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Fermat's Last Theorem

The equation
Xn +yn — Zn,

with n > 3, has no solutions for x, y,z € Z with xyz # 0.
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The equation
Xn + yn — Zn’

with n > 3, has no solutions for x, y,z € Z with xyz # 0.

Proof.

1. Classical for n € {3,4}.

2. Let n = p > 5 be prime and suppose xP 4 yP = zP with
xyz # 0.



Motivation
0@00000

Fermat's Last Theorem
The equation
Xn + yn — zn’
with n > 3, has no solutions for x, y,z € Z with xyz # 0.
Proof.

1. Classical for n € {3,4}.
2. Let n = p > 5 be prime and suppose xP 4 yP = zP with
xyz # 0.
3. Define the Frey elliptic curve E : Y2 = X(X — xP)(X + yP).
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Xn + yn — zn’
with n > 3, has no solutions for x, y,z € Z with xyz # 0.
Proof.

1. Classical for n € {3,4}.
2. Let n = p > 5 be prime and suppose xP 4 yP = zP with
xyz # 0.
3. Define the Frey elliptic curve E : Y2 = X(X — xP)(X + yP).
4. E does not admit a rational p-isogeny (Mazur’s isogeny thm).

5. E is a modular elliptic curve (Wiles’ modularity thm).
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Fermat's Last Theorem
The equation
Xn + yn — zn’
with n > 3, has no solutions for x, y,z € Z with xyz # 0.
Proof.

1. Classical for n € {3,4}.

Let n = p > 5 be prime and suppose xP + yP = zP with

xyz # 0.

Define the Frey elliptic curve E : Y2 = X(X — xP)(X + yP).
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E ‘corresponds’ to a newform at level 2 (Ribet's level-lowering
thm) ~~ contradiction.
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Mazur's isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E/Q that
admits a rational p-isogeny. Then

pe{2,3,57,11,13,17,19,37,43,67,163}.
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Mazur's isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E/Q that
admits a rational p-isogeny. Then

pe{2,3,57,11,13,17,19,37,43,67,163}.

Why is this an important theorem?
® |sogenies are the basic building blocks of maps between
elliptic curves.

® |t's proof introduced many important concepts and
techniques.

® |eads to a deeper understanding of modular curves and
Galois representations.

® Plays a crucial role in the modular method.
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Mazur's isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E/Q that
admits a rational p-isogeny. Then

pe{2,3,57,11,13,17,19,37,43,67,163}.

Why is this an important theorem?
® |sogenies are the basic building blocks of maps between
elliptic curves.

® |t's proof introduced many important concepts and
techniques.

® |eads to a deeper understanding of modular curves and
Galois representations.

® Plays a crucial role in the modular method.

Key question: Does this theorem generalise to number fields?
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Let Eq, E> be elliptic curves over a number field K.
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@ : E; — E that induces a group homomorphism.
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® An isogeny between elliptic curves is a non-constant morphism
o : By — E; that induces a group homomorphism.

® The degree of an isogeny is the size of its kernel. If ¢ has
prime degree p, we say it is a p-isogeny.
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o : By — E; that induces a group homomorphism.
® The degree of an isogeny is the size of its kernel. If ¢ has
prime degree p, we say it is a p-isogeny.
® An isogeny is K-rational if it can be expressed using rational
functions with coefficients in K.
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Let E1, E> be elliptic curves over a number field K.
® An isogeny between elliptic curves is a non-constant morphism
o : By — E; that induces a group homomorphism.
® The degree of an isogeny is the size of its kernel. If ¢ has
prime degree p, we say it is a p-isogeny.
® An isogeny is K-rational if it can be expressed using rational
functions with coefficients in K.

Example.

Ei:Y?=X34X?2-X, E:Y?=X3-2X%2+5X.

() = ()y;y(xijl)>

ker(p) = {0g,,(0,0)}, it is a (Q-)rational 2-isogeny.
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Question

Let K be a number field. For which primes p does there exist an
elliptic curve E/K admitting a K-rational p-isogeny?
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This is an open problem for any given number field other than Q.
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Question

Let K be a number field. For which primes p does there exist an
elliptic curve E/K admitting a K-rational p-isogeny?

This is an open problem for any given number field other than Q.

Why is this an important question?

® |sogenies are the basic building blocks of maps between
elliptic curves.

® An answer would lead to a deeper understanding of modular
curves and Galois representations.

® An answer would lead to a simpler application of the modular
method over number fields.
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The modular method over number fields

e Start with an equation:

xP+yP=2P  forx,y,z€e K.
xP +y?P =71 forx,y,z € Z.

x?P 4+ 6xP +1 =28y forx,yecZ.

e Write down a Frey elliptic curve E/K.
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The modular method over number fields

e Start with an equation:
xP+yP=2P  forx,y,z€e K.
xP +y?P =71 forx,y,z € Z.
x?P 4+ 6xP +1 =28y forx,yecZ.
e Write down a Frey elliptic curve E/K.
® Prove that E does not admit a K-rational p-isogeny.
® Prove that E is modular.
[ ]

Apply a level-lowering theorem to obtain a contradiction.
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The modular method over number fields

e Start with an equation:
xP+yP=2P  forx,y,z€e K.
xP +y?P =71 forx,y,z € Z.
x?P 4+ 6xP +1 =28y forx,yecZ.
e Write down a Frey elliptic curve E/K.
® Prove that E does not admit a K-rational p-isogeny.
® Prove that E is modular.
[ ]

Apply a level-lowering theorem to obtain a contradiction.

No set method for proving that E does not admit a K-rational
p-isogeny.

Examples
0000
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Aims and concessions
Aims:
® QObtain general results to help solve Diophantine equations
using the modular method over number fields.
® Understand more about isogenies of elliptic curves.

® Understand more about modular curves and Galois
representations.
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® Understand more about isogenies of elliptic curves.

® Understand more about modular curves and Galois
representations.

Concessions:

e Assume E/K is semistable at all primes of K above p.
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Aims and concessions
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® QObtain general results to help solve Diophantine equations
using the modular method over number fields.
® Understand more about isogenies of elliptic curves.

® Understand more about modular curves and Galois
representations.

Concessions:
e Assume E/K is semistable at all primes of K above p.

If E/K is an elliptic curve and p | p is a prime of K, then E is
semistable at p if E has good or multiplicative reduction at p.
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Aims and concessions
Aims:
® QObtain general results to help solve Diophantine equations
using the modular method over number fields.
® Understand more about isogenies of elliptic curves.

® Understand more about modular curves and Galois
representations.

Concessions:
e Assume E/K is semistable at all primes of K above p.

If E/K is an elliptic curve and p | p is a prime of K, then E is
semistable at p if E has good or multiplicative reduction at p.
® This is not a very restrictive assumption.

® |t is already an assumption in the modular method for the
level-lowering theorem.
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Section 2

Sample results
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Theorem (M., 2022)

Let K = Q(v/2) and let p be a prime. There exists an elliptic curve
E /K which admits a K-rational p-isogeny and is semistable at all
primes of K above p if and only if p € {2,3,5,7,11,13,19,37}.
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Theorem (M., 2022)

Let K = Q(v/2) and let p be a prime. There exists an elliptic curve
E /K which admits a K-rational p-isogeny and is semistable at all
primes of K above p if and only if p € {2,3,5,7,11,13,19,37}.

Theorem (M., 2022)

Let K = Q(v/—5) and let p be a prime. There exists an elliptic
curve E/K which admits a K-rational p-isogeny and is semistable
at all primes of K above p if and only if p € {2,3,5,7,13,37,43}.
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Modular curves and Galois representations

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

Strategy:
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Modular curves and Galois representations

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

Strategy:
® Choose q 1 p a prime (of K).
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Modular curves and Galois representations

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

Strategy:

® Choose q 1 p a prime (of K).

e Case (i): q is a prime of potentially multiplicative reduction
for E (meaning v4(j(E)) < 0). Use the theory of modular
curves.
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Modular curves and Galois representations

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

Strategy:

¢ Choose q 1 p a prime (of K).

e Case (i): q is a prime of potentially multiplicative reduction
for E (meaning v4(j(E)) < 0). Use the theory of modular
curves.

e Case (ii): q is a prime of potentially good reduction for E
(meaning v4(j(E)) > 0). Use the theory of Galois
representations.



Motivation Sample results Proofs Examples
0000000 [e]e] 00e000000 0000

The modular curve Xy(p)

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

The curve Xp(p) is an algebraic curve defined over Q whose points
parametrise elliptic curves with a p-isogeny.
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The modular curve Xy(p)

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

The curve Xp(p) is an algebraic curve defined over Q whose points
parametrise elliptic curves with a p-isogeny.

The pair (E, ¢) gives rise to a non-cuspidal K-rational point on the
modular curve Xp(p):

[E, ¢] = x € Xo(p)(K)\{0, 00}
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The modular curve Xy(p)

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

The curve Xp(p) is an algebraic curve defined over Q whose points
parametrise elliptic curves with a p-isogeny.

The pair (E, ¢) gives rise to a non-cuspidal K-rational point on the
modular curve Xp(p):

[E, ¢] = x € Xo(p)(K)\{0, 00}

® We have the j-map j : Xo(p) — P? that satisfies j(x) = j(E).
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The modular curve Xy(p)

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.

The curve Xp(p) is an algebraic curve defined over Q whose points
parametrise elliptic curves with a p-isogeny.

The pair (E, ¢) gives rise to a non-cuspidal K-rational point on the
modular curve Xp(p):

[E, ¢] = x € Xo(p)(K)\{0, 00}

® We have the j-map j : Xo(p) — P? that satisfies j(x) = j(E).
® The cusps 0,00 € Xp(p)(Q) are the poles of the j-map.
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A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.
We have
[E, ] = x € Xo(p)(K)\{0, o0}

We know j(x) = j(E).

Suppose q 1 p is a prime of potentially multiplicative reduction for
E (this is Case (i)).
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A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.
We have
[E, ] = x € Xo(p)(K)\{0, o0}

We know j(x) = j(E).
Suppose q 1 p is a prime of potentially multiplicative reduction for
E (this is Case (i)).

* wU(E)) = wi(x) <.
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A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.
We have
[E, ] = x € Xo(p)(K)\{0, o0}

We know j(x) = j(E).
Suppose q 1 p is a prime of potentially multiplicative reduction for
E (this is Case (i)).

o W((E)) = w(i(x)) < 0.
® So x (mod q) is a pole of the j-map mod q.
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A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.
We have
[E, ] = x € Xo(p)(K)\{0, o0}

We know j(x) = j(E).
Suppose q 1 p is a prime of potentially multiplicative reduction for
E (this is Case (i)).

o W((E)) = w(i(x)) < 0.
® So x (mod q) is a pole of the j-map mod q.
® x (mod q) = o0 (mod q) or 0 (mod q).
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A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, ¢.
We have
[E, ] = x € Xo(p)(K)\{0, o0}

We know j(x) = j(E).
Suppose q 1 p is a prime of potentially multiplicative reduction for
E (this is Case (i)).

o W((E)) = w(i(x)) < 0.

® So x (mod q) is a pole of the j-map mod q.

® x (mod q) = o0 (mod q) or 0 (mod q).

® Argue that x = oo or 0, a contradiction (think of Hensel’s
lemmal).
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The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write E[p] C E(K)
for the p-torsion points of E.
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The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write E[p] C E(K)
for the p-torsion points of E.

The group Gk = Gal(K/K) acts on E[p] = Z/pZ & 7/ pZ and
gives rise to the mod p Galois representation attached to E:

ﬁE,p G — GLz(FP).



Proofs
0000@0000

The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write E[p] C E(K)
for the p-torsion points of E.

The group Gk = Gal(K/K) acts on E[p] = Z/pZ & 7/ pZ and
gives rise to the mod p Galois representation attached to E:

ﬁE,p G — GLz(FP).

Fix a basis (Ry, R2) of E[p].
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The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write E[p] C E(K)
for the p-torsion points of E.

The group Gk = Gal(K/K) acts on E[p] = Z/pZ & 7/ pZ and
gives rise to the mod p Galois representation attached to E:

ﬁE,p G — GLz(FP).

Fix a basis (Ry, R2) of E[p].
For o € Gk,

Rf = aR; + bRy,
RS = cRy + dR».
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The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write E[p] C E(K)
for the p-torsion points of E.

The group Gk = Gal(K/K) acts on E[p] = Z/pZ & 7/ pZ and
gives rise to the mod p Galois representation attached to E:

ﬁE,p G — GLz(FP).

Fix a basis (Ry, R2) of E[p].
For o € Gk,

Rf = aR; + bRy,
RS = cRy + dR».

QN
~—

Then pe (o) = (5
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A key equivalence

Let E/K be an elliptic curve and let p be a prime. The following
are equivalent:

(i) E admits a K-rational p-isogeny, ¢.
(i) Pep: Gk — GL(Fp) is reducible.

Examples
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A key equivalence

Let E/K be an elliptic curve and let p be a prime. The following
are equivalent:

(i) E admits a K-rational p-isogeny, ¢.
(i) Pep: Gk — GL(Fp) is reducible.

Proof of (i) = (ii).

ker() is a non-trivial proper Gx-submodule of E[p].
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The isogeny character

Let E/K be an elliptic such that pg , is reducible. So

PEp ™~ (())‘;’)

Examples
0000
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The isogeny character

Let E/K be an elliptic such that pg , is reducible. So
- Ak
P~ (o)

The isogeny character

A1 Gk — Fj is the isogeny character of (E, ).
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The isogeny character

Let E/K be an elliptic such that pg , is reducible. So
- Ak
P~ (o)

The isogeny character

A1 Gk — Fj is the isogeny character of (E, ¢).

e ) tells us how Gy acts on ker(y): if ker(¢) = (R1), then for
o€ GK,
RY = A\(o)Ry.
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The isogeny character

Let E/K be an elliptic such that pg , is reducible. So
- Ak
P~ (o)

The isogeny character

A1 Gk — Fj is the isogeny character of (E, ¢).

e ) tells us how Gy acts on ker(y): if ker(¢) = (R1), then for
o€ GK,
RY = A\(o)Ry.

We study A as it encodes key information about E and .

Examples
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The group Gk and Frobenius elements

We want to study A : Gk — F. The group Gk is complicated and
we want to work with concrete elements.
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The group Gk and Frobenius elements

We want to study A : Gk — F. The group Gk is complicated and
we want to work with concrete elements.

Let g be a prime of K and let 04 € Gk be a Frobenius element
at g. This is any element that maps to the Frobenius
automorphism in Gi, where k = Ok /q.
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The group Gk and Frobenius elements

We want to study A : Gk — F. The group Gk is complicated and
we want to work with concrete elements.

Let g be a prime of K and let 04 € Gk be a Frobenius element
at g. This is any element that maps to the Frobenius
automorphism in Gi, where k = Ok /q.

We study A(oq) € ).
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A prime of potentially good reduction

Let £/K be an elliptic such that 5 , is reducible and is semistable
at the primes of K above p.
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A prime of potentially good reduction

Let £/K be an elliptic such that pg , is reducible and is semistable
at the primes of K above p.

Suppose q 1 p is a prime of potentially good reduction for E (this is
Case (ii)). Choose r such that q" = aOk is principal.
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A prime of potentially good reduction

Let £/K be an elliptic such that pg , is reducible and is semistable
at the primes of K above p.

Suppose q 1 p is a prime of potentially good reduction for E (this is
Case (ii)). Choose r such that ¢" = aOk is principal.

Can prove: A(oy) is a root of the following polynomials (after
reducing mod p):

(1) X2 —at for some t € {0,12}; and

(1) X2 — aX + Norm(q) for some |a| < 21/Norm(q).
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A prime of potentially good reduction

Let £/K be an elliptic such that pg , is reducible and is semistable
at the primes of K above p.

Suppose q 1 p is a prime of potentially good reduction for E (this is
Case (ii)). Choose r such that ¢" = aOk is principal.

Can prove: A(oy) is a root of the following polynomials (after
reducing mod p):

(1) X2 —at for some t € {0,12}; and
(1) X2 — aX + Norm(q) for some |a| < 21/Norm(q).

Considering all cases restricts the possible values of p.
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A prime of potentially good reduction

Let £/K be an elliptic such that pg , is reducible and is semistable
at the primes of K above p.

Suppose q 1 p is a prime of potentially good reduction for E (this is
Case (ii)). Choose r such that ¢" = aOk is principal.

Can prove: A(oy) is a root of the following polynomials (after
reducing mod p):

(1) X2 —at for some t € {0,12}; and
(1) X2 — aX + Norm(q) for some |a| < 21/Norm(q).

Considering all cases restricts the possible values of p.

The fact that E is semistable at the primes of K above p means
that ¢t € {0,12}. Otherwise, t € {0,4,6,8,12}.
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Section 4

Examples
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Example: K = Q(+/2)

0e00
Suppose E/K is an elliptic curve and that p is a prime such that
E/K admits a K-rational p-isogeny and is semistable at the primes
of K above p.
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Example: K = Q(+/2)

0e00
Suppose E/K is an elliptic curve and that p is a prime such that
of K above p.

E/K admits a K-rational p-isogeny and is semistable at the primes
® Assume p > 19.
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000000000

Example: K = Q(+/2)

0e00
Suppose E/K is an elliptic curve and that p is a prime such that
of K above p.

E/K admits a K-rational p-isogeny and is semistable at the primes
® Assume p > 19.

e Start with q;1 = 3 Ok.
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Example: K = Q(V/2)
Suppose E/K is an elliptic curve and that p is a prime such that

E/K admits a K-rational p-isogeny and is semistable at the primes
of K above p.

® Assume p > 19.

e Start with q; = 3 Ok.

® By considering Xp(p): either p = 37 or E has potentially good
reduction at q;.



Motivation Sample results Proofs

Examples
0000000 oo

000000000 (o] le]e]

Example: K = Q(V/2)
Suppose E/K is an elliptic curve and that p is a prime such that

E/K admits a K-rational p-isogeny and is semistable at the primes
of K above p.

® Assume p > 19.

e Start with q; = 3 Ok.

® By considering Xp(p): either p = 37 or E has potentially good
reduction at q;.

® By considering pg

p € Py := {37,43,61,73,89,97, 109, 157, 313, 1489}
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Example: K = Q(V/2)
Suppose E/K is an elliptic curve and that p is a prime such that

E/K admits a K-rational p-isogeny and is semistable at the primes
of K above p.

® Assume p > 19.

e Start with q; = 3 Ok.

® By considering Xp(p): either p = 37 or E has potentially good
reduction at q;.

® By considering pg

p € Py := {37,43,61,73,89,97, 109, 157, 313, 1489}

® Now use g2 = /2 - Ok to study p € P;.
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Example: K = Q(V/2)

Suppose E/K is an elliptic curve and that p is a prime such that
E/K admits a K-rational p-isogeny and is semistable at the primes
of K above p.

® Assume p > 19.

e Start with q; = 3 Ok.

® By considering Xo(p): either p = 37 or E has potentially good
reduction at q;.

® By considering pg

p € P1:={37,43,61,73,89,97,109, 157,313, 1489}.

® Now use g2 = /2 - Ok to study p € P;.
® By considering Xo(p): either p = 37 or E has potentially good
reduction at q».
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Example: K = Q(V/2)

Suppose E/K is an elliptic curve and that p is a prime such that
E/K admits a K-rational p-isogeny and is semistable at the primes
of K above p.

® Assume p > 19.

e Start with q; = 3 Ok.

® By considering Xo(p): either p = 37 or E has potentially good
reduction at q;.

® By considering pg

p € P1:={37,43,61,73,89,97,109, 157,313, 1489}.

® Now use g2 = /2 - Ok to study p € P;.

® By considering Xo(p): either p = 37 or E has potentially good
reduction at q».

® By considering pg ,,: find that p = 37.
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Example: K = Q(V/2)

Suppose E/K is an elliptic curve and that p is a prime such that
E/K admits a K-rational p-isogeny and is semistable at the primes
of K above p.

® Assume p > 19.

e Start with q; = 3 Ok.

® By considering Xo(p): either p = 37 or E has potentially good
reduction at q;.

® By considering pg

p € P1:={37,43,61,73,89,97,109, 157,313, 1489}.

® Now use g2 = /2 - Ok to study p € P;.
® By considering Xo(p): either p = 37 or E has potentially good
reduction at q».
® By considering pg ,,: find that p = 37.
Conclusion: p <19 or p = 37.
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The Fermat equation over K = Q(v/2)

Theorem (Jarvis—Meekin, 2004)

The equation
Xn _"_ yn = Zﬂ7

with n > 4 has no solutions for x,y,z € K = Q(v/2) with xyz # 0.
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The Fermat equation over K = Q(v/2)

Theorem (Jarvis—Meekin, 2004)

The equation

n n n
X +y =2z,

Examples
00®0

with n > 4 has no solutions for x,y,z € K = Q(v/2) with xyz # 0.

‘Classical’ for n € {4,5,6,7,9,11,13}.

Let n = p > 17 be prime and suppose xP 4 yP = zP with
xyz # 0.

Define the Frey elliptic curve E : Y2 = X(X — xP)(X + yP).
E does not admit a K-rational p-isogeny.

E is modular.

E ‘corresponds’ to a newform at level v/2 - O ~~
contradiction.
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We need to prove that E does not admit a K-rational p-isogeny
for p > 17.
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We need to prove that E does not admit a K-rational p-isogeny
for p > 17.

Proof.

® From example: p € {17,19,37}.



Examples
oooe

We need to prove that E does not admit a K-rational p-isogeny
for p > 17.

Proof.
® From example: p € {17,19,37}.

® F has a 2-torsion point defined over K, so E gives rise to a
non-cuspidal K-rational point on Xp(2p).
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We need to prove that E does not admit a K-rational p-isogeny
for p > 17.

Proof.

® From example: p € {17,19,37}.
® F has a 2-torsion point defined over K, so E gives rise to a
non-cuspidal K-rational point on Xp(2p).

® (Ozman-Siksek, 2019): No non-cuspidal K-rational points on
Xo(34) or X0(38)
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We need to prove that E does not admit a K-rational p-isogeny
for p > 17.

Proof.

® From example: p € {17,19,37}.

® F has a 2-torsion point defined over K, so E gives rise to a
non-cuspidal K-rational point on Xp(2p).

® (Ozman-Siksek, 2019): No non-cuspidal K-rational points on
X0(34) or X0(38)

* (Adzaga—Keller-M.-Najman—Ozman—Vukorepa, 2023): No
non-cuspidal K-rational points on Xp(74).
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We need to prove that E does not admit a K-rational p-isogeny
for p > 17.

Proof.

® From example: p € {17,19,37}.

® F has a 2-torsion point defined over K, so E gives rise to a
non-cuspidal K-rational point on Xp(2p).

® (Ozman-Siksek, 2019): No non-cuspidal K-rational points on
X0(34) or X0(38)

* (Adzaga—Keller-M.-Najman—Ozman—Vukorepa, 2023): No
non-cuspidal K-rational points on Xp(74).
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Thank youl!
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