
DIMENSION OF THE FEIGENBAUM ATTRACTOR

MARK POLLICOTT

Abstract. We describe a simple method for estimating the di-
mension of the Feigenbaum attractor for unimodal intervals maps.
Although the method will lead to a rigorous bound, we have not
attempted to fully validate the value we have computated.

1. Introduction

The original experimental discoveries and conjectures of Feigenbaum
[12] and Coullet-Tresser [9] in the mid-1970s have been an important
catalyst in the development of the general theory of renormalization in
dynamical systems. These important empirical results described the
period doubling bifurcations of families of unimodal maps and pre-
sented a framework for understanding the underlying mechanism. The
majority of these influential conjectures were subsequently proved in
1982 by Lanford, with later advances by Epstein, Lyubich, McMullen,
Sullivan and others.

Theorem 1.1 (Feigenbaum Conjectures : Lanford’s Theorem). There
exists a Cω unimodal map g : [−1, 1]→ [−1, 1] such that:

(1) g(0) = 1;
(2) g is unimodal (i.e., a functions which is first monotone increas-

ing for x < 0 and then monotone decreasing for x > 0 after
passing the critical point at 0 with g′(0) = 0 and g′′(0) < 0);
and

(3) g is symmetric (i.e., g(x) = g(−x)),

such that g satsifies the Cvitanovic-Feigenbaum Functional equation
R(g) = g where

Rg(x) = αg ◦ g
(x
α

)
and α = −1/g(1). (1.1)

In Lanford’s original proof he constructed a power series solution

g(x) = 1 +
∞∑
n=1

a2nx
2n. (1.2)

The solution was based on the use of fixed point theorems applied
to a suitable family of holomorphic functions on an explicit domain.
The proof is computer assisted and many of the values for am can be
computed to high precision (e.g., form ≤ 170, say, the am are computed
to in excess of 150 decimal places in [17]).
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Figure 1. (i) A plot of the unimodal g which is a fixed
point for the Feigenbaum-Cvitanovic functional equation
(1); (ii) A plot of g ◦g, the middle portion of which looks
like an inverted and rescaled plot of g.

1.1. Numerical invariants. Associated to the solution R(g) = g are
a number of interesting numerical values (dubbed “Feigenvalues”). The
best known such Feigenvalue is probably

δ = 4.66920160910299067185320382046620161 . . .

which played an important role in Feigenbaum’s original empirical dis-
coveries for the logistic map Fmu(x) = 1−µx2 converge. More precisely,
if µ1 < µ2 < µ3 < · · · are the parameter values for period doubling
then

µn − µn−1

µn+1 − µn
→ δ as n→ +∞.

A second Feigenvalue is

α = − 1

g(1)
= −2.5029078750958928222839028732182157 . . .

which can be characterized by the (signed) distances (dn)∞n=1 of the 2n-
attracting orbit from the origin at those parameter values µ for which
0 is superattracting. More precisely,

dn
dn+1

→ δ as n→ +∞.

The constants δ and α are universal in that the same constant arises
for any similar family of unimodal maps. Furthermore, these values
can be extracted from the function g and thus a detailed knowledge
of the coefficients (am) in (21) allows them to be computed to high
precision.

Finally, we want to consider a third numerical value associated to g.
We first need the following definition.

Definition 1.2. The Feigenbaum attractor X = X(g) ⊂ [−1, 1] is the
g-invariant Cantor set which is the closure of the orbit of the critical
point, i.e., X = ∪∞n=0g

n(0).

The restriction g : X → X is topologically conjugate to a diadic
odometer (or adding machine).
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A natural numerical invariant is the Hausdorff dimension dim(X) ∈
(0, 1) of the attractor X which is a universal value in the following
sense:

Theorem 1.3 (Coullet-Tresser geometric rigidity of Cantor sets [9],
[22]). Any quadratic map f whose critical point has an orbit with the
same combinatorics as g has an attracting Cantor set X(f) with Haus-
dorff dimension dimX(f) = dim(X(g))

Unfortunately, the numerical value of the Hausdorff dimension dim(X)
is notoriously difficult to rigourously estimate despite the map g being
known to great accuracy. The purpose of this note is to describe a way
to convert the highly accurate estimates for g into better estimates on
dim(X).

1.2. Estimates on dim(X). The difficulty is in finding an efficient
way to convert a detailed knowledge of the coefficients (am) for g into
good estimates on dim(X). Estimates for the Hausdorff dimension
dim(X) of the attractor were given: by Grassberger [14] (to 8 decimal
places), Bensimon, Jensen and Kadanoff [2] (to 10 decimal places) and
Kovacs. However, the best non-rigorous (albeit computationally sta-
ble) numerical result to date is due Christiansen et al [8] given to 27
decimal places:

dim(X) = 0.53804514358054991167141556 . . . (1.3)

This estimate is based on the method of cycle expansions which de-
pends on periodic points for g whose exponential growth makes it dif-
ficult to make significant improvements using this method. Moreover,
it is difficult to get effective error bounds (which is inherent in [15]).
Other estimates due to Grassberger [14] are described in ([20], pp.80-
81).

There are difficulties in getting rigorous error bounds. However,
using the simple on the derivatives of T ′1 and T2, there is a basic bound
in ([10], p.141) of 0.5345 < dim(X) < 0.5544. More recently, Burbanks,
Osbaldstein and Thurlby [7] refined this approach to give bounds

0.53705 . . . < dim(X) < 0.53917 . . .

which they claim to be the best rigorous values.
In this note we will use a different method to estimate dim(X) which

appears to have the advantage that it is quite successful in exploiting
the very precise knowledge of the values (an) to automatically give more
accurate rigorous estimates for dim(X) Our main numerical result is
the following. 1

1Subject to transcription errors for the values of am and accepting the accuracy
of the Mathematica computations
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Theorem 1.4. We have the estimate

dim(X) = 0.538045143580549911671415567374986292737

964965877856960907191 · · · ± 10−50 (1.4)

accurate to the number of decimal places presented.

In particular, this confirms the non-rigorous estimate of Christiansen
et al in (1.3). The value in (1.4) was computed using Mathematica, and
so its veracity depends on the internal checks within that programme.
More generally, the potential sources of errors in this calculation are
described in the Appendix.

Notwithstanding the merits of the knowledge of the numerical esti-
mate for dim(X) in Theorem 1.4, .the main purpose of this note is to
describe a useful method for converting a knowledge of the coefficients
(am) in (1.2) into bounds for dim(X). The method of proof of the
bound in Theorem 1.4 is based on a general minmax approach which
seems to be more effective in converting the very precise knowledge of
expansion for g in [17] into estimates on dim(X).

2. Iterated function schemes and Dimension

We begin by recalling some useful background material.

2.1. An iterated function scheme. There is a well known alterna-
tive construction of X = X(g) as the limit set of an iterated function
scheme. More precisely, we want to use the following lemma (see [13]
and [10], Theorem 8.2.1 for more details).

Lemma 2.1. The Feigenbaum attractor is the limit set of the iter-
ated function scheme consisting of two contractions T1, T2 : [1/α, 1]→
[1/α, 1] given by

T1(x) =
x

α
and T2(x) = g−1

(x
α

)
(i.e., X is the smallest non-empty closed set such that X = T1(X) ∪
T2(X)).

The existence of a non-empty limit set associated to contractions is a
consequence of a general result of Hutchinson ([11], Theorem 9.1). In
Lemma 2.1 we use g−1 to denote the inverse of g restricted to [g2(1), 1].

2.2. Dimension. We want to consider the Hausdorff dimension of X
which, in light of its characterization by Lemma 2.1, coincides with the
Box dimension, whose simpler definition we briefly recall.

Definition 2.2. Given ε > 0 we let N(X, ε) be the smallest number of
open intervals of length ε > 0 needed to cover X. We can then write

dim(X) = lim
ε→0
− logN(X, ε)

log ε
.
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We refer reader to [11] for more details.

Upper and lower bounds on the Hausdorff dimension of the attractor
X may be obtained from properties of the iterated function scheme and
with rigorous bounds on the renormalisation fixed-point f . Previous
rigorous approaches (such as [10] and [7]) tend to be based on approx-
imation of T1 by (piecewise) affine maps. However, we will describe
in the next section a different approach which allows a more effective
use of the detailed knowledge of g to get more accurate estimates on
dim(X).

3. Transfer operators

In contrast to previous approaches, we will use what we will refer to
as a minmax method to estimate the dimension dim(X) by looking at
suitable transfer operators acting on appropriate function spaces. The
benefits of this approach will be shown with empirical estimates in the
next section.

We can consider a family of bounded linear operators Lt (for t ∈ R)
on the Banach space C1([1/α, 1]) of continuously differential functions
h : [1/α, 1]→ R with the usual norm ‖h‖ = ‖h‖∞ + ‖h′‖∞ where

‖h‖∞ = sup
1/α≤x≤1

|h(x)|.

The definition of the operators is the following:

Definition 3.1. The transfer operators Lt : C1([−1, 1])→ C1([−1, 1])
(for t ∈ R) are bounded linear operators defined by

Lth(x) = |T ′1(x)|th(T1x) + |T ′2(x)|th(T2x)

for h ∈ C1([1/α, 1]) and x ∈ [1/α, 1].

The spectra sp(Lt) ⊂ C (for t ∈ R) of the transfer operator Lt) con-
sists of thse complex numbers z for which (Iz−Lt)−1 : C1([1/α, 1])→
C1([1/α, 1]) exists and is a bounded linear operator.

The spectra of the transfer operators have well understood properties
which are described in the following lemma.

Lemma 3.2 (after Ruelle). For each t ∈ R,

(1) the operator Lt : C1([−1, 1]) → C1([−1, 1]) has a simple maxi-
mal positive eigenvalue λ(t) > 0, and

(2) the rest of the spectrum is contained in a strictly smaller disk
(i.e., ∃ρ < λ(t) such that sp(Lt) \ {λ(t)} ⊂ {z ∈ C : |z| ≤ ρ}).

The relevance of these operators to the estimation of the Hausdorff
dimension of X is the following simple lemma.

Lemma 3.3. Let t0 < t1 be such that the maximal eigenvalues of the
operators Lt0 and Lt1, respectively, satisfy

λ(t1) > 1 > λ(t0).
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Then we have that

t0 < dim(X) < t1.

Proof. The result follows immediately from the following two facts.
The maximal eigenvalue λ(t) of the operator Lt satisfies:

(1) t 7→ λ(t) is a Cω strictly monotone decreasing function. 2; and
(2) λ(dim(X)) = 1 (by the well known Bowen-Ruelle “pressure

formula” [3], [21]).

�

In order to apply the bounds in Lemma 3.3 to obtain practical esti-
mates on dim(X) we use the following useful criteria.

Lemma 3.4. Let Lt (for t ∈ R) be the operators defined in Definition
3.1.

(1) Assume that for t1 ∈ R there exists a strictly positive C1 func-
tion h1 : [1/α, 1]→ R+ such that

sup
1
α
≤x≤1

(Lt1h1)(x)

h1(x)
< 1 (3.1)

then λ(t1) ≤ 1.
(2) Assume that for t0 ∈ R there exists a strictly positive C1 func-

tion h0 : [1/α, 1]→ R such that

inf
1
α
≤x≤1

(Lt0h0)(x)

h0(x)
> 1 (3.2)

then λ(t0) ≥ 1.

Proof. The proof is very short, so we include it for the reader’s conve-
nience. For part (1) we observe that applying Lt1 repeatedly gives that
for any x ∈ [1/α, 1]:

· · · ≤ Lnt1h1(x) ≤ · · · ≤ L2
t1
h1(x) ≤ Lt1g(x) ≤ h1(x) (3.3)

by virtue of the positivity of the operator and assumption (3.1). How-
ever, the spectral properties described in Lemma 3.2 imply that

lim
n→+∞

‖Lnt1h1‖1/n
∞ = λ(t1).

Moreover, since h1 > 0 we trivially have limn→+∞ ‖h1‖1/n
∞ = 1. The

conclusion of part (1) comes from combining these observations with
the inequalities in (3.3).

2The analyticity comes from λ(t) being an isolated eigenvalue and analytic per-
turbation theeory. The strict monotonicity comes from an explicit form for the first
derivative being negative)
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For part (2) we similarly observe that by applying repeated Lt0 then
the positivity of the operator and assumption (5) we have that for all
x ∈ [1/α, 1]

h0(x) ≤ Lt0h0(x) ≤ L2
t0
h0(x) ≤ · · · ≤ Lnt0h0(x) ≤ · · · . (3.4)

As in part (1), by Lemma 3.2 we see that

lim
n→+∞

‖Lnt0h0‖1/n
∞ = λ(t0)

and, again, trivially limn→+∞ ‖h0‖1/n
∞ = 1 and so the conclusion comes

from (3.4). �

Remark 3.5. In Lemma 3.4 it would suffice to consider positive test
functions h0, h1 : [α, 1] → R+ which are only continuous. However,
in our application in the next section the test functions we construct
will actually be polynomial, so there is no real loss of generating in
assuming in the lemma that these functions are C1.

4. Implementation

We need to convert the theoretical bounds in the previous section
into an effective method to numerically estimate dim(X). In light of
the general Lemmas 3.3 and 3.4 we have useful criteria to check whether
dim(X) lies in a given interval [t0, t1].

We begin with the following reformulation.

Proposition 4.1 (Criteria for bounds on dim(X)). Let t0 < t1. A
sufficient condition that

t0 < dim(X) < t1

is the existence of positive continuous functions h0, h1 : [1/α, 1] → R+

such that

inf
1/α≤x≤1

Lt0h0(x)

h0(x)
> 1 and sup

1/α≤x≤1

Lt1h1(x)

h1(x)
< 1. (4.1)

To apply Proposition 4.1 we need to find appropriate functions h0,
h1 and values t0, t1. We address these issues in the next subsections.

4.1. Interpolation. Assume we have candidate values for t0 < t1.
To choose the functions h0, h1 we proceed using a simple collocation
method.

Definition 4.2. Fix a natural number m ≥ 2.

(1) Consider the Chebychev points

xm =

(
1 + 1/|α|

2

)
cos
( nπ

2m

)
+

(
1

α
+ 1

)
for 0 ≤ n ≤ m

scaled to lie in the interval [1/α, 1].
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(2) Consider the Lagrange polynomials `m : [1/α, 1]→ R defined by

`k(x) =

∏
n6=k(x− xm)∏
n6=k(xk − xm)

for 0 ≤ n ≤ m

scaled to be defined on the interval [1/α, 1].

In particular, we have the useful property

`k(xn) =

{
1 if k = n

0 if k 6= n

for 0 ≤ k, n ≤ m. This allows us to proceed as follows.

(i) Assume we are given an interval [t0, t1] within which we want
to verify that the value dim(X) can be found.

(ii) For each of the choices i = 1, 2 we can associate the (m+ 1)×
(m+ 1)-matrices

Mi = ((Lti`k)(xn))mk,n=0 .

(iii) Providing m is sufficiently large, there is a maximal positive
eigenvalue λi > 0 and a corresponding right eigenvector vi =
(vi0, · · · , vim) has strictly positive entries, i.e., λiv

i = viMi and
vi > 0 for 0 ≤ i ≤ m.

(iv) Associate the two polynomial functions

hi(x) =
m∑
n=0

vin`n(x) for x ∈ [1/α, 1] (for i = 0, 1).

(v) Finally, if

inf
1/α≤x≤1

(Lt0h0)(x)

h0(x)
> 1 and sup

1/α≤x≤1

(Lt1h1)(x)

h1(x)
< 1 (4.2)

then we can deduce that t0 < dim(X) < t1.

Remark 4.3 (Motivation for the construction of h0 and h1). By way of
giving some motivation for this construction let us assume that we knew
hi is close to the (positive) eigenvector for the maximal eigenvalue λ(ti)
for Lti, and h1, for i = 1, 2. Then the left hand sides of the inequalities
in (4.2) will be close to λ(t0) > 1 and λ(t1) < 1, respectively. However,
the functions hi are constructed using eigenvectors vi for i = 1, 2. Thus
since Mi can be viewed as an approximation to Lti (in a suitable sense)
for i = 1, 2, perturbation theory supports the idea of the closeness of hi
to the eigenvector for Lti.

Remark 4.4 (Effectiveness of the algorithm). If t0 < dimX < t1 but
(4.2) isn’t satisfied, then by increasing m it can be achieved (as claimed
above in (iii)). More precisely, providing m is sufficiently large and
t0 < dim(X) < 1 (or equivalently λ(t0) > 0 > λ(t1)) we have that

(a) for hi(x) > 0 (i = 0, 1); and
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(b) the appropriate inequality in (4.2) holds.

This follows by analytic perturbation theory, but for the present concrete
setting if suffices to check this conclusion empirically.

4.2. Bisection method. In order to obtain candidate values of t0 < t1
which give upper and lower bounds on dimX we proceed by a sim-
ple bisection method. This generates a sequence of improving bounds

t
(k)
0 < dimX < t

(k)
1 , for k ≥ 0 where |t(k)

0 − t
(k)
1 | → 0 as k → +∞.

We can follow the iterative steps described below.

(1) We begin by choosing obvious upper and lower bounds t
(1)
0 <

dimX < t
(1)
1 which are trivially valid. For example, we can let

t
(1)
0 = 3/10 and t

(1)
1 = 7/10.

(2) We proceed to construct the sequences t
(k)
0 and t

(k)
1 (k ≥ 0)

inductively. Given t
(k)
0 < dimX < t

(k)
1 (for k ≥ 1) we can

provisionally set

s =
1

2
(t

(k)
1 − t

(k)
0 )

(3) We can associate to Ls a function hs using the interpolation
method described (ii), (iii) and (iv) above. Typically, we have
one of the following two cases.
(a) If we have

sup
1/α≤x≤1

(Lshs)(x)

hs(x)
< 1

then set t
(k+1)
1 = s and t

(k+1)
0 = t

(k)
0 .

(b) If we have

inf
1/α≤x≤1

(Lshs)(x)

hs(x)
> 1

then set t
(k+1)
0 = s and t

(k+1)
1 = t

(k)
1 .

This produces a sequence of shrinking intervals [t
(k)
0 , t

(k)
1 ] (k ≥ 0) such

that:

(1) t
(k)
0 ≤ dim(X) ≤ t

(k)
1 ]; and

(2) |t(k)
1 − t

(k)
0 | = 2−k+1|t(1)

1 − t
(1)
0 |.

Remark 4.5. Of course, if neither of the hypotheses in (a) and (b)
holds then it will be necessary to increase the value of m, as mentioned
in Remark 4.4.

4.3. Numerical estimates. Our stating point is to use the approx-
imation to g given in [17]. In particular, this gives estimates for the
first 156 terms in the Chebychev polynomial expansion, each coefficient
presented to in excess of 150 decimal places.
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However, before addressing the stronger estimate in Theorem 1.4 we
will first describe a more modest approximation where choices of h0

and h1 can be explicitly presented.

Example 4.6 (Estimate to 2 decimal places). If we only require a more
modest rigorous bound 0.53 ≤ dim(X) ≤ 0.54 then we can apply the
criteria for dimension bounds on X using simpler explicit polynomials

(1) For t0 = 0.53 and

h0(x) = −2933 + 148x

we can estimate

min
Lt0h0(x)

h0(x)
= 1.00023 . . .

(2) For t1 = 0.54 and

h1(x) = −293406 + 15032x− 9718x2 + 4200x3

− 2391x4 + 1336x5 − 773x6 + 432x7

we can estimate

max
Lt1h1(x)

h1(x)
= 0.999964 . . .

In particular, we can deduce from Proposition 4.1 that 0.53 ≤ dim(X) ≤
0.54.

We can now turn to the estimate in Theorem 1.4.

Example 4.7 (Estimate to 50 decimal places). Working to 100 decimal
places we can choose m = 300 and implement the approach described

in the previous section. Starting from t
(1)
0 = 3/10 and t

(1)
1 = 7/10 we

can apply the bisection method until we get suitable values. For

t0 =0.538045143580549911671415567374986292737

964965877856960907191 · · ·
we can associate a suitable polynomials h0 and then estimate

min
Lt0h0(x)

h0(x)
=1.0000000000000000000000000000000000000000000000

00000000000002043024411083008731521919696166 . . .

For
t1 =0.538045143580549911671415567374986292737

964965877856960907193

we can associate a suitable polynomials h0 and then estimate

max
Lt0h0(x)

h0(x)
=0.9999999999999999999999999999999999999999999999

999999999999995657268412268496192385300641278 . . .
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In particular, we can deduce from Proposition 4.1 that t0 ≤ dim(X) ≤
t1. This gives an estimate to approximately 60 places which we have
more conservatively presented in Theorem 4.4.

Remark 4.8. The above calculations were carried out using Mathe-
matica using its internal routines and error estimates. However, for
more complete confidence in the estimate it would probably be best to
use an open source programme.

5. Final comments

Since the aim of this note is to explain one way in which precise
estimates on g can be converted into good bounds on dim(X) it is useful
to review the potential sources of loss of accuracy and the restrictions
on this approach.

5.1. Approximation of the transfer operators. The contractions
T1, T2 : [1/α, 1] → [1/α, 1] used in the definition of the transfer oper-
ators Lt are defined in terms of g (and, consequently, the value α). If
g(z) has a uniform polynomial approximation by a polynomial g̃(z) on
the disk

[1/α, 1] ⊂ D = {z ∈ C : |z| <
√

8}

satisfying T1(D), T2(D) ⊂ D (see [16]) then the corresponding contrac-

tions Ti have comparable approximations T̃i (i = 1, 2) on [1/α, 1]. The
same conclusion applies to their derivatives by virtue of Cauchy’s the-

orem. The operator L̃t defined in terms of T̃i (i = 1, 2) can be applied
to the approximating polynomial h : [α, 1]→ R (of degree m, say) and
has a uniform bound

‖L̃th− Lth‖∞

≤
2∑
i=1

‖(T ′i )t − (S ′i)
t‖∞‖h ◦ Ti‖∞ + ‖(T ′i )t‖∞‖h ◦ Ti − h ◦ Si‖∞

(5.1)
and by the mean value theorem:

‖h ◦ Ti − h ◦ Si‖∞ ≤ ‖h′‖∞‖Ti − Si‖∞.

Let π be the projection onto polynomials of degree m then one can take
h0 to be the maximal eigenfunction of Lπ (and h to be the maximal
eigenfunction for Lt) then by [1] there exists C > 0 and 0 < θ < 1 such
that

‖Lt − Ltπ‖∞ ≤ C‖Lt‖θm

on D for m ≥ 1. In particular, ‖h − h0‖ → 0 on D as m → +∞ and
bound ‖h′‖∞ on [1/α, 1] by Cauchy’s theorem. This gives boundes on
(5.1).
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5.2. Checking the minimax bounds. In §4 we need to effectively
estimate the supremum or infimum of functions Lth

h
(x) over [1/α, 1].

To this end the following observation is helpful.

Lemma 5.1. If h : D → R is the collocation function associated to m
then

sup
1/α≤x≤1

∣∣∣∣(Lthh
)′

(x)

∣∣∣∣→ 0 as m→ +∞.

Proof. By the quotient rule(
Lth
h

)′
(z) =

(Lth)′(z)h(z)− (Lth)(z)h′(z)

h(z)2
for z∈ D.

As above, by [1] we have that ‖Lt − Ltπ‖∞ → 0 on D as m → +∞
which gives that ‖h− h0‖ → 0. Thus supα≤x≤1 |h′(x)− h′0(x)| → 0 by
Cauchy’s theorem and similarly

sup
α≤x≤1

|(Lth)′(x)− (Lth0)′(x)| → 0.

Finally, since infx∈I hm(x) → infx∈I h(x) > 0 as n → +∞, combining
these results gives the conclusion. �
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