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Introduction The sieve Examples

“There has been much recent interest in computing quadratic
points on the curves X0(N)” — me.

Is this true? Yes!

● Ozman and Siksek. Quadratic Points on Modular Curves, 2018.

● Box. Quadratic points on modular curves with infinite Mordell–Weil group, 2019.

● Najman and Trbović. Splitting of primes in number fields generated by points on some modular curves,
2020.

● Banwait. Explicit isogenies of prime degree over quadratic fields, 2021.

● M. Fermat’s Last Theorem and modular curves over real quadratic fields, 2021.

● Najman and Vukorepa. Quadratic points on bielliptic modular curves, 2021.

● M. On elliptic curves with p-isogenies over quadratic fields, 2022.

● Banwait and Derickx. Explicit isogenies of prime degree over number fields, 2022.

● Vukorepa. Isogenies over quadratic fields of elliptic curves with rational j-invariant, 2022.

● Banwait, Najman, Padurariu. Cyclic isogenies of elliptic curves over fixed quadratic fields, 2022.

● Adžaga, Keller, Najman, M., Ozman, and Vukorepa. Computing quadratic points on modular curves
X0(N), 2023.
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Introduction The sieve Examples

Why?

● Mazur and Kenku looked after the case of rational points on
X0(N) a long time ago and quadratic points are the next best
thing. /

● Studying quadratic points on X0(N) is hard enough to be
interesting, but not too hard.

● Deepen our understanding of modular curves.

● Develop techniques for studying low-degree points on curves.

● Deepen our understanding of the arithmetic of elliptic curves
and their Galois representations.

● Concrete applications to the modular method for solving
Diophantine equations.
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Introduction The sieve Examples

Computing quadratic points
A quadratic point on a curve X /Q is a point

P ∈ X (Q(
√
d))/X (Q).

We think of P with its Galois conjugate, Pσ.

What does “computing the quadratic points on X0(N)”
actually mean?

1. If X0(N) has finitely many quadratic points (as we range over
all quadratic fields) then this means writing them all down
on an explicit model.

2. If X0(N) has infinitely many quadratic points as we range
over all quadratic fields then this means writing down all the
points that do not come from a ‘geometric family’.

Quadratic points have been computed on all X0(N) with
2 ≤ g(X0(N)) ≤ 8.
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Introduction The sieve Examples

Bielliptic curves X0(N)
Let N ∈ N = {53,61,79,83,89,101,131}.

● X0(N) is bielliptic, with a degree 2 map defined over Q:

ψ ∶ X0(N)Ð→ X+0 (N) = X0(N)/wN .

● X+0 (N) is an elliptic curve over Q with

X+0 (N)(Q) = ⟨R⟩ ≅ Z.

● Pulling back these points via ψ gives rise to infinitely many
quadratic points on X0(N) as we range over all quadratic
fields.

Theorem (Box, Najman–Vukorepa, 2021)

Let N ∈ N and let P be a quadratic point on X0(N). Then
ψ(P) = ψ(Pσ) ∈ X+0 (N)(Q).
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Introduction The sieve Examples

This result is great, but it does not determine X0(N)(Q(
√
d)) for

a fixed quadratic field Q(
√
d).

Theorem (M., 2023)

Let N ∈ N = {53,61,79,83,89,101,131}. Let d ∈ Z such that
∣d ∣ < 100. Then

∃P ∈ X0(N)(Q(
√
d))/X0(N)(Q)⇐⇒ d ∈ DN ,

where

D53 = {−43,−11,−7,−1}, D61 = {−19,−3,−1,61},

D79 = {−43,−7,−3}, D83 = {−67,−43,−19,−2},

D89 = {−67,−11,−2,−1,89}, D101 = {−43,−19,−1},

D131 = {−67,−19,−2}.
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Introduction The sieve Examples

Write X = X0(N), E = X+0 (N), and E(Q) = ⟨R⟩.

● Know: P ∈ X (Q(
√
d)) and ψ(P) = ψ(Pσ) = m ⋅ R.

● Want: information about m by investigating matters mod `.

X E

̃X ̃E

ψ

∼ ∼

ψ̃

P m ⋅ R

̃P m ⋅ ̃R

ψ

∼ ∼

ψ̃

● ψ̃(P̃) = ψ̃(P̃σ) = m ⋅ R̃.

● Write G` for the order of R̃ in E(F`).

● m ≡ m0 (mod G`) for some m0 ∈ {0,1,2, . . . ,G` − 1}.
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Fix an m0 ∈ {0,1,2, . . . ,G` − 1} and suppose m ≡ m0 (mod G`).

X E

X̃ Ẽ

ψ

∼ ∼
ψ̃

P m ⋅ R

P̃ m ⋅ R̃

ψ

∼ ∼
ψ̃

● Then ψ̃(P̃) = ψ̃(P̃σ) = m0 ⋅ R̃.

● So {P̃, P̃σ} = ψ̃−1(m0 ⋅ R̃) ⊂ X̃ (F`2), a set which we can
compute explicitly.

● ψ̃−1(m0 ⋅ R̃) will either be:

1. A pair of (distinct) points in X̃ (F`).

2. A pair of (distinct) points in X̃ (F`2) (not in X̃ (F`)).

3. A single point in X̃ (F`).
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● We are supposing {P̃, P̃σ} = ψ̃−1(m0 ⋅ R̃). Is this possible?

Using a nice explicit (diagonalised) model:

1. Suppose ψ̃−1(m0 ⋅ R̃) is a pair of points in X̃ (F`).
If ` ramifies or is inert in Q(

√
d) then {P̃, P̃σ} is a single

F`-point or a pair of F`2-points. Contradiction.

2. Suppose ψ̃−1(m0 ⋅ R̃) is a pair of points in X̃ (F`2).

If ` ramifies or is split in Q(
√
d) then {P̃, P̃σ} is a single

F`-point or a pair of F`-points. Contradiction.

3. Suppose ψ̃−1(m0 ⋅ R̃) is a single point in X̃ (F`).
We can’t rule anything out here.

We try and rule out each m0 ∈ {0,1,2, . . . ,G` − 1} to come up with
a list of possibilities for m (mod G`).
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So far: list of possibilities for m (mod G`).

● Repeat with several primes `1, `2, . . . , `s .

● No solution to systems of congruences ⇒ Contradiction.



Introduction The sieve Examples

Let X = X0(53) and suppose P ∈ X (Q(
√
−47))/X (Q).

● `1 = 5 is inert in Q(
√
−47) and G5 = 6.

● So {P̃, P̃σ} is either a single F5-point, or a pair of F52-points.

● But when m0 ∈ {0,1,2,4}, the set ψ̃−1(m0 ⋅ R̃) is a pair of
F5-points.

● Conclusion: m ≡ 3 or 5 (mod 6).

● `2 = 7 splits in Q(
√
−47), G7 = 12, and we find that

m ≡ 0,3,4,7, or 11 (mod 12).

● `3 = 11 is inert in Q(
√
−47), G7 = 12, and we find that

m ≡ 1,2,5,7, or 10 (mod 12). Contradiction.

Conclusion: X0(53)(Q(
√
−47)) = X0(53)(Q).

In fact, X0(53)(Q(
√
d)) = X0(53)(Q) for any quadratic field

Q(
√
d) in which 5 and 11 are inert, and 7 splits.
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Introduction The sieve Examples

Does the sieve do what we expect?

Let X = X0(53) and suppose P ∈ X (Q(
√
−11))/X (Q).

● Apply the sieve using primes ` < 1000:

m ≡ 1, 1905121, 2993761, 3175201, 5533921, 5715361, 6804001, 8255521, 8709121, 12065761, 13154401,

14605921, 15694561, 15876001, 17781121, 18234721, 18869761, 21409921, 22226401, 24585121,

24766561, 25855201, 27306721, 27941761, 28395361, 29030401, 30481921, 30935521, 31570561,

33657121, 34110721, 34745761, 34927201, 37285921, 37467361, 38102401, 38556001, 40007521,

40642561, 41731201, 43182721, 43817761, 44271361, 44906401, 46357921, 46811521, 47446561,

47628001, 49986721, 50803201, 53343361, 53978401, 54432001, 55883521, 56337121, 56518561,

57607201, 59058721, 60147361, 62687521 mod 63504000.

● We see that 1 ‘survived’ the sieve.

● Expected, since ψ−1(1 ⋅ R) ⊂ X (Q(
√
−11))/X (Q).
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Introduction The sieve Examples

Violating the Hasse principle

Since X0(53)(Q(
√
−47)) = X0(53)(Q), we have that

X
(−47)
0 (53)(Q) = ∅.

● The curve X
(d)
0 (N) is the curve X0(N) twisted by the

quadratic extension Q(
√
d)/Q and the action of the

Atkin–Lehner involution wN .

Applying a result of Ozman, X
(−47)
0 (53) has points everywhere

locally, so this curve violates the Hasse principle.

Thank you!
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