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The Generalized Fermat Conjecture

The equation

xP+y?+2"=0
has finitely many (10) solutions (x?,y9,z") in non-zero coprime
integers x, y, and z and p, q, r € Zs; satisfying 1/p+1/q+1/r <1.

We call (p, q,r) the signature of the equation.

Many ‘solved’ cases:
e (2,3,7), (3,4,5), (5,5,7),
o (£,0,0), (£,0,2), (4,2¢,3),

—
FLT

Aim: Study

X2+ y?t = ZP,

where p is a fixed prime and ¢ varies + highlight the role played by
modular curves.
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The modular method

Suppose x +19y¢ + 2z = 0.

Frey curve Exyzo=E:Y%2=(X-x")(X+19y")

Modularity All elliptic curves /Q are modular
PE,c must be modular

Irreducibility PE ¢ is irreducible by Mazur's theorem
Pe¢ must be irreducible on (-isogenies of elliptic curves /Q
Level-lower ﬁEyﬁ ~ ﬁfhg or ﬁEl ~ ﬁng
PE ~ Pr s @ newform f f1, > newforms at level 38

A | ¢ a prime of Q¢

Eliminate tr(pge(03)) = tr(pg ¢(03)) (mod £)
Compare traces of Frobenius =/(<5




Generalized Fermat Equations
ooe

Over totally real fields

Frey curve - Modularity - Irreducibility - Level-lower - Eliminate

Over a totally real field K, the same strategy works.

@ Need to prove modularity
@ Need to prove irreducibility

@ Newforms ~ Hilbert newforms
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x2 + y2€ —
o Factor LHS over Q(i): (y*+xi)(y* - xi) = zP.
@ So y' + xi = (a+ bi)P for some a, b € Z.

@ Compare real and imaginary parts and factor over

K = @(Cp+C,§1)i
V= (a+bi)P+(a—bi)P

2

B G o

yvi=a- 1 ((+¢7+2)a°+ (¢ + ¢ -2)p7)
j=1

ﬁjGK

@ Suppose p +y and £ # p. Each term on the RHS is an /th
power.
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Frey curves

We have y‘ =a- H(p 1)/2ﬁj.

e For p >3 and each 3;, Bk, there is a relation:

R- B +S- B +T- a =0

— — -
fth power £th power £th power

Roi S 2 TooulauraleK

k_ o~k _ ck _ o~k _
Cp—=Cp =2 Cp—=Cp =2

e This is an equation of signature (¢,¢,¢). We define a Frey
curve over K:

Exyze=E: Y?=X(X-S-B)(X+T-a%).

o If p=3, we define a Frey curve over Q:

Eeyze=E: Y?=X316bX%+3(a®-3b*)X.
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Suppose pg , is modular and irreducible.

f is a newform at level 288 if p=3,

PE s ~ Pr oy, Where
PEL™ PEX {f is a Hilbert newform at level 23- Oy  if p> 3.

Problem: We have the trivial solution (x,y,z,¢) = (0,+1,1,¢) and

ﬁEtrivj ~ ﬁf* ,f'

Consequence: We cannot eliminate the isomorphism pg , ~ oy, .
Solution I: Consider x?¢ + y2¢ = zP instead.

Theorem (B, A-S, B-C-D-D-F, M)

Let ¢ >2 and pe{3,5,7,11,13,17} . The equation
X2€ +y2£ = 7P

has no solutions in non-zero coprime integers x,y, and z.
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Complex multiplication

Solution I1: When p = 3, the curve By : Y2 = X3 +3X has
complex multiplication by Q(/).
Consequence: If pg , ~ Dy, o~ Pg,.. ¢ then

E~~Pec s+pht(£)(@) ifp=1 (mod4) ©
nonspht (f)(@) if p= -1 (mod 4) @

In fact, when p=-1 (mod 4):

E~ P'e (Xnonspht(g) XX (1) X0(2)) (Q) ©

In each case j(E) € Z[1/¢], forcing E = Ey.

@ Same idea works when ¢ = p (for any p).
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X+ yo =zP
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All this was in the case p + y.
e If p=3and 3|y we cannot eliminate an isomorphism
Pw.e ™~ Pg, 0

for a newform g, at level 96 for all /.

Theorem (Chen, Dahmen)

Let ¢ be a prime and suppose there exist non-zero coprime integers
x,y, and z satisfying

Then 3|y and ¢ > 107.
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x2 + y2€ = Z3p

Assume p > 5 is fixed and p + y.

e Know /> 10",

@ Since 3|y, the Frey curve E, , , /K has multiplicative
reduction at all primes ¢ | 3.

Assume pg , is modular and irreducible.

PE0 ~ Pr ., Where f is a Hilbert newform at level 23. 0.
Compare traces of Frobenius at oy, € Gg:

£ (Norm(gs) +1) = ag,(f) (mod ).

So
€| Bf == Normgyfy/q (Norm(q3) + 1 + ag,(f))
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X~ + y'}' =zP
0®00000

We have
¢ | Bf := Normgfy /g (Norm(q3) + 1 + ag,(f)) .

When p=T7:

e Bre{20,24,28,32,36} and so £ <7 < 10",
When p > 11:

@ it is (too) hard to compute the values aq,(f)...

But
lag; (F)] < 2¢/Norm(qs3).
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Using this,

| Bf := Normgyr) /g (Norm(q3) + 1 + ag,(f))

(Norm(q3) +1+2y/Norm(q3) ) el
_ (1 +\/W(q3)) 2[Q(F):Q]
< (1 + \/Norm(q3))2d,

where d is the dimension of the space of Hilbert newforms at level
23. O.



X~ + y'}' =zP
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Using this,

| Bf := Normgyr) /g (Norm(q3) + 1 + ag,(f))

(Norm(q3) +1+2y/Norm(q3) ) el
_ (1 +\/W(q3)) 2[Q(F):Q]
< (1 + \/Norm(q3))2d,

where d is the dimension of the space of Hilbert newforms at level
23. O.

Example. Let p=17. Then d = 41883752 and ¢ < 10100315410,



Modularity

Theorem (Freitas)

Let K be an abelian totally real number field where 3 is

unramified. Let C/K be an elliptic curve semistable at all primes
q|3. Then, C is modular.

Consequence: pg , is modular for all £.
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Irreducibility

Suppose pg ¢ is reducible so that E ~ P e Xp(£)(K).
@ We can bound ¢:

€| Normg g(e? - 1) or £< (1+ 33(P~1)h/2)2,

from studying Xi(¢)

for € a fundamental unit of K.

@ When p =7, we have
£]15369 or £ < (1+3%)%>10"...

We have P = cusp (mod 3-Ox) = ¢ <65-6°<107.
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Theorem (M)
Let p be a prime. There exists a constant C(p) such that for
¢> C(p), the equation
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An asymptotic result

Theorem (M)

Let p be a prime. There exists a constant C(p) such that for
¢> C(p), the equation

24 yzz _ 3

has no solutions in non-zero coprime integers x, y, and z.

We could take
C(p)=(/pP+ 1)2~NormK/Q(612 —1)- (1433 Dh/2y2 (| /Norm(gz) + 1)

—
ply irreducibility eliminating g ,~p¢ »




Thecase p=7

Let ¢ > 2. The equation

2

X2 4yl = 2

has no solutions in non-zero coprime integers x,y, and z.
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