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Statement of Fermat’s Last Theorem over Q

Theorem (Wiles + many others! 1995)

The equation
xn + yn = zn,

with n ≥ 3, has no non-trivial solutions for integers x , y , z .

A non-trivial solution means xyz 6= 0.
(We can also replace ‘integers’ by ‘rationals’).
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Generalising to Number Fields

What happens if we replace the word integers by OK , for K a
number field?

Question

Let K be a number field. Does the equation

an + bn = cn,

with n ≥ 3, have non-trivial solutions for a, b, c ∈ OK?

(We can also replace ‘OK ’ by ‘K ’).

Does this exact statement always hold?

For which number fields K , and for which exponents n might
it hold?

How might we prove such statements?
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Outline of Talk

Overview the proof of FLT over Q.

Try to use the same proof over a real quadratic field
K = Q(

√
d).

Understand main difficulties and see how modular curves
play a role.

[Slides available on my webpage.]
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First Observations

If n = p ·m and (x , y , z) satisfies xn + yn = zn, then

(xm)p + (ym)p = (zm)p.

n = 3 (Euler, 1770) and n = 4 (Fermat, 1670): elementary.

So enough to prove:

FLT

The equation
xp + yp = zp,

with p ≥ 5, prime, has no (non-trivial) solutions for integers x , y , z .
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Elliptic Curves

An elliptic curve over Q is a curve given by an equation

Y 2 = X 3 + AX 2 + BX + C ,

where A,B,C ∈ Q. It is smooth.

E has a minimal discriminant, ∆min.

If p - ∆min then ap(E ) := p + 1−#Ẽ (Fp); the ‘trace of
Frobenius at p’.

E has a conductor

NE :=
∏

p|∆min

pep , (ep ≥ 1).

If N is squarefree, E is called semistable.
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Newforms

A newform of level N ′ is a holomorphic function f : H → C, where
H = {z ∈ C : im(z) > 0} is the upper half-plane.

f has a Fourier or q-expansion:

f =
∞∑
n=1

anq
n, where an ∈ L, q = e

2πi
z , z ∈ H.

There are finitely many newforms at each level N ′.

Example. There are two newforms at level 38:

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

No newforms at level 2.
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The Frey Curve

FLT

The equation xp + yp = zp, with p ≥ 5, prime, has no non-trivial
solutions for integers x , y , z .

Suppose (x , y , z) (with x , y , z pairwise coprime) is a non-trivial
solution.
Associate to (x , y , z) the Frey Curve

Ex ,y ,z,p : Y 2 = X (X − xp)(X + yp).

This is an elliptic curve /Q.

#E (Q)[2] = 4.

∆min = 2−8(xyz)2p.

N = 2
∏

p|xyz,odd p , squarefree.
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Level-Lowering

Level-Lowering Theorem (Ribet)

Let E be a modular elliptic curve over Q of conductor N and let
p ≥ 5 be prime. Suppose ρE ,p is irreducible. Then E arises mod p
from a newform f at level Np, where

Np =
N∏

q‖N,p|ordq(∆min)

q
.

W + B + C + D +T: Elliptic curves over Q are modular.
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Arises mod p

Let E/Q be an elliptic curve of conductor N.

Let f =
∑

anq
n be a newform of level N ′.

Definition

Let p be a prime. We say E arises modulo p from f if for all
primes l - pNN ′,

al(f ) ≡ al(E ) (mod p).
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Mazur’s Theorem

Condition in Level-Lowering Theorem: Suppose ρE ,p is irreducible.

ρE ,p is the mod-p Galois representation associated to E .

The following conditions are equivalent:

ρE ,p is reducible.

E has a rational cyclic subgroup of size p.

E admits a rational p-isogeny.

Mazur’s Theorem

Let E/Q be a semistable elliptic curve with #E (Q)[2] = 4. Then
ρE ,p is irreducible for p ≥ 5.

This holds for our Frey curve Ex ,y ,z,p.



Introduction FLT over the Rationals FLT over a Real Quadratic Field Modular Curves Results

Level-Lowering the Frey Curve

We level-lower: E arises mod p from a newform f at level Np.

Here

Np =
N∏

q‖N,p|ordq(∆min)

q
= 2,

which is no longer dependent on the solution (x , y , z).

But! There are no newforms at level 2, contradiction.

Conclusion: Fermat’s Last Theorem is true.
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What changes over a number field?

Fix a real quadratic field K = Q(
√
d). Does the equation

ap + bp = cp,

with p ≥ 5, have (non-trivial) solutions for a, b, c ∈ OK?

Same general method: level-lower a Frey curve.

Frey curve Ea,b,c,p : Y 2 = X (X − ap)(X + bp), now /K .
Conductor N is an ideal of OK .
Values ap(E ) ap(E ), where p is a prime ideal of OK .

Newform of level N ′  Hilbert newform of level N ′.
Values ap(f ) ap(f), where p is a prime ideal of OK .
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Three Main Issues

We have an analogue of the level-lowering theorem. There are
three main issues.

Modularity. To level-lower, E must be modular.
Elliptic curves over real quadratic fields are modular
(Freitas, Le Hung, Siksek, 2013). X
Irreducibility. To level-lower, ρE ,p must be irreducible.

Newforms. Need to calculate and eliminate Hilbert
newforms appearing at level Np (over Q there were none at
level Np = 2; contradiction right away).

Focus for the rest of the talk: irreducibility.
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The Modular Curve X0(p)

Γ0(p) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod p)

}
.

As a compact Riemann surface: X0(p) = Γ0(p)\H+ {∞, 0}.
Obtain X0(p) as an algebraic curve /Q with 0,∞ ∈ X0(p)(Q).

Example. The modular curve X0(31) is a hyperelliptic curve.
Here is a model /Q:

y2 = x6 − 8x5 + 6x4 + 18x3 − 11x2 − 14x − 3.

Example. The modular curve X0(43) is a curve of genus 3. It
admits the following plane quartic model in P3:

64X 4 + 48X 3Y + 16X 2Y 2 + 8XY 3 − 3Y 4+

(16X 2 + 8XY + 2Y 2)T 2 + T 4 = 0.
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From Irreducibility to Modular Curves

X0(p) parametrises elliptic curves with cyclic subgroups of size p.

Let E/K be an elliptic curve and let C be a K -rational cyclic
subgroup of E of size p. Then [(E ,C )] ∈ X0(p)(K ) is a
non-cuspidal K -rational point.

So ρE ,p reducible ⇒ E has a K -rational cyclic subgroup of size p
⇒ E  x ∈ X0(p)(K ), a non-cuspidal K -rational point.

If X0(p)(K ) has no points that come from the Frey curve E ,
then ρE ,p is irreducible.

Example. Let E/Q(
√

26). Is ρE ,31 irreducible? Yes, since

X0(31)(Q(
√

26)) = {(1 : 1 : 0), (1 : −1 : 0)} = {∞, 0}, the two
cusps.
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Quadratic Points on Modular Curves

Definition

We say x ∈ X0(p) is a quadratic point if x ∈ X0(p)(K ) for some
quadratic field K . Quadratic points come in pairs: (x , xσ).

Note. X0(31) has infinitely many quadratic points (as K ranges
over all quadratic fields), but finitely many over a fixed quadratic
field.
Two basic types of quadratic points (x , xσ) on X0(p):

either wp(x) = xσ;

or wp(x) 6= xσ,

where wp, which is defined /Q, is the Atkin-Lehner involution on
X0(p).
For p < 80 say, we can study quadratic points using a model of
X0(p). But, we want to study all p!
We need to use properties of the Frey curve.
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Primes of multiplicative reduction

Theorem (Najman and Turcas (p > 71) 2020, M. 2021)

Let p > 19, p 6= 37. Let E/K. Let q, with q > 5, q 6= p, be a
rational prime that does not split in K, such that the unique prime
of K above q is of multiplicative reduction for E . Then ρE ,p is
irreducible.

Conclusion. Knowing a non-split prime of multiplicative reduction
for E allows us to bound p.
Idea. If ρE ,p is reducible then E  x , xσ ∈ X0(p)(K ). Reduce
mod q:

X0(p) −→ X̃0(p)

x , xσ 7−→ ∞̃, ∞̃ or 0̃, 0̃.

This is a very restrictive condition! (Obtain contradiction using
Eisenstein quotient and formal immersions.)
Problem. Conductor of Frey curve depends on solution. Cannot
find (non-split) primes of multiplicative reduction...
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Primes of Good Reduction

Write ε for the fundamental unit of K and nq for the norm of q.

Theorem (Freitas–Siksek, 2015)

Let p ≥ 17 be prime, let E/K and let q | q be a prime of good
reduction for E , with q 6= p. Let rq = 1 if q is principal and rq = 2
otherwise. Let

Rq := lcm{Res(X 2 − aX + nq,X
12rq − 1) : a ∈ Aq},

where Aq = {a ∈ Z : |a| ≤ 2
√
nq, nq + 1− a ≡ 0 (mod 4)}. If

p - ∆K ·Norm(ε12 − 1) · Rq then ρE ,p is irreducible.

Conclusion. Knowing a prime of good reduction for E allows us to
bound p. Good bound using many q and taking GCD.
Problem. Conductor of Frey curve depends on solution. Cannot
find primes of good reduction... But...
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Combining the two

We know which primes q are of semistable reduction for E , i.e.
primes which are either of good reduction or of multiplicative
reduction (even if we don’t know which).
Combine both theorems to obtain a bound (take the union).

Example. E/Q(
√

26). If q - 2, 5 then it is of semistable reduction
for E . Use non-split primes q with 7 ≤ nq ≤ 10000. Conclude ρE ,p
is irreducible unless p ≤ 19 or p ∈ {37, 101, 103}.

How can we deal with leftover primes?

For a fixed prime p, we can (usually) obtain split primes of
multiplicative reduction.
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Split primes of multiplicative reduction

Theorem (M. 2021)

Let p > 19, p 6= 37. Let E/K. Let q, with q > 5, q 6= p, be a
rational prime that splits in K, such that both prime of K above q
are of multiplicative reduction for E . Suppose that in X0(p)(K ),
wp(x) 6= xσ for any pair x , xσ. Then ρE ,p is irreducible.

Why is the split case different?

X0(p) −→ X̃0(p)

x , xσ 7−→ ∞̃, ∞̃ or 0̃, 0̃ or 0̃, ∞̃ or ∞̃, 0̃.
Proof uses Relative Symmetric Chabauty.
Example. E/Q(

√
26). Is ρE ,103 irreducible? Both primes of

Q(
√

26) above 1031 are of multiplicative reduction for E . We find
that no pairs of quadratic points in X0(103)(Q(

√
26)) are

interchanged by w103. Conclusion: ρE ,103 is irreducible.
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Previous Results

Theorem (Jarvis and Meekin, 2003)

The equation
xn + yn = zn, x , y , z ∈ K ,

has no non-trivial solutions for n ≥ 4 and K = Q(
√

2).

For K = Q(
√

2) the Frey curve is semistable; closer to rational
case.

Theorem (Freitas and Siksek, 2014)

The equation
xn + yn = zn, x , y , z ∈ K ,

has no non-trivial solutions for n ≥ 4 and K = Q(
√
d), when

d ∈ {3, 6, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23}.

Fewer irreducibility results needed. No issues computing newforms.
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Results

Theorem (M. 2021)

The equation
xn + yn = zn, x , y , z ∈ K ,

has no non-trivial solutions for n ≥ 4 and K = Q(
√
d), when

d ∈ {26, 29, 30, 31, 35, 37, 38, 42, 43, 46, 47, 51, 53, 58, 59, 61, 62,
65, 66, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 91, 93, 94, 97}.

Partial results obtained for some other 26 ≤ d ≤ 97.
No results obtained for d = 39, 70, 78, 95.
Main new tools:

New irreducibilty methods.

Avoiding computation of newforms.

Hope to use methods developed to solve other Diophantine
equations; both over the rationals and over number fields.
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Thank you for listening! :)
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