THE UNIVERSAL PROPERTY OF THE STABLE MOTIVIC HOMOTOPY CATEGORY

DANIEL MARLOWE

1. CATEGORICAL SETUP

1.1. Formal inversion. Recall that a symmetric monoidal ∞ -category \mathbb{C}^{\otimes} is the data of a co-Cartesian fibration $\mathbb{C}^{\otimes} \to N \operatorname{Fin}_*$, such that for each $n \ge 0$ and $0 \le i \le n$, the maps

$$\rho_i: \langle n \rangle \to \langle 1 \rangle, \quad j \mapsto \begin{cases} 0, 1, & j = i, \\ 0, & j \neq i \end{cases}$$

induce an equivalence $\mathbb{C}^{\otimes}_{n} \xrightarrow{\sim} \prod_{1 \leq i \leq n} \mathbb{C}^{\otimes}_{1}$; this is the same as a commutative algebra object in the symmetric monoidal ∞ -category $\operatorname{Cat}_{\infty}^{\times}$ (with the cartesian monoidal structure), i.e. an object of $\operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\times})$. Write $\mathbb{C} := \mathbb{C}^{\otimes}_{1}$ for the underlying category of \mathbb{C}^{\otimes} . An object $X \in \mathbb{C}$ is said to be \otimes -invertible if there is some $X^{*} \in \mathbb{C}$ with $X \otimes X^{*} \simeq \mathbb{1} \simeq X^{*} \otimes X$, or equivalently if the functor $- \otimes X : \mathbb{C} \to \mathbb{C}$ is an equivalence.

Given a small symmetric monoidal ∞ -category \mathcal{C}^{\otimes} , write $\operatorname{Mod}_{\mathcal{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})$ for the ∞ -category of modules over \mathcal{C}^{\otimes} . There is a canonical equivalence

$$\operatorname{CAlg}(\operatorname{Mod}_{\mathbb{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})) \simeq \operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\infty})_{\operatorname{C}^{\otimes}/\operatorname{F}}$$

and a forgetful functor $\operatorname{CAlg}(\operatorname{Mod}_{\mathbb{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})) \to \operatorname{Mod}_{\mathbb{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})$ (forgetting the algebra structure). This functor preserves limits, so we get by presentability a left adjoint

$$\operatorname{Free}_{\mathbb{C}^{\otimes}}:\operatorname{Mod}_{\mathbb{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})\to\operatorname{CAlg}(\operatorname{Mod}_{\mathbb{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})),$$

associating to a \mathcal{C}^{\otimes} -module \mathcal{D}^{\otimes} the free \mathcal{C}^{\otimes} -module generated by \mathcal{D} . Given now an object $X \in \mathcal{C}$, write

$$S_X \coloneqq \{ \operatorname{Free}_{\mathcal{C}^{\otimes}}(\mathcal{C}) \xrightarrow{\operatorname{Free}_{\mathcal{C}^{\otimes}}(-\otimes X)} \operatorname{Free}_{\mathcal{C}^{\otimes}}(\mathcal{C}) \}.$$

The full subcategory of S_X -local objects in $\operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\infty})_{\mathbb{C}^{\otimes}/}$ identifies with the full subcategory $\operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\infty})_{\mathbb{C}^{\otimes}/}^X$ on objects for which the structure map $\mathbb{C}^{\otimes} \to \mathcal{D}^{\otimes}$ sends X to a \otimes -invertible object. Again by presentability, there is an adjunction

$$\operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\infty})_{\mathbb{C}^{\otimes}/} \xleftarrow{\mathcal{L}_{(\mathbb{C}^{\otimes},X)}^{\otimes}} \operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\infty})_{\mathbb{C}^{\otimes}/}.$$

In particular, there is a universal functor

$$\iota: \mathcal{C}^{\otimes} \to \mathcal{L}_{(\mathcal{C}^{\otimes}, X)}^{\otimes}(\mathcal{C}) \eqqcolon \mathcal{C}^{\otimes}[X^{-1}]$$

with ιX invertible in $\mathcal{C}^{\otimes}[X^{-1}]$, and such that restriction along ι induces an equivalence

$$\operatorname{Fun}_{\mathbb{C}^{\otimes}}(\mathbb{C}^{\otimes}[X^{-1}], \mathbb{D}^{\otimes}) \to \operatorname{Fun}_{\mathbb{C}^{\otimes}}(\mathbb{C}^{\otimes}, \mathbb{D}^{\otimes})$$

for any \mathbb{C}^{\otimes} -algebra $\mathbb{C}^{\otimes} \to \mathbb{D}^{\otimes}$ in $\operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\times})_{\mathbb{C}^{\otimes}/}^{X}$. We can upgrade this to the presentable setting with the following observation: the forgetful functor $\operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\times}) \to \operatorname{Cat}_{\infty}^{\times}$ admits a left adjoint free^{\otimes} : $\operatorname{Cat}_{\infty}^{\times} \to \operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\times})$, and we write $*^{\otimes} := \operatorname{free}^{\otimes}(\Delta^{0})$. An object of \mathbb{C}^{\otimes} is the data of a functor $*^{\otimes} \to \mathbb{C}^{\otimes}$.

and a \mathcal{C}^{\otimes} -algebra $f : \mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$ has $fX \otimes$ -invertible if and only if there is a factorisation, for $* \in \Delta^0$ the unique object,

(1)
$$\begin{array}{c} *^{\otimes} \longrightarrow \mathcal{L}_{(*^{\otimes},*)}^{\otimes}(*^{\otimes}) \\ \downarrow_{X} \qquad \qquad \downarrow \\ \mathbb{C}^{\otimes} \xrightarrow{f} \mathcal{D}^{\otimes}. \end{array}$$

The pushout (in $\operatorname{Cat}_{\infty}^{\times}$)

$$\mathfrak{C}^{\otimes}\coprod_{*^{\otimes}}\mathcal{L}^{\otimes}_{(*^{\otimes},*)}(*^{\otimes}),$$

is such that a monoidal functor $\mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$ sends X to a \otimes -invertible object if and only if it factors through the map

$$\mathcal{C}^{\otimes} \to \mathcal{C}^{\otimes} \coprod_{*^{\otimes}} \mathcal{L}^{\otimes}_{(*^{\otimes},*)}(*^{\otimes}),$$

and this factorisation is unique up to contractible choice. Accordingly, there is a canonical equivalence

$$\mathfrak{C}^{\otimes}\coprod_{*^{\otimes}}\mathcal{L}^{\otimes}_{(*^{\otimes},*)}(*^{\otimes})\simeq\mathfrak{C}^{\otimes}[X^{-1}]$$

This diagram (1) factors by the universal monoidal property of presheaves as

where the dashed arrows are given by left Kan extension. For \mathcal{C}^{\otimes} a presentably symmetric monoidal category (a commutative algebra object in $\operatorname{Pr}^{L,\otimes}$) and $X \in \mathcal{C}$, we define $\mathcal{C}^{\otimes}[X^{-1}]$ as the pushout in $\operatorname{CAlg}(\operatorname{Pr}^{L}$

$$\mathcal{C}^{\otimes}[X^{-1}] \coloneqq \mathcal{C}^{\otimes} \coprod_{\mathcal{P}^{\otimes}(*^{\otimes})} \mathcal{P}^{\otimes}(\mathcal{L}^{\otimes}_{(*^{\otimes},*)}(*^{\otimes})).$$

This can again be identified as the image of \mathbb{C}^{\otimes} under the left adjoint $\mathcal{L}_{(\mathbb{C}^{\otimes},X)}^{\mathrm{Pr}}$ to the fully faithful restriction functor

$$\operatorname{CAlg}(\operatorname{Pr}^{\mathrm{L},\otimes})_{\mathcal{C}^{\otimes}[X^{-1}]/} \to \operatorname{CAlg}(\operatorname{Pr}^{\mathrm{L},\otimes})_{\mathcal{C}^{\otimes}/}.$$

1.2. Stabilisation. Suppose \mathcal{C} is an ∞ -category, and (G, U) an adjoint pair $\mathcal{C} \xleftarrow{G}{U} \mathcal{C}$. The stabilisation of \mathcal{C} with respect to (G, U) is the limit in $\mathcal{C}AT_{\infty}$

$$\mathrm{Stab}_{(G,U)}(\mathcal{C}) \coloneqq \lim(\ldots \xrightarrow{G} \mathcal{C} \xrightarrow{G} \mathcal{C} \xrightarrow{G} \mathcal{C}),$$

and for free we get a functor $\Omega^{\infty}_{(G,U)}$: $\operatorname{Stab}_{(G,U)}(\mathcal{C}) \to \mathcal{C}$. In the case \mathcal{C} is finitely (co)complete with final object *, the stabilisation $\operatorname{Stab}(\mathcal{C})$ of $\mathcal{C}_{*/}$ with respect to the pair

$$\mathfrak{C}_{*/} \xrightarrow{\Sigma} \mathfrak{C}_{*/}$$

is a stable ∞ -category, and restriction along Ω^{∞} induces an equivalence, for any stable ∞ -category \mathcal{D} ,

$$(\Omega^{\infty})^* : \operatorname{Fun}^{\operatorname{ex}}(\operatorname{Stab}(\mathcal{C}), \mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}^{\operatorname{lex}}(\mathcal{C}, \mathcal{D}).$$

In the case \mathcal{C} is presentable, the limit can equivalently be taken in $\Pr^{\mathbb{R}}$, and we get for free an adjoint $\Sigma^{\infty} : \mathcal{C} \to \operatorname{Stab}(\mathcal{C})$, with the universal property that for \mathcal{D} a stable presentable ∞ -category, the restriction

$$(\Sigma^{\infty})^* : \operatorname{Fun}^L(\operatorname{Stab}(\mathcal{C}), \mathcal{D}) \to \operatorname{Fun}^L(\mathcal{C}, \mathcal{D})$$

is an equivalence.

There is an analogous construction in the symmetric monoidal setting: for $\mathcal{C}^{\otimes} \in \operatorname{CAlg}(\operatorname{Cat}_{\infty}^{\times}), X \in \mathcal{C}$, and $M \in \operatorname{Mod}_{\mathcal{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})$, we have an endofunctor $- \otimes X : M \to M$ induced by the functor

$$\mathcal{C}^{\otimes} \to \operatorname{End}(M)^{\otimes}$$

classifying the \mathbb{C}^{\otimes} -action. We wish to find some universal approximation to M on which X acts as an equivalence; if M is \mathbb{C} itself, the first obstruction to this comes from the observation that the automorphism group of a \otimes -invertible object is abelian: for such a U, we can write $U \simeq U \otimes U^* \otimes U$, and an endomorphism $U \to U$ is equivalent to both $f \otimes 1 \otimes 1$ or $1 \otimes 1 \otimes f$. Accordingly, for $f, g: U \to U$,

$$f \circ g \simeq (1 \otimes f \otimes 1) \circ (g \otimes 1 \otimes 1) \simeq (g \otimes 1 \otimes 1) \circ (1 \otimes f \otimes 1) \simeq g \circ f.$$

If X is \otimes -invertible in C, so is $X^{\otimes 3}$, and we see that the cyclic permutation (1 2 3) on $X^{\otimes 3}$ generating the commutator $A_3 \subset \Sigma_3$ must be homotopic to the identity. Any cyclic permutation of $n \geq 3$ objects is a product of 3-bloc permutations, and accordingly this necessary condition turns out to be sufficient. Call an object X with the property that (1 2 3) on $X^{\otimes 3}$ is homotopic to the identity symmetric.

Proposition 1.2.1. Let \mathbb{C}^{\otimes} be a small symmetric monoidal ∞ -category, and $X \in \mathbb{C}$ symmetric; then for any \mathbb{C}^{\otimes} -module M, the colimit

$$\operatorname{Stab}_{(\mathbb{C}^{\otimes},X)}(M) \coloneqq \operatorname{colim}(M \xrightarrow{-\otimes X} M \xrightarrow{-\otimes X} M \xrightarrow{-\otimes X} \dots)$$

taken in $\operatorname{Mod}_{\mathbb{C}^{\otimes}}(\operatorname{Cat}_{\infty}^{\times})$ is a \mathbb{C}^{\otimes} -module on which X acts an equivalence.

The same holds in the presentable setting:

Proposition 1.2.2. Let \mathbb{C}^{\otimes} be a presentably symmetric monoidal ∞ -category and $X \in \mathbb{C}$ symmetric. Then for a \mathbb{C}^{\otimes} -module M, $\operatorname{Stab}_{(\mathbb{C}^{\otimes},X}(M)$ is a \mathbb{C}^{\otimes} -module on which X acts as an equivalence, and the functor

$$\mathcal{L}^{\Pr}_{(\mathbb{C}^{\otimes},X)}(M) \to \operatorname{Stab}_{(\mathbb{C}^{\otimes},X)}(M)$$

induced by adjunction is an equivalence. In particular, there is an equivalence of underlying ∞ -categories

$$\mathcal{C}^{\otimes}[X^{-1}] \simeq \operatorname{Stab}_{(\mathcal{C}^{\otimes},X)}(\mathcal{C}^{\otimes}).$$

Moreover, if \mathbb{C}^{\otimes} is additionally stable, $\mathbb{C}^{\otimes}[X^{-1}]$ is again stably presentably symmetric monoidal.

Idea of proof. The functor $\mathcal{L}^{\mathrm{Pr}}_{(\mathbb{C}^{\otimes},X)}(M) \to \mathrm{Stab}_{(\mathbb{C}^{\otimes},X)}(M)$ factors as

$$\mathcal{L}^{\mathrm{Pr}}_{(\mathbb{C}^{\otimes},X)}(M) \to \mathcal{L}^{\mathrm{Pr}}_{(\mathbb{C}^{\otimes},X)}(\mathrm{Stab}_{(\mathbb{C}^{\otimes},X)}(M)) \to \mathrm{Stab}_{(\mathbb{C}^{\otimes},X)}(M),$$

and since X acts invertibly on $\operatorname{Stab}_{(\mathbb{C}^{\otimes},X)}(M)$, the second map is an equivalence (adjoint to the identity on $\operatorname{Stab}_{(\mathbb{C}^{\otimes},X)}(M)$). Since $\operatorname{Stab}_{(\mathbb{C}^{\otimes},X)}$ is a colimit and $\mathcal{L}_{(\mathbb{C}^{\otimes},X)}^{\operatorname{Pr}}$ a left adjoint, we have a canonical equivalence

$$\mathcal{L}^{\Pr}_{(\mathbb{C}^{\otimes},X)}(\mathrm{Stab}_{(\mathbb{C}^{\otimes},X)}(M)) \simeq \mathrm{Stab}_{(\mathbb{C}^{\otimes},X)}(\mathcal{L}^{\Pr}_{(\mathbb{C}^{\otimes},X)}(M))$$

under $\mathcal{L}_{(\mathbb{C}^{\otimes},X)}^{\mathrm{Pr}}(M)$. But X acts as an equivalence on $\mathrm{Stab}_{(\mathbb{C}^{\otimes},X)}(M)$, and so $M \to \mathrm{Stab}_{(\mathbb{C}^{\otimes},X)}(M)$ is sent to an equivalence under $\mathcal{L}_{(\mathbb{C}^{\otimes},X)}^{\mathrm{Pr}}$. Since the diagram

commutes, we are done.

For the last statement, if \mathbb{C}^{\otimes} is stable presentable, $-\otimes X$ is an exact functor, and the diagram defining $\operatorname{Stab}_{(\mathbb{C}^{\otimes},X)}(\mathbb{C}^{\otimes}) \simeq \mathbb{C}^{\otimes}[X^{-1}]$ lives in $\operatorname{Pr}_{\operatorname{st}}^{\operatorname{L}}$. Since the inclusion $\operatorname{Pr}_{\operatorname{st}}^{\operatorname{L}} \subset \operatorname{Pr}^{\operatorname{L}}$ preserves colimits, $\mathbb{C}^{\otimes}[X^{-1}]$ is again stable presentable.

Example 1.2.3. Write S^{\wedge}_{*} for the presentable symmetric monoidal ∞ -category of pointed spaces with the smash product, with unit $S^{0} := * \coprod *$. The space S^{1} is a symmetric object in S^{\wedge}_{*} since the diagram

$$\begin{array}{ccc} S^1 \wedge S^1 & \stackrel{\cong}{\longrightarrow} & S^2 \\ & \downarrow^T & & \downarrow^{-1} \\ S^1 \wedge S^1 & \stackrel{\cong}{\longrightarrow} & S^2, \end{array}$$

commutes up to homotopy, and hence the cyclic permutation $(1\ 2\ 3)$ on $(S^1)^{\wedge 3}$ is homotopic to 1_{S^1} ; accordingly we have that the stabilisation $\operatorname{Stab}_{(S_*,S^1)}(S_*)$ with respect to S^1 is equivalently given by the formal inversion $S_*[S^1)^{-1}$; note that this stabilisation is a stable ∞ -category since this coincides with the stabilisation with respect to the adjunction $\Sigma \to \Omega$. In fact, S^{\wedge}_* is the initial pointed presentable symmetric monoidal ∞ -category \mathbb{C}^{\otimes} , we have accordingly a unique monoidal pointed colimit-preserving functor $f: S^{\wedge}_* \to \mathbb{C}^{\otimes}$, and by comparing universal properties, we see that there is an equivalence

$$\mathbb{C}^{\otimes}[f(S^1)^{-1}] \simeq \operatorname{Sp} \coprod_{S^{\wedge}_*} \mathbb{C}^{\otimes},$$

with the pushout taken in $Pr^{L,\otimes}$.

2. MOTIVIC STABLE HOMOTOPY THEORY

We now apply the machinery above to give a characterisation of (stable) motivic homotopy theory.

2.1. Unstable \mathbb{A}^1 -homotopy theory. Recall for an ∞ -category \mathbb{C} that the Yoneda embedding $\mathbb{C} \to \mathcal{P}(\mathbb{C})$ is a free cocompletion. This cocompletion replaces colimits that existed in \mathbb{C} with formal colimits, and we may reimpose these by (Bousfield) localising at an appropriate class of maps. For S a

Construction 2.1.1.

2.2. Motivic spheres.

2.3. Betti realisation.