THE THEOREM OF THE CUBE, SQUARE, AND APPLICATIONS

DANIEL MARLOWE

Fix an algebraically closed field k.
Theorem 0.1 ([Mum85, §10, Theorem, p.91]). Suppose given X, Y complete k-varieties, $Z a$ connected variety, and $\mathcal{L} \in \operatorname{Pic}(X \times Y \times Z)$. If there exist points $x_{0} \in X(k), y_{0} \in Y(k), z_{0} \in Z(k)$ with the restriction of \mathcal{L} to $\left\{x_{0}\right\} \times Y \times Z, X \times\left\{y_{0}\right\} \times Z$ and $X \times Y \times\left\{z_{0}\right\}$ trivial, \mathcal{L} is trivial.

We require the following results:
Theorem 0.2 (Formal function theorem, [GD61, Théorème 4.1.5]). For $X \xrightarrow{\pi} Y$ a proper morphism of noetherian schemes, \mathcal{F} a coherent sheaf of \mathscr{O}_{X}-modules, and $Y^{\prime} \subset Y$ a closed subscheme with ideal sheaf \mathcal{J}, then for each $p \geq 0$ the system of maps

$$
\mathbf{R}^{p} \pi_{\star}(\mathcal{F}) \otimes_{\mathscr{O}_{Y}} \mathscr{O}_{Y} / \mathcal{J}^{n} \rightarrow \mathbf{R}^{p}\left(\mathcal{F} / \mathcal{J}^{n} \mathcal{F}\right)
$$

induces an isomorphism of topological $\mathscr{O}_{\widehat{X}}$ modules

$$
\left(\mathbf{R}^{p} \pi_{*}(\mathcal{F})\right)^{\wedge} \rightarrow \lim _{\longleftarrow} \mathbf{R}^{p}\left(\mathcal{F} / \mathcal{J}^{n} \mathcal{F}\right)
$$

Corollary 0.3 ([GD61, Proposition 4.2.1]). For $X \xrightarrow{\pi} Y$ a proper morphism with Y locally noetherian and \mathcal{F} coherent on $X, y \in Y$, consider the following diagram of thickenings:

$\mathcal{F}_{n}:=i_{n}^{*} \mathcal{F} ;$ Then

$$
\left(\mathbf{R}^{p} \pi_{\star} \mathcal{F}\right)_{y}^{\wedge} \cong \lim _{n}^{\longleftrightarrow} H^{p}\left(X_{n}, \mathcal{F}_{n}\right)
$$

as $\widehat{\mathscr{O}}_{Y, y}$-modules.
Proposition 0.4 (Künneth formula, [Stacks, Tag 0BEC]). For X, Y locally noetherian schemes of finite type over k, there is a natural isomorphism

$$
H^{n}\left(X \times Y, \mathscr{O}_{X \times Y}\right) \cong \bigoplus_{i+j=n} H^{i}\left(X, \mathscr{O}_{X}\right) \otimes_{k} H^{j}\left(Y, \mathscr{O}_{Y}\right)
$$

Lemma 0.5 ([Stacks, Tag 0FD2]). For X a proper k-variety, $H^{0}\left(X, \mathscr{O}_{X}\right) \cong k$.
Lemma 0.6. For X a complete k-variety, $\mathcal{L} \in \operatorname{Pic}(X)$ is trivial if and only if both \mathcal{L} and \mathcal{L}^{\vee} have nontrivial global sections.

Definition 0.7. For Y a topological space, and $Y \stackrel{f}{\rightarrow} \mathbb{Z}$ a map of sets. f is upper semicontinuous if for each $y \in Y$ there is an open $y \in U \subset Y$ such that for each $y^{\prime} \in U, f\left(y^{\prime}\right) \leq f(y)$.

For \mathcal{F} a sheaf of $\mathscr{O}_{X \times Y}$-modules and $y \in Y$, write $X_{y}:=X \times\{y\}$ and $\mathcal{F}_{y}:=\left.\mathcal{F}\right|_{X_{y}}$.

Theorem 0.8 (Semicontinuity, [Mum85, §5, Corollary, p.50]). For $X \xrightarrow{\pi} Y$ a proper morphism of locally noetherian schemes, \mathcal{F} a coherent sheaf on X flat over Y, i.e. \mathcal{F}_{x} is a flat $\mathscr{O}_{Y, \pi(x)}$-module for each $x \in X$. Then the function $y \mapsto \operatorname{dim}_{k(y)} H^{p}\left(\pi^{-1}(y), \mathcal{F}_{\pi^{-1}(y)}\right)$ is upper semicontinuous on Y. Accordingly, the set

$$
\left\{y \in Y \mid \operatorname{dim}_{k(y)} H^{p}\left(\pi^{-1}(y),\left.\mathcal{F}\right|_{\pi^{-1}(y)}\right) \geq n\right\} \subset Y
$$

is closed.
Corollary 0.9 (Grauert). For X, Y and \mathcal{F} as above with Y integral, suppose that for some i, $y \mapsto \operatorname{dim}_{k(y)} H^{i}\left(\pi^{-1}(y),\left.\mathcal{F}\right|_{\pi^{-1}(y)}\right.$ is constant on Y. Then $\left(\mathbf{R}^{i} \pi_{*} \mathcal{F}\right)^{+}$is locally free on Y, and

$$
\left(\mathbf{R}^{i} \pi_{\not} \mathcal{F}\right)^{+} \otimes k(y) \cong H^{i}\left(\pi^{-1}(y), \mathcal{F}_{y}\right)
$$

naturally, where $(-)^{+}$is the sheafification.
Theorem 0.10 ([Mum85, §5, Corollary 6, p.54]). Suppose given X, Y varieties over k with X complete, and $\mathcal{L}, \mathcal{M} \in \operatorname{Pic}(X \times Y)$ such that for each $y \in Y$ closed, $\mathcal{L}_{y} \cong \mathcal{M}_{y}$. Then there exists $\mathcal{N} \in \operatorname{Pic}(Y)$ with $\mathcal{L} \cong \mathcal{M} \otimes \pi^{*} \mathcal{N}$, for $X \otimes Y \xrightarrow{\pi} Y$ the projection.
Proof. Note that $X_{y}:=X \times\{y\}$ is complete, and so $H^{0}\left(X_{y}, \mathcal{L}_{y} \otimes \mathcal{M}_{y}^{-1}\right) \cong H^{0}\left(X_{y}, \mathscr{O}_{X_{y}}\right) \cong k(y)$ for each $y \in Y$ closed. By Grauert's corollary, we have $\pi_{*}\left(\mathcal{L} \otimes \mathcal{M}^{-1}\right) \otimes k(y) \cong H^{0}\left(X_{y}, \mathcal{L}_{y} \otimes \mathcal{M}_{y}^{-1}\right) \cong k(y)$, and so $\pi_{*}\left(\mathcal{L} \otimes \mathcal{M}^{-1}\right)$ is an invertible sheaf on Y. We claim that the $\pi^{*} \dashv \pi_{*}$ counit $\varepsilon: \pi^{*} \pi_{*}\left(\mathcal{L} \otimes \mathcal{M}^{-1}\right) \rightarrow$ $\mathcal{L} \otimes \mathcal{M}^{-1}$ is an isomorphism.
Consider the pullback

with π and hence π^{\prime} flat. Writing $\mathcal{F}:=\mathcal{L} \otimes \mathcal{M}^{-1}$, we have $j^{*} \pi^{*} \pi_{*} \mathcal{F} \cong \pi^{\prime *} i^{*} \pi_{*} \mathcal{F} \cong \pi^{\prime-1} \mathscr{O}_{k(y)} \cong \mathscr{O}_{X_{y}}$, and so $\varepsilon_{y}: j^{*} \pi^{*} \pi_{*} \mathcal{F} \rightarrow j^{*} \mathcal{F} \cong \mathscr{O}_{X_{y}}$ is an isomorphism.
It thus suffices to show that given a map $\mathcal{E} \xrightarrow{f} \mathscr{O}_{X \times Y}$ with f fibrewise an isomorphism, f is an isomorphism; Nakayama's lemma implies that f is surjective, and comparing ranks we see that it is injective.

The proof below follows Akhil Mathew's exposition in [Mat12]
Proof of Theorem 0.1. Set $Z^{\prime} \subset Z$ the set of points z with $\left.\mathcal{L}\right|_{X \times Y \times\{z\}}$ trivial; this is the case if and only if $\operatorname{dim}_{k(z)} H^{0}\left(\left.\mathcal{L}\right|_{X \times Y \times\{z\}}\right)$ and $\operatorname{dim}_{k(z)} H^{0}\left(\left.\mathcal{L}^{\vee}\right|_{X \times Y \times\{z\}}\right)>0$, and by semicontinuity this is closed; note that $z_{0} \in Z^{\prime}$.
Fix $z^{\prime} \in Z^{\prime}$. We first show for any local finite-dimensional k-algebra A and infinitesimal thickening $\operatorname{Spec}(A) \rightarrow Z$ of z^{\prime} that $\left.\mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(A)}$ is trivial. Set $d:=\operatorname{dim}_{k}(A)$, and note that the case $d=1$ follows by hypothesis. Suppose the required triviality holds for any such A of k-dimension $<d \geq 1$. There exists $a \in A$ nonzero with $\mathfrak{m}_{A} a=0$, inducing a surjection of k-algebras $A \rightarrow A / a=A / k a$; then we have an exact sequence of sheaves (on z^{\prime}):

$$
0 \rightarrow \mathscr{O}_{k} \rightarrow \mathscr{O}_{A} \rightarrow \mathscr{O}_{A / a} \rightarrow 0,
$$

inducing

$$
\left.\left.\left.0 \rightarrow \mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(k)} \rightarrow \mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(A)} \rightarrow \mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(A / a)} \rightarrow 0
$$

on $X \times Y \times \operatorname{Spec}(A)$. We wish to find a trivialising section $s \in \Gamma\left(\left.\mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(A)}\right)$; by induction, there exists some such $s^{\prime} \in \Gamma\left(\left.\mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(A / a)}\right)$, since $\operatorname{dim}_{k} A / a<d$. A lift of s^{\prime} exists if and only if the connecting homomorphism

$$
H^{0}\left(\left.\mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(A / a)}\right) \xrightarrow{\delta} H^{1}\left(\left.\mathcal{L}\right|_{X \times Y \times \operatorname{Spec}(k)}\right)
$$

takes $s^{\prime} \mapsto 0$. By the Künneth formula, we have

$$
\begin{aligned}
H^{1}\left(\left.\mathcal{L}\right|_{X \times Y \times\left\{z_{0}\right\}}\right) & \cong H^{0}\left(\left.\mathcal{L}\right|_{X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}}\right) \otimes H^{1}\left(\left.\mathcal{L}\right|_{\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}}\right) \oplus H^{1}\left(\mathcal{L}_{X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}}\right) \otimes H^{0}\left(\left.\mathcal{L}\right|_{\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}}\right) \\
& \cong H^{0}\left(\mathscr{O}_{X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}}\right) \otimes H^{1}\left(\left.\mathcal{L}\right|_{\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}}\right) \oplus H^{1}\left(\mathcal{L}_{X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}}\right) \otimes H^{0}\left(\mathscr{O}_{\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}}\right) \\
& \cong H^{1}\left(\left.\mathcal{L}\right|_{\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}}\right) \oplus H^{1}\left(\mathcal{L}_{X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}}\right),
\end{aligned}
$$

since $X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}$ and $\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}$ are complete. We then note that the connecting maps

$$
H^{0}\left(\left.\mathcal{L}\right|_{X \times\left\{y_{0}\right\} \times \operatorname{Spec}(A / a)}\right) \xrightarrow{\delta^{\prime}} H^{1}\left(\left.\mathcal{L}\right|_{X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}}\right)
$$

and

$$
H^{0}\left(\left.\mathcal{L}\right|_{\left\{x_{0}\right\} \times Y \times \operatorname{Spec}(A / a)} \xrightarrow{\delta^{\prime \prime}} H^{1}\left(\left.\mathcal{L}\right|_{\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}}\right)\right.
$$

send $s^{\prime} \mapsto 0$, since \mathcal{L} is trivial on $X \times\left\{y_{0}\right\} \times\left\{z_{0}\right\}$ and $\left\{x_{0}\right\} \times Y \times\left\{z_{0}\right\}$ by hypothesis, and so $\delta(s)=\left(\delta^{\prime}(s), \delta^{\prime \prime}(s)\right)=0$.
We now show we can extend triviality of \mathcal{L} to an open containing z^{\prime}. We take Z to be irreducible, without loss of generality (otherwise we restrict to each irreducible component). Write $\pi: X \times Y \times$ $Z \rightarrow Z$ for the projection, and set $\mathcal{M}:=\pi_{*} \mathcal{L}$, a coherent sheaf on Z, so $\mathcal{M}_{z^{\prime}}$ is a finitely generated $\mathscr{O}_{Z, z^{\prime}}$ module. By the corollary to the formal function theorem, we have

$$
\widehat{\mathcal{M}}_{z^{\prime}} \cong \lim _{\leftrightarrows} H^{0}\left(\left.\mathcal{L}\right|_{\operatorname{Spec} \mathscr{O}_{Z, z^{\prime}} / \mathfrak{m}_{z^{\prime}}^{n}}\right) \cong \widehat{\mathscr{O}}_{Z, z^{\prime}},
$$

since

$$
\begin{aligned}
& H^{0}\left(X \times Y \times \operatorname{Spec} \mathscr{O}_{Z, z^{\prime}} / \mathfrak{m}_{z^{\prime}}^{n},\left.\mathcal{L}\right|_{X \times Y \times \operatorname{Spec} \mathscr{O}_{Z, z^{\prime}} / \mathfrak{m}_{z^{\prime}}^{n}}\right) \\
\cong & H^{0}\left(X \times Y, \mathscr{O}_{X \times Y}\right) \otimes H^{0}\left(\operatorname{Spec} \mathscr{O}_{Z, z^{\prime}} / \mathfrak{m}_{z^{\prime}}^{n}, \mathscr{O}_{\operatorname{Spec}} \mathscr{O}_{Z, z^{\prime}} / \mathfrak{m}_{z^{\prime}}^{n}\right) \\
\cong & H^{0}\left(\mathscr{O}_{\operatorname{Spec}} \mathscr{O}_{Z, z^{\prime}} / \mathfrak{m}_{z^{\prime}}^{n}\right)
\end{aligned}
$$

by Künneth and since $H^{0}\left(X \times Y, \mathscr{O}_{X \times Y}\right) \cong k$.
Since $\mathscr{O}_{Z, z^{\prime}}$ is noetherian local, the completion $\mathscr{O}_{Z, z^{\prime}} \rightarrow \widehat{\mathscr{O}}_{Z, z^{\prime}}$ is faithfully flat, and so $\widehat{\mathcal{M}}_{z^{\prime}} \cong \widehat{\mathscr{O}}_{Z, z^{\prime}}$ if and only if $\mathcal{M}_{z^{\prime}} \cong \mathscr{O}_{Z, z^{\prime}}$. So $\mathcal{M}_{z^{\prime}}$ is free of rank one, and by coherence, \mathcal{M} is a line bundle in a neighbourhood V of z^{\prime}. We also note that $\mathcal{M}_{z^{\prime}} \rightarrow H^{0}\left(\left.\mathcal{L}\right|_{X \times Y \times\left\{z^{\prime}\right\}}\right) \cong k$ is surjective, and so for some neighbourhood $z^{\prime} \in U \subset V, 1 \in H^{0}\left(\left.\mathcal{L}\right|_{X \times Y \times\left\{z^{\prime}\right\}}\right) \cong k$ lifts to a section s of \mathcal{L} over $X \times Y \times U$. Shrinking U, we may assume that s is invertible on $X \times Y \times U$, and so $\mathcal{L}_{X \times Y \times\{u\}} \cong \mathscr{O}_{X \times Y \times\{u\}}$ for each $u \in U$.
But the set of $t \in Z$ with $\left.\mathcal{L}\right|_{X \times Y \times\{t\}}$ trivial is closed, and hence equal to Z, and we thus have that \mathcal{L} is the pullback of a line bundle on Z (in fact, to $\left.\pi^{*} \mathcal{M}\right)$. Then $\left.\mathcal{L}\right|_{\left\{x_{0}\right\} \times\left\{y_{0}\right\} \times Z} \cong \mathcal{M} \cong \mathscr{O}_{Z}$, and hence \mathcal{L} is trivial.

From this we immediately obtain a number of useful corollaries. For an abelian k-variety X and $S \subset\{1,2,3\}$, denote by $\pi_{S}: X^{3} \rightarrow X$ the map defined on k-points via $\left(x_{1}, x_{2}, x_{3}\right) \mapsto \sum_{s \in S} x_{s}$, where is $s=\varnothing$ the sum is the unit of 0 of X.

Corollary 0.11. X an abelian k-variety, $\mathcal{L} \in \operatorname{Pic}(X)$. Then the line bundle

$$
\Theta(\mathcal{L}):=\pi_{123}^{*} \mathcal{L} \otimes \pi_{12}^{*} \mathcal{L}^{-1} \otimes \pi_{13}^{*} \mathcal{L}^{-1} \otimes \pi_{23}^{*} \mathcal{L}^{-1} \otimes \pi_{1} * \mathcal{L} \otimes \pi_{2} * \mathcal{L} \otimes \pi_{3} * \mathcal{L}
$$

is trivial on X^{3}.
Proof. Clearly it suffices to check that the restriction of $\Theta(\mathcal{L})$ to $\{0\} \times X \times X, X \times\{0\} \times X$, and $X \times X \times\{0\}$ is trivial. Write $j:\{0\} \times X \times X \rightarrow X^{3}$ for the inclusion morphism, and note that $\pi_{S} \circ j=\pi_{S \backslash\{1\}}$. Writing $c_{0}: X^{3} \rightarrow X$ for the constant morphism to $0 \in X$, we have

$$
c_{0}^{\star} \mathcal{L}: U \mapsto \operatorname{colim}_{c_{0}(U) \subset V} \Gamma(V, \mathcal{L}) \cong \mathcal{L}_{0} \cong \mathscr{O}_{X, 0},
$$

the stalk of the structure sheaf at zero, and hence $c_{0}^{*} \mathcal{L} \cong \mathscr{O}_{X \times X}$. Then

$$
\begin{aligned}
j^{*} \Theta(\mathcal{L})= & \pi_{23}^{*} \mathcal{L} \otimes \pi_{2}^{*} \mathcal{L}^{-1} \otimes \pi_{3}^{*} \mathcal{L}^{-1} \otimes \pi_{23}^{*} \mathcal{L}^{-1} \otimes \pi_{2}^{*} \mathcal{L} \otimes \pi_{3}^{*} \mathcal{L} \\
& \cong \pi_{23}^{*} \mathcal{L} \otimes \pi_{23}^{*} \mathcal{L}^{-1} \otimes \pi_{2}^{*} \mathcal{L}^{-1} \otimes \pi_{2}^{*} \mathcal{L} \otimes \pi_{3}^{*} \mathcal{L}^{-1} \otimes \otimes \pi_{3}^{*} \mathcal{L} \\
& \cong \mathscr{O}_{X \times X},
\end{aligned}
$$

and similarly for $X \times\{0\} \times X$ and $X \times X \times\{0\}$.
Corollary 0.12. For Y a k-variety and X an abelian k-variety, given maps $f, g, h: Y \rightarrow X$ and $\mathcal{L} \in \operatorname{Pic}(X)$, we have

$$
(f+g+h)^{*} \mathcal{L} \cong(f+g)^{*} \mathcal{L} \otimes(f+h)^{*} \mathcal{L} \otimes(g+h)^{*} \mathcal{L} \otimes f^{*} \mathcal{L}^{-1} \otimes g^{*} \mathcal{L}^{-1} \otimes h^{*} \mathcal{L}^{-1} .
$$

Proof.

where for instance $(f, g, h)_{12}=f+g$. We see that

$$
\begin{aligned}
(f+g+h)^{*} \mathcal{L} & \cong(f+g)^{*} \mathcal{L} \otimes(f+h)^{*} \mathcal{L} \otimes(g+h)^{*} \mathcal{L} \otimes f^{*} \mathcal{L}^{-1} \otimes g^{*} \mathcal{L}^{-1} \otimes h^{*} \mathcal{L}^{-1} \cong(f, g, h)^{*} \Theta(\mathcal{L}) \\
& \cong(f, g, h)^{*} \mathscr{O}_{X^{3}} \\
& \cong \mathscr{O}_{Y},
\end{aligned}
$$

and we are done.
Recall for an abelian variety X and $x \in X(k)$, we have the translation morphisms $t_{x}: X \rightarrow X$.
Corollary 0.13 (Theorem of the square, [Mum85, §, Corollary 4, p.59]). For X an abelian k-variety and $\mathcal{L} \in \operatorname{Pic}(X)$,

$$
t_{x+y}^{*} \mathcal{L} \otimes \mathcal{L} \cong t_{x}^{*} \mathcal{L} \otimes t_{y}^{*} \mathcal{L} .
$$

Proof. Note firstly that $t_{x}=\mathrm{id}_{X}+c_{x}$, for c_{x} the constant map at x. Setting $f:=\mathrm{id}_{X}, g:=c_{x}, h:=c_{y}$ in the above corollary,

$$
t_{x+y}^{*} \mathcal{L} \cong t_{x}^{*} \mathcal{L} \otimes t_{y}^{*} \mathcal{L} \otimes\left(c_{x}+c_{y}\right)^{*} \mathcal{L} \otimes c_{x}^{*} \mathcal{L}^{-1} \otimes c_{y}^{*} \mathcal{L}^{-1} \otimes \mathcal{L}^{-1} \cong t_{x}^{*} \mathcal{L} \otimes t_{y}^{*} \mathcal{L} \otimes \mathcal{L}^{-1},
$$

since $c_{z}^{*} \mathcal{L} \cong \mathscr{O}_{X}$ for any $z \in X$.
Definition 0.14. For A an abelian k-variety, we define the degree 0 part of the Picard group to consist of translation invariant line bundles:

$$
\operatorname{Pic}^{0}(A):=\left\{\mathcal{L} \in \operatorname{Pic}(A) \mid t_{x}^{*} \mathcal{L} \cong \mathcal{L}\right\} .
$$

Note that t_{x}^{*} commutes with $\otimes($ as a left adjoint $)$, and so $\operatorname{Pic}^{0}(A) \subset \operatorname{Pic}(A)$ is a subgroup.
The following is now immediate.
Corollary 0.15. For A an abelian k-variety and $\mathcal{L} \in \operatorname{Pic}(A)$, there is a homomorphism of abelian groups

$$
\begin{aligned}
A \xrightarrow{\varphi_{\mathcal{L}}} \operatorname{Pic}^{0}(A) \\
a \mapsto t_{a}^{*} \mathcal{L} \otimes \mathcal{L}^{-1} .
\end{aligned}
$$

References

[Mum85] David Mumford. Abelian varieties, second edition, 1985 reprint. Vol. 5. Tata Institute of Fundamental Research Studies in Mathematics. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 1985.
[GD61] Alexandre Grothendieck and Jean Dieudonné. Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie. Vol. 11. Publications Mathématiques de l'IHÉS, 1961, pp. 5-167. URL: http://www. numdam.org/item/ PMIHES_1961__11__5_0/.
[Stacks] The Stacks Project Authors. Stacks Project. https://stacks.math. columbia. edu. 2018.
[Mat12] Akhil Mathew. The theorem of the cube. 2012. URL: https://amathew.wordpress.com/ 2012/06/04/the-theorem-of-the-cube/ (visited on 10/24/2023).

