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Abstract

Self consistent transfer operators appear naturally in the study of
mean field interaction coupled expanding maps and generalise the clas-
sical linear transfer operators in ergodic theory. We give an abstract
setting for a special type of self-consistent transfer operator and show
it to have a positive eigenvector with a positive eigenvector.

1 Introduction

In recent years a number of authors have been interested in self-consistent
transfer operators cf. [6]. These are non-linear operators in the sense
that the operator itself depends in a non-trivial way on the function it
is applied to. Let T : T → T be a C1 expanding map of the circle T
and denote by B = CLip(T,R) the Banach space of Lipschitz functions
with the usual norm

∥v∥ := ∥v∥∞ + sup
x ̸=y

{
|v(x)− v(y)|

d(x, y)

}
.

In the classical case of expanding maps for a fixed choice of weight
function w ∈ B the traditional associated transfer operator is a linear
operator Lw : B → B of the form

Lwv(x) =
∑
Ty=x

ew(y)v(y), for v ∈ B and x ∈ X.

In this setting the well known Ruelle operator gives the existence of a
(unique maximal) positive eigenvalue:

Theorem 1.1 (Ruelle Operator Theorem) Given w ∈ B there ex-
ists h ∈ B with h > 0 and λ > 0 satisfying the eigenvalue equation
Lwh = λh.

However, a self consistent transfer operator is a generalization which
is no longer linear in the sense that the weight function w = w(v) and
the transformation T = T (v) may also both depend on v ∈ B, say, to
which it is applied.

We will consider an abstract version of this problem where the
results are based on some general hypotheses.
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Hypothesis I (on w(·)). Assume that U ⊂ B is nonempty and there
are weights w : U → B that satisfy D := supv∈U ∥w(v)∥ < +∞.

Definition 1.2 Given a family of weights w : U → B we can define
the inhomogeneous transfer operator Lw(·) : U → B by

Lw(v)(v)(x) =
∑

T (v)y=x

ew(v)(y)v(y). (0.1)

Part of the motivation for the study of self-consistent transfer op-
erators comes from the theory of coupled maps.

Remark 1.3 (Coupled maps [4], [5], [6], [3] ) Consider M points
x, · · · , xM ∈ T on the unit circle then we can keep track of these using

the measure µ0 = 1
N

∑M
i=1 δxi on T. Let T : T → T be an expanding

map of the circle and consider a mean field interaction Φµ0
: T → T

(associated to a measure µ0 on T) defined by

Φµ0
(x) = x+ π

(
δ

∫
TN

h(x− y)µ0(y)

)
where π : R → T is the natural projection, h : T → R is a C∞ function,
and δ > 0 is a coupling constant.

For sufficiently small δ > 0 the map Φµ0 : T → T is a diffeomor-
phism and writing Fµ0 = T ◦ Φµ0 the evolution of the points are given
by µn+1 = (Fµn

)∗µn.
If we assume instead that µ0 is absolutely continuous (i.e., dµ0(x) =

f0dx) then the densities fn = dµn

dx satisfy fn+1 = Pfn (n ⩾ 0) where

Ph(x) =
∑

T (y)=x

h(y)

|T ′(y)|
, x ∈ T.

We denote the (local) inverse branches of T (v) by {Ti(v)} (v ∈ U) and
denote

θ = sup
v∈U

sup
x

max
i

∥DTi(v)(x)∥∞.

To proceed we require some additional assumptions. The first is a
uniform bound on the contractions.

Hypothesis II (on T (·)). We assume that θ < 1.

The second assumption helps with making iterations of a suitable
operator be well defined.

Hypothesis III (on U). We assume that there exists ϵ > 0 such that
U ⊃ {v ∈ B : ∥v∥ ⩽ D·e·θ

1−θ + ϵ}.

In this context we have the following partial generalization of the
Ruelle operator theorem.

Theorem 1.4 Assume hypotheses I, II and III. There exists v∞ ∈
C(T) with v∞ > 0 and λ > 0 such that Lw(v∞)(v∞) = λv∞.
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Of course, if w = w(v) and T = T (v) are independent of v then this
reduces to the linear transfer operator in Theorem 1.1. However, in
the more general setting it is no longer necessarily the case that there
is a unique solution to the eigenvalue equation [2], [1].

The usual approach to proving the Ruelle operator theorem and
some variants involving self consistent transfer operators is to use cones
and the Banach metric. However, we will adopt a slightly different
approach.

2 Proof of Theorem 1.4

The proof of Theorem 1.4 is based on a couple of simple lemmas. We
begin with a definition.

Definition 2.1 For C > 0 we can define

ΛC =
{
v ∈ C(T,R) : 0 ⩽ v(x) ⩽ 1, v(x) ⩽ v(y)eCd(x,y) with x, y ∈ T

}
.

Every set ΛC at least contains the constant function 1, and thus is
non-empty.

Lemma 2.2 ΛC has the following properties.

1. ΛC is ∥ · ∥∞-closed and convex.

2. ΛC ⊂ {v ∈ B : ∥v∥ ⩽ Ce}.
3. ΛC is ∥ · ∥∞-compact.

Proof. The first part is easily observed. For part 2, let v ∈ ΛC we can
write

v(x) ⩽ v(y)eCd(x,y) ⩽ v(y) (C · e · d(x, y) + 1)

and interchanging x and y gives

v(y) ⩽ v(x)eCd(x,y) ⩽ v(x) (C · e · d(x, y) + 1)

using the mean value theorem. Together these give that |v(x)−v(y)| ⩽
Ced(x, y) with the implied constant being uniformly bounded by com-
pactness. Finally, Part 3 follows from the Arzela-Ascoli theorem.

Lemma 2.3 Let C = Dθ/(1− θ). Then for a function v ∈ ΛC which
is not identically zero we have Lw(v)v/∥Lw(v)v∥∞ ∈ ΛC .

Proof. Let x, y ∈ X. We can use that v ∈ ΛC and the hypothesis to
write

Lw(v)v(x)

=
∑
i

ew(v)(Ti(v)x)v(Ti(v)x)

⩽
∑
i

(
ew(v)(Ti(v)y)e∥w(v)∥d(Ti(v)x,Ti(v)y)

)
.
(
v(Ti(v)y)e

Cd(Ti(v)x,Ti(v)y)
)

⩽ Lw(v)v(y)e
(D+C)θd(x,y)

= Lw(v)v(y)e
Cd(x,y)
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since C = Dθ
1−θ and v ∈ U , by virtue of part 2 of Lemma 2.2 and

hypotheses III. Dividing through by ∥Lw(v)v∥∞ > 0 gives the result.

Observe that ΛC contains the constant functions taking values 1/n
(n ⩾ 1). This allows us to make the following definition.

Definition 2.4 For n ⩾ 1 and v ∈ B we can define

Ln(v) =
Lw(v)(v + 1/n)

∥Lw(v)(v + 1/n)∥∞
for n ⩾ 1.

We have the following corollary to Lemma 2.3.

Corollary 2.5 For n ⩾ n0 := [1/ϵ] + 1 we can have that Ln(ΛC) ⊂
ΛC .

Proof of Theorem 1.4. By the Schauder fixed point theorem 1 there
exists a fixed point Lnvn = vn ∈ ΛC for each n ⩾ n0. Moreover, one
can deduce that if supx vn(x) = 1 then infx vn(x) ⩾ e−A.

By compactness of ΛC we can choose a convergent subsequence
vni → v∞ ̸= 0. Then Lw(v∞)(v∞) = v∞, i.e., Lw(v∞)v∞ = λv∞, where
λ = ∥Lw(v∞)v∞∥∞ > 0.

Remark 2.6 If hypothesis III on the size of the domain U seems un-
duly restrictive, we observe that replacing w(·) by δ > 0 replaces D
by δD (in Hypothesis I) thus reducing the radius of the ball that U is
required to contain in Hypothesis III.
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