Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results

Fermat's Last Theorem and Modular Curves over Real Quadratic Fields

Philippe Michaud-Rodgers

University of Warwick

Seminar on Number Theory and Algebra - University of Zagreb 17.05.2021

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 00000000	Results 0000
Table of	Contents			

- 2 FLT over the Rationals
- 3 FLT over a Real Quadratic Field

Introduction ●000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 00000000	Results 0000
Table of	Contents			

- 2 FLT over the Rationals
- 3 FLT over a Real Quadratic Field

Theorem (Wiles + many others! 1995)

The equation

$$x^n + y^n = z^n,$$

with $n \ge 3$, has no non-trivial solutions for integers x, y, z.

A **non-trivial** solution means $xyz \neq 0$. (We can also replace 'integers' by 'rationals').

Computing	dia ang Ang Minana kang	u Etalala		
0000	00000000	000	0000000	0000
Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results

Generalising to Number Fields

What happens if we replace the word integers by \mathcal{O}_K , for K a number field?

Question

Let K be a number field. Does the equation

$$a^n+b^n=c^n,$$

with $n \geq 3$, have non-trivial solutions for $a, b, c \in \mathcal{O}_K$?

(We can also replace ' $\mathcal{O}_{\mathcal{K}}$ ' by ' \mathcal{K} ').

- Does this exact statement always hold?
- For which number fields *K*, and for which exponents *n* might it hold?
- How might we prove such statements?

Introduction 000●	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 00000000	Results 0000
Outline of	of Talk			

- \bullet Overview the proof of FLT over $\mathbb Q.$
- Try to use the same proof over a real quadratic field $K = \mathbb{Q}(\sqrt{d}).$
- Understand main difficulties and see how **modular curves** play a role.

[Slides available on my webpage.]

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results
0000	●00000000		00000000	0000
Table of	f Contents			

1 Introduction

- 2 FLT over the Rationals
- 3 FLT over a Real Quadratic Field

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results
0000	00000000		00000000	0000
First Ob	servations			

• If $n = p \cdot m$ and (x, y, z) satisfies $x^n + y^n = z^n$, then

$$(x^m)^p + (y^m)^p = (z^m)^p.$$

• n = 3 (Euler, 1770) and n = 4 (Fermat, 1670): elementary.

So enough to prove:

FLT

The equation

$$x^{p} + y^{p} = z^{p},$$

with $p \ge 5$, prime, has no (non-trivial) solutions for integers x, y, z.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 00000000	Results 0000
Elliptic	Curves			

An elliptic curve over \mathbb{Q} is a curve given by an equation

$$Y^2 = X^3 + AX^2 + BX + C,$$

where $A, B, C \in \mathbb{Q}$. It is smooth.

- *E* has a minimal discriminant, Δ_{\min} .
- If p ∤ Δ_{min} then a_p(E) := p + 1 # Ẽ(𝔽_p); the 'trace of Frobenius at p'.
- E has a conductor

$${\sf N}_{\sf E}:=\prod_{
ho\mid\Delta_{\min}}
ho^{e_{
ho}},\qquad (e_{
ho}\geq 1).$$

• If *N* is squarefree, *E* is called semistable.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 00000000	Results 0000
Newforn	ns			

A newform of level N' is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$, where $\mathcal{H} = \{z \in \mathbb{C} : im(z) > 0\}$ is the upper half-plane.

• *f* has a **Fourier** or *q*-expansion:

$$f = \sum_{n=1}^{\infty} a_n q^n$$
, where $a_n \in L$, $q = e^{\frac{2\pi i}{z}}$, $z \in \mathcal{H}$.

- There are finitely many newforms at each level N'.
- Example. There are two newforms at level 38:

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

$$f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$$

• No newforms at level 2.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 00000000	Results 0000
The Frev	Curve			

FLT

The equation $x^p + y^p = z^p$, with $p \ge 5$, prime, has no non-trivial solutions for integers x, y, z.

Suppose (x, y, z) (with x, y, z pairwise coprime) is a non-trivial solution.

Associate to (x, y, z) the Frey Curve

$$E_{x,y,z,p}: Y^2 = X(X-x^p)(X+y^p).$$

This is an elliptic curve $/\mathbb{Q}$.

- $\#E(\mathbb{Q})[2] = 4.$
- $\Delta_{\min} = 2^{-8} (xyz)^{2p}$.
- $N = 2 \prod_{p \mid xyz, \text{odd}} p$, squarefree.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results 0000
	owering			

Level-Lowering Theorem (Ribet)

ຄ

Let *E* be a modular elliptic curve over \mathbb{Q} of conductor *N* and let $p \ge 5$ be prime. Suppose $\overline{\rho}_{E,p}$ is irreducible. Then *E* arises mod *p* from a newform *f* at level N_p , where

$$N_{p} = rac{N}{\prod\limits_{q \parallel N, p \mid \mathrm{ord}_{q}(\Delta_{\min})} q}.$$

 \bullet W + B + C + D +T: Elliptic curves over ${\mathbb Q}$ are modular.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 00000000	Results 0000
Arises m	od <i>p</i>			

- Let E/\mathbb{Q} be an elliptic curve of conductor N.
- Let $f = \sum a_n q^n$ be a newform of level N'.

Definition

Let p be a prime. We say E arises modulo p from f if for all primes $l \nmid pNN'$,

 $a_l(f) \equiv a_l(E) \pmod{p}.$

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results
0000	0000000€0	000	00000000	0000
Mazur's	Theorem			

Condition in Level-Lowering Theorem: Suppose $\overline{\rho}_{E,p}$ is irreducible.

• $\overline{\rho}_{E,p}$ is the **mod**-*p* **Galois representation** associated to *E*. The following conditions are equivalent:

- $\overline{\rho}_{E,p}$ is reducible.
- E has a rational cyclic subgroup of size p.
- *E* admits a rational *p*-isogeny.

Mazur's Theorem

Let E/\mathbb{Q} be a semistable elliptic curve with $\#E(\mathbb{Q})[2] = 4$. Then $\overline{\rho}_{E,p}$ is irreducible for $p \geq 5$.

This holds for our Frey curve $E_{x,y,z,p}$.

- We level-lower: E arises mod p from a newform f at level N_p .
- Here

$$N_{p} = \frac{N}{\prod_{q \parallel N, p \mid \mathrm{ord}_{q}(\Delta_{\min})} q} = 2,$$

which is no longer dependent on the solution (x, y, z).

- But! There are no newforms at level 2, contradiction.
- Conclusion: Fermat's Last Theorem is true.

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results
0000		●00	00000000	0000
Table of	Contents			

1 Introduction

- 2 FLT over the Rationals
- 3 FLT over a Real Quadratic Field

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results
0000		o●o	00000000	0000
What ch	nanges over a n	umber field?		

Fix a real quadratic field $K = \mathbb{Q}(\sqrt{d})$. Does the equation

$$a^p + b^p = c^p,$$

with $p \geq 5$, have (non-trivial) solutions for $a, b, c \in \mathcal{O}_K$?

- Same general method: level-lower a Frey curve.
- Frey curve E_{a,b,c,p}: Y² = X(X − a^p)(X + b^p), now /K. Conductor N is an ideal of O_K.
 Values a_p(E) → a_p(E), where p is a prime ideal of O_K.
- Newform of level N' → Hilbert newform of level N'.
 Values a_p(f) → a_p(f), where p is a prime ideal of O_K.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field 00●	Modular Curves	Results 0000
Three Ma	ain Issues			

We have an analogue of the level-lowering theorem. There are three main issues.

- Modularity. To level-lower, E must be modular. Elliptic curves over real quadratic fields are modular (Freitas, Le Hung, Siksek, 2013). √
- Irreducibility. To level-lower, $\overline{\rho}_{E,p}$ must be irreducible.
- Newforms. Need to calculate and eliminate Hilbert newforms appearing at level N_ρ (over Q there were none at level N_ρ = 2; contradiction right away).

Focus for the rest of the talk: irreducibility.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves ●0000000	Results 0000
Table of	Contents			

1 Introduction

- PLT over the Rationals
- 3 FLT over a Real Quadratic Field

				0000
Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results

The Modular Curve $X_0(p)$

•
$$\Gamma_0(p) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{p} \right\}.$$

- As a compact Riemann surface: $X_0(p) = \Gamma_0(p) \setminus \mathcal{H} + \{\infty, 0\}.$
- Obtain $X_0(p)$ as an algebraic curve $/\mathbb{Q}$ with $0,\infty\in X_0(p)(\mathbb{Q})$.
- **Example.** The modular curve $X_0(31)$ is a hyperelliptic curve. Here is a model $/\mathbb{Q}$:

$$y^2 = x^6 - 8x^5 + 6x^4 + 18x^3 - 11x^2 - 14x - 3.$$

• **Example.** The modular curve $X_0(43)$ is a curve of genus 3. It admits the following plane quartic model in \mathbb{P}^3 :

$$64X^{4} + 48X^{3}Y + 16X^{2}Y^{2} + 8XY^{3} - 3Y^{4} + (16X^{2} + 8XY + 2Y^{2})T^{2} + T^{4} = 0.$$

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field 000	Modular Curves	Results 0000
From Irre	educibility to M	lodular Curves		

 $X_0(p)$ parametrises elliptic curves with cyclic subgroups of size p.

 Let E/K be an elliptic curve and let C be a K-rational cyclic subgroup of E of size p. Then [(E, C)] ∈ X₀(p)(K) is a non-cuspidal K-rational point.

So $\overline{\rho}_{E,p}$ reducible $\Rightarrow E$ has a *K*-rational cyclic subgroup of size $p \Rightarrow E \rightsquigarrow x \in X_0(p)(K)$, a non-cuspidal *K*-rational point.

 If X₀(p)(K) has no points that come from the Frey curve E, then p
_{E,p} is irreducible.

Example. Let $E/\mathbb{Q}(\sqrt{26})$. Is $\overline{\rho}_{E,31}$ irreducible? Yes, since $X_0(31)(\mathbb{Q}(\sqrt{26})) = \{(1:1:0), (1:-1:0)\} = \{\infty, 0\}$, the two cusps.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results 0000
Quadrati	e Dointe on Mo	dular Curves		

Definition

We say $x \in X_0(p)$ is a **quadratic point** if $x \in X_0(p)(K)$ for some quadratic field K. Quadratic points come in pairs: (x, x^{σ}) .

Note. $X_0(31)$ has infinitely many quadratic points (as K ranges over all quadratic fields), but finitely many over a fixed quadratic field.

Two basic types of quadratic points (x, x^{σ}) on $X_0(p)$:

• either
$$w_p(x) = x^{\sigma}$$
;

• or
$$w_p(x) \neq x^{\sigma}$$
,

where w_p , which is defined $/\mathbb{Q}$, is the **Atkin-Lehner involution** on $X_0(p)$.

For p < 80 say, we can study quadratic points using a model of $X_0(p)$. But, we want to study all p! We need to use properties of the Frey curve.

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results		
0000	000000000	000	0000€000	0000		
Primes of multiplicative reduction						

Theorem (Najman and Turcas (p > 71) 2020, M. 2021)

Let p > 19, $p \neq 37$. Let E/K. Let q, with q > 5, $q \neq p$, be a rational prime that does not split in K, such that the unique prime of K above q is of multiplicative reduction for E. Then $\overline{\rho}_{E,p}$ is irreducible.

Conclusion. Knowing a non-split prime of multiplicative reduction for E allows us to bound p.

Idea. If $\overline{\rho}_{E,p}$ is reducible then $E \rightsquigarrow x, x^{\sigma} \in X_0(p)(K)$. Reduce mod q: $X_0(p) \longrightarrow \widetilde{X}_0(p)$

$$x, x^{\sigma} \longmapsto \widetilde{\infty}, \widetilde{\infty} \text{ or } \widetilde{0}, \widetilde{0}.$$

This is a very restrictive condition! (Obtain contradiction using Eisenstein quotient and formal immersions.)

Problem. Conductor of Frey curve depends on solution. Cannot find (non-split) primes of multiplicative reduction...

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves ooooo●oo	Results 0000
Primes of	Good Reducti	on		

Write ϵ for the fundamental unit of K and n_q for the norm of q.

Theorem (Freitas–Siksek, 2015)

Let $p \ge 17$ be prime, let E/K and let $q \mid q$ be a prime of good reduction for E, with $q \ne p$. Let $r_q = 1$ if q is principal and $r_q = 2$ otherwise. Let

$$R_{\mathfrak{q}} := \operatorname{lcm} \{ \operatorname{Res}(X^2 - aX + n_{\mathfrak{q}}, X^{12r_{\mathfrak{q}}} - 1) : a \in \mathcal{A}_{\mathfrak{q}} \},\$$

where $\mathcal{A}_{q} = \{a \in \mathbb{Z} : |a| \leq 2\sqrt{n_{q}}, \quad n_{q} + 1 - a \equiv 0 \pmod{4}\}$. If $p \nmid \Delta_{K} \cdot \operatorname{Norm}(\epsilon^{12} - 1) \cdot R_{q}$ then $\overline{\rho}_{E,p}$ is irreducible.

Conclusion. Knowing a prime of good reduction for E allows us to bound p. Good bound using many q and taking GCD. **Problem.** Conductor of Frey curve depends on solution. Cannot find primes of good reduction... But...

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves 000000●0	Results 0000
Combini	ing the two			

We know which primes q are of **semistable** reduction for *E*, i.e. primes which are either of good reduction *or* of multiplicative reduction (even if we don't know which). Combine both theorems to obtain a bound (take the union).

Example. $E/\mathbb{Q}(\sqrt{26})$. If $\mathfrak{q} \nmid 2, 5$ then it is of semistable reduction for E. Use non-split primes \mathfrak{q} with $7 \leq n_{\mathfrak{q}} \leq 10000$. Conclude $\overline{\rho}_{E,p}$ is irreducible unless $p \leq 19$ or $p \in \{37, 101, 103\}$.

How can we deal with leftover primes?

For a fixed prime p, we can (usually) obtain split primes of multiplicative reduction.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field 000	Modular Curves	Results 0000
C 11.		10 J.		

Split primes of multiplicative reduction

Theorem (M. 2021)

Let p > 19, $p \neq 37$. Let E/K. Let q, with q > 5, $q \neq p$, be a rational prime that splits in K, such that both prime of K above q are of multiplicative reduction for E. Suppose that in $X_0(p)(K)$, $w_p(x) \neq x^{\sigma}$ for any pair x, x^{σ} . Then $\overline{\rho}_{E,p}$ is irreducible.

Why is the split case different?

$$egin{aligned} X_0(p) &\longrightarrow \widetilde{X}_0(p) \ x, x^\sigma &\longmapsto \widetilde{\infty}, \widetilde{\infty} ext{ or } \widetilde{0}, \widetilde{0} ext{ or } \widetilde{0}, \widetilde{\infty} ext{ or } \widetilde{\infty}, \widetilde{0} \end{aligned}$$

Proof uses *Relative Symmetric Chabauty*. **Example.** $E/\mathbb{Q}(\sqrt{26})$. Is $\overline{\rho}_{E,103}$ irreducible? Both primes of $\mathbb{Q}(\sqrt{26})$ above 1031 are of multiplicative reduction for *E*. We find that no pairs of quadratic points in $X_0(103)(\mathbb{Q}(\sqrt{26}))$ are interchanged by w_{103} . Conclusion: $\overline{\rho}_{E,103}$ is irreducible.

Introduction 0000	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results ●000
Table of	Contents			

1 Introduction

- PLT over the Rationals
- 3 FLT over a Real Quadratic Field

0000	00000000	000	0000000	0000	
Previous Results					

Theorem (Jarvis and Meekin, 2003)

The equation

$$x^n + y^n = z^n, \quad x, y, z \in K,$$

has no non-trivial solutions for $n \ge 4$ and $K = \mathbb{Q}(\sqrt{2})$.

For $K = \mathbb{Q}(\sqrt{2})$ the Frey curve is semistable; closer to rational case.

Theorem (Freitas and Siksek, 2014)

The equation

$$x^n + y^n = z^n, \quad x, y, z \in K,$$

has no non-trivial solutions for $n \ge 4$ and $K = \mathbb{Q}(\sqrt{d})$, when $d \in \{3, 6, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23\}.$

Fewer irreducibility results needed. No issues computing newforms.

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results
0000		000	00000000	00●0
Reculte				

Theorem (M. 2021)

The equation

$$x^n + y^n = z^n, \quad x, y, z \in K,$$

has no non-trivial solutions for $n \ge 4$ and $K = \mathbb{Q}(\sqrt{d})$, when $d \in \{26, 29, 30, 31, 35, 37, 38, 42, 43, 46, 47, 51, 53, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 91, 93, 94, 97\}.$

Partial results obtained for some other $26 \le d \le 97$. No results obtained for d = 39, 70, 78, 95. Main new tools:

- New irreducibilty methods.
- Avoiding computation of newforms.

Hope to use methods developed to solve other Diophantine equations; both over the rationals and over number fields.

Introduction	FLT over the Rationals	FLT over a Real Quadratic Field	Modular Curves	Results
				0000

Thank you for listening! :)