On some generalized Fermat equations of the form $x^{2}+y^{2 n}=z^{p}$

Philippe Michaud-Jacobs

University of Warwick
Modern Breakthroughs in Diophantine Problems
Banff, Canada
20th June 2022

The Generalized Fermat Conjecture

The equation

$$
x^{p}+y^{q}+z^{r}=0
$$

has finitely many (10) solutions (x^{p}, y^{q}, z^{r}) in non-zero coprime integers x, y, and z and $p, q, r \in \mathbb{Z}_{\geq 2}$ satisfying $1 / p+1 / q+1 / r<1$.

The Generalized Fermat Conjecture

The equation

$$
x^{p}+y^{q}+z^{r}=0
$$

has finitely many (10) solutions (x^{p}, y^{q}, z^{r}) in non-zero coprime integers x, y, and z and $p, q, r \in \mathbb{Z}_{\geq 2}$ satisfying $1 / p+1 / q+1 / r<1$.

We call (p, q, r) the signature of the equation.

The Generalized Fermat Conjecture

The equation

$$
x^{p}+y^{q}+z^{r}=0
$$

has finitely many (10) solutions (x^{p}, y^{q}, z^{r}) in non-zero coprime integers x, y, and z and $p, q, r \in \mathbb{Z}_{\geq 2}$ satisfying $1 / p+1 / q+1 / r<1$.

We call (p, q, r) the signature of the equation.

Many 'solved' cases:

- $(2,3,7)$,
$(3,4,5)$,
$(5,5,7), \quad \ldots$
- $\underbrace{(\ell, \ell, \ell)}_{\text {FLT }}$,
($\ell, \ell, 2$),
$(4,2 \ell, 3), \quad \ldots$

The Generalized Fermat Conjecture

The equation

$$
x^{p}+y^{q}+z^{r}=0
$$

has finitely many (10) solutions (x^{p}, y^{q}, z^{r}) in non-zero coprime integers x, y, and z and $p, q, r \in \mathbb{Z}_{\geq 2}$ satisfying $1 / p+1 / q+1 / r<1$.

We call (p, q, r) the signature of the equation.

Many 'solved' cases:

- $(2,3,7)$,
$(3,4,5)$,
$(5,5,7), \quad \ldots$
- $\underbrace{(\ell, \ell, \ell)}_{\text {FLT }}$,
($\ell, \ell, 2$), $(4,2 \ell, 3), \quad \ldots$

Aim: Study

$$
x^{2}+y^{2 \ell}=z^{p},
$$

where p is a fixed prime and ℓ varies

The Generalized Fermat Conjecture

The equation

$$
x^{p}+y^{q}+z^{r}=0
$$

has finitely many (10) solutions (x^{p}, y^{q}, z^{r}) in non-zero coprime integers x, y, and z and $p, q, r \in \mathbb{Z}_{\geq 2}$ satisfying $1 / p+1 / q+1 / r<1$.

We call (p, q, r) the signature of the equation.
Many 'solved' cases:

- $(2,3,7)$,
$(3,4,5)$,
$(5,5,7), \quad \ldots$
- $\underbrace{(\ell, \ell, \ell)}_{\text {FLT }}$,
$(\ell, \ell, 2)$, $(4,2 \ell, 3), \quad \ldots$

Aim: Study

$$
x^{2}+y^{2 \ell}=z^{p},
$$

where p is a fixed prime and ℓ varies + highlight the role played by modular curves.

The modular method

Suppose $x^{\ell}+19 y^{\ell}+z^{\ell}=0$.

The modular method

Suppose $x^{\ell}+19 y^{\ell}+z^{\ell}=0$.
Frey curve

$$
E_{x, y, z, \ell}=E: Y^{2}=\left(X-x^{\ell}\right)\left(X+19 y^{\ell}\right)
$$

The modular method

Suppose $x^{\ell}+19 y^{\ell}+z^{\ell}=0$.
$E_{X, y, z, \ell}=E: Y^{2}=\left(X-x^{\ell}\right)\left(X+19 y^{\ell}\right)$
Modularity
All elliptic curves $/ \mathbb{Q}$ are modular $\bar{\rho}_{E, \ell}$ must be modular

The modular method

Suppose $x^{\ell}+19 y^{\ell}+z^{\ell}=0$.

Frey curve

Modularity
$\bar{\rho}_{E, \ell}$ must be modular

Irreducibility

$\bar{\rho}_{E, \ell}$ must be irreducible
$E_{X, y, z, \ell}=E: Y^{2}=\left(X-x^{\ell}\right)\left(X+19 y^{\ell}\right)$
All elliptic curves $/ \mathbb{Q}$ are modular
$\bar{\rho}_{E, \ell}$ is irreducible by Mazur's theorem on ℓ-isogenies of elliptic curves $/ \mathbb{Q}$

The modular method

Suppose $x^{\ell}+19 y^{\ell}+z^{\ell}=0$.

Frey curve

Modularity
$\bar{\rho}_{E, \ell}$ must be modular

Irreducibility

$\bar{\rho}_{E, \ell}$ must be irreducible

Level-lower

$$
\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}, \text { a newform } f
$$

$\lambda \mid \ell$ a prime of \mathbb{Q}_{f}
$E_{x, y, z, \ell}=E: Y^{2}=\left(X-x^{\ell}\right)\left(X+19 y^{\ell}\right)$
All elliptic curves $/ \mathbb{Q}$ are modular
$\bar{\rho}_{E, \ell}$ is irreducible by Mazur's theorem on ℓ-isogenies of elliptic curves $/ \mathbb{Q}$
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{1}, \ell}$ or $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{2}, \ell}$
f_{1}, f_{2} newforms at level 38

The modular method

Suppose $x^{\ell}+19 y^{\ell}+z^{\ell}=0$.
Frey curve
$E_{x, y, z, \ell}=E: Y^{2}=\left(X-x^{\ell}\right)\left(X+19 y^{\ell}\right)$
All elliptic curves $/ \mathbb{Q}$ are modular

Irreducibility

$\bar{\rho}_{E, \ell}$ must be irreducible

Level-lower

$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, a newform f
$\lambda \mid \ell$ a prime of \mathbb{Q}_{f}
Eliminate
Compare traces of Frobenius
$\bar{\rho}_{E, \ell}$ is irreducible by Mazur's theorem on ℓ-isogenies of elliptic curves $/ \mathbb{Q}$
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{1}, \ell}$ or $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{2}, \ell}$
f_{1}, f_{2} newforms at level 38

$$
\begin{aligned}
\operatorname{tr}\left(\bar{\rho}_{E, \ell}\left(\sigma_{3}\right)\right) & \equiv \operatorname{tr}\left(\bar{\rho}_{f_{i}, \ell}\left(\sigma_{3}\right)\right)(\bmod \ell) \\
& \Rightarrow \ell \leq 5
\end{aligned}
$$

Over totally real fields

Frey curve - Modularity - Irreducibility - Level-lower - Eliminate
Over a totally real field K, the same strategy works.

- Need to prove modularity
- Need to prove irreducibility
- Newforms \sim Hilbert newforms

Descent

$$
x^{2}+y^{2 \ell}=z^{p}
$$

Descent

$$
x^{2}+y^{2 \ell}=z^{p}
$$

- Factor LHS over $\mathbb{Q}(i): \quad\left(y^{\ell}+x i\right)\left(y^{\ell}-x i\right)=z^{p}$.

Descent

$$
x^{2}+y^{2 \ell}=z^{p}
$$

- Factor LHS over $\mathbb{Q}(i): \quad\left(y^{\ell}+x i\right)\left(y^{\ell}-x i\right)=z^{p}$.
- So $y^{\ell}+x i=(a+b i)^{p}$ for some $a, b \in \mathbb{Z}$.

Descent

$$
x^{2}+y^{2 \ell}=z^{p}
$$

- Factor LHS over $\mathbb{Q}(i): \quad\left(y^{\ell}+x i\right)\left(y^{\ell}-x i\right)=z^{p}$.
- So $y^{\ell}+x i=(a+b i)^{p}$ for some $a, b \in \mathbb{Z}$.
- Compare real and imaginary parts and factor over $K=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$:

Descent

$$
x^{2}+y^{2 \ell}=z^{p}
$$

- Factor LHS over $\mathbb{Q}(i): \quad\left(y^{\ell}+x i\right)\left(y^{\ell}-x i\right)=z^{p}$.
- So $y^{\ell}+x i=(a+b i)^{p}$ for some $a, b \in \mathbb{Z}$.
- Compare real and imaginary parts and factor over

$$
\begin{aligned}
& K=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right): \\
& y^{\ell}= \\
& \quad y^{\ell}=a \cdot \prod_{j=1}^{(p-1) / 2} \underbrace{2}_{\beta_{j} \in K} \underbrace{\left(\left(\zeta_{p}^{j}+\zeta_{p}^{-j}+2\right) a^{2}+\left(\zeta_{p}^{j}+\zeta_{p}^{-j}-2\right) b^{2}\right)}
\end{aligned}
$$

Descent

$$
x^{2}+y^{2 \ell}=z^{p}
$$

- Factor LHS over $\mathbb{Q}(i): \quad\left(y^{\ell}+x i\right)\left(y^{\ell}-x i\right)=z^{p}$.
- So $y^{\ell}+x i=(a+b i)^{p}$ for some $a, b \in \mathbb{Z}$.
- Compare real and imaginary parts and factor over

$$
\begin{aligned}
& K=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right): \\
& y^{\ell}= \\
& \quad y^{\ell}=a \cdot \prod_{j=1}^{(p-1) / 2} \underbrace{2}_{\beta_{j} \in K} \underbrace{\left(\left(\zeta_{p}^{j}+\zeta_{p}^{-j}+2\right) a^{2}+\left(\zeta_{p}^{j}+\zeta_{p}^{-j}-2\right) b^{2}\right)}
\end{aligned}
$$

- Suppose $p+y$ and $\ell \neq p$. Each term on the RHS is an ℓ th power.

Frey curves

We have $y^{\ell}=a \cdot \Pi_{j=1}^{(p-1) / 2} \beta_{j}$.

Frey curves

We have $y^{\ell}=a \cdot \Pi_{j=1}^{(p-1) / 2} \beta_{j}$.

- For $p>3$ and each β_{j}, β_{k}, there is a relation:

$$
\begin{aligned}
& R \cdot \underbrace{\beta_{j}}_{\text {८th power }}+S \cdot \underbrace{\beta_{k}}_{\ell \text { th power }}+T \cdot \underbrace{a^{2}}_{\ell \text { th power }}=0 \\
& R=1, \quad S=-\frac{\zeta_{p}^{j}-\zeta_{p}^{-j}-2}{\zeta_{p}^{k}-\zeta_{p}^{-k}-2}, \quad T=4 \frac{\zeta_{p}^{j}+\zeta_{p}^{-j}+\zeta_{p}^{k}+\zeta_{p}^{-k}}{\zeta_{p}^{k}-\zeta_{p}^{k}-2} \in K
\end{aligned}
$$

Frey curves

We have $y^{\ell}=a \cdot \Pi_{j=1}^{(p-1) / 2} \beta_{j}$.

- For $p>3$ and each β_{j}, β_{k}, there is a relation:

$$
\begin{aligned}
& R \cdot \underbrace{\beta_{j}}_{\text {th power }}+S \cdot \underbrace{\beta_{k}}_{\ell \text { th power }}+T \cdot \underbrace{a^{2}}_{\ell \text { th power }}=0 \\
& R=1, \quad S=-\frac{\zeta_{p}^{j}-\zeta_{p}^{-j}-2}{\zeta_{p}^{k}-\zeta_{p}^{-k}-2}, \quad T=4 \frac{4 \zeta_{p}^{j}+\zeta_{p}^{-j}+\zeta_{p}^{k}+\zeta_{p}^{-k}}{\zeta_{p}^{k}-\zeta_{p}^{-k}-2} \in K
\end{aligned}
$$

- This is an equation of signature (ℓ, ℓ, ℓ). We define a Frey curve over K :

$$
E_{x, y, z, \ell}=E: \quad Y^{2}=X\left(X-S \cdot \beta_{k}\right)\left(X+T \cdot a^{2}\right)
$$

Frey curves

We have $y^{\ell}=a \cdot \Pi_{j=1}^{(p-1) / 2} \beta_{j}$.

- For $p>3$ and each β_{j}, β_{k}, there is a relation:

$$
R=1, \quad S=-\frac{\zeta_{p}^{j}-\zeta_{p}^{-j}-2}{\zeta_{p}^{K}-\zeta_{p}^{-k}-2}, \quad T=4 \frac{\zeta_{p}^{j}+\zeta_{p}^{-j}+\zeta_{\rho}^{k}+\zeta_{p}^{-k}}{\zeta_{p}^{k}-\zeta_{p}^{k}-2} \in K
$$

- This is an equation of signature (ℓ, ℓ, ℓ). We define a Frey curve over K :

$$
E_{X, y, z, \ell}=E: \quad Y^{2}=X\left(X-S \cdot \beta_{k}\right)\left(X+T \cdot a^{2}\right)
$$

- If $p=3$, we define a Frey curve over \mathbb{Q} :

$$
E_{x, y, z, \ell}=E: \quad Y^{2}=X^{3}+6 b^{2} X^{2}+3\left(a^{2}-3 b^{2}\right) X
$$

Suppose $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where $\begin{cases}f \text { is a newform at level } 288 & \text { if } p=3, \\ f \text { is a Hilbert newform at level } 2^{3} \cdot \mathcal{O}_{K} & \text { if } p>3 .\end{cases}$

Suppose $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where $\begin{cases}f \text { is a newform at level } 288 & \text { if } p=3, \\ f \text { is a Hilbert newform at level } 2^{3} \cdot \mathcal{O}_{K} & \text { if } p>3 .\end{cases}$
Problem: We have the trivial solution $(x, y, z, \ell)=(0, \pm 1,1, \ell)$ and

$$
\bar{\rho}_{E_{\text {triv }}, \ell} \sim \bar{\rho}_{f_{\star}, \ell}
$$

Suppose $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where $\begin{cases}f \text { is a newform at level } 288 & \text { if } p=3, \\ f \text { is a Hilbert newform at level } 2^{3} \cdot \mathcal{O}_{K} & \text { if } p>3 .\end{cases}$
Problem: We have the trivial solution $(x, y, z, \ell)=(0, \pm 1,1, \ell)$ and

$$
\bar{\rho}_{E_{\text {triv }}, \ell} \sim \bar{\rho}_{f_{*}, \ell} .
$$

Consequence: We cannot eliminate the isomorphism $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{*}, \ell}$.

Suppose $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where $\begin{cases}f \text { is a newform at level } 288 & \text { if } p=3, \\ f \text { is a Hilbert newform at level } 2^{3} \cdot \mathcal{O}_{K} & \text { if } p>3 .\end{cases}$
Problem: We have the trivial solution $(x, y, z, \ell)=(0, \pm 1,1, \ell)$ and

$$
\bar{\rho}_{E_{\text {triv }}, \ell} \sim \bar{\rho}_{f_{*}, \ell} .
$$

Consequence: We cannot eliminate the isomorphism $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{*}, \ell}$.
Solution I: Consider $x^{2 \ell}+y^{2 \ell}=z^{p}$ instead.

Suppose $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where $\begin{cases}f \text { is a newform at level } 288 & \text { if } p=3, \\ f \text { is a Hilbert newform at level } 2^{3} \cdot \mathcal{O}_{K} & \text { if } p>3 .\end{cases}$
Problem: We have the trivial solution $(x, y, z, \ell)=(0, \pm 1,1, \ell)$ and

$$
\bar{\rho}_{E_{\text {triv }}, \ell} \sim \bar{\rho}_{f_{*}, \ell}
$$

Consequence: We cannot eliminate the isomorphism $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{*}, \ell}$.
Solution I: Consider $x^{2 \ell}+y^{2 \ell}=z^{p}$ instead.

Theorem (B, A-S, B-C-D-D-F, M)

Let $\ell \geq 2$ and $p \in\{3,5,7,11,13,17\}$. The equation

$$
x^{2 \ell}+y^{2 \ell}=z^{p}
$$

has no solutions in non-zero coprime integers x, y, and z.

Complex multiplication

Solution II: When $p=3$, the curve $E_{\text {triv }}: Y^{2}=X^{3}+3 X$ has complex multiplication by $\mathbb{Q}(i)$.

Complex multiplication

Solution II: When $p=3$, the curve $E_{\text {triv }}: Y^{2}=X^{3}+3 X$ has complex multiplication by $\mathbb{Q}(i)$.
Consequence: If $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{\star}, \ell} \sim \bar{\rho}_{E_{\text {triv }}, \ell}$ then

$$
E \leadsto P \in \begin{cases}X_{\text {split }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv 1 \quad(\bmod 4) \\ X_{\text {nonsplit }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv-1 \quad(\bmod 4)\end{cases}
$$

Complex multiplication

Solution II: When $p=3$, the curve $E_{\text {triv }}: Y^{2}=X^{3}+3 X$ has complex multiplication by $\mathbb{Q}(i)$.
Consequence: If $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{\star}, \ell} \sim \bar{\rho}_{E_{\text {triv }}, \ell}$ then

$$
E \leadsto P \in \begin{cases}X_{\text {split }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv 1 \quad(\bmod 4) \\ X_{\text {nonsplit }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv-1 \quad(\bmod 4)\end{cases}
$$

In fact, when $p \equiv-1(\bmod 4)$:

$$
E \leadsto P^{\prime} \in\left(X_{\text {nonsplit }}^{+}(\ell) \times_{X(1)} X_{0}(2)\right)(\mathbb{Q})
$$

Complex multiplication

Solution II: When $p=3$, the curve $E_{\text {triv }}: Y^{2}=X^{3}+3 X$ has complex multiplication by $\mathbb{Q}(i)$.
Consequence: If $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{\star}, \ell} \sim \bar{\rho}_{E_{\text {triv }}, \ell}$ then

$$
E \leadsto P \in \begin{cases}X_{\text {split }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv 1 \quad(\bmod 4) \\ X_{\text {nonsplit }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv-1 \quad(\bmod 4)\end{cases}
$$

In fact, when $p \equiv-1(\bmod 4)$:

$$
E \sim P^{\prime} \in\left(X_{\text {nonsplit }}^{+}(\ell) \times_{X(1)} X_{0}(2)\right)(\mathbb{Q})
$$

In each case $j(E) \in \mathbb{Z}[1 / \ell]$, forcing $E=E_{\text {triv }}$.

Complex multiplication

Solution II: When $p=3$, the curve $E_{\text {triv }}: Y^{2}=X^{3}+3 X$ has complex multiplication by $\mathbb{Q}(i)$.
Consequence: If $\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f_{\star}, \ell} \sim \bar{\rho}_{E_{\text {triv }}, \ell}$ then

$$
E \leadsto P \in \begin{cases}X_{\text {split }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv 1 \quad(\bmod 4) \\ X_{\text {nonsplit }}^{+}(\ell)(\mathbb{Q}) & \text { if } p \equiv-1 \quad(\bmod 4)\end{cases}
$$

In fact, when $p \equiv-1(\bmod 4)$:

$$
E \leadsto P^{\prime} \in\left(X_{\text {nonsplit }}^{+}(\ell) \times_{X(1)} X_{0}(2)\right)(\mathbb{Q})
$$

In each case $j(E) \in \mathbb{Z}[1 / \ell]$, forcing $E=E_{\text {triv }}$.

- Same idea works when $\ell=p$ (for any p).

All this was in the case $p+y$.

All this was in the case $p+y$.

- If $p=3$ and $3 \mid y$ we cannot eliminate an isomorphism

$$
\bar{\rho}_{W, \ell} \sim \bar{\rho}_{g_{*}, \ell}
$$

for a newform g_{*} at level 96 for all ℓ.

All this was in the case $p+y$.

- If $p=3$ and $3 \mid y$ we cannot eliminate an isomorphism

$$
\bar{\rho}_{W, \ell} \sim \bar{\rho}_{g_{*}, \ell}
$$

for a newform g_{*} at level 96 for all ℓ.

Theorem (Chen, Dahmen)

Let ℓ be a prime and suppose there exist non-zero coprime integers x, y, and z satisfying

$$
x^{2}+y^{2 \ell}=z^{3} .
$$

Then $3 \mid y$ and $\ell>10^{7}$.

$$
x^{2}+y^{2 \ell}=z^{3 p}
$$

Assume $p>5$ is fixed and $p+y$.

$$
x^{2}+y^{2 \ell}=z^{3 p}
$$

Assume $p>5$ is fixed and $p+y$.

- Know $\ell>10^{7}$.
- Since $3 \mid y$, the Frey curve $E_{x, y, z, \ell} / K$ has multiplicative reduction at all primes $\mathfrak{q} \mid 3$.

$$
x^{2}+y^{2 \ell}=z^{3 p}
$$

Assume $p>5$ is fixed and $p+y$.

- Know $\ell>10^{7}$.
- Since $3 \mid y$, the Frey curve $E_{x, y, z, \ell} / K$ has multiplicative reduction at all primes $\mathfrak{q} \mid 3$.

Assume $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where f is a Hilbert newform at level $2^{3} \cdot \mathcal{O}_{K}$.

$$
x^{2}+y^{2 \ell}=z^{3 p}
$$

Assume $p>5$ is fixed and $p+y$.

- Know $\ell>10^{7}$.
- Since $3 \mid y$, the Frey curve $E_{x, y, z, \ell} / K$ has multiplicative reduction at all primes $\mathfrak{q} \mid 3$.

Assume $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where f is a Hilbert newform at level $2^{3} \cdot \mathcal{O}_{K}$.
Compare traces of Frobenius at $\sigma_{\mathfrak{q}_{3}} \in G_{\mathbb{Q}}$:

$$
\pm\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1\right) \equiv a_{\mathfrak{q}_{3}}(f) \quad(\bmod \lambda)
$$

$$
x^{2}+y^{2 \ell}=z^{3 p}
$$

Assume $p>5$ is fixed and $p+y$.

- Know $\ell>10^{7}$.
- Since $3 \mid y$, the Frey curve $E_{x, y, z, \ell} / K$ has multiplicative reduction at all primes $\mathfrak{q} \mid 3$.

Assume $\bar{\rho}_{E, \ell}$ is modular and irreducible.
$\bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}$, where f is a Hilbert newform at level $2^{3} \cdot \mathcal{O}_{K}$.
Compare traces of Frobenius at $\sigma_{\mathfrak{q}_{3}} \in G_{\mathbb{Q}}$:

$$
\pm\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1\right) \equiv a_{\mathfrak{q}_{3}}(f) \quad(\bmod \lambda) .
$$

So

$$
\ell \mid B_{f}:=\operatorname{Norm}_{\mathbb{Q}(f) / \mathbb{Q}}\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1 \pm a_{\mathfrak{q}_{3}}(f)\right)
$$

We have

$$
\ell \mid B_{f}:=\operatorname{Norm}_{\mathbb{Q}(f) / \mathbb{Q}}\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1 \pm a_{\mathfrak{q}_{3}}(f)\right) .
$$

We have

$$
\ell \mid B_{f}:=\operatorname{Norm}_{\mathbb{Q}(f) / \mathbb{Q}}\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1 \pm a_{\mathfrak{q}_{3}}(f)\right) .
$$

When $p=7$:

- $B_{f} \in\{20,24,28,32,36\}$ and so $\ell \leq 7<10^{7}$.

We have

$$
\ell \mid B_{f}:=\operatorname{Norm}_{\mathbb{Q}(f) / \mathbb{Q}}\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1 \pm a_{\mathfrak{q}_{3}}(f)\right) .
$$

When $p=7$:

- $B_{f} \in\{20,24,28,32,36\}$ and so $\ell \leq 7<10^{7}$.

When $p \geq 11$:

- it is (too) hard to compute the values $a_{\mathfrak{q}_{3}}(f) \ldots$

We have

$$
\ell \mid B_{f}:=\operatorname{Norm}_{\mathbb{Q}(f) / \mathbb{Q}}\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1 \pm a_{\mathfrak{q}_{3}}(f)\right) .
$$

When $p=7$:

- $B_{f} \in\{20,24,28,32,36\}$ and so $\ell \leq 7<10^{7}$.

When $p \geq 11$:

- it is (too) hard to compute the values $a_{\mathfrak{q}_{3}}(f) \ldots$

But

$$
\left|a_{\mathfrak{q}_{3}}(f)\right| \leq 2 \sqrt{\operatorname{Norm}\left(\mathfrak{q}_{3}\right)}
$$

Using this,

$$
\begin{aligned}
\ell & \mid B_{f}:=\operatorname{Norm}_{\mathbb{Q}(f) / \mathbb{Q}}\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1 \pm a_{\mathfrak{q}_{3}}(f)\right) \\
& \leq\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1+2 \sqrt{\operatorname{Norm}\left(\mathfrak{q}_{3}\right)}\right)^{[\mathbb{Q}(f): \mathbb{Q}]} \\
& =\left(1+\sqrt{\operatorname{Norm}\left(\mathfrak{q}_{3}\right)}\right)^{2[\mathbb{Q}(f): \mathbb{Q}]} \\
& \leq\left(1+\sqrt{\operatorname{Norm}\left(\mathfrak{q}_{3}\right)}\right)^{2 d}
\end{aligned}
$$

where d is the dimension of the space of Hilbert newforms at level $2^{3} \cdot \mathcal{O}_{K}$.

Using this,

$$
\begin{aligned}
\ell & \mid B_{f}:=\operatorname{Norm}_{\mathbb{Q}(f) / \mathbb{Q}}\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1 \pm a_{\mathfrak{q}_{3}}(f)\right) \\
& \leq\left(\operatorname{Norm}\left(\mathfrak{q}_{3}\right)+1+2 \sqrt{\operatorname{Norm}\left(\mathfrak{q}_{3}\right)}\right)^{[\mathbb{Q}(f): \mathbb{Q}]} \\
& =\left(1+\sqrt{\operatorname{Norm}\left(\mathfrak{q}_{3}\right)}\right)^{2[\mathbb{Q}(f): \mathbb{Q}]} \\
& \leq\left(1+\sqrt{\operatorname{Norm}\left(\mathfrak{q}_{3}\right)}\right)^{2 d}
\end{aligned}
$$

where d is the dimension of the space of Hilbert newforms at level $2^{3} \cdot \mathcal{O}_{K}$.

Example. Let $p=17$. Then $d=41883752$ and $\ell \leq 10^{160315410}$.

Modularity

Theorem (Freitas)

Let K be an abelian totally real number field where 3 is unramified. Let C/K be an elliptic curve semistable at all primes $\mathfrak{q} \mid 3$. Then, C is modular.

Consequence: $\bar{\rho}_{E, \ell}$ is modular for all ℓ.

Suppose $\bar{\rho}_{E, \ell}$ is reducible so that $E \sim P \in X_{0}(\ell)(K)$.

Irreducibility

Suppose $\bar{\rho}_{E, \ell}$ is reducible so that $E \sim P \in X_{0}(\ell)(K)$.

- We can bound ℓ :

$$
\ell \mid \operatorname{Norm}_{K / \mathbb{Q}}\left(\epsilon^{12}-1\right) \text { or } \underbrace{\ell \leq\left(1+3^{3(p-1) h_{K} / 2}\right)^{2}}_{\text {from studying } X_{1}(\ell)}
$$

for ϵ a fundamental unit of K.

Irreducibility

Suppose $\bar{\rho}_{E, \ell}$ is reducible so that $E \sim P \in X_{0}(\ell)(K)$.

- We can bound ℓ :

$$
\ell \mid \operatorname{Norm}_{K / \mathbb{Q}}\left(\epsilon^{12}-1\right) \text { or } \underbrace{\ell \leq\left(1+3^{3(p-1) h_{K} / 2}\right)^{2}}_{\text {from studying } X_{1}(\ell)}
$$

for ϵ a fundamental unit of K.

- When $p=7$, we have

$$
\ell \mid 15369 \text { or } \ell \leq\left(1+3^{9}\right)^{2}>10^{7} \ldots
$$

Irreducibility

Suppose $\bar{\rho}_{E, \ell}$ is reducible so that $E \leadsto P \in X_{0}(\ell)(K)$.

- We can bound ℓ :

$$
\ell \mid \operatorname{Norm}_{K / \mathbb{Q}}\left(\epsilon^{12}-1\right) \text { or } \underbrace{\ell \leq\left(1+3^{3(p-1) h_{K} / 2}\right)^{2}}_{\text {from studying } X_{1}(\ell)}
$$

for ϵ a fundamental unit of K.

- When $p=7$, we have

$$
\ell \mid 15369 \text { or } \ell \leq\left(1+3^{9}\right)^{2}>10^{7} \ldots
$$

We have $P \equiv \operatorname{cusp}\left(\bmod 3 \cdot \mathcal{O}_{K}\right) \Longrightarrow \ell<65 \cdot 6^{6}<10^{7}$.

An asymptotic result

Theorem (M)

Let p be a prime. There exists a constant $C(p)$ such that for $\ell>C(p)$, the equation

$$
x^{2}+y^{2 \ell}=z^{3 p}
$$

has no solutions in non-zero coprime integers x, y, and z.

An asymptotic result

Theorem (M)

Let p be a prime. There exists a constant $C(p)$ such that for $\ell>C(p)$, the equation

$$
x^{2}+y^{2 \ell}=z^{3 p}
$$

has no solutions in non-zero coprime integers x, y, and z.
We could take

$$
C(p)=\underbrace{(\sqrt{p}+1)^{2}}_{p \mid y} \cdot \underbrace{\operatorname{Norm}_{K / \mathbb{Q}}\left(\epsilon^{12}-1\right) \cdot\left(1+3^{3(p-1) h_{K} / 2}\right)^{2}}_{\text {irreducibility }} \cdot \underbrace{\left(\sqrt{\text { Norm }\left(\mathfrak{q}_{3}\right)}+1\right)^{2 d}}_{\text {eliminating } \bar{\rho}_{E, \ell} \sim \bar{\rho}_{f, \lambda}}
$$

The case $p=7$

Theorem (M)

Let $\ell \geq 2$. The equation

$$
x^{2}+y^{2 \ell}=z^{21}
$$

has no solutions in non-zero coprime integers x, y, and z.

