Fermat's Last Theorem and Modular Curves over Real Quadratic Fields

Philippe Michaud-Rodgers

University of Warwick
Seminar on Number Theory and Algebra - University of Zagreb 17.05.2021

Table of Contents

(1) Introduction
(2) FLT over the Rationals
(3) FLT over a Real Quadratic Field

4 Modular Curves
(5) Results

Table of Contents

2) FLT over the Rationals
(3) FLT over a Real Quadratic Field

4 Modular Curves
(5) Results

Statement of Fermat's Last Theorem over \mathbb{Q}

Theorem (Wiles + many others! 1995)

The equation

$$
x^{n}+y^{n}=z^{n},
$$

with $n \geq 3$, has no non-trivial solutions for integers x, y, z.
A non-trivial solution means $x y z \neq 0$. (We can also replace 'integers' by 'rationals').

Generalising to Number Fields

What happens if we replace the word integers by \mathcal{O}_{K}, for K a number field?

Question

Let K be a number field. Does the equation

$$
a^{n}+b^{n}=c^{n}
$$

with $n \geq 3$, have non-trivial solutions for $a, b, c \in \mathcal{O}_{K}$?
(We can also replace ' \mathcal{O}_{K} ' by ' K ').

- Does this exact statement always hold?
- For which number fields K, and for which exponents n might it hold?
- How might we prove such statements?

Outline of Talk

- Overview the proof of FLT over \mathbb{Q}.
- Try to use the same proof over a real quadratic field $K=\mathbb{Q}(\sqrt{d})$.
- Understand main difficulties and see how modular curves play a role.

[Slides available on my webpage.]

Table of Contents

(1) Introduction

(2) FLT over the Rationals

4 Modular Curves
(5) Results

First Observations

- If $n=p \cdot m$ and (x, y, z) satisfies $x^{n}+y^{n}=z^{n}$, then

$$
\left(x^{m}\right)^{p}+\left(y^{m}\right)^{p}=\left(z^{m}\right)^{p} .
$$

- $n=3$ (Euler, 1770) and $n=4$ (Fermat, 1670): elementary.

So enough to prove:

FLT

The equation

$$
x^{p}+y^{p}=z^{p},
$$

with $p \geq 5$, prime, has no (non-trivial) solutions for integers x, y, z.

Elliptic Curves

An elliptic curve over \mathbb{Q} is a curve given by an equation

$$
Y^{2}=X^{3}+A X^{2}+B X+C
$$

where $A, B, C \in \mathbb{Q}$. It is smooth.

- E has a minimal discriminant, $\Delta_{\text {min }}$.
- If $p \nmid \Delta_{\text {min }}$ then $a_{p}(E):=p+1-\# \widetilde{E}\left(\mathbb{F}_{p}\right)$; the 'trace of Frobenius at p^{\prime}.
- E has a conductor

$$
N_{E}:=\prod_{p \mid \Delta_{\min }} p^{e_{p}}, \quad\left(e_{p} \geq 1\right)
$$

- If N is squarefree, E is called semistable.

Newforms

A newform of level N^{\prime} is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$, where $\mathcal{H}=\{z \in \mathbb{C}: \operatorname{im}(z)>0\}$ is the upper half-plane.

- f has a Fourier or q-expansion:

$$
f=\sum_{n=1}^{\infty} a_{n} q^{n}, \text { where } a_{n} \in L, q=e^{\frac{2 \pi i}{z}}, z \in \mathcal{H}
$$

- There are finitely many newforms at each level N^{\prime}.
- Example. There are two newforms at level 38:

$$
\begin{aligned}
& f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
& f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{aligned}
$$

- No newforms at level 2.

The Frey Curve

FLT

The equation $x^{p}+y^{p}=z^{p}$, with $p \geq 5$, prime, has no non-trivial solutions for integers x, y, z.

Suppose (x, y, z) (with x, y, z pairwise coprime) is a non-trivial solution.
Associate to (x, y, z) the Frey Curve

$$
E_{x, y, z, p}: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)
$$

This is an elliptic curve $/ \mathbb{Q}$.

- $\# E(\mathbb{Q})[2]=4$.
- $\Delta_{\text {min }}=2^{-8}(x y z)^{2 p}$.
- $N=2 \prod_{p \mid x y z, \text { odd }} p$, squarefree.

Level-Lowering

Level-Lowering Theorem (Ribet)

Let E be a modular elliptic curve over \mathbb{Q} of conductor N and let $p \geq 5$ be prime. Suppose $\bar{\rho}_{E, p}$ is irreducible. Then E arises mod p from a newform f at level N_{p}, where

$$
N_{p}=\frac{N}{\prod_{q \| N, p \mid \operatorname{ord}_{q}\left(\Delta_{\min }\right)} q} .
$$

- $\mathrm{W}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{T}$: Elliptic curves over \mathbb{Q} are modular.

Arises mod p

- Let E / \mathbb{Q} be an elliptic curve of conductor N.
- Let $f=\sum a_{n} q^{n}$ be a newform of level N^{\prime}.

Definition

Let p be a prime. We say E arises modulo p from f if for all primes $/ \nmid p N N^{\prime}$,

$$
a_{l}(f) \equiv a_{l}(E) \quad(\bmod p) .
$$

Mazur's Theorem

Condition in Level-Lowering Theorem: Suppose $\bar{\rho}_{E, p}$ is irreducible.

- $\bar{\rho}_{E, p}$ is the mod-p Galois representation associated to E.

The following conditions are equivalent:

- $\bar{\rho}_{E, p}$ is reducible.
- E has a rational cyclic subgroup of size p.
- E admits a rational p-isogeny.

Mazur's Theorem

Let E / \mathbb{Q} be a semistable elliptic curve with $\# E(\mathbb{Q})[2]=4$. Then $\bar{\rho}_{E, p}$ is irreducible for $p \geq 5$.

This holds for our Frey curve $E_{x, y, z, p}$.

Level-Lowering the Frey Curve

- We level-lower: E arises mod p from a newform f at level N_{p}.
- Here

$$
N_{p}=\frac{N}{\prod_{q \| N, p \mid \operatorname{ord}_{q}\left(\Delta_{\min }\right)} q}=2
$$

which is no longer dependent on the solution (x, y, z).

- But! There are no newforms at level 2, contradiction.
- Conclusion: Fermat's Last Theorem is true.

Table of Contents

(1) Introduction
(2) FLT over the Rationals
(3) FLT over a Real Quadratic Field

4 Modular Curves
(5) Results

What changes over a number field?

Fix a real quadratic field $K=\mathbb{Q}(\sqrt{d})$. Does the equation

$$
a^{p}+b^{p}=c^{p},
$$

with $p \geq 5$, have (non-trivial) solutions for $a, b, c \in \mathcal{O}_{K}$?

- Same general method: level-lower a Frey curve.
- Frey curve $E_{a, b, c, p}: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)$, now $/ K$.

Conductor \mathcal{N} is an ideal of \mathcal{O}_{K}.
Values $a_{p}(E) \rightsquigarrow a_{\mathfrak{p}}(E)$, where \mathfrak{p} is a prime ideal of \mathcal{O}_{K}.

- Newform of level $N^{\prime} \rightsquigarrow$ Hilbert newform of level \mathcal{N}^{\prime}. Values $a_{p}(f) \rightsquigarrow a_{\mathfrak{p}}(\mathfrak{f})$, where \mathfrak{p} is a prime ideal of \mathcal{O}_{K}.

We have an analogue of the level-lowering theorem. There are three main issues.

- Modularity. To level-lower, E must be modular. Elliptic curves over real quadratic fields are modular (Freitas, Le Hung, Siksek, 2013).
- Irreducibility. To level-lower, $\bar{\rho}_{E, p}$ must be irreducible.
- Newforms. Need to calculate and eliminate Hilbert newforms appearing at level \mathcal{N}_{p} (over \mathbb{Q} there were none at level $N_{p}=2$; contradiction right away).

Focus for the rest of the talk: irreducibility.

Table of Contents

(1) Introduction

(2) FLT over the Rationals
(3) FLT over a Real Quadratic Field

4 Modular Curves

The Modular Curve $X_{0}(p)$

- $\Gamma_{0}(p):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0(\bmod p)\right\}$.
- As a compact Riemann surface: $X_{0}(p)=\Gamma_{0}(p) \backslash \mathcal{H}+\{\infty, 0\}$.
- Obtain $X_{0}(p)$ as an algebraic curve $/ \mathbb{Q}$ with $0, \infty \in X_{0}(p)(\mathbb{Q})$.
- Example. The modular curve $X_{0}(31)$ is a hyperelliptic curve. Here is a model $/ \mathbb{Q}$:

$$
y^{2}=x^{6}-8 x^{5}+6 x^{4}+18 x^{3}-11 x^{2}-14 x-3
$$

- Example. The modular curve $X_{0}(43)$ is a curve of genus 3. It admits the following plane quartic model in \mathbb{P}^{3} :

$$
\begin{array}{r}
64 X^{4}+48 X^{3} Y+16 X^{2} Y^{2}+8 X Y^{3}-3 Y^{4}+ \\
\left(16 X^{2}+8 X Y+2 Y^{2}\right) T^{2}+T^{4}=0
\end{array}
$$

From Irreducibility to Modular Curves

$X_{0}(p)$ parametrises elliptic curves with cyclic subgroups of size p.

- Let E / K be an elliptic curve and let C be a K-rational cyclic subgroup of E of size p. Then $[(E, C)] \in X_{0}(p)(K)$ is a non-cuspidal K-rational point.
So $\bar{\rho}_{E, p}$ reducible $\Rightarrow E$ has a K-rational cyclic subgroup of size p
$\Rightarrow E \rightsquigarrow x \in X_{0}(p)(K)$, a non-cuspidal K-rational point.
- If $X_{0}(p)(K)$ has no points that come from the Frey curve E, then $\bar{\rho}_{E, p}$ is irreducible.

Example. Let $E / \mathbb{Q}(\sqrt{26})$. Is $\bar{\rho}_{E, 31}$ irreducible? Yes, since $X_{0}(31)(\mathbb{Q}(\sqrt{26}))=\{(1: 1: 0),(1:-1: 0)\}=\{\infty, 0\}$, the two cusps.

Quadratic Points on Modular Curves

Definition

We say $x \in X_{0}(p)$ is a quadratic point if $x \in X_{0}(p)(K)$ for some quadratic field K. Quadratic points come in pairs: $\left(x, x^{\sigma}\right)$.

Note. $X_{0}(31)$ has infinitely many quadratic points (as K ranges over all quadratic fields), but finitely many over a fixed quadratic field.
Two basic types of quadratic points $\left(x, x^{\sigma}\right)$ on $X_{0}(p)$:

- either $w_{p}(x)=x^{\sigma}$;
- or $w_{p}(x) \neq x^{\sigma}$,
where w_{p}, which is defined $/ \mathbb{Q}$, is the Atkin-Lehner involution on $X_{0}(p)$.
For $p<80$ say, we can study quadratic points using a model of $X_{0}(p)$. But, we want to study all p !
We need to use properties of the Frey curve.

Primes of multiplicative reduction

> Theorem (Najman and Turcas ($p>71$) 2020, M. 2021)
> Let $p>19, p \neq 37$. Let E / K. Let q, with $q>5, q \neq p$, be a rational prime that does not split in K, such that the unique prime of K above q is of multiplicative reduction for E. Then $\bar{\rho}_{E, p}$ is irreducible.

Conclusion. Knowing a non-split prime of multiplicative reduction for E allows us to bound p.
Idea. If $\bar{\rho}_{E, p}$ is reducible then $E \rightsquigarrow x, x^{\sigma} \in X_{0}(p)(K)$. Reduce $\bmod q:$

$$
\begin{aligned}
X_{0}(p) \longrightarrow \widetilde{X}_{0}(p) \\
x, x^{\sigma} \longmapsto \widetilde{\infty}, \widetilde{\infty} \text { or } \widetilde{0}, \widetilde{0}
\end{aligned}
$$

This is a very restrictive condition! (Obtain contradiction using Eisenstein quotient and formal immersions.)
Problem. Conductor of Frey curve depends on solution. Cannot find (non-split) primes of multiplicative reduction...

Primes of Good Reduction

Write ϵ for the fundamental unit of K and $n_{\mathfrak{q}}$ for the norm of \mathfrak{q}.

Theorem (Freitas-Siksek, 2015)

Let $p \geq 17$ be prime, let E / K and let $\mathfrak{q} \mid q$ be a prime of good reduction for E, with $q \neq p$. Let $r_{q}=1$ if \mathfrak{q} is principal and $r_{q}=2$ otherwise. Let

$$
R_{\mathfrak{q}}:=\operatorname{lcm}\left\{\operatorname{Res}\left(X^{2}-a X+n_{q}, X^{12 r_{\mathfrak{q}}}-1\right): a \in \mathcal{A}_{\mathfrak{q}}\right\},
$$

where $\mathcal{A}_{\mathfrak{q}}=\left\{a \in \mathbb{Z}:|a| \leq 2 \sqrt{n_{q}}, \quad n_{\mathfrak{q}}+1-a \equiv 0(\bmod 4)\right\}$. If $p \nmid \Delta_{K} \cdot \operatorname{Norm}\left(\epsilon^{12}-1\right) \cdot R_{q}$ then $\bar{\rho}_{E, p}$ is irreducible.

Conclusion. Knowing a prime of good reduction for E allows us to bound p. Good bound using many \mathfrak{q} and taking GCD.
Problem. Conductor of Frey curve depends on solution. Cannot find primes of good reduction... But...

Combining the two

We know which primes \mathfrak{q} are of semistable reduction for E, i.e. primes which are either of good reduction or of multiplicative reduction (even if we don't know which).
Combine both theorems to obtain a bound (take the union).
Example. $E / \mathbb{Q}(\sqrt{26})$. If $\mathfrak{q} \nmid 2,5$ then it is of semistable reduction for E. Use non-split primes \mathfrak{q} with $7 \leq n_{\mathfrak{q}} \leq 10000$. Conclude $\bar{\rho}_{E, p}$ is irreducible unless $p \leq 19$ or $p \in\{37,101,103\}$.

How can we deal with leftover primes?
For a fixed prime p, we can (usually) obtain split primes of multiplicative reduction.

Split primes of multiplicative reduction

Theorem (M. 2021)

Let $p>19, p \neq 37$. Let E / K. Let q, with $q>5, q \neq p$, be a rational prime that splits in K, such that both prime of K above q are of multiplicative reduction for E. Suppose that in $X_{0}(p)(K)$, $w_{p}(x) \neq x^{\sigma}$ for any pair x, x^{σ}. Then $\bar{\rho}_{E, p}$ is irreducible.

Why is the split case different?

$$
\begin{aligned}
& x_{0}(p) \longrightarrow \widetilde{X}_{0}(p) \\
& x, x^{\sigma} \longmapsto \widetilde{\infty}, \widetilde{\infty} \text { or } \widetilde{0}, \widetilde{0} \text { or } \widetilde{0}, \widetilde{\infty} \text { or } \widetilde{\infty}, \widetilde{0} .
\end{aligned}
$$

Proof uses Relative Symmetric Chabauty.
Example. $E / \mathbb{Q}(\sqrt{26})$. Is $\bar{\rho}_{E, 103}$ irreducible? Both primes of $\mathbb{Q}(\sqrt{26})$ above 1031 are of multiplicative reduction for E. We find that no pairs of quadratic points in $X_{0}(103)(\mathbb{Q}(\sqrt{26}))$ are interchanged by w_{103}. Conclusion: $\bar{\rho}_{E, 103}$ is irreducible.

Table of Contents

(1) Introduction

(2) FLT over the Rationals
(3) FLT over a Real Quadratic Field
(4) Modular Curves
(5) Results

Theorem (Jarvis and Meekin, 2003)

The equation

$$
x^{n}+y^{n}=z^{n}, \quad x, y, z \in K
$$

has no non-trivial solutions for $n \geq 4$ and $K=\mathbb{Q}(\sqrt{2})$.
For $K=\mathbb{Q}(\sqrt{2})$ the Frey curve is semistable; closer to rational case.

Theorem (Freitas and Siksek, 2014)

The equation

$$
x^{n}+y^{n}=z^{n}, \quad x, y, z \in K
$$

has no non-trivial solutions for $n \geq 4$ and $K=\mathbb{Q}(\sqrt{d})$, when $d \in\{3,6,7,10,11,13,14,15,19,21,22,23\}$.

Fewer irreducibility results needed. No issues computing newforms.

Results

Theorem (M. 2021)

The equation

$$
x^{n}+y^{n}=z^{n}, \quad x, y, z \in K
$$

has no non-trivial solutions for $n \geq 4$ and $K=\mathbb{Q}(\sqrt{d})$, when $d \in\{26,29,30,31,35,37,38,42,43,46,47,51,53,58,59,61,62$, $65,66,67,69,71,73,74,77,79,82,83,85,86,87,91,93,94,97\}$.

Partial results obtained for some other $26 \leq d \leq 97$.
No results obtained for $d=39,70,78,95$.
Main new tools:

- New irreducibilty methods.
- Avoiding computation of newforms.

Hope to use methods developed to solve other Diophantine equations; both over the rationals and over number fields.

Thank you for listening! :)

