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1 Introduction

Let us assume that we have matrices A1, · · · , Ak ∈ GL(d,R) (d ⩾ 2). Let
RP d−1 be the (d − 1)-dimensional real projective space then we can natu-
rally associate the projective actions Âi : RP d−1 → RP d−1 on the (d − 1)-
dimensional real projective space RP d−1 (for i = 1, · · · , k and k ⩾ 2).

Let Cα(RP d−1) (for 0 < α ⩽ 1) be the Banach space of α-Holder
continuous functions f : RP d−1 → R with respect to the norm ∥f∥ :=
max{∥f∥α, ∥f∥∞} where

∥f∥α = sup
x ̸=y

|f(x)− f(y)|
d(x, y)α

and ∥f∥∞ = sup
x∈RP d−1

|f(x)|.

We are interested in the following operators (which feature in the work
of Le Page [3], Guivarc’h-Le Page [2], etc.).

Definition 1.1 (Transfer operator) For each t ∈ R and a probability
vector (p1, · · · , pk) we define a linear operator Lt : C

α(RP d−1) → Cα(RP d−1)
by

Ltf(x) =

k∑
i=1

pi| det(DÂi)|tf(Âix)

where x ∈ RP d−1 and f ∈ Cα(RP d−1).

The operator is well defined for any 0 < α ⩽ 1, but to have useful spctral
properties we may require a relatively small choice of α.

We need the following technical hypothesis (when t = 0):

Hypothesis 1.2 (DFLY:Doeblin-Fortet, Lasota-Yorke) There exists 0 <
α ⩽ 1, 0 < θ < 1 and C > 0 such that

∥Ln
0f∥α ⩽ C∥f∥∞ + θn∥f∥α (1)

for all n ⩾ 1 and all f ∈ Cα(RP d−1).
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We can assume without loss of generality that C ⩾ 1 in (1), say.
It follows from the work of Le Page (and subsequently others) that

the operator L0 satisfies the DFLY condition if the family {A1, · · · , Ak}
is strongly transitive and proximal [3]. A consequence of this is that it fol-
lows that the operator L0 has a simple maximal eigenvalue 1 (corresponding
to the eigenspace of constant functions).

The aim of this note it to show the following.

Theorem 1.3 Given matrices A1, · · · , Ak satisfying Hypotheis 1.2 there ex-
ists an explict ϵ > 0 such that the operator Lt has a simple eigenvalue
λ(t) ∈ R of maximal modulus for t ⩾ −ϵ.

The result is known by work of Guivarc’h and Le Page for t ⩾ 0 [?]. It
remains to find a value of ϵ for which the result holds for −ϵ ⩽ t < 0.

Corollary 1.4 For an explict ϵ > 0 such that λ(t) ∈ R for t ⩾ −ϵ.

When t = 0 we have that λ(0) = 1.

2 Proof of Theorem 1.3

For our purposes it suffices to get bounds on the “spectral gap” of L0 (i.e.,
showing that the rest of the spectrum of L0 is contined in a disk centred
at 0 of radius strictly smaller than λ(t)) and then using an Implicit Fuction
Theorem.

Step 1 (The quotient space). We can consider the quotient space B =
Cα(RP d−1)/C where the induced norm is ∥f∥ = ∥f∥α + var(f) where

var(f) = sup
x

f(x)− inf
x
f(x).

We would like to effectively bound the spectral radius of the quotient oper-
ator L0 : B → B, since

spectrum (L0 : B → B) = spectrum
(
L0 : C

α(RP d−1) → Cα(RP d−1)
)
−{1}.

We observe that on B the DFLY condition reduces to

∥Ln
0f∥α ⩽ Cvar(f) + θn∥f∥α. (2)

Step 2 (A simplifying assumption). Given f ∈ B with ∥f∥ = 1 then we
can assume henceforth that var(f) ⩾ 1−θ

2C since otherwise var(f) ⩽ 1−θ
2 < 1

(since we are assuming C ⩾ 1) and the DFLY inequality with n = 1 gives

∥L0f∥α ⩽ Cvar(f) + θ∥f∥α ⩽
1− θ

2
+ θ =

1 + θ

2
< 1.
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immediately leading to a uniform bound on the norm of the operator on the
quatient operator, and this of the spectral gap of the original operator.

Step 3 (A bound on the ∥ · ∥α-semi-norm in terms of var(·)). By
replacing f by Lm

0 f (with a value of m yet to be specified) in (2) we have
that

∥Ln+m
0 f∥α ⩽ Cvar(Lm

0 f) + θn∥Lm
0 f∥α

⩽ θn+m∥f∥α + θnCvar(f) + Cvar(Lm
0 f)

(3)

and since we are assuming ∥f∥α, var(f) ⩽ 1 we can bound this last expression
in (3) by

θn+m + θnC︸ ︷︷ ︸
→ 0 as n → +∞

+Cvar(Lm
0 f).

In particular, providing n > | log(C+1)
log θ | then θn(C + 1) < 1/3 and we can

bound the first part by 1
3 .

Step 4 (Bounds on var(Lm
0 f)). We claim that we can choose m such that

for all f with

var(f) ⩾
1− θ

2C
, var(f) ≤ 1 and ∥f∥α ⩽ 1 (4)

we have that the second term in (3) is bounded by Cvar(Lm
0 f) ⩽ 1

2 . Then
combining these bounds we would have a bound for (3) given by ∥Ln+m

0 f∥α ⩽
5
6 .

To establish the claim we can fix

δα <
1− θ

8C
(⩽

1

4
var(Lm

0 f)) (5)

and then choose m ⩾ n sufficiently large that for any x ∈ RP d−1 we have
that the set X = {Âi1Âi2 · · · Âimx} is δ-dense. Given any f as above we can
choose two points xmin, xmax ∈ Rd−1 such that

f(xmax) = fmax := max
ξ

f(ξ) and f(xmin) = fmin := min
η

f(η).

Moreover, we can choose points x′max, x
′
min ∈ X with d(x′max, xmax), d(x

′
min, xmin) <

δ. If p = mini pi > 0 then we can then bound

(Lm
0 f)max ⩽ (1− pm)fmax + pm(fmin + δα)

(Lm
0 f)min ⩾ (1− pm)fmin + pm(fmax − δα)
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and taking the difference gives

var(Lm
0 f) = (Lm

0 f)max − (Lm
0 f)min

⩽ ((1− pm)fmax + pm(fmin + δα))− ((1− pm)fmin + pm(fmax − δα))

= (1− pm)var(f)− pm(var(f)− 2δα)

= (1− 2pm)var(f) + 2δαpm

⩽

(
(1− 2pm) +

pm

4

)
var(f)

⩽

(
1− 7

4
pm

)
var(f).

(6)
In particular, using (3) and (6) we can finally deduce that the norm of

Lm
0 : B → B is less than

ρ = max

{(
1 + θ

2

)m

,

(
1− 7

4
pm

)}
< 1. (7)

Step 5 (Effective perturbations). We can use the traingle inequality
and (7) to deduce that the resolvant for L0 : B → B satisfies

∥(I − L0)
−1∥ ⩽ ∥

∞∑
n=0

Ln
0∥

⩽ (1 + ∥L0∥+ · · ·+ ∥L0∥m−1)

∞∑
n=0

∥Lmn
0 ∥

⩽
(1 + ∥L0∥+ · · ·+ ∥L0∥m−1)

1− ρ
.

Step 6 (Implicit Function Theorem). We can now combine the bound
above with the following Implicit Function theorem based result.

Lemma 2.1 (Kloeckner) If ∥Lt−L0∥ ⩽ 1
6∥(I−L0)−1∥ then Lt : C

α(RP d−1) →
Cα(RP d−1) has a simple maximal eigenvalue.

This completes the proof of the theorem.
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