Sieving for quadratic points on bielliptic curves

Philippe Michaud-Jacobs

University of Warwick

Representation Theory XVIII
Dubrovnik
19th June 2023
"There has been much recent interest in computing quadratic points on the curves $X_{0}(N) "$ - me.
"There has been much recent interest in computing quadratic points on the curves $X_{0}(N) "$ - me.

Is this true?

"There has been much recent interest in computing quadratic points on the curves $X_{0}(N) "$ me.

Is this true? Yes!

- Ozman and Siksek. Quadratic Points on Modular Curves, 2018.
- Box. Quadratic points on modular curves with infinite Mordell-Weil group, 2019.
- Najman and Trbović. Splitting of primes in number fields generated by points on some modular curves, 2020.
- Banwait. Explicit isogenies of prime degree over quadratic fields, 2021.
- M. Fermat's Last Theorem and modular curves over real quadratic fields, 2021.
- Najman and Vukorepa. Quadratic points on bielliptic modular curves, 2021.
- M. On elliptic curves with p-isogenies over quadratic fields, 2022.
- Banwait and Derickx. Explicit isogenies of prime degree over number fields, 2022.
- Vukorepa. Isogenies over quadratic fields of elliptic curves with rational j-invariant, 2022.
- Banwait, Najman, Padurariu. Cyclic isogenies of elliptic curves over fixed quadratic fields, 2022.
- Adžaga, Keller, Najman, M., Ozman, and Vukorepa. Computing quadratic points on modular curves $X_{0}(N), 2023$.

Why?

Why?

- Mazur and Kenku looked after the case of rational points on $X_{0}(N)$ a long time ago and quadratic points are the next best thing. ©
- Studying quadratic points on $X_{0}(N)$ is hard enough to be interesting, but not too hard.

Why?

- Mazur and Kenku looked after the case of rational points on $X_{0}(N)$ a long time ago and quadratic points are the next best thing. ©
- Studying quadratic points on $X_{0}(N)$ is hard enough to be interesting, but not too hard.
- Deepen our understanding of modular curves.
- Develop techniques for studying low-degree points on curves.
- Deepen our understanding of the arithmetic of elliptic curves and their Galois representations.
- Concrete applications to the modular method for solving Diophantine equations.

Computing quadratic points

A quadratic point on a curve X / \mathbb{Q} is a point

$$
P \in X(\mathbb{Q}(\sqrt{d})) \backslash X(\mathbb{Q}) .
$$

We think of P with its Galois conjugate, P^{σ}.

Computing quadratic points

A quadratic point on a curve X / \mathbb{Q} is a point

$$
P \in X(\mathbb{Q}(\sqrt{d})) \backslash X(\mathbb{Q}) .
$$

We think of P with its Galois conjugate, P^{σ}.
What does "computing the quadratic points on $X_{0}(N)$ " actually mean?

Computing quadratic points

A quadratic point on a curve X / \mathbb{Q} is a point

$$
P \in X(\mathbb{Q}(\sqrt{d})) \backslash X(\mathbb{Q})
$$

We think of P with its Galois conjugate, P^{σ}.
What does "computing the quadratic points on $X_{0}(N)$ " actually mean?

1. If $X_{0}(N)$ has finitely many quadratic points (as we range over all quadratic fields) then this means writing them all down on an explicit model.
2. If $X_{0}(N)$ has infinitely many quadratic points as we range over all quadratic fields then this means writing down all the points that do not come from a 'geometric family'.

Computing quadratic points

A quadratic point on a curve X / \mathbb{Q} is a point

$$
P \in X(\mathbb{Q}(\sqrt{d})) \backslash X(\mathbb{Q})
$$

We think of P with its Galois conjugate, P^{σ}.
What does "computing the quadratic points on $X_{0}(N)$ " actually mean?

1. If $X_{0}(N)$ has finitely many quadratic points (as we range over all quadratic fields) then this means writing them all down on an explicit model.
2. If $X_{0}(N)$ has infinitely many quadratic points as we range over all quadratic fields then this means writing down all the points that do not come from a 'geometric family'.
Quadratic points have been computed on all $X_{0}(N)$ with $2 \leq g\left(X_{0}(N)\right) \leq 8$.

Bielliptic curves $X_{0}(N)$

Let $N \in \mathcal{N}=\{53,61,79,83,89,101,131\}$.

- $X_{0}(N)$ is bielliptic, with a degree 2 map defined over \mathbb{Q} :

$$
\psi: X_{0}(N) \longrightarrow X_{0}^{+}(N)=X_{0}(N) / w_{N} .
$$

Bielliptic curves $X_{0}(N)$

Let $N \in \mathcal{N}=\{53,61,79,83,89,101,131\}$.

- $X_{0}(N)$ is bielliptic, with a degree 2 map defined over \mathbb{Q} :

$$
\psi: X_{0}(N) \longrightarrow X_{0}^{+}(N)=X_{0}(N) / w_{N} .
$$

- $X_{0}^{+}(N)$ is an elliptic curve over \mathbb{Q} with

$$
X_{0}^{+}(N)(\mathbb{Q})=\langle R\rangle \cong \mathbb{Z}
$$

Bielliptic curves $X_{0}(N)$

Let $N \in \mathcal{N}=\{53,61,79,83,89,101,131\}$.

- $X_{0}(N)$ is bielliptic, with a degree 2 map defined over \mathbb{Q} :

$$
\psi: X_{0}(N) \longrightarrow X_{0}^{+}(N)=X_{0}(N) / w_{N} .
$$

- $X_{0}^{+}(N)$ is an elliptic curve over \mathbb{Q} with

$$
X_{0}^{+}(N)(\mathbb{Q})=\langle R\rangle \cong \mathbb{Z}
$$

- Pulling back these points via ψ gives rise to infinitely many quadratic points on $X_{0}(N)$ as we range over all quadratic fields.

Bielliptic curves $X_{0}(N)$

Let $N \in \mathcal{N}=\{53,61,79,83,89,101,131\}$.

- $X_{0}(N)$ is bielliptic, with a degree 2 map defined over \mathbb{Q} :

$$
\psi: X_{0}(N) \longrightarrow X_{0}^{+}(N)=X_{0}(N) / w_{N} .
$$

- $X_{0}^{+}(N)$ is an elliptic curve over \mathbb{Q} with

$$
X_{0}^{+}(N)(\mathbb{Q})=\langle R\rangle \cong \mathbb{Z}
$$

- Pulling back these points via ψ gives rise to infinitely many quadratic points on $X_{0}(N)$ as we range over all quadratic fields.

Theorem (Box, Najman-Vukorepa, 2021)

Let $N \in \mathcal{N}$ and let P be a quadratic point on $X_{0}(N)$. Then $\psi(P)=\psi\left(P^{\sigma}\right) \in X_{0}^{+}(N)(\mathbb{Q})$.

This result is great, but it does not determine $X_{0}(N)(\mathbb{Q}(\sqrt{d}))$ for a fixed quadratic field $\mathbb{Q}(\sqrt{d})$.

This result is great, but it does not determine $X_{0}(N)(\mathbb{Q}(\sqrt{d}))$ for a fixed quadratic field $\mathbb{Q}(\sqrt{d})$.

Theorem (M., 2023)

Let $N \in \mathcal{N}=\{53,61,79,83,89,101,131\}$. Let $d \in \mathbb{Z}$ such that $|d|<100$. Then

$$
\exists P \in X_{0}(N)(\mathbb{Q}(\sqrt{d})) \backslash X_{0}(N)(\mathbb{Q}) \Longleftrightarrow d \in \mathcal{D}_{N},
$$

where

$$
\begin{array}{rlrl}
\mathcal{D}_{53} & =\{-43,-11,-7,-1\}, & \mathcal{D}_{61}=\{-19,-3,-1,61\}, \\
\mathcal{D}_{79} & =\{-43,-7,-3\}, & \mathcal{D}_{83}=\{-67,-43,-19,-2\}, \\
\mathcal{D}_{89} & =\{-67,-11,-2,-1,89\}, & \mathcal{D}_{101}=\{-43,-19,-1\}, \\
\mathcal{D}_{131} & =\{-67,-19,-2\} . & &
\end{array}
$$

Write $X=X_{0}(N), E=X_{0}^{+}(N)$, and $E(\mathbb{Q})=\langle R\rangle$.

Write $X=X_{0}(N), E=X_{0}^{+}(N)$, and $E(\mathbb{Q})=\langle R\rangle$.

- Know: $P \in X(\mathbb{Q}(\sqrt{d}))$ and $\psi(P)=\psi\left(P^{\sigma}\right)=m \cdot R$.
- Want: information about m by investigating matters $\bmod \ell$.

Write $X=X_{0}(N), E=X_{0}^{+}(N)$, and $E(\mathbb{Q})=\langle R\rangle$.

- Know: $P \in X(\mathbb{Q}(\sqrt{d}))$ and $\psi(P)=\psi\left(P^{\sigma}\right)=m \cdot R$.
- Want: information about m by investigating matters $\bmod \ell$.

Write $X=X_{0}(N), E=X_{0}^{+}(N)$, and $E(\mathbb{Q})=\langle R\rangle$.

- Know: $P \in X(\mathbb{Q}(\sqrt{d}))$ and $\psi(P)=\psi\left(P^{\sigma}\right)=m \cdot R$.
- Want: information about m by investigating matters $\bmod \ell$.

- $\widetilde{\psi}(\widetilde{P})=\widetilde{\psi}\left(\widetilde{P^{\sigma}}\right)=m \cdot \widetilde{R}$.

Write $X=X_{0}(N), E=X_{0}^{+}(N)$, and $E(\mathbb{Q})=\langle R\rangle$.

- Know: $P \in X(\mathbb{Q}(\sqrt{d}))$ and $\psi(P)=\psi\left(P^{\sigma}\right)=m \cdot R$.
- Want: information about m by investigating matters $\bmod \ell$.

- $\widetilde{\psi}(\widetilde{P})=\widetilde{\psi}\left(\widetilde{P^{\sigma}}\right)=m \cdot \widetilde{R}$.
- Write G_{ℓ} for the order of \widetilde{R} in $E\left(\mathbb{F}_{\ell}\right)$.

Write $X=X_{0}(N), E=X_{0}^{+}(N)$, and $E(\mathbb{Q})=\langle R\rangle$.

- Know: $P \in X(\mathbb{Q}(\sqrt{d}))$ and $\psi(P)=\psi\left(P^{\sigma}\right)=m \cdot R$.
- Want: information about m by investigating matters $\bmod \ell$.

- $\widetilde{\psi}(\widetilde{P})=\widetilde{\psi}\left(\widetilde{P^{\sigma}}\right)=m \cdot \widetilde{R}$.
- Write G_{ℓ} for the order of \widetilde{R} in $E\left(\mathbb{F}_{\ell}\right)$.
- $m \equiv m_{0}\left(\bmod G_{\ell}\right)$ for some $m_{0} \in\left\{0,1,2, \ldots, G_{\ell}-1\right\}$.

Fix an $m_{0} \in\left\{0,1,2, \ldots, G_{\ell}-1\right\}$ and suppose $m \equiv m_{0}\left(\bmod G_{\ell}\right)$.

Fix an $m_{0} \in\left\{0,1,2, \ldots, G_{\ell}-1\right\}$ and suppose $m \equiv m_{0}\left(\bmod G_{\ell}\right)$.

- Then $\widetilde{\psi}(\widetilde{P})=\widetilde{\psi}\left(\widetilde{P^{\sigma}}\right)=m_{0} \cdot \widetilde{R}$.

Fix an $m_{0} \in\left\{0,1,2, \ldots, G_{\ell}-1\right\}$ and suppose $m \equiv m_{0}\left(\bmod G_{\ell}\right)$.

- Then $\widetilde{\psi}(\widetilde{P})=\widetilde{\psi}\left(\widetilde{P^{\sigma}}\right)=m_{0} \cdot \widetilde{R}$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right) \subset \widetilde{X}\left(\mathbb{F}_{\ell^{2}}\right)$, a set which we can compute explicitly.

Fix an $m_{0} \in\left\{0,1,2, \ldots, G_{\ell}-1\right\}$ and suppose $m \equiv m_{0}\left(\bmod G_{\ell}\right)$.

- Then $\widetilde{\psi}(\widetilde{P})=\widetilde{\psi}\left(\widetilde{P^{\sigma}}\right)=m_{0} \cdot \widetilde{R}$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right) \subset \widetilde{X}\left(\mathbb{F}_{\ell^{2}}\right)$, a set which we can compute explicitly.
- $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ will either be:

1. A pair of (distinct) points in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.
2. A pair of (distinct) points in $\widetilde{X}\left(\mathbb{F}_{\ell^{2}}\right)$ (not in $\left.\widetilde{X}\left(\mathbb{F}_{\ell}\right)\right)$.
3. A single point in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.

- We are supposing $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$. Is this possible?
- We are supposing $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$. Is this possible?

Using a nice explicit (diagonalised) model:

- We are supposing $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$. Is this possible?

Using a nice explicit (diagonalised) model:

1. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of points in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.

If ℓ ramifies or is inert in $\mathbb{Q}(\sqrt{d})$ then $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is a single \mathbb{F}_{ℓ}-point or a pair of $\mathbb{F}_{\ell^{2}}$-points. Contradiction.

- We are supposing $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$. Is this possible?

Using a nice explicit (diagonalised) model:

1. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of points in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.

If ℓ ramifies or is inert in $\mathbb{Q}(\sqrt{d})$ then $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is a single \mathbb{F}_{ℓ}-point or a pair of $\mathbb{F}_{\ell^{2}}$-points. Contradiction.
2. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of points in $\widetilde{X}\left(\mathbb{F}_{\ell^{2}}\right)$. If ℓ ramifies or is split in $\mathbb{Q}(\sqrt{d})$ then $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is a single $\mathbb{F}_{\ell^{-}}$-point or a pair of \mathbb{F}_{ℓ}-points. Contradiction.

- We are supposing $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$. Is this possible?

Using a nice explicit (diagonalised) model:

1. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of points in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.

If ℓ ramifies or is inert in $\mathbb{Q}(\sqrt{d})$ then $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is a single \mathbb{F}_{ℓ}-point or a pair of $\mathbb{F}_{\ell^{2}}$-points. Contradiction.
2. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of points in $\widetilde{X}\left(\mathbb{F}_{\ell^{2}}\right)$.

If ℓ ramifies or is split in $\mathbb{Q}(\sqrt{d})$ then $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is a single \mathbb{F}_{ℓ}-point or a pair of \mathbb{F}_{ℓ}-points. Contradiction.
3. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a single point in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.

We can't rule anything out here.

- We are supposing $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}=\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$. Is this possible?

Using a nice explicit (diagonalised) model:

1. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of points in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.

If ℓ ramifies or is inert in $\mathbb{Q}(\sqrt{d})$ then $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is a single \mathbb{F}_{ℓ}-point or a pair of $\mathbb{F}_{\ell^{2}}$-points. Contradiction.
2. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of points in $\widetilde{X}\left(\mathbb{F}_{\ell^{2}}\right)$. If ℓ ramifies or is split in $\mathbb{Q}(\sqrt{d})$ then $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is a single \mathbb{F}_{ℓ}-point or a pair of \mathbb{F}_{ℓ}-points. Contradiction.
3. Suppose $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a single point in $\widetilde{X}\left(\mathbb{F}_{\ell}\right)$.

We can't rule anything out here.
We try and rule out each $m_{0} \in\left\{0,1,2, \ldots, G_{\ell}-1\right\}$ to come up with a list of possibilities for $m\left(\bmod G_{\ell}\right)$.

So far: list of possibilities for $m\left(\bmod G_{\ell}\right)$.

- Repeat with several primes $\ell_{1}, \ell_{2}, \ldots, \ell_{s}$.
- No solution to systems of congruences \Rightarrow Contradiction.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.
- But when $m_{0} \in\{0,1,2,4\}$, the set $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of \mathbb{F}_{5}-points.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.
- But when $m_{0} \in\{0,1,2,4\}$, the set $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of \mathbb{F}_{5}-points.
- Conclusion: $m \equiv 3$ or $5(\bmod 6)$.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.
- But when $m_{0} \in\{0,1,2,4\}$, the set $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of \mathbb{F}_{5}-points.
- Conclusion: $m \equiv 3$ or $5(\bmod 6)$.
- $\ell_{2}=7$ splits in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 0,3,4,7$, or $11(\bmod 12)$.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.
- But when $m_{0} \in\{0,1,2,4\}$, the set $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of \mathbb{F}_{5}-points.
- Conclusion: $m \equiv 3$ or $5(\bmod 6)$.
- $\ell_{2}=7$ splits in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 0,3,4,7$, or $11(\bmod 12)$.
- $\ell_{3}=11$ is inert in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 1,2,5,7$, or $10(\bmod 12)$.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.
- But when $m_{0} \in\{0,1,2,4\}$, the set $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of \mathbb{F}_{5}-points.
- Conclusion: $m \equiv 3$ or $5(\bmod 6)$.
- $\ell_{2}=7$ splits in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 0,3,4,7$, or $11(\bmod 12)$.
- $\ell_{3}=11$ is inert in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 1,2,5,7$, or $10(\bmod 12)$. Contradiction.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.
- But when $m_{0} \in\{0,1,2,4\}$, the set $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of \mathbb{F}_{5}-points.
- Conclusion: $m \equiv 3$ or $5(\bmod 6)$.
- $\ell_{2}=7$ splits in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 0,3,4,7$, or $11(\bmod 12)$.
- $\ell_{3}=11$ is inert in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 1,2,5,7$, or $10(\bmod 12)$. Contradiction.

Conclusion: $X_{0}(53)(\mathbb{Q}(\sqrt{-47}))=X_{0}(53)(\mathbb{Q})$.

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-47})) \backslash X(\mathbb{Q})$.

- $\ell_{1}=5$ is inert in $\mathbb{Q}(\sqrt{-47})$ and $G_{5}=6$.
- So $\left\{\widetilde{P}, \widetilde{P^{\sigma}}\right\}$ is either a single \mathbb{F}_{5}-point, or a pair of $\mathbb{F}_{5^{2}}$-points.
- But when $m_{0} \in\{0,1,2,4\}$, the set $\widetilde{\psi}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$ is a pair of \mathbb{F}_{5}-points.
- Conclusion: $m \equiv 3$ or $5(\bmod 6)$.
- $\ell_{2}=7$ splits in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 0,3,4,7$, or $11(\bmod 12)$.
- $\ell_{3}=11$ is inert in $\mathbb{Q}(\sqrt{-47}), G_{7}=12$, and we find that $m \equiv 1,2,5,7$, or $10(\bmod 12)$. Contradiction.
Conclusion: $X_{0}(53)(\mathbb{Q}(\sqrt{-47}))=X_{0}(53)(\mathbb{Q})$.
In fact, $X_{0}(53)(\mathbb{Q}(\sqrt{d}))=X_{0}(53)(\mathbb{Q})$ for any quadratic field $\mathbb{Q}(\sqrt{d})$ in which 5 and 11 are inert, and 7 splits.

Does the sieve do what we expect?

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-11})) \backslash X(\mathbb{Q})$.

Does the sieve do what we expect?

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-11})) \backslash X(\mathbb{Q})$.

- Apply the sieve using primes $\ell<1000$:

$$
\begin{aligned}
m \equiv \quad & 1,1905121,2993761,3175201,5533921,5715361,6804001,8255521,8709121,12065761,13154401, \\
& 14605921,15694561,15876001,17781121,18234721,18869761,21409921,22226401,24585121, \\
& 24766561,25855201,27306721,27941761,28395361,29030401,30481921,30935521,31570561, \\
& 33657121,34110721,34745761,34927201,37285921,37467361,38102401,38556001,40007521, \\
& 40642561,41731201,43182721,43817761,44271361,44906401,46357921,46811521,47446561, \\
& 47628001,49986721,50803201,53343361,53978401,54432001,55883521,56337121,56518561, \\
& 57607201,59058721,60147361,62687521 \quad \bmod 63504000 .
\end{aligned}
$$

Does the sieve do what we expect?

Let $X=X_{0}(53)$ and suppose $P \in X(\mathbb{Q}(\sqrt{-11})) \backslash X(\mathbb{Q})$.

- Apply the sieve using primes $\ell<1000$:

$$
\begin{aligned}
m \equiv \quad & 1,1905121,2993761,3175201,5533921,5715361,6804001,8255521,8709121,12065761,13154401, \\
& 14605921,15694561,15876001,17781121,18234721,18869761,21409921,22226401,24585121, \\
& 24766561,25855201,27306721,27941761,28395361,29030401,30481921,30935521,31570561, \\
& 33657121,34110721,34745761,34927201,37285921,37467361,38102401,38556001,40007521, \\
& 40642561,41731201,43182721,43817761,44271361,44906401,46357921,46811521,47446561, \\
& 47628001,49986721,50803201,53343361,53978401,54432001,55883521,56337121,56518561, \\
& 57607201,59058721,60147361,62687521 \quad \bmod 63504000 .
\end{aligned}
$$

- We see that 1 'survived' the sieve.

Does the sieve do what we expect?

$$
\text { Let } X=X_{0}(53) \text { and suppose } P \in X(\mathbb{Q}(\sqrt{-11})) \backslash X(\mathbb{Q}) \text {. }
$$

- Apply the sieve using primes $\ell<1000$:

$$
\begin{aligned}
m \equiv \quad & 1,1905121,2993761,3175201,5533921,5715361,6804001,8255521,8709121,12065761,13154401 \\
& 14605921,15694561,15876001,17781121,18234721,18869761,21409921,22226401,24585121 \\
& 24766561,25855201,27306721,27941761,28395361,29030401,30481921,30935521,31570561 \\
& 33657121,34110721,34745761,34927201,37285921,37467361,38102401,38556001,40007521 \\
& 40642561,41731201,43182721,43817761,44271361,44906401,46357921,46811521,47446561 \\
& 47628001,49986721,50803201,53343361,53978401,54432001,55883521,56337121,56518561 \\
& 57607201,59058721,60147361,62687521 \quad \bmod 63504000 .
\end{aligned}
$$

- We see that 1 'survived' the sieve.
- Expected, since $\psi^{-1}(1 \cdot R) \subset X(\mathbb{Q}(\sqrt{-11})) \backslash X(\mathbb{Q})$.

Violating the Hasse principle

Since $X_{0}(53)(\mathbb{Q}(\sqrt{-47}))=X_{0}(53)(\mathbb{Q})$, we have that

$$
x_{0}^{(-47)}(53)(\mathbb{Q})=\varnothing .
$$

Violating the Hasse principle

Since $X_{0}(53)(\mathbb{Q}(\sqrt{-47}))=X_{0}(53)(\mathbb{Q})$, we have that

$$
X_{0}^{(-47)}(53)(\mathbb{Q})=\varnothing
$$

- The curve $X_{0}^{(d)}(N)$ is the curve $X_{0}(N)$ twisted by the quadratic extension $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$ and the action of the Atkin-Lehner involution w_{N}.

Violating the Hasse principle

Since $X_{0}(53)(\mathbb{Q}(\sqrt{-47}))=X_{0}(53)(\mathbb{Q})$, we have that

$$
X_{0}^{(-47)}(53)(\mathbb{Q})=\varnothing
$$

- The curve $X_{0}^{(d)}(N)$ is the curve $X_{0}(N)$ twisted by the quadratic extension $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$ and the action of the Atkin-Lehner involution w_{N}.
Applying a result of Ozman, $X_{0}^{(-47)}(53)$ has points everywhere locally, so this curve violates the Hasse principle.

Violating the Hasse principle

Since $X_{0}(53)(\mathbb{Q}(\sqrt{-47}))=X_{0}(53)(\mathbb{Q})$, we have that

$$
x_{0}^{(-47)}(53)(\mathbb{Q})=\varnothing .
$$

- The curve $X_{0}^{(d)}(N)$ is the curve $X_{0}(N)$ twisted by the quadratic extension $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$ and the action of the Atkin-Lehner involution w_{N}.
Applying a result of Ozman, $X_{0}^{(-47)}(53)$ has points everywhere locally, so this curve violates the Hasse principle.

Thank you!

