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1. CATEGORICAL SETUP

1.1. Formal inversion. Recall that a symmetric monoidal oco-category C® is the data of a co-
Cartesian fibration €® - NFin,, such that for each n >0 and 0 <i < n, the maps

. J0, 1, =1,
pi:(n) - (1), J"’{O’ N
induce an equivalence C®,, — [Ti<icn C®1; this is the same as a commutative algebra object in the
symmetric monoidal co-category Cat), (with the cartesian monoidal structure), i.e. an object of
CAlg(Cat’ ). Write € := €®; for the underlying category of €®. An object X € C is said to be
®-invertible if there is some X* € C with X @ X* ~ 1 ~ X* ® X, or equivalently if the functor
-® X : € — € is an equivalence.
Given a small symmetric monoidal co-category €%, write Modee(Caty,) for the oco-category of
modules over €®. There is a canonical equivalence

CAlg(Modee (Caty, )) ~ CAlg(Cat)es/,
and a forgetful functor CAlg(Modee (Cat,)) - Modes (Cat,) (forgetting the algebra structure).
This functor preserves limits, so we get by presentability a left adjoint
Freeee : Modee (Cat’,) — CAlg(Modes (Catyy,)),

associating to a €®-module D® the free C®-module generated by D. Given now an object X € @,

write
Free -X
Sy = {Freees (€) 2280 p s (€)1,

The full subcategory of Sy-local objects in CAlg(Cat;)ee, identifies with the full subcategory
CAlg(Cates é‘;p ,on objects for which the structure map €® — D® sends X to a ®-invertible object.

Again by presentability, there is an adjunction
leo.x)

CAlg(Caty)ee, — CAlg(Cat)ee,-

In particular, there is a universal functor
L:C¥ E?@@g{)(e) = C%[X ]

with ¢X invertible in €®[X~!], and such that restriction along ¢ induces an equivalence

Funee (C®[ X 1], D®) - Funes (€%, D®)
for any C®-algebra C® — D?® in CAlg((‘fat;)é(@/. We can upgrade this to the presentable setting

with the following observation: the forgetful functor CAlg(Caty ) — Cat), admits a left adjoint
free® : Cat), — CAlg(Catl.), and we write *® := free® (A®). An object of €% is the data of a functor

*®—>€®’



and a C®-algebra f:C® - D® has fX ®-invertible if and only if there is a factorisation, for * € AY
the unique object,

© s L8, (+9)

o o

e —L - pe.

The pushout (in Catl,)
e® H L(*@) )(*®),

is such that a monoidal functor C® — D® sends X to a ®-invertible object if and only if it factors
through the map

C® > c® ]_[L(%® o (+%),
and this factorisation is unique up to contractible choice. Accordingly, there is a canonical equiva-
lence
c® Hﬁ(m () =[x,
This diagram (1) factors by the universal monoidal property of presheaves as

® — L%@ *)(*8’)

*
J !
Po(1%) — P (1)
|
| |
8 f y PO
where the dashed arrows are given by left Kan extension. For C® a presentably symmetric monoidal
category (a commutative algebra object in priv® ) and X € C, we define C®[X 1] as the pushout in
CAlg(Prt

€®[X_l]:=€® H {P®(L(*®*)(*®))-
PO (+8)

This can again be identified as the image of C® under the left adjoint L(e® X) to the fully faithful
restriction functor

CAlg(PrL’®)@®[X—1]/ g CAlg(PrL’®)@®/.
G
1.2. Stabilisation. Suppose C is an co-category, and (G,U) an adjoint pair € z—= € . The
U
stabilisation of € with respect to (G,U) is the limit in CAT
Stab(g,(€) =lim(... S e S e Se),

and for free we get a functor Q7 ;) : Stab(,7)(€) — €. In the case C is finitely (co)complete with
final object *, the stabilisation Stab(C) of €, with respect to the pair

Cp = $—— Ce/

is a stable co-category, and restriction along £2°° induces an equivalence, for any stable co-category
D,
()" : Fun®(Stab(€), D) = Fun'®*(&, D).



In the case € is presentable, the limit can equivalently be taken in Pr, and we get for free an
adjoint X*° : € - Stab(C), with the universal property that for D a stable presentable co-category,
the restriction

(2°)* : Fun’(Stab(€), D) - Fun’ (€, D)

is an equivalence.
There is an analogous construction in the symmetric monoidal setting: for €® € CAlg(CatZ ), X € €,
and M € Modee (Caty, ), we have an endofunctor - ® X : M — M induced by the functor

C® - End(M)®

classifying the €®-action. We wish to find some universal approximation to M on which X acts as
an equivalence; if M is C itself, the first obstruction to this comes from the observation that the
automorphism group of a ®-invertible object is abelian: for such a U, we can write U ~U®U* QU,
and an endomorphism U — U is equivalent to both f®1®1 or 19 1® f. Accordingly, for f,g: U - U,

fogr(1®f®1)o(g®1®1)~(g®1®1)o(1®f®1)~gof.

If X is ®-invertible in G, so is X®3, and we see that the cyclic permutation (1 2 3) on X®3
generating the commutator As c ¥3 must be homotopic to the identity. Any cyclic permutation of
n > 3 objects is a product of 3-bloc permutations, and accordingly this necessary condition turns
out to be sufficient. Call an object X with the property that (1 2 3) on X®3 is homotopic to the
identity symmetric.

Proposition 1.2.1. Let C® be a small symmetric monoidal co-category, and X € C symmetric;
then for any C®-module M, the colimit

Stabyee,x) (M) := colim(M —25 M =25 pp 25, )

taken in Modee (Caty) is a C€®-module on which X acts an equivalence.
The same holds in the presentable setting:

Proposition 1.2.2. Let C® be a presentably symmetric monoidal co-category and X € C symmetric.
Then for a €®-module M, Stabes x (M) is a C®-module on which X acts as an equivalence, and
the functor

LFé‘X’,X) (M) i Stab(@®7x) (M)

induced by adjunction is an equivalence. In particular, there is an equivalence of underlying oo-
categories

€®[X_1:| = Stab(@®7x)(€®).
Moreover, if C® is additionally stable, C®[X~1] is again stably presentably symmetric monoidal.

Idea of proof. The functor Ll(jé(gjx)(M) - Stabee, x)(M) factors as
Ligs xy(M) = L{gs x)(Stabgee x)(M)) > Stabee x)(M),

and since X acts invertibly on Stab(ee x)(M), the second map is an equivalence (adjoint to the
identity on Stabees x)(M)). Since Stab(ee x) is a colimit and L?é@,x) a left adjoint, we have a
canonical equivalence

L{gs x)(Stabges x) (M)) = Stabee x) (£ {ge x) (M))



under Ll(jé(g X)(M). But X acts as an equivalence on Stab(ee x)(M), and so M — Stabes x)(M)

is sent to an equivalence under LFé@, X)- Since the diagram

Ligs x)(M)

— T

£?5®7X)(Stab(e®’X)(M)) — > Stab(@@’)()(ﬁ?é@,x)(M))

commutes, we are done.

For the last statement, if C® is stable presentable, - ® X is an exact functor, and the diagram
defining Stabee x)(C®) ~ €®[X ] lives in Prl;. Since the inclusion Prl; c Pr" preserves colimits,
C®[X '] is again stable presentable. O

Example 1.2.3. Write 8, for the presentable symmetric monoidal co-category of pointed spaces
with the smash product, with unit S° := # [ . The space S! is a symmetric object in 8% since the
diagram

Stast = g2
[l
StASl = 52,
commutes up to homotopy, and hence the cyclic permutation (1 2 3) on (S* is homotopic to
Lg1; accordingly we have that the stabilisation Stabs, ¢1)(8.) with respect to S 1is equivalently

)/\3

given by the formal inversion 8,[S*)™!]; note that this stabilisation is a stable co-category since this
coincides with the stabilisation with respect to the adjunction X < Q. In fact, 82 is the initial pointed
presentable symmetric monoidal co-category. For any pointed presentable symmetric monoidal oco-
category C®, we have accordingly a unique monoidal pointed colimit-preserving functor f : 8% — €%,
and by comparing universal properties, we see that there is an equivalence

CeLf(sH 1 =sp]]ee,
84

with the pushout taken in Pr™®.
2. MOTIVIC STABLE HOMOTOPY THEORY
We now apply the machinery above to give a characterisation of (stable) motivic homotopy theory.

2.1. Unstable A'-homotopy theory. Recall for an oo-category € that the Yoneda embedding
C — P(C) is a free cocompletion. This cocompletion replaces colimits that existed in € with formal
colimits, and we may reimpose these by (Bousfiedl) localising at an appropriate class of maps. For

S a
Construction 2.1.1.
2.2. Motivic spheres.

2.3. Betti realisation.
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