Meromorphic extension of the dimension series for hyperbolic Möbius actions on circles

Mark Pollicott

1 Introduction

Let $\mathcal{A}=\left\{A_{1}, \cdots, A_{d}\right\} \subset S L(2, \mathbb{R})(d \geq 2)$ be a finite family of matrices. We call this family hyperbolic if there exists $c>0$ and $\lambda>1$ such that

$$
\left\|A_{i_{1}} \cdots A_{i_{n}}\right\| \geq c \lambda^{n} \text { for all } n \geq 1 \text { and } 1 \leq i_{1}, \cdots, i_{n} \leq d
$$

Such families have been studied by Avila, Bochi and Yoccoz [4].
Definition 1.1. Associated to this family is the function

$$
\eta_{\mathcal{A}}(s)=\sum_{n=1}^{\infty} \sum_{1 \leq i_{1}, \cdots, i_{n} \leq d}\left\|A_{i_{1}} \cdots A_{i_{d}}\right\|^{-2 s}, s \in \mathbb{C}
$$

which converges for $\operatorname{Re}(s)$ sufficiently large (e.g., $d \lambda^{-2 \operatorname{Re}(s)}<1$).
Several authors have studied the case that $s=\sigma>0$ is real valued and associated the real number

$$
s(\mathcal{A})=\inf \left\{\sigma>0: \eta_{\mathcal{A}}(\sigma)<+\infty\right\}
$$

cf. work of de Leo [3] and Solomyak-Takahasi [2].
In this note we will be interested in the meromorphic domain of $\eta_{\mathcal{A}}(s)$ as a complex function and the dependence of $s(\mathcal{A})$ on \mathcal{A}
Remark 1.2. Let $\hat{A}_{i}: K \rightarrow K$ be the projective action on the unit circle K associated to the matrix A_{i}. For a hyperbolic family there is a (unique) non-empty closed set $\Lambda \subset K$ such that $\Lambda=\cup_{i=1}^{d} \hat{A}_{i} \Lambda$. In the paper of Solomyak-Takahasi they further assume that the family \mathcal{A} satisfies a diophantine condition which is implied, for example when the entries of the matrices are algebraic [2]. Under these additional hypotheses they can identify $\operatorname{dim}_{H}(\Lambda)=$ $\min \{1, s(\mathcal{A})\}$.

2 Results

In this note we will consider the complex analytic nature of the function $s(\mathcal{A})$ and its implications.

Theorem 2.1. Let \mathcal{A} be a uniformly hyperbolic family.

1. The function $\eta_{\mathcal{A}}(s)$ has a meromorphic extension to \mathbb{C};
2. The value $s=s(\mathcal{A})$ is a simple pole of residue $C>0$, say; and
3. The function $\eta_{\mathcal{A}}(s)$ has no poles at $s(\mathcal{A})+$ it $(t \neq 0)$.

Part of the motivation for Part 1 of this Theorem is the perspective of Lapidus by which the poles of a function such as $\eta(s)$ might has an interpretation as "complex dimensions". The proof of the theorem will be given in the next section.

The following Corollaries are standard.
Corollary 2.2. Let \mathcal{A} be a uniformly hyperbolic family. The value $s=s(\mathcal{A})$ depends real analytically on \mathcal{A}.

Proof. The follows from the implicit function theorem applied to

$$
(\sigma, \mathcal{A}) \mapsto 1 / \eta_{\mathcal{A}}(\sigma)=(1 / C)(\sigma-s(\mathcal{A}))+\psi(\sigma)
$$

where $\psi(s)$ is an analytic function in a neighbourhood of $s(\mathcal{A})$.
Corollary 2.3. Let \mathcal{A} be a uniformly hyperbolic family. We have the asymptotic estimate

$$
\#\left\{\left(i_{1}, \cdots, i_{n}\right):\left\|A_{i_{1}} \cdots A_{i_{d}}\right\| \leq T\right\} \sim C T^{s(\mathcal{A}) T} \text { as } T \rightarrow+\infty
$$

Proof. The function $\pi(T)=\#\left\{\left(i_{1}, \cdots, i_{n}\right):\left\|A_{i_{1}} \cdots A_{i_{d}}\right\| \leq T\right\}$ is monotone increasing and we can write

$$
\eta_{\mathcal{A}}(s)=\int_{1}^{\infty} T^{-2 s} d \pi(T)
$$

By the Ikehara-Wiener Theorem applied to $\eta_{\mathcal{A}}(s)$ the result follows.

3 Transfer operators

We begin with the following useful lemma (cf. [4])
Lemma 3.1. The family $\mathcal{A}=\left(A_{1}, \cdots, A_{d}\right) \in S L(2, \mathbb{C})^{d}$ is hyperbolic if there exists a finite disjoint union $\mathcal{U}=\cup_{i=1}^{k} U_{i}$ of arcs such that $\cup_{j=1}^{d} \hat{A}_{j} \mathcal{U} \subset \mathcal{U}$.

Given $A \in S L(2, \mathbb{C})$ we can assume that the action $\widehat{A}: K \rightarrow K$ has two fixed points $x_{A}^{+}, x_{A}^{-} \in K$. A simple calculation gives

Lemma 3.2. We can write $\left\|A_{i}\right\|^{2}=\left|A_{i}^{\prime}\left(x_{A}^{+}\right)\right|$
We can associate to \mathcal{U} a neighbourhood $\widetilde{\mathcal{U}} \subset C$ in the complexification and we still denote by $\widehat{A}_{j}: \widetilde{\mathcal{U}} \rightarrow \widetilde{\mathcal{U}}$ the extension of the actions on $\widehat{A}_{j}: \mathcal{U} \rightarrow \mathcal{U}(j=1, \cdots, d)$.

We let \mathcal{B} denote the Banach space of bounded analytic functions $f: \widetilde{\mathcal{U}} \rightarrow \mathbb{C}$ with the supremum norm.

Definition 3.3. We define the family of linear operators $\mathcal{L}_{s}: \mathcal{B} \rightarrow \mathcal{B}(s \in \mathbb{C})$ by

$$
\mathcal{L}_{s} f(z)=\sum_{i=1}^{d}\left|\widehat{A}_{i}^{\prime}(z)\right|^{s} f\left(\widehat{A}_{i} z\right)
$$

The following result is classical.
Lemma 3.4. Each operator \mathcal{L}_{s} is a nuclear operator and thus trace class. More precisely there exists

1. $\left(v_{n}\right)_{n=1}^{\infty} \subset \mathcal{B}$;
2. $\left(\ell_{n}\right)_{n=1}^{\infty} \subset \mathcal{B}^{*}$ with $\ell_{n}\left(v_{n}\right)=1$; and
3. $\left(\alpha_{n}\right)_{n=1}^{\infty} \subset \mathbb{C}$ where $\left|\alpha_{n}\right|=O\left(\rho^{n}\right)$ for some $0<\rho<1$,
such that $\mathcal{L}_{s}(\cdot)=\sum_{n=1}^{\infty} \alpha_{n} v_{n} \ell_{n}(\cdot)$.
Nuclear operators are trace class, i.e., there are countably many eigenvalues $\left(\lambda_{n}(s)\right)_{n=1}^{\infty}$ and $\operatorname{tr}\left(\mathcal{L}_{s}\right)=\sum_{n=1}^{\infty} \lambda_{n}(s)$ is finite.

Given an n-tuple $\underline{i}=\left(i_{1}, \cdots, i_{n}\right)$ we can write $A_{\underline{i}}=A_{i_{1}} \cdots A_{i_{n}}$ we can write $|\underline{i}|=n$ and $A_{\underline{i}}=A_{i_{1}} \cdots A_{i_{n}}$. Let $\widehat{A}_{\underline{i}}: K \rightarrow K$ be the associated projective action and let $x_{\underline{i}}^{+}=\widehat{A}_{\underline{i}}\left(x_{\underline{i}}^{+}\right)$ with $\left|\widehat{A}_{\underline{i}}^{\prime}\left(x_{\underline{i}}^{+}\right)\right|<1$ be the attracting fixed point. In particular, we can explicitly compute the traces.

Lemma 3.5. For $n \geq 1$, we can write

$$
\operatorname{tr}\left(\mathcal{L}_{s}^{n}\right)=\sum_{|i|=n} \frac{\left|A_{\underline{i}}^{\prime}\left(x_{\underline{i}}^{+}\right)\right|^{s}}{1-A_{\underline{i}}^{\prime}\left(x_{\underline{i}}^{+}\right)}=\sum_{|i|=n} \frac{\left\|A_{\underline{i}}\right\|^{-2 s}}{1-\left\|A_{\underline{i}}\right\|^{-2}} .
$$

We can now follow Grothendieck-Ruelle viewpoint in writing the following for $z, s \in \mathbb{C}$

$$
\operatorname{det}\left(I-z \mathcal{L}_{s}\right)=\exp \left(\sum_{n=1}^{\infty} \operatorname{tr}\left(\mathcal{L}_{s}^{n}\right)\right)
$$

which converges for $R e(s)$ sufficiently large and $|z|$ sufficiently small.
It is convenient to introduce another bi-complex function.
Definition 3.6. We formally define a zeta function by

$$
\zeta(z, s)=\exp \left(\sum_{n=1}^{\infty} \frac{z^{n}}{n} \sum_{|\underline{i}|=n}\left\|A_{\underline{i}}\right\|^{-2 s}\right)
$$

This converges to a non-zero analytic function provided $R e(s)$ is sufficiently large and $|z|$ is sufficiently small.

In particular, we have the following
Lemma 3.7. We can write

$$
\zeta(z, s)=\frac{\operatorname{det}\left(I-z \mathcal{L}_{s+1}\right)}{\operatorname{det}\left(I-z \mathcal{L}_{s}\right)}
$$

and deduce that $\zeta(z, s)$ is bi-meromorphic.

3.1 Proof of Theorem 2.1

We can now relate $\zeta(z, s)$ to $\eta(s)$ as follows. We can write

$$
\begin{aligned}
\left.\frac{\partial}{\partial z} \log \zeta(z, s)\right|_{z=1} & =\left.\frac{\partial}{\partial z}\left(\sum_{n=1}^{\infty} \frac{z^{n}}{n} \sum_{1 \leq i_{1}, \cdots, i_{n} \leq d}\left\|A_{i_{1}} \cdots A_{i_{d}}\right\|^{-2 s}\right)\right|_{z=1} \\
& =\left.\left(\sum_{n=1}^{\infty} z^{n-1} \sum_{1 \leq i_{1}, \cdots, i_{n} \leq d}\left\|A_{i_{1}} \cdots A_{i_{d}}\right\|^{-2 s}\right)\right|_{z=1}=\eta(s)
\end{aligned}
$$

By the previous lemma we can write

$$
\left.\frac{\partial}{\partial z} \log \zeta(z, s)\right|_{z=1}=\frac{\left.\frac{\partial}{\partial z} \log \operatorname{det}\left(I-z \mathcal{L}_{s+1}\right)\right|_{z=1}}{\operatorname{det}\left(I-z \mathcal{L}_{s+1}\right)}-\frac{\left.\frac{\partial}{\partial z} \log \operatorname{det}\left(I-z \mathcal{L}_{s}\right)\right|_{z=1}}{\operatorname{det}\left(I-z \mathcal{L}_{s}\right)}
$$

Since $\operatorname{det}\left(I-z \mathcal{L}_{s}\right)$ is bi-analytic we can deduce from these two identities that $\eta(s)$ is a meromorphic function.

Moreover, the pole at $s=s(\mathcal{L})$ arises as a zero for $\operatorname{det}\left(I-z \mathcal{L}_{s}\right)$, which in turn means 1 is an eigenvalue for \mathcal{L}_{s}). The simplicity of the pole at $s=s(\mathcal{A})$ comes from the simplicity of the eigenvalue $\lambda(s)$ for which $\lambda(s(\mathcal{A}))=1$ and that $\left.\frac{\partial}{\partial s} \lambda(s(\mathcal{A}))\right|_{s=s(\mathcal{A})} \neq 0$.

One can show that if $s=s(\mathcal{A}+i t)$ is a pole for $\eta(s)$ then $t=0$ by observing that this condition implies that 1 is an eigenvalue for \mathcal{L}_{s}. But if we assume for a contradiction that there is a solution to the eigenvalue equation $\mathcal{L}_{s} h=h$ then we deduce by taking absolute values that $\mathcal{L}_{s(\gamma)}|h| \geq|h|$ which leads to the conclusion that

References

[1] A. Avila, J. Bochi, J.-C. Yoccoz, Uniformly Hyperbolic Finite-Valued SL(2,R)-Cocycles
[2] Boris Solomyak and Yuki Takahashi Diophantine property of matrices and attractors of projective iterated function systems in $\mathcal{R} P^{1}$
[3] R. De Leo, On the exponential growth of norms in semigroups of linear endomorphisms and the Hausdorff dimension of attractors of projective iterated function schemes, J. Geom. Anal., 25 (2015) 1798-1827
[4] A. Avila, J. Bochi, J.-C. Yoccoz, Uniformly Hyperbolic Finite-Valued SL(2,R)Cocycles, Commentarii Mathematici Helvetici 85 (2010), 813-884

