{min}} := \min_{\eta} f(\eta).$$

Moreover, we can choose points $x'_{\max}, x'_{\min} \in X$ with $d(x'_{\max}, x_{\max}), d(x'_{\min}, x_{\min}) < \delta$. If $p = \min_i p_i > 0$ then we can then bound

$$(\mathcal{L}_0^m f)_{\text{max}} \leqslant (1 - p^m) f_{\text{max}} + p^m (f_{\text{min}} + \delta^{\alpha})$$

$$(\mathcal{L}_0^m f)_{\text{min}} \geqslant (1 - p^m) f_{\text{min}} + p^m (f_{\text{max}} - \delta^{\alpha})$$

and taking the difference gives

$$\operatorname{var}(\mathcal{L}_{0}^{m}f) = (\mathcal{L}_{0}^{m}f)_{\max} - (\mathcal{L}_{0}^{m}f)_{\min}$$

$$\leq ((1 - p^{m})f_{\max} + p^{m}(f_{\min} + \delta^{\alpha})) - ((1 - p^{m})f_{\min} + p^{m}(f_{\max} - \delta^{\alpha}))$$

$$= (1 - p^{m})\operatorname{var}(f) - p^{m}(\operatorname{var}(f) - 2\delta^{\alpha})$$

$$= (1 - 2p^{m})\operatorname{var}(f) + 2\delta^{\alpha}p^{m}$$

$$\leq \left((1 - 2p^{m}) + \frac{p^{m}}{4}\right)\operatorname{var}(f)$$

$$\leq \left(1 - \frac{7}{4}p^{m}\right)\operatorname{var}(f).$$
(6)

In particular, using (3) and (6) we can finally deduce that the norm of $\mathcal{L}_0^m: B \to B$ is less than

$$\rho = \max\left\{ \left(\frac{1+\theta}{2}\right)^m, \left(1 - \frac{7}{4}p^m\right) \right\} < 1. \tag{7}$$

Step 5 (Effective perturbations). We can use the traingle inequality and (7) to deduce that the resolvant for $\mathcal{L}_0: B \to B$ satisfies

$$||(I - \mathcal{L}_0)^{-1}|| \leq ||\sum_{n=0}^{\infty} \mathcal{L}_0^n||$$

$$\leq (1 + ||L_0|| + \dots + ||L_0||^{m-1}) \sum_{n=0}^{\infty} ||\mathcal{L}_0^{mn}||$$

$$\leq \frac{(1 + ||L_0|| + \dots + ||L_0||^{m-1})}{1 - \rho}.$$

Step 6 (Implicit Function Theorem). We can now combine the bound above with the following Implicit Function theorem based result.

Lemma 2.1 (Kloeckner) If $\|\mathcal{L}_t - \mathcal{L}_0\| \leq \frac{1}{6\|(I - L_0)^{-1}\|}$ then $\mathcal{L}_t : C^{\alpha}(\mathbb{R}P^{d-1}) \to C^{\alpha}(\mathbb{R}P^{d-1})$ has a simple maximal eigenvalue.

This completes the proof of the theorem.

References

- [1] B. Kloeckner, Effective perturbation theory for simple isolated eigenvalues of linear operators. J. Operator Theory 81 (2019), no. 1, 175–194
- [2] Y. Guivarc'h and E. Le Page, Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions, Ann. Inst. Henri Poincaré Probab. Stat.52(2016), no.2, 503–574.

[3] E. Le Page, Theoremes limites pour les produits de matrices aleatoires. In: Heyer, H. (eds) Probability Measures on Groups. Lecture Notes in Mathematics, vol 928. Springer, Berlin, 1982.