Who Wants to Be a Millionaire? (The Hard Way)

Philippe Michaud-Rodgers

Warwick Maths Society Talks Series

01.12.2020
Table of Contents

1. Congruent Numbers
2. Elliptic Curves
3. Reformulating Our Main Theorem
4. Torsion
5. The BSD Conjecture
Table of Contents

1. Congruent Numbers
2. Elliptic Curves
3. Reformulating Our Main Theorem
4. Torsion
5. The BSD Conjecture
Congruent Numbers

- $n \in \mathbb{N}$ is a **congruent number** if $n = \text{Area}(\Delta_{a,b,c})$, for some right-angled triangle with side lengths $a, b, c \in \mathbb{Q}$.

- Long history: Diophantus (3rd century), 10th century Arab mathematicians, Fermat, Euler, + many more!

- Example: Set $a = 3, b = 4, c = 5$.

 - Area = $\frac{3 \cdot 4}{2} = 6$.
 - So 6 is a congruent number.
 - Is 3 a congruent number?
 - If not, why not?
Get Rich Quick

Given $n \in \mathbb{N}$, is n congruent? Give a way of testing this.

If the Birch and Swinnerton-Dyer (BSD) conjecture holds, then we can do this!

Prize = 1 million dollars (Clay Institute Millenium Prize Problem).
You will win 0.9 million dollars after I take my 10% commission
(PS please don’t be a Perelman).
First Observations

\[n = \frac{ab}{2} \] and \[a^2 + b^2 = c^2 \] with \(a, b, c \in \mathbb{Q} \).

Then

\[
\left(\frac{a + b}{2} \right)^2 = \left(\frac{c}{2} \right)^2 + n \quad \text{and} \quad \left(\frac{a - b}{2} \right)^2 = \left(\frac{c}{2} \right)^2 - n.
\]

Set

\[x := \left(\frac{c}{2} \right)^2, \]

so that \(x - n, x, x + n \) are all (rational) squares.

So

\[(x - n)(x)(x + n) = y^2 \quad \text{for some} \ y \in \mathbb{Q}.\]
First Observations (Continued)

We have

\[(x - n)x(x + n) = y^2 \text{ for some } y \in \mathbb{Q} \text{ and } x = (c/2)^2 \in \mathbb{Q}.
\]

So \(P = (x, y)\) is a **rational point** on the curve

\[E_n : Y^2 = X(X + n)(X - n).\]

We write \(P \in E_n(\mathbb{Q})\).

Example: \(E_6\)
Even More First Observations

We have \(P = (x, y) \in \mathbb{E}_n(\mathbb{Q}) : Y^2 = X(X + n)(X - n) \).

Claim: \(y \neq 0 \).

If \(y = 0 \) then \((c/2)^2 = x = 0, n, \) or \(-n\).

- \((c/2)^2 = 0 \Rightarrow c = 0 \) ≠
- \((c/2)^2 = n \Rightarrow a = b \Rightarrow c^2 = 2a^2 \) ≠
- \((c/2)^2 = -n \) ≠

So \(y \neq 0 \), proving the claim.

Summary: if \(n \) is congruent, then \(\exists P = (x, y) \in \mathbb{E}_n(\mathbb{Q}) \) with \(y \neq 0 \).
From Curves to Congruent Numbers

Summary: if \(n \) is congruent, then \(\exists P = (x, y) \in E_n(\mathbb{Q}) \) with \(y \neq 0 \).

What about the converse?

Let \(P = (x_1, y_1) \in E_n(\mathbb{Q}) \) with \(y_1 \neq 0 \).

Can assume \(y_1 > 0 \) by flipping sign if necessary.

Set
\[
a = \frac{x_1^2 - n^2}{y_1}, \quad b = \frac{2nx_1}{y_1}, \quad c = \frac{x_1^2 + n^2}{y_1}.
\]

- \(a, b, c \in \mathbb{Q} \).
- \(a^2 + b^2 = c^2 \).
- \(n = ab/2 \).
- \(ab = 2n > 0 \), so \(a, b > 0 \) by flipping signs if necessary. \(c > 0 \) too.
- So \(n \) is a congruent number!
Main Theorem V1

\(n \in \mathbb{N} \) is a congruent number if and only if \(\exists P = (x, y) \in E_n(\mathbb{Q}) \) with \(y \neq 0 \).

So we want to understand \(E_n(\mathbb{Q}) \).
Isn’t this a harder question?
Kind of! But, \(E_n \) is a special type of curve...
Table of Contents

1 Congruent Numbers

2 Elliptic Curves

3 Reformulating Our Main Theorem

4 Torsion

5 The BSD Conjecture
What is an Elliptic Curve?

Definition

An elliptic curve (over \mathbb{Q}) is a smooth curve given by an equation

$$Y^2 = X^3 + AX + B,$$

where $A, B \in \mathbb{Q}$.

For E_n we have $A = -n^2$ and $B = 0$.

\[y^2 = x^3 - x \quad \text{and} \quad y^2 = x^3 - x + 1 \]
Rational Points

- \(E : Y^2 = X^3 + Ax + B. \)
- A point \(P = (x, y) \) is a rational point on \(E \) if \(P \) lies on \(E \), and \(x, y \in \mathbb{Q} \).
- We write \(E(\mathbb{Q}) \) for the set of rational points.
- Example: \(Y^2 = X^3 + 17, \quad (2, 5) \in E(\mathbb{Q}) \)
Let $P, Q \in E(\mathbb{Q})$. Then $P \oplus Q \in E(\mathbb{Q})$. What is $P \oplus Q$?
Group Law Continued

What is the identity in the group? It is 0 (or ∞):
- $E(\mathbb{Q})$ is an abelian group (clear).
- **Mordell-Weil Theorem:** $E(\mathbb{Q})$ is a finitely generated abelian group.
- So $E(\mathbb{Q}) = E(\mathbb{Q})_{\text{tors}} \oplus \mathbb{Z}^r$, $r = \text{rank}(E)$.
- Here, $E(\mathbb{Q})_{\text{tors}} = \{P \in E(\mathbb{Q}) : mP = 0 \text{ for some } m \geq 1\}$.
- If $r = 0$, then $E(\mathbb{Q}) = E(\mathbb{Q})_{\text{tors}}$.
- Let $P = (x, y) \in E(\mathbb{Q})$. Then $|P| = 2 \iff y = 0$.

Philippe Michaud-Rodgers
Who Wants to Be a Millionaire? (The Hard Way)
Table of Contents

1. Congruent Numbers
2. Elliptic Curves
3. Reformulating Our Main Theorem
4. Torsion
5. The BSD Conjecture
Recall:

Main Theorem V1: \(n \in \mathbb{N} \) is a congruent number if and only if \(\exists P = (x, y) \in E_n(\mathbb{Q}) \) with \(y \neq 0 \).

Since \(|P| = 2 \Leftrightarrow y = 0 \):

Main Theorem V2

\(n \in \mathbb{N} \) is a congruent number if and only if \(\exists P \in E_n(\mathbb{Q}) \setminus \{\infty\} \) with \(|P| \neq 2 \).
Main Theorem V3

Torsion Proposition

\[\#E_n(Q)_{\text{tors}} = 4. \text{ So } E_n(Q)_{\text{tors}} = \{\infty, (0, 0), (n, 0), (-n, 0)\}. \]

Main Theorem V2: \(n \in \mathbb{N} \) is a congruent number if and only if \(\exists P \in E_n(Q) \backslash \{\infty\} \text{ with } |P| \neq 2. \)

Main Theorem V3

\(n \in \mathbb{N} \) is a congruent number if and only if \(\text{rank}(E_n) > 0. \)

Proof: Let \(n \in \mathbb{N} \) be congruent. By V2, \(\exists P \in E_n(Q) \backslash \{\infty\} \text{ with } |P| \neq 2. \) By Proposition, \(P \notin E_n(Q)_{\text{tors}}, \) so \(r > 0. \) Conversely, if \(r > 0, \) then \(\exists P \in E_n(Q) \backslash \{\infty\} \text{ with } |P| \neq 2. \) So \(n \) is congruent by V2.
Table of Contents

1. Congruent Numbers
2. Elliptic Curves
3. Reformulating Our Main Theorem
4. Torsion
5. The BSD Conjecture
Lutz-Nagell and Reduction

Torsion Proposition: \(\#E_n(\mathbb{Q})_{\text{tors}} = 4. \)

We work now with \(E : Y^2 = X^3 + Ax + B, \quad A, B \in \mathbb{Z}. \)

Lutz-Nagell

If \(Q = (x, y) \in E(\mathbb{Q})_{\text{tors}}, \) then \(x, y \in \mathbb{Z}. \)

Reduction Theorem

fabfm primes \(p, \) \(\overline{E} \) is an elliptic curve over \(\mathbb{F}_p, \) and

\[
 r_p : E(\mathbb{Q})_{\text{tors}} \rightarrow \overline{E}(\mathbb{F}_p)
\]

\[
 (x, y) \mapsto (\overline{x}, \overline{y})
\]

is an injective group homomorphism.
More On Reduction

Reduction Theorem: $\text{fabfm} \ p$, \overline{E} is an elliptic curve over \mathbb{F}_p and $r_p : E(\mathbb{Q})_{\text{tors}} \rightarrow \overline{E}(\mathbb{F}_p)$ is an injective group homomorphism.

- $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \ldots, p-1\}$ = finite field with p elements.
- \overline{E} means the same equation, but $A, B \in \mathbb{Z}$ are reduced mod p.
- \overline{E} is an elliptic curve over \mathbb{F}_p means that it is ‘smooth’.
- $\overline{E}(\mathbb{F}_p)$ is the set of points (x, y), with $x, y \in \mathbb{F}_p$ satisfying the equation of \overline{E}, and ∞. This set is finite.

Consequence: $\#E(\mathbb{Q})_{\text{tors}} \mid \#\overline{E}(\mathbb{F}_p)$ fabfm p.

Example: $E_7 : Y^2 = X(X^2 - 49)$. Let $p = 5$. Then

$$\overline{E}_7 : Y^2 = X(X^2 + 1),$$

and $r_5(7, 0) = (2, 0) \in \overline{E}_7(\mathbb{F}_5)$.
Torsion Proposition: \(\#E_n(\mathbb{Q})_{\text{tors}} = 4. \)

Suppose \(\#E_n(\mathbb{Q})_{\text{tors}} > 4. \) Then

- Either \(\exists P \neq \infty \) of odd order \(m; \)
- Or every \(P \neq \infty \) has even order.

So \(\#E_n(\mathbb{Q})_{\text{tors}} \) has a subgroup \(S \) of size \(m \), with \(m \) odd or \(m = 8. \)

Then \(m = \#S \mid \#E_n(\mathbb{Q})_{\text{tors}} \mid \#E_n(\mathbb{F}_p) \text{ fabfm } p. \)

So \(m \mid \#E_n(\mathbb{F}_p) \text{ fabfm } p. \)
Torsion Proof: Step 2 of 3

By Step 1: \(m \mid \#E_n(\mathbb{F}_p) \) fabfm \(p \), where \(m \) is odd, or \(m = 8 \).

Claim: \(\#E_n(\mathbb{F}_p) = p + 1 \) fabfm \(p \equiv 3 \pmod{4} \).

Proof of Claim: \(\overline{E}_n: Y^2 = X(X^2 - \overline{n}^2) \).
We have 4 distinct points: \(\infty, (\overline{0}, \overline{0}), (\overline{n}, \overline{0}), (-\overline{n}, \overline{0}) \).

Then for each set \(\{ -x, x \} \) with \(x \in \mathbb{F}_p \setminus \{ \overline{0}, \overline{n}, -\overline{n} \} \), we have two points (i.e. two values of \(y \)) because \(X(X^2 - \overline{n}^2) \) is an odd function and \(p \equiv 3 \pmod{4} \) (so precisely one of \(x(x^2 - \overline{n}^2) \) and \(-x(x^2 - \overline{n}^2) \) gives rise to a non-zero square).

So \(\#E_n(\mathbb{F}_p) = 4 + 2\left(\frac{p-3}{2} \right) = p + 1 \). Proving the claim.
We have: \(m \mid p + 1 \) fabfm \(p \equiv 3 \pmod{4} \), with \(m = 8 \) or \(m \) odd.

Equivalently: \(p \equiv -1 \pmod{m} \) fabfm \(p \equiv 3 \pmod{4} \), with \(m = 8 \) or \(m \) odd.

- \(m = 8 \): only finitely many \(p \equiv 3 \pmod{8} \).
- \(3 \nmid m \): only finitely many \(p \equiv 3 \pmod{4m} \).
- \(3 \mid m \): only finitely many \(p \equiv 7 \pmod{12} \).

In all 3 cases, we contradict Dirichlet’s Theorem on Primes in Arithmetic Progressions: there are infinitely primes \(p \equiv a \pmod{b} \) if \(\gcd(a, b) = 1 \).

So we have proven the torsion proposition: \(\#E_n(\mathbb{Q})_{\text{tors}} = 4 \). \(
\)
L-series of an elliptic curve

Main Theorem V3

\(n \in \mathbb{N} \) is a congruent number if and only if \(\text{rank}(E_n) > 0 \).

How to test if \(\text{rank}(E_n) > 0 \)? We can do this for ‘small’ \(n \) already. But we don’t know how to for large \(n \), **unless** we assume the *BSD Conjecture*.

L-series of an elliptic curve

Let \(E \) be an elliptic curve over \(\mathbb{Q} \). Then

\[
L(E, s) := \prod_{p \nmid 2\Delta_E} \frac{1}{1 - a_p p^{-s} + p^{1-2s}},
\]

for \(s \in \mathbb{C} \) with \(\text{Re}(s) > 3/2 \), where \(a_p := p + 1 - \# E(\mathbb{F}_p) \) and \(\Delta_E := -16(4A^3 + 27B^2) \).
Statement of the BSD Conjecture

Fact: \(L(E, s)\) is defined for \(s \in \mathbb{C}\) with \(\text{Re}(s) > 3/2\), but can be \textit{analytically extended} to the whole of \(\mathbb{C}\).

Conjecture (Birch and Swinnerton-Dyer)

The Taylor expansion of \(L(E, s)\) at \(s = 1\) has the form

\[
L(E, s) = c(s - 1)^r + \text{higher order terms},
\]

with \(c \neq 0\) a constant, and \(r = \text{rank}(E)\).

So: \(\text{rank}(E) > 0 \iff L(E, 1) = 0\).

So \(n \in \mathbb{N}\) is congruent \(\iff \text{rank}(E_n) > 0 \iff L(E_n, 1) = 0\), and this is something we can test!
Summary

\(n \in \mathbb{N} \) is a congruent number.

\[\iff \]

\[\exists P = (x, y) \in E_n(\mathbb{Q}) \text{ with } y \neq 0. \] \quad (V1)

\[\iff \]

\[\exists P \in E_n(\mathbb{Q}) \setminus \{\infty\} \text{ with } |P| \neq 2. \] \quad (V2)

\[\iff \]

\[\text{rank}(E_n) > 0. \] \quad (V3)

\[\iff \]

\[L(E_n, 1) = 0. \] \quad (BSD)
Thank you for listening! :)