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1 introduction

There are certain mathematical problems where accurately attributing a numerical value
to some quantity can be important in establishing rigorous results. Examples of such
quantities might be:

(a) The size of sets (e.g., a Cantor set) in the unit interval can be quantified by their
(Hausdorff) dimension d ∈ (0, 1); and

(b) The growth of random products of matrices, e.g., Fix the pair of matrices A1 =
( 2 1
1 1 ) and A2 = ( 3 1

2 1 ). Then we can consider the products of all pairs of matrices

A1A1 = ( 5 3
3 2 ), A1A2 = ( 8 3

5 2 ), A2A1 = ( 7 4
5 3 ), A2A2 = ( 11 4

8 3 ),

and triples of matrices

A1A1A1 = ( 13 8
8 5 ), A1A1A2 = ( 21 8

13 5 ), A1A2A1 = ( 19 11
12 7 ), A1A2A2 = ( 30 11

19 7 ),

A2A1A1 = ( 18 11
13 8 ), A2A1A2 = ( 29 11

21 8 ), A2A2A1 = ( 26 15
19 11 ), A2A2A2 = ( 41 15

30 11 ),
etc.,

and we continue with products of longer strings matrices. The growth rate of the
norms (or the entries) of typical products

Ai1Ai2 · · ·Ain with i1, i2, . . . , in ∈ {1, 2}

as n→ +∞ is given by the Lyapunov exponent λ > 0.

We would like to estimate these quantities as efficiently as possible. We would, of
course, like useful estimates as quickly as possible. But more importantly, we want to
have complete confidence in our estimates, i.e., they really are accurate to the number
of decimal places given. 1

1To quote the legendary western marshal Wyatt Earp (1848 – 1929) “Fast is fine, but accuracy is
everything”
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A natural question at this stage might be: Who cares?. Sometimes precise bounds
on these values has (surprising) applications to other problems in mathematics (e.g., in
number theory and geometry).

2 Dimension of Cantor sets

We begin with the first problem of estimating the dimension of certain special Cantor 2

sets in the interval.

2.1 Infinite continued fractions

In order to define the sets we are interested in we first recall some basic facts about
continued fractions. For any irrational 0 < x < 1 we can write

x =
1

a1 + 1
a2+

1
a3+···

:= lim
n→+∞

1

a1 + 1
a2+

1

a3+···+
1
N

where a1, a2, a3, . . .N, which we denote by x = [a1, a2, a3, . . .]. Indeed, from the classical
1938 book An Introduction to the Theory of Numbers by Hardy and Wright [8] 3 we
recall the following lemma.

Lemma 2.1 ([8], Theorem 170). For any irrational number 0 < x < 1 there exists
a1, a2, a3, . . . ∈ N such that x = [a1, a2, a3, . . .].

We can consider those continued fractions where we use fewer digits.

Definition 2.2. Given m ≥ 2 the finite digit set Em denotes the set of points
in the unit interval whose continued fraction expansion contains only digits from
{1, . . . ,m}., i.e.,

Em = {[a1, a2, a3, . . . , ] : a1, a2, a3, . . . {1, . . . ,m}} .

It is an easy exercise to see that:

1. Em is a Cantor set (i.e., homeomorphic to the middle third Cantor set, say); and

2. Em has zero Lebesgue measure.

Example 2.3. The simplest case m = 2 gives:

E2 = {[a1, a2, a3, . . . , ] : a1, a2, a3, . . . {1, 2}} .

i.e., the set of points in the unit interval whose continued fraction expansion contains
only digits from {1, 2}.

2Georg Cantor (1845–1818) was one of the many characters in this story who had an unfortunate end.
3G. H. Hardy (1877–1947) was the preeminent English number theorist of his time. Sir Edward Wright

(1906-2005) went on to be chancellor of Aberdeen University
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2.2 Dimension of sets

A convenient way to describe the “size” of (Cantor) sets X ⊂ [0, 1] of zero Lebesgue
measure is to define their dimension [4]. The more subtle definition is that of the Haus-
dorff dimension.4 On the other hand the simplest definition is the Box dimension (also
called the Minkowski dimension). Fortunately, for sets like Em the values of these two
dimensions coincide. Therefore we can use this as an excuse to take the easy option of
just recalling the definition of the Box dimension.

For any ε > 0 we let N(ε) be the smallest number of ε-intervals needed to cover X .

Definition 2.4. We define the (Box) dimension by

dim(X) := lim sup
ε→0

logN(ε)

log(1/ε)
∈ [0, 1].

In this definition the lim sup is actually a genuine limit.

Remark 2.5. For the middle third Cantor set C there is a well known explicit value
dim(C) = log 2/ log 3 .

Unfortunately, there is no explicit expression for dim(Em) for any m ≥ 2. Therefore,
one needs to resort to (rigorous) numerical estimates.

Example 2.6 (E2 revisited). Jack Good showed 0.5306 < dim(E2) < 0.5320 [7]
(which was definitely good for 1941.) In 2016 Falk and Nussbaum computed dim(E2) =
0.53128050627720 to 16 decimal places. In 2018 Jenkinson and the author. used a
“zeta function approach” to compute dim(E2) to 100 decimal places:5

dim(E2) = 0.53128050627720514162446864736847178549305910901839

87798883978039275295356438313459181095701811852398

80428057243075187633422389339480822309017869596532

87122354642997948966378403372876304541101508045191

39697680713...

6

Remark 2.7 (An aside: A Good story). Jack Good’s estimate was from his PhD
thesis supervised at Cambridge by Hardy and Besicovitch. During the Second World
War he worked at Bletchley Park in England, helping to break the german enigma
communication codes. This wartime work features in the 2014 film The Imitation
Game about Alan Turing in which Good appeared as a character. In fact, he had a
more direct personal connection with the film industry when he worked with the film
director Stanley Kubrick as an advisor on the movie 2001: A space odyssey.

4Unfortunately, Felix Hausdorff (1868-1942) came to a sad end too.
5Now this now known to over 200 decimal places (by Vytnova and the author) using a method I will

explain later.
6One might wonder if people who compute values to lots of decimal places might not have better things

to do? We recall a quote of Isaac Newton (from 1666) on computing 15 digits for π “I am ashamed to tell
you to how many figures I carried these computations, having no other business”’
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Example 2.8 (E5). In 2018, Jenkinson and the author estimated dim(E5) = 0.83682944 . . .
accurate to 8 decimal places [10]. In 2020, Vytnova and the author improved this to
29 decimal places: dim(E5) = 0.83682944368120882244159438727 . . . [14]

2.3 Application to Number Theory: Finite continued
fractions

We return to continued fractions, but this time finite continued fractions. These were
described in the 1202 manuscript Liber Abacci by Leonardo of Pisa (Fibonacci, c.1170-
c.1250), which was eventually published in 1857 (in Italian). Given a finite sequence
a1, a2, . . . , an ∈ N we can write

1

a1 + 1
a2+

1

a3+···+
1
an

=
p

q
∈ Q,

which we denote by p/q = [a1, a2, . . . , an]. We recall the following classical result on
finite continued fractions..

Lemma 2.9 (Hardy and Wright, Theorem 161). It is well known that any ratio-
nal p/q ∈ Q ∩ (0, 1) can be written as a finite continued fraction, i.e., there exist
a1, . . . , an ∈ N such that p/q = [a1, . . . , an].

Application I: Zaremba Conjecture. The Zaremba conjecture asks if we can still
get any q ∈ N as a denominator for some numerator p if we uniformly bound the digits
ai. More precisely:

Conjecture (Zaremba, [17]) 7 For any natural number q ∈ N there exists p (coprime
to q) and a1, . . . , , an ∈ {1, 2, 3, 4, 5} such that p

q = [a1, . . . , an].

Unfortunately, this conjecture is still open. However, there is the following important
result.

Theorem 2.10 (Bourgain-Kontorovich-Huang Theorem [2], [9]). The Zaremba con-
jecture is true for most denominators q, i.e., a density one result of the form

lim
Q→+∞

1

Q
#

{
1 ≤ q ≤ Q :

p

q
= [a1, . . . an] with a1, . . . , an ∈ {1, 2, 3, 4, 5}

}
= 1.

However, their proof is conditional on the fact dim(E5) = 0.8368 . . . > 5
6 = 0.833 . . . 8

which was finally rigorously established in Remark 2.8

2.4 Method of estimating dim(Em) in two steps

The ideas behind the estimates on dim(Em) are actually very simple to explain and we
will attempt to sketch them in this subsection.

7Interestingly, S. Zaremba (1903- 1990) died in Wales, UK
8This estimated is used in the “circle method” component of the proof

4



Step 1: Averaging operators. For simplicity of exposition, we concentrate on E2

the other examples being similar. Let C([0, 1],R) denote the Banach space of continuous
functions f : [0, 1]→ R.

Definition 2.11. For each 0 < t < 1 define a linear operator Lt : C([0, 1],R) →
C([0, 1],R) by

Ltf(x) =
1

(1 + x)2t
f

(
1

(1 + x)

)
+

1

(2 + x)2t
f

(
1

(2 + x)

)
for f ∈ C([0, 1],R), x ∈ [0, 1].

We need two standard results.

Lemma 2.12 (Ruelle). There exists a C∞ decreasing function P : R→ R such that
for any positive f > 0 we have

eP (t) := lim
n→+∞

‖Lnt f‖1/n∞ .

The connection to dimension is the following:

Lemma 2.13 (Ruelle [16], Bowen9). The value t = dim(E2) is the solution to eP (t) =
1.

t1

t0

dim(E2)

P (t)

t

Figure 1: The graph of P (t)

Combining these two lemmas gives the conclusion that we need to find t so that eP (t) = 1
then t = dim(E2).

Step 2: Applying the Bowen and Ruelle results. Given 0 < t0 < t1 < 1 we
want to check if t0 < dimH(E2) < t1.

9Sadly, Bowen died at the age of 31. His ideas on Hausdorff dimension and quasi-circles was subsequently
put into a more general context by Ruelle
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For the upper bound. Assume there exists a (positive) function g : [0, 1]→ R+ such
that

sup
x

Lt1g(x)

g(x)
< 1 then 1 ≤ eP (t1).

In particular, the hypothesis implies Lnt1g ≤ g and then it is an easy application of Lemma
2.12.

For the lower bound. Assume there exists a (positive) function g : [0, 1]→ R+ such
that

sup
x

Lt0f(x)

f(x)
> 1 then eP (t0) ≥ 1

In particular, the hypothesis implies Lnt1f ≥ f and then it is an easy application of Lemma
2.12.

Combining these bounds gives eP (t0) ≥ 1 ≥ eP (t1) and since eP (t) is continuous and
monotone we get: t0 ≤ dim(E2) ≤ t1.

Remark 2.14. The practical issue of finding such f and g uses numerical analysis
(and collocation). This is usually the part which is more time consuming.

2.5 Application to Diophantine approximation.

Our starting point is the following classical theorem.

Theorem 2.15 (Dirichlet’s Theorem [3]). Let 0 < α < 1 be irrational. There are
infinitely many rationals p

q ∈ Q such that |α− p
q | <

1
q2
.

The inequality can be made slightly sharper.

Theorem 2.16 (Hurwitz’s Theorem [5]). Let 0 < α < 1 be irrational. There exist
infinitely many rationals p

q ∈ Q such that |α− p
q | <

1√
5q2
.

We can hope to get better approximations for individual irrational numbers 0 < α < 1

Definition 2.17. For each individual irrational number α ∈ (0, 1) we can choose

c(α) := sup

{
c > 0 :

∣∣∣∣α− p

q

∣∣∣∣ < 1

cq2
for infinitely many

p

q
∈ Q

}
Example 2.18. c( 2

1+
√
5
) =
√

5

This leads us to the subset of [
√

5,+∞) which we would like to study.

Definition 2.19. We can define the Lagrange spectrum 10 L ⊂ [
√

5,+∞)] by

L = {c(α) : α ∈ R \Q)}
10The Lagrange spectrum was not studied by Lagrange, but by Markoff (1856 - 1922) who came to a

sad end.

6



Some parts of the spectra are well understood.

1. To the left of 3: L∩(
√

5, 3) = {
√

5 <
√

8 <
√

221/5 < . . .
√

5 <
√

8 <
√

221/5 <
. . .} is an (explicit) countable set.

2. To the right of
√

21 every point lies in L, i.e., [
√

21,+∞) ⊂ L. Hall (1947),
Schecker-Freiman (1963)

To understand the (more) complicated nature of the set L∩(3,
√

21) we can consider
the Hausdorff dimension function t 7→ f(t) := dimH(L ∩ (3, t)). We begin with the
following interesting result.

Theorem 2.20 (C. Moreira, [13]). The function f(t) is continuous.

Furthermore, we can estimate the value t = t1 when the dimension function f(t) first
reaches 1.

Theorem 2.21 (Matheus, Moreira, M.P., Vytnova [12]). We can estimate

t1 := inf{t : f(t) = 1} = 3.334384 . . .

The basic idea of the proof is to approximate L using suitable Cantor sets which
are generalizations of the sets Em. Previously, Hall (1947) and Moreira (2018) gave
rigorous bounds

√
10 = 3.1622 . . . < t1 <

√
12 = 3.4641 . . . and Bumby (1982) had

given non-rigorous bounds: 3.33437 < t1 < 3.33440.

3 Lyapunov exponents for random matrix prod-

ucts

We now turn from estimating dimension (the first problem) to estimating Lyapunov
exponents (the second problem).

3.1 Random products of matrices

We begin by presenting some basic notation. Fix a finite set of k × k real matrices
k ≥ 2): A1, . . . , , Ad with d ≥ 2. For each n ≥ 1 we can consider the dn products of
matrices Ai1Ai2 · · ·Ain where strings i1, i2, . . . , in ∈ {1, 2, . . . , d} which are chosen with
equal probability 1/d.

Definition 3.1. We can define the (top) Lyapunov exponent to be the “asymptotic
average”

λ = lim
n→+∞

1

dn

∑
i1,··· ,in∈{1,··· ,d}

log ‖Ai1Ai2 · · ·Ain‖
n

where ‖A‖ = max1≤,i,j≤d |Aij |, say.

The existence of the limit comes from a simple subadditivity argument.

Remark 3.2. Of course, for a single matrix A the value limn→+∞
1
n log ‖An‖ is

merely the logarithm of its spectral radius (i.e., max{|ρ| : ρ = eigenvalue for A })

7



Example 3.3. We recall the example from the introduction. Let d = 2 and

A1 =

(
2 1
1 1

)
and A1 =

(
3 1
2 1

)
.

But one can ask: How easy it is to estimate λ.? 11

Theorem 3.4 (M.P.-Vytnova, [15]). In Example 3.3 one can estrimate

λ = 1.14331103510294924584325185365558829940254614248358355161600419871806898559 . . .

accurate to the number of decimal places presented.

Previous estimates were only accurate to a third of these decimal places. However,
we should ask: Why should we care about the value of Lyapunov exponents?

3.2 Application to planar geometry

We will describe a simple geometric construction in Euclidean space. Begin with an (equi-
lateral) triangle ∆ ⊂ R2. Draw the three median lines (from each vertex to the midpoint
of the other side). The triangle ∆ is subdivided into 6 smaller triangles ∆1(1), · · · ,∆6(1).

∆

∆
(1)
1

∆
(1)
2

∆
(1)
3∆

(1)
4

∆
(1)
5

∆
(1)
6

We can repeat the process with each of the six subtriangles ∆i(1). (i = 1, · · · , 6)
to get a total of 36 triangles ∆j(2) (j = 1, · · · , 36). We can carry on iteratively to
get smaller and smaller triangles. For n ≥ 1 we get 6n triangles ∆i(n) (i = 1, . . . , 6n).
We are interested in the shape of a “typical” triangle ∆i(n) (i = 1, . . . , 6n) as n →
+∞. The qualitative observation is that the triangles become “degenerate”, i.e., for a
(Lebesgue) typical point x the shape of the sub-triangle containing it at the nth stage
gets “flattened”.

There is a more quantitive description of how fast this happens. For a (Lebegue)
typical point x ∈ ∆ we let ∆(n)(x) denote the n-th level triangle containing x. To
measure quantitative degeneracy for triangles we let π

3 ≤ θ(n)(x) ≤ π be the largest
internal angle of ∆(n)(x). Typically triangles will degenerate (in the sense that the
largest angle ∆(n)(x) tends to π). This can be quantified as follows.

11But who exactly is asking? We recall the following quotations: “Pride of place among the unsolved
problems of subadditive ergodic theory must go to calculation of the value λ ... and indeed this usually
seems to be a problem of some depth.” - Sir John Kingman (1973); and “We turn now to the excruciating
problem of the subject: Devise reasonably general and effective algorithms for explicit calculation (or at
least approximation) of Lyapunov exponents.” -Yuval Peres (1992).
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Theorem 3.5. (Bárány, Beardon and Carne) There exists λ > 0 such that for
almost every (Lebesgue) x ∈ ∆

lim
n→+∞

1

n
log (π − θ(n)(x)) = −2λ

The proof of Bárány, Beardon and Carne is based on random products using six 2×2
matrices and their Lyapunov exponent λ. The 6 matrices are essentially:

A1 =

(
2√
6

2√
6

0 3√
6

)
, A2 =

(
4√
6
− 2√

6
3√
6
− 3√

6

)
, A3 =

(
2√
6

2√
6

3√
6

0

)

A4 =

(
− 2√

6
4√
6

0 3√
6

)
, A5 =

(
− 2√

6
4√
6

− 3√
6

3√
6

)
, A6 =

(
− 4√

6
2√
6

− 3√
6

0

)
These are used in the definition of the affine maps which map ∆ to ∆i(1) (i =

1, · · · , 6).

Remark 3.6. Diaconis and McMullen rediscovered this result (McMullen has a very
readable [as always] unpublished note on this topic from 2011). Hough (2009) rigor-
ously showed that 0.0585 < λ < 0.0946 and guessed λ ≈ 0.071. In 2016, Wilkinson
popularized this construction in a survey in the Notices of the AMS (although her
estimate on λ seems to be different).

Theorem 3.7 (M.P.+ Vytnova). The value λ has the rigorous bounds 0.077316 <
λ < 0.077331.

The method of proof is similar in nature to that of the dimension estimate, but with
a few more steps. For this reason we consign it to Appendix 3.2

Appendix I: Method of estimating λ in five steps

.
Step 1. Recall we associate to any matrices A1, · · · , Ad their “projectivized” actions
Âi : ∂D→ ∂D on the unit circle ∂D := {z = x+ iy : |z| = 1}:

z

∂D

Âi (z)

( xy )
Ai ( xy ) =:

(
ξ
η

)
1√
ξ2+η2

(
ξ
η

)

1. Given z = x+ iy we associate the vector ( xy ).

2. Multiply by the matrix: Ai ( xy ) =
(
ξ
η

)
.
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3. Scale back to ∂D: Âi(z) =

(
ξ√
ξ2+η2

)
+ i

(
η√
ξ2+η2

)
.

Remark 3.8. For some z we have |Â′i(z)| < 1 but for some z we have |Â′i(z)| > 1.

Step 2. The transfer operator: Hölder functions. Fix α > 0 and let Cα(S) be
the Banach space of α-Hölder continuous functions f : S→ C with the norm

‖f‖α := sup
x∈S
|f(x)|+ sup

x 6=y∈S

|f(x)− f(y)|
|x− y|α

.

Provided α is sufficiently small, for each t ∈ R we can define a linear transfer operator
Lt : Cα(D)→ Cα(D) by

Ltf(x) =
1

d

d∑
i=1

|Â′i(z)|tf(Âi(z)).

(a) When t = 0 then L01 = 1 where 1 is the constant function taking value 1. In
particular, 1 is an isolated eigenvalue for L0.

(b) If A1, · · · , Ad do not have a common eigenvector (i.e., “strong irreducibility”)
then 1 is an isolated eigenvalue for L0.

(c) By perturbation theory for |t| sufficiently small Lt (still) has an isolated eigenvalue
eQ(t), say, with Q(0) = 0.

Step 3. Maximal eigenvalue and the Lyapunov exponent. Let eP (t) be
maximal eigenvalue for Lt and |t| sufficiently small.

0

Q(t)

t

slope −2λ

Q(−ε)

Q(ε)ε

ε

0

Q(t)

t

Figure 2: (i) The graph of Q(t); (ii) Using Q(ε) and Q(−ε) to bounds λ.

(i) Q(t) is (locally) C∞ monotone decreasing and convex (in a neighbourhood of
t = 0).

(ii) Q(0) = 0.

(iii) d
dtQ(t)|t=0 = −λ
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Thus we can estimate the Lyapunov exponent λ if we can estimate the derivative of
(the logarithm of) the maximal eigenvalue eP (t) of the operator Lt (at t = 0).

Step 4. Estimating λ using Q(−ε) and Q(ε). Let ε > 0 then to estimate
d
dtQ(t)|λ=0 = −λ it is sufficient to estimate Q(ε) and Q(−ε) since by convexity we
can (rigorously) bound

Q(−ε)
ε
≥ λ ≥ −|Q(ε)|

ε
.

Thus it only remains to estimate Q(−ε) and Q(ε) using whatever is our favourite method,
e.g. the following min-max type result.

Remark 3.9. In practice we need to take care to choose ε small enough to be in the
domain of Q(t) in (i).

Step 5. Finally, bounds on λ. We can use a sort of “min-max” estimate on
operators:

00 1

Lεg

g

00 1

L−εf

f

Lemma 3.10 (Lower bound). If there exists (positive) function g : S → R+ and
α > 0 then

sup
x

Lεg(x)

g(x)
< e−α =⇒ |P (ε)| ≥ α.

Lemma 3.11 (Upper bound). If there exists (positive) function f : S → R+ and
β > 1 then

sup
x

L−εf(x)

f(x)
< eβ =⇒ P (−ε) ≤ β

This brings us to the conclusion.

Corollary 3.12 (Bounds on the Lyapunov exponent λ).

β

ε
≥ λ ≥ α

ε
.
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Appendix II: Good’s formula

in addition to his estimates on dim(E2) we want to recall another mathematical contri-
bution of Jack Good (published 49 years later in 1990) which applies more widely.

“A very rough guide to the maximum length that a paper should have is given by
the formula 109px/2 words where

• 0 ≤ x ≤ 1 is the importance of the topic,

• a partly-baked idea has a ”bakedness” of 0 ≤ p ≤ 1”

For calibration: We call that the expression“half-baked idea” (p = 1
2)) is defined to mean

poorly developed; foolish; unlikely to work.
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