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Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

The Generalized Fermat Conjecture

The equation
xp + yq + z r = 0

has finitely many (10) solutions (xp, yq, z r) in non-zero coprime
integers x , y , and z and p,q, r ∈ Z≥2 satisfying 1/p + 1/q + 1/r < 1.

We call (p,q, r) the signature of the equation.

Many ‘solved’ cases:

(2,3,7), (3,4,5), (5,5,7), . . .

(`, `, `)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

FLT

, (`, `,2), (4,2`,3), . . .

Aim: Study
x2 + y2` = zp,

where p is a fixed prime and ` varies + highlight the role played by
modular curves.
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Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

The modular method

Suppose x` + 19y ` + z` = 0.

Frey curve Ex ,y ,z,` = E ∶ Y 2 = (X − x`)(X + 19y `)

Modularity All elliptic curves /Q are modular
ρE ,` must be modular

Irreducibility ρE ,` is irreducible by Mazur’s theorem
ρE ,` must be irreducible on `-isogenies of elliptic curves /Q

Level-lower ρE ,` ∼ ρf1,` or ρE ,` ∼ ρf2,`
ρE ,` ∼ ρf ,λ, a newform f f1, f2 newforms at level 38

λ ∣ ` a prime of Qf

Eliminate tr(ρE ,`(σ3)) ≡ tr(ρfi ,`(σ3)) (mod `)
Compare traces of Frobenius ⇒ ` ≤ 5
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Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Over totally real fields

Frey curve - Modularity - Irreducibility - Level-lower - Eliminate

Over a totally real field K , the same strategy works.

Need to prove modularity

Need to prove irreducibility

Newforms ; Hilbert newforms



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Descent

x2
+ y 2`

= zp

Factor LHS over Q(i) ∶ (y ` + xi)(y ` − xi) = zp.

So y ` + xi = (a + bi)p for some a,b ∈ Z.

Compare real and imaginary parts and factor over
K = Q(ζp + ζ−1p ):

y ` = (a + bi)p + (a − bi)p

2

y ` = a ⋅
(p−1)/2
∏
j=1

((ζ jp + ζ−jp + 2)a2 + (ζ jp + ζ−jp − 2)b2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

βj∈K

Suppose p ∤ y and ` ≠ p. Each term on the RHS is an `th
power.
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Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Frey curves

We have y ` = a ⋅ ∏(p−1)/2
j=1 βj .

For p > 3 and each βj , βk , there is a relation:

R ⋅ βj
®

`th power

+ S ⋅ βk
¯

`th power

+ T ⋅ a2
®

`th power

= 0

R = 1, S = −
ζjp − ζ

−j
p − 2

ζkp − ζ
−k
p − 2

, T = 4
ζjp + ζ

−j
p + ζkp + ζ

−k
p

ζkp − ζ
−k
p − 2

∈ K

This is an equation of signature (`, `, `). We define a Frey
curve over K :

Ex ,y ,z,` = E ∶ Y 2 = X (X − S ⋅ βk)(X +T ⋅ a2).

If p = 3, we define a Frey curve over Q:

Ex ,y ,z,` = E ∶ Y 2 = X 3 + 6b2X 2 + 3(a2 − 3b2)X .
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Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Suppose ρE ,` is modular and irreducible.

ρE ,` ∼ ρf ,λ, where

⎧⎪⎪⎨⎪⎪⎩

f is a newform at level 288 if p = 3,

f is a Hilbert newform at level 23 ⋅ OK if p > 3.

Problem: We have the trivial solution (x , y , z , `) = (0,±1,1, `) and

ρEtriv,` ∼ ρf∗,`.

Consequence: We cannot eliminate the isomorphism ρE ,` ∼ ρf∗,`.
Solution I: Consider x2` + y2` = zp instead.

Theorem (B, A–S, B–C–D–D–F, M)

Let ` ≥ 2 and p ∈ {3,5,7,11,13,17} . The equation

x2` + y2` = zp

has no solutions in non-zero coprime integers x , y , and z.



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Suppose ρE ,` is modular and irreducible.

ρE ,` ∼ ρf ,λ, where

⎧⎪⎪⎨⎪⎪⎩

f is a newform at level 288 if p = 3,

f is a Hilbert newform at level 23 ⋅ OK if p > 3.

Problem: We have the trivial solution (x , y , z , `) = (0,±1,1, `) and

ρEtriv,` ∼ ρf∗,`.

Consequence: We cannot eliminate the isomorphism ρE ,` ∼ ρf∗,`.
Solution I: Consider x2` + y2` = zp instead.

Theorem (B, A–S, B–C–D–D–F, M)

Let ` ≥ 2 and p ∈ {3,5,7,11,13,17} . The equation

x2` + y2` = zp

has no solutions in non-zero coprime integers x , y , and z.



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Suppose ρE ,` is modular and irreducible.

ρE ,` ∼ ρf ,λ, where

⎧⎪⎪⎨⎪⎪⎩

f is a newform at level 288 if p = 3,

f is a Hilbert newform at level 23 ⋅ OK if p > 3.

Problem: We have the trivial solution (x , y , z , `) = (0,±1,1, `) and

ρEtriv,` ∼ ρf∗,`.

Consequence: We cannot eliminate the isomorphism ρE ,` ∼ ρf∗,`.

Solution I: Consider x2` + y2` = zp instead.

Theorem (B, A–S, B–C–D–D–F, M)

Let ` ≥ 2 and p ∈ {3,5,7,11,13,17} . The equation

x2` + y2` = zp

has no solutions in non-zero coprime integers x , y , and z.



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Suppose ρE ,` is modular and irreducible.

ρE ,` ∼ ρf ,λ, where

⎧⎪⎪⎨⎪⎪⎩

f is a newform at level 288 if p = 3,

f is a Hilbert newform at level 23 ⋅ OK if p > 3.

Problem: We have the trivial solution (x , y , z , `) = (0,±1,1, `) and

ρEtriv,` ∼ ρf∗,`.

Consequence: We cannot eliminate the isomorphism ρE ,` ∼ ρf∗,`.
Solution I: Consider x2` + y2` = zp instead.

Theorem (B, A–S, B–C–D–D–F, M)

Let ` ≥ 2 and p ∈ {3,5,7,11,13,17} . The equation

x2` + y2` = zp

has no solutions in non-zero coprime integers x , y , and z.
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Complex multiplication

Solution II: When p = 3, the curve Etriv ∶ Y 2 = X 3 + 3X has
complex multiplication by Q(i).

Consequence: If ρE ,` ∼ ρf∗,` ∼ ρEtriv,` then

E ; P ∈
⎧⎪⎪⎨⎪⎪⎩

X+
split(`)(Q) if p ≡ 1 (mod 4) ,

X+
nonsplit(`)(Q) if p ≡ −1 (mod 4) /

In fact, when p ≡ −1 (mod 4):

E ; P ′ ∈ (X+
nonsplit(`) ×X(1) X0(2)) (Q) ,

In each case j(E) ∈ Z[1/`], forcing E = Etriv.

Same idea works when ` = p (for any p).
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All this was in the case p ∤ y .

If p = 3 and 3 ∣ y we cannot eliminate an isomorphism

ρW ,` ∼ ρg∗,`

for a newform g∗ at level 96 for all `.

Theorem (Chen, Dahmen)

Let ` be a prime and suppose there exist non-zero coprime integers
x , y , and z satisfying

x2 + y2` = z3.

Then 3 ∣ y and ` > 107.
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x2
+ y 2`

= z3p

Assume p > 5 is fixed and p ∤ y .

Know ` > 107.

Since 3 ∣ y , the Frey curve Ex ,y ,z,`/K has multiplicative
reduction at all primes q ∣ 3.

Assume ρE ,` is modular and irreducible.

ρE ,` ∼ ρf ,λ, where f is a Hilbert newform at level 23 ⋅ OK .

Compare traces of Frobenius at σq3 ∈ GQ:

±(Norm(q3) + 1) ≡ aq3(f ) (mod λ).

So
` ∣ Bf ∶= NormQ(f )/Q (Norm(q3) + 1 ± aq3(f ))
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We have

` ∣ Bf ∶= NormQ(f )/Q (Norm(q3) + 1 ± aq3(f )) .

When p = 7:

Bf ∈ {20,24,28,32,36} and so ` ≤ 7 < 107.

When p ≥ 11:

it is (too) hard to compute the values aq3(f )...

But
∣aq3(f )∣ ≤ 2

√
Norm(q3).



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

We have

` ∣ Bf ∶= NormQ(f )/Q (Norm(q3) + 1 ± aq3(f )) .

When p = 7:

Bf ∈ {20,24,28,32,36} and so ` ≤ 7 < 107.

When p ≥ 11:

it is (too) hard to compute the values aq3(f )...

But
∣aq3(f )∣ ≤ 2

√
Norm(q3).



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

We have

` ∣ Bf ∶= NormQ(f )/Q (Norm(q3) + 1 ± aq3(f )) .

When p = 7:

Bf ∈ {20,24,28,32,36} and so ` ≤ 7 < 107.

When p ≥ 11:

it is (too) hard to compute the values aq3(f )...

But
∣aq3(f )∣ ≤ 2

√
Norm(q3).



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

We have

` ∣ Bf ∶= NormQ(f )/Q (Norm(q3) + 1 ± aq3(f )) .

When p = 7:

Bf ∈ {20,24,28,32,36} and so ` ≤ 7 < 107.

When p ≥ 11:

it is (too) hard to compute the values aq3(f )...

But
∣aq3(f )∣ ≤ 2

√
Norm(q3).



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Using this,

` ∣ Bf ∶= NormQ(f )/Q (Norm(q3) + 1 ± aq3(f ))

≤ (Norm(q3) + 1 + 2
√
Norm(q3))

[Q(f )∶Q]

= (1 +
√
Norm(q3))

2[Q(f )∶Q]

≤ (1 +
√
Norm(q3))

2d
,

where d is the dimension of the space of Hilbert newforms at level
23 ⋅ OK .

Example. Let p = 17. Then d = 41883752 and ` ≤ 10160315410.



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Using this,

` ∣ Bf ∶= NormQ(f )/Q (Norm(q3) + 1 ± aq3(f ))

≤ (Norm(q3) + 1 + 2
√
Norm(q3))

[Q(f )∶Q]

= (1 +
√
Norm(q3))

2[Q(f )∶Q]

≤ (1 +
√
Norm(q3))

2d
,

where d is the dimension of the space of Hilbert newforms at level
23 ⋅ OK .

Example. Let p = 17. Then d = 41883752 and ` ≤ 10160315410.



Generalized Fermat Equations x2 + y2` = zp x2 + y2` = z3p

Modularity

Theorem (Freitas)

Let K be an abelian totally real number field where 3 is
unramified. Let C/K be an elliptic curve semistable at all primes
q∣3. Then, C is modular.

Consequence: ρE ,` is modular for all `.
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Irreducibility

Suppose ρE ,` is reducible so that E ; P ∈ X0(`)(K).

We can bound `:

` ∣ NormK/Q(ε12 − 1) or ` ≤ (1 + 33(p−1)hK /2)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

from studying X1(`)

,

for ε a fundamental unit of K .

When p = 7, we have

` ∣ 15369 or ` ≤ (1 + 39)2 > 107...

We have P ≡ cusp (mod 3 ⋅ OK) Ô⇒ ` < 65 ⋅ 66 < 107.
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An asymptotic result

Theorem (M)

Let p be a prime. There exists a constant C(p) such that for
` > C(p), the equation

x2 + y2` = z3p

has no solutions in non-zero coprime integers x, y , and z.

We could take

C(p) = (√p + 1)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p∣y

⋅NormK/Q(ε12 − 1) ⋅ (1 + 33(p−1)hK /2)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

irreducibility

⋅ (
√
Norm(q3) + 1)2d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eliminating ρE,`∼ρf ,λ
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The case p = 7

Theorem (M)

Let ` ≥ 2. The equation

x2 + y2` = z21

has no solutions in non-zero coprime integers x , y , and z.
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