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1 Introduction

Let A = {A1, · · · , Ad} ⊂ SL(2,R) (d ≥ 2) be a finite family of matrices. We call this family
hyperbolic if there exists c > 0 and λ > 1 such that

‖Ai1 · · ·Ain‖ ≥ cλn for all n ≥ 1 and 1 ≤ i1, · · · , in ≤ d.

Such families have been studied by Avila, Bochi and Yoccoz [4].

Definition 1.1. Associated to this family is the function

ηA(s) =
∞∑
n=1

∑
1≤i1,··· ,in≤d

‖Ai1 · · ·Aid‖−2s, s ∈ C

which converges for Re(s) sufficiently large (e.g., dλ−2Re(s) < 1).

Several authors have studied the case that s = σ > 0 is real valued and associated the
real number

s(A) = inf{σ > 0 : ηA(σ) < +∞}.

cf. work of de Leo [3] and Solomyak-Takahasi [2].
In this note we will be interested in the meromorphic domain of ηA(s) as a complex

function and the dependence of s(A) on A
Remark 1.2. Let Âi : K → K be the projective action on the unit circle K associated to
the matrix Ai. For a hyperbolic family there is a (unique) non-empty closed set Λ ⊂ K such
that Λ = ∪di=1ÂiΛ. In the paper of Solomyak-Takahasi they further assume that the family
A satisfies a diophantine condition which is implied, for example when the entries of the
matrices are algebraic [2]. Under these additional hypotheses they can identify dimH(Λ) =
min{1, s(A)}.

2 Results

In this note we will consider the complex analytic nature of the function s(A) and its impli-
cations.
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3 TRANSFER OPERATORS

Theorem 2.1. Let A be a uniformly hyperbolic family.

1. The function ηA(s) has a meromorphic extension to C;

2. The value s = s(A) is a simple pole of residue C > 0, say; and

3. The function ηA(s) has no poles at s(A) + it (t 6= 0).

Part of the motivation for Part 1 of this Theorem is the perspective of Lapidus by which
the poles of a function such as η(s) might has an interpretation as “complex dimensions”.
The proof of the theorem will be given in the next section.

The following Corollaries are standard.

Corollary 2.2. Let A be a uniformly hyperbolic family. The value s = s(A) depends real
analytically on A.

Proof. The follows from the implicit function theorem applied to

(σ,A) 7→ 1/ηA(σ) = (1/C)(σ − s(A)) + ψ(σ)

where ψ(s) is an analytic function in a neighbourhood of s(A).

Corollary 2.3. Let A be a uniformly hyperbolic family. We have the asymptotic estimate

#{(i1, · · · , in) : ‖Ai1 · · ·Aid‖ ≤ T} ∼ CT s(A)T as T → +∞

Proof. The function π(T ) = #{(i1, · · · , in) : ‖Ai1 · · ·Aid‖ ≤ T} is monotone increasing and
we can write

ηA(s) =

∫ ∞
1

T−2sdπ(T )

By the Ikehara-Wiener Theorem applied to ηA(s) the result follows.

3 Transfer operators

We begin with the following useful lemma (cf. [4])

Lemma 3.1. The family A = (A1, · · · , Ad) ∈ SL(2,C)d is hyperbolic if there exists a finite

disjoint union U = ∪ki=1Ui of arcs such that ∪dj=1ÂjU ⊂ U .

Given A ∈ SL(2,C) we can assume that the action Â : K → K has two fixed points
x+A, x

−
A ∈ K. A simple calculation gives

Lemma 3.2. We can write ‖Ai‖2 = |A′i(x+A)|

We can associate to U a neighbourhood Ũ ⊂ C in the complexification and we still denote
by Âj : Ũ → Ũ the extension of the actions on Âj : U → U (j = 1, · · · , d).

We let B denote the Banach space of bounded analytic functions f : Ũ → C with the
supremum norm.
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3 TRANSFER OPERATORS

Definition 3.3. We define the family of linear operators Ls : B → B (s ∈ C) by

Lsf(z) =
d∑
i=1

|Â′i(z)|sf(Âiz).

The following result is classical.

Lemma 3.4. Each operator Ls is a nuclear operator and thus trace class. More precisely
there exists

1. (vn)∞n=1 ⊂ B;

2. (`n)∞n=1 ⊂ B∗ with `n(vn) = 1; and

3. (αn)∞n=1 ⊂ C where |αn| = O(ρn) for some 0 < ρ < 1,

such that Ls(·) =
∑∞

n=1 αnvn`n(·).

Nuclear operators are trace class, i.e., there are countably many eigenvalues (λn(s))∞n=1

and tr(Ls) =
∑∞

n=1 λn(s) is finite.
Given an n-tuple i = (i1, · · · , in) we can write Ai = Ai1 · · ·Ain we can write |i| = n and

Ai = Ai1 · · ·Ain . Let Âi : K → K be the associated projective action and let x+i = Âi(x
+
i )

with |Â′i(x+i )| < 1 be the attracting fixed point. In particular, we can explicitly compute the
traces.

Lemma 3.5. For n ≥ 1, we can write

tr(Lns ) =
∑
|i|=n

|A′i(x+i )|s

1− A′i(x+i )
=
∑
|i|=n

‖Ai‖−2s

1− ‖Ai‖−2
.

We can now follow Grothendieck-Ruelle viewpoint in writing the following for z, s ∈ C

det(I − zLs) = exp

(
∞∑
n=1

tr(Lns )

)
which converges for Re(s) sufficiently large and |z| sufficiently small.

It is convenient to introduce another bi-complex function.

Definition 3.6. We formally define a zeta function by

ζ(z, s) = exp

 ∞∑
n=1

zn

n

∑
|i|=n

‖Ai‖−2s


This converges to a non-zero analytic function provided Re(s) is sufficiently large and |z| is
sufficiently small.

In particular, we have the following

Lemma 3.7. We can write

ζ(z, s) =
det(I − zLs+1)

det(I − zLs)
and deduce that ζ(z, s) is bi-meromorphic.
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3.1 Proof of Theorem 2.1 REFERENCES

3.1 Proof of Theorem 2.1

We can now relate ζ(z, s) to η(s) as follows. We can write

∂

∂z
log ζ(z, s)|z=1 =

∂

∂z

(
∞∑
n=1

zn

n

∑
1≤i1,··· ,in≤d

‖Ai1 · · ·Aid‖−2s
)
|z=1

=

(
∞∑
n=1

zn−1
∑

1≤i1,··· ,in≤d

‖Ai1 · · ·Aid‖−2s
)
|z=1 = η(s)

By the previous lemma we can write

∂

∂z
log ζ(z, s)|z=1 =

∂
∂z

log det(I − zLs+1)|z=1

det(I − zLs+1)
−

∂
∂z

log det(I − zLs)|z=1

det(I − zLs)

Since det(I − zLs) is bi-analytic we can deduce from these two identities that η(s) is a
meromorphic function.

Moreover, the pole at s = s(L) arises as a zero for det(I − zLs), which in turn means 1
is an eigenvalue for Ls). The simplicity of the pole at s = s(A) comes from the simplicity of
the eigenvalue λ(s) for which λ(s(A)) = 1 and that ∂

∂s
λ(s(A))|s=s(A) 6= 0.

One can show that if s = s(A + it) is a pole for η(s) then t = 0 by observing that this
condition implies that 1 is an eigenvalue for Ls. But if we assume for a contradiction that
there is a solution to the eigenvalue equation Lsh = h then we deduce by taking absolute
values that Ls(γ)|h| ≥ |h| which leads to the conclusion that
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