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Abstract

Self consistent transfer operators appear naturally in the study of
mean field interaction coupled expanding maps and generalise the clas-
sical linear transfer operators in ergodic theory. We give an abstract
setting for a special type of self-consistent transfer operator and show
it to have a positive eigenvector with a positive eigenvector.

1 Introduction

In recent years a number of authors have been interested in self-consistent
transfer operators cf. [6]. These are non-linear operators in the sense
that the operator itself depends in a non-trivial way on the function it
is applied to. Let T : T — T be a C! expanding map of the circle T
and denote by B = CL(T,R) the Banach space of Lipschitz functions
with the usual norm
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In the classical case of expanding maps for a fixed choice of weight
function w € B the traditional associated transfer operator is a linear
operator L,, : B — B of the form

Lyv(z) = Z e*@y(y), for ve B and z € X.

Ty=z

In this setting the well known Ruelle operator gives the existence of a
(unique maximal) positive eigenvalue:

Theorem 1.1 (Ruelle Operator Theorem) Givenw € B there ex-
ists h € B with h > 0 and A\ > 0 satisfying the eigenvalue equation
Lyh = Ah.

However, a self consistent transfer operator is a generalization which
is no longer linear in the sense that the weight function w = w(v) and
the transformation T'= T'(v) may also both depend on v € B, say, to
which it is applied.

We will consider an abstract version of this problem where the
results are based on some general hypotheses.



Hypothesis I (on w(-)). Assume that U C B is nonempty and there
are weights w : U — B that satisfy D := sup,cy [|w(v)| < +o0.

Definition 1.2 Given a family of weights w : U — B we can define
the inhomogeneous transfer operator L,y : U — B by

Luw (@) (@) = Y e*®Wy(y). (0.1)

T(v)y=z

Part of the motivation for the study of self-consistent transfer op-
erators comes from the theory of coupled maps.

Remark 1.3 (Coupled maps [4], [5], [6], [3] ) Consider M points
x -+ ,xp €T on the unit circle then we can keep track of these using

s

the measure po = % Zf\il 0y, on T. Let T : T — T be an expanding
map of the circle and consider a mean field interaction ®,, : T — T
(associated to a measure pg on T) defined by

Byola) =+ (5 [ o= polv))

where m : R = T is the natural projection, h : T — R is a C*° function,
and § > 0 is a coupling constant.

For sufficiently small 6 > 0 the map ®,, : T — T is a diffeomor-
phism and writing F,,, =T o ®,, the evolution of the points are given
by pngr = (Fpu, )spin -

If we assume instead that pg is absolutely continuous (i.e., duo(x) =
fodz) then the densities f, = dd; satisfy fn+1 = Pfn (n = 0) where

T(y)=z

We denote the (local) inverse branches of T'(v) by {T;(v)} (v € U) and
denote
0 = sup sup max|| DT (v) (@) -
velU = ?
To proceed we require some additional assumptions. The first is a
uniform bound on the contractions.

Hypothesis IT (on T(-)). We assume that § < 1.

The second assumption helps with making iterations of a suitable
operator be well defined.

Hypothesis ITI (on U). We assume that there exists € > 0 such that

Ud{veB: v <Ll +e}.

In this context we have the following partial generalization of the
Ruelle operator theorem.

Theorem 1.4 Assume hypotheses I, II and III. There exists vy €
C(T) with vee >0 and X > 0 such that L, _)(Veo) = Mg



Of course, if w = w(v) and T = T'(v) are independent of v then this
reduces to the linear transfer operator in Theorem 1.1. However, in
the more general setting it is no longer necessarily the case that there
is a unique solution to the eigenvalue equation [2], [1].

The usual approach to proving the Ruelle operator theorem and
some variants involving self consistent transfer operators is to use cones
and the Banach metric. However, we will adopt a slightly different
approach.

2 Proof of Theorem 1.4

The proof of Theorem 1.4 is based on a couple of simple lemmas. We
begin with a definition.

Definition 2.1 For C > 0 we can define
Ao = {v € C(T,R) : 0 < v(z) < 1,v(z) < v(y)eCl ™Y with z,y € T} .

Every set Ac at least contains the constant function 1, and thus is
non-empty.

Lemma 2.2 Ac has the following properties.

1. Ag is || - ||oo-closed and convex.
2. Ac C{veB:|v| <Ce}.
3. Ac is ||+ ||oo-compact.

Proof. The first part is easily observed. For part 2, let v € A¢ we can
write
v(x) < o(y)e” @Y <o(y) (C-e-d(z,y) +1)

and interchanging x and y gives
v(y) < v(x)eC4@Y) Lo(x) (C-e-d(x,y) + 1)

using the mean value theorem. Together these give that |v(z) —v(y)| <
Ced(z,y) with the implied constant being uniformly bounded by com-
pactness. Finally, Part 3 follows from the Arzela-Ascoli theorem.

Lemma 2.3 Let C = D0/(1 —0). Then for a function v € Ac which
is not identically zero we have Lyy)v/|| L)V € Ac-

Proof. Let x,y € X. We can use that v € Ag and the hypothesis to
write

’Cw(v)’u(m)
= Z e (T W)2) (T, (v)2)

<3 (eww)(n(v)y)enw(v)udm(v)nﬂ(v)y)) . (U(Ti (v)y)ecdm<v>m,Ti<v>y>)
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< Lw(v)v(y)e(DJrC)ed(z’y)

= Loyyv(y)eCd@y)



since C' = % and v € U, by virtue of part 2 of Lemma 2.2 and

hypotheses III. Dividing through by ||£,)v[/cc > 0 gives the result.
Observe that A¢ contains the constant functions taking values 1/n

(n > 1). This allows us to make the following definition.

Definition 2.4 Forn > 1 and v € B we can define

_ Ew(v)(v + 1/TL)
”‘Cw(v)(v + 1/”)”00

L,(v) forn > 1.

We have the following corollary to Lemma 2.3.

Corollary 2.5 Forn > ng := [1/€e] + 1 we can have that L,(A¢) C
Ac.

Proof of Theorem 1.4. By the Schauder fixed point theorem ' there
exists a fixed point L,v, = v, € Ac for each n > ng. Moreover, one
can deduce that if sup, v, (x) = 1 then inf, v, (z) > e~4.

By compactness of Ac we can choose a convergent subsequence
Un, = Voo 7 0. Then L,y ) (Voo) = Voo, 1-€.; Lip(v)Voo = AVoo, Where
A= H‘Cw(voc)voonoo > 0.

Remark 2.6 If hypothesis III on the size of the domain U seems un-
duly restrictive, we observe that replacing w(-) by § > 0 replaces D
by 8D (in Hypothesis I) thus reducing the radius of the ball that U is
required to contain in Hypothesis I11.
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