Isogenies of elliptic curves and Diophantine equations

Philippe Michaud-Jacobs

University of Warwick

Seminar on Number Theory and Algebra
University of Zagreb
3rd May 2023

Section 1

Motivation

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Proof.

1. Classical for $n \in\{3,4\}$.

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Proof.

1. Classical for $n \in\{3,4\}$.
2. Let $n=p \geq 5$ be prime and suppose $x^{p}+y^{p}=z^{p}$ with $x y z \neq 0$.

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Proof.

1. Classical for $n \in\{3,4\}$.
2. Let $n=p \geq 5$ be prime and suppose $x^{p}+y^{p}=z^{p}$ with $x y z \neq 0$.
3. Define the Frey elliptic curve $E: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)$.

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Proof.

1. Classical for $n \in\{3,4\}$.
2. Let $n=p \geq 5$ be prime and suppose $x^{p}+y^{p}=z^{p}$ with $x y z \neq 0$.
3. Define the Frey elliptic curve $E: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)$.
4. E does not admit a rational p-isogeny (Mazur's isogeny thm).

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Proof.

1. Classical for $n \in\{3,4\}$.
2. Let $n=p \geq 5$ be prime and suppose $x^{p}+y^{p}=z^{p}$ with $x y z \neq 0$.
3. Define the Frey elliptic curve $E: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)$.
4. E does not admit a rational p-isogeny (Mazur's isogeny thm).
5. E is a modular elliptic curve (Wiles' modularity thm).

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Proof.

1. Classical for $n \in\{3,4\}$.
2. Let $n=p \geq 5$ be prime and suppose $x^{p}+y^{p}=z^{p}$ with $x y z \neq 0$.
3. Define the Frey elliptic curve $E: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)$.
4. E does not admit a rational p-isogeny (Mazur's isogeny thm).
5. E is a modular elliptic curve (Wiles' modularity thm).
6. E 'corresponds' to a newform at level 2 (Ribet's level-lowering thm) \rightsquigarrow contradiction.

Fermat's Last Theorem

The equation

$$
x^{n}+y^{n}=z^{n}
$$

with $n \geq 3$, has no solutions for $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$.

Proof.

1. Classical for $n \in\{3,4\}$.
2. Let $n=p \geq 5$ be prime and suppose $x^{p}+y^{p}=z^{p}$ with $x y z \neq 0$.
3. Define the Frey elliptic curve $E: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)$.
4. E does not admit a rational p-isogeny (Mazur's isogeny thm).
5. E is a modular elliptic curve (Wiles' modularity thm).
6. E 'corresponds' to a newform at level 2 (Ribet's level-lowering thm) \rightsquigarrow contradiction.

Mazur's isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E / \mathbb{Q} that admits a rational p-isogeny. Then

$$
p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

Mazur's isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E / \mathbb{Q} that admits a rational p-isogeny. Then

$$
p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

Why is this an important theorem?

- Isogenies are the basic building blocks of maps between elliptic curves.
- It's proof introduced many important concepts and techniques.
- Leads to a deeper understanding of modular curves and Galois representations.
- Plays a crucial role in the modular method.

Mazur's isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E / \mathbb{Q} that admits a rational p-isogeny. Then

$$
p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

Why is this an important theorem?

- Isogenies are the basic building blocks of maps between elliptic curves.
- It's proof introduced many important concepts and techniques.
- Leads to a deeper understanding of modular curves and Galois representations.
- Plays a crucial role in the modular method.

Key question: Does this theorem generalise to number fields?

Let E_{1}, E_{2} be elliptic curves over a number field K.

Let E_{1}, E_{2} be elliptic curves over a number field K.

- An isogeny between elliptic curves is a non-constant morphism $\varphi: E_{1} \rightarrow E_{2}$ that induces a group homomorphism.

Let E_{1}, E_{2} be elliptic curves over a number field K.

- An isogeny between elliptic curves is a non-constant morphism $\varphi: E_{1} \rightarrow E_{2}$ that induces a group homomorphism.
- The degree of an isogeny is the size of its kernel. If φ has prime degree p, we say it is a p-isogeny.

Let E_{1}, E_{2} be elliptic curves over a number field K.

- An isogeny between elliptic curves is a non-constant morphism $\varphi: E_{1} \rightarrow E_{2}$ that induces a group homomorphism.
- The degree of an isogeny is the size of its kernel. If φ has prime degree p, we say it is a p-isogeny.
- An isogeny is K-rational if it can be expressed using rational functions with coefficients in K.

Let E_{1}, E_{2} be elliptic curves over a number field K.

- An isogeny between elliptic curves is a non-constant morphism $\varphi: E_{1} \rightarrow E_{2}$ that induces a group homomorphism.
- The degree of an isogeny is the size of its kernel. If φ has prime degree p, we say it is a p-isogeny.
- An isogeny is K-rational if it can be expressed using rational functions with coefficients in K.

Example.

$$
\begin{gathered}
E_{1}: Y^{2}=X^{3}+X^{2}-X, \quad E_{2}: Y^{2}=X^{3}-2 X^{2}+5 X . \\
\varphi:(x, y) \mapsto\left(\frac{y^{2}}{x^{2}}, \frac{y\left(x^{2}+1\right)}{x^{2}}\right) . \\
\operatorname{ker}(\varphi)=\left\{0_{E_{1}},(0,0)\right\}, \text { it is a }(\mathbb{Q} \text {-)rational 2-isogeny. }
\end{gathered}
$$

Question

Let K be a number field. For which primes p does there exist an elliptic curve E / K admitting a K-rational p-isogeny?

Question

Let K be a number field. For which primes p does there exist an elliptic curve E / K admitting a K-rational p-isogeny?

This is an open problem for any given number field other than \mathbb{Q}.

Question

Let K be a number field. For which primes p does there exist an elliptic curve E / K admitting a K-rational p-isogeny?

This is an open problem for any given number field other than \mathbb{Q}.
Why is this an important question?

- Isogenies are the basic building blocks of maps between elliptic curves.
- An answer would lead to a deeper understanding of modular curves and Galois representations.
- An answer would lead to a simpler application of the modular method over number fields.

The modular method over number fields

- Start with an equation:

$$
\begin{aligned}
x^{p}+y^{p}=z^{p}, & \text { for } x, y, z \in K . \\
x^{2 p}+y^{2 p}=z^{7}, & \text { for } x, y, z \in \mathbb{Z} . \\
x^{2 p}+6 x^{p}+1=8 y^{2}, & \text { for } x, y \in \mathbb{Z} .
\end{aligned}
$$

The modular method over number fields

- Start with an equation:

$$
\begin{aligned}
x^{p}+y^{p}=z^{p}, & \text { for } x, y, z \in K . \\
x^{2 p}+y^{2 p}=z^{7}, & \text { for } x, y, z \in \mathbb{Z} . \\
x^{2 p}+6 x^{p}+1=8 y^{2}, & \text { for } x, y \in \mathbb{Z} .
\end{aligned}
$$

- Write down a Frey elliptic curve E / K.

The modular method over number fields

- Start with an equation:

$$
\begin{aligned}
x^{p}+y^{p}=z^{p}, & \text { for } x, y, z \in K . \\
x^{2 p}+y^{2 p}=z^{7}, & \text { for } x, y, z \in \mathbb{Z} . \\
x^{2 p}+6 x^{p}+1=8 y^{2}, & \text { for } x, y \in \mathbb{Z}
\end{aligned}
$$

- Write down a Frey elliptic curve E / K.
- Prove that E is modular.

The modular method over number fields

- Start with an equation:

$$
\begin{aligned}
x^{p}+y^{p}=z^{p}, & \text { for } x, y, z \in K . \\
x^{2 p}+y^{2 p}=z^{7}, & \text { for } x, y, z \in \mathbb{Z} . \\
x^{2 p}+6 x^{p}+1=8 y^{2}, & \text { for } x, y \in \mathbb{Z}
\end{aligned}
$$

- Write down a Frey elliptic curve E / K.
- Prove that E is modular.
- Prove that E does not admit a K-rational p-isogeny.

The modular method over number fields

- Start with an equation:

$$
\begin{aligned}
x^{p}+y^{p}=z^{p}, & \text { for } x, y, z \in K . \\
x^{2 p}+y^{2 p}=z^{7}, & \text { for } x, y, z \in \mathbb{Z} . \\
x^{2 p}+6 x^{p}+1=8 y^{2}, & \text { for } x, y \in \mathbb{Z}
\end{aligned}
$$

- Write down a Frey elliptic curve E / K.
- Prove that E is modular.
- Prove that E does not admit a K-rational p-isogeny.
- Apply a level-lowering theorem to obtain a contradiction.

The modular method over number fields

- Start with an equation:

$$
\begin{aligned}
x^{p}+y^{p}=z^{p}, & \text { for } x, y, z \in K . \\
x^{2 p}+y^{2 p}=z^{7}, & \text { for } x, y, z \in \mathbb{Z} . \\
x^{2 p}+6 x^{p}+1=8 y^{2}, & \text { for } x, y \in \mathbb{Z}
\end{aligned}
$$

- Write down a Frey elliptic curve E / K.
- Prove that E is modular.
- Prove that E does not admit a K-rational p-isogeny.
- Apply a level-lowering theorem to obtain a contradiction.

No set method for proving that E does not admit a K-rational p-isogeny.

Aims and concessions

Aims:

- Obtain general results to help solve Diophantine equations using the modular method over number fields.
- Understand more about isogenies of elliptic curves.
- Understand more about modular curves and Galois representations.

Aims and concessions

Aims:

- Obtain general results to help solve Diophantine equations using the modular method over number fields.
- Understand more about isogenies of elliptic curves.
- Understand more about modular curves and Galois representations.
Concessions:
- Assume E / K is semistable at all primes of K above p.

Aims and concessions

Aims:

- Obtain general results to help solve Diophantine equations using the modular method over number fields.
- Understand more about isogenies of elliptic curves.
- Understand more about modular curves and Galois representations.

Concessions:

- Assume E / K is semistable at all primes of K above p.

If E / K is an elliptic curve and $\mathfrak{p} \mid p$ is a prime of K, then E is semistable at \mathfrak{p} if E has good or multiplicative reduction at \mathfrak{p}.

Aims and concessions

Aims:

- Obtain general results to help solve Diophantine equations using the modular method over number fields.
- Understand more about isogenies of elliptic curves.
- Understand more about modular curves and Galois representations.

Concessions:

- Assume E / K is semistable at all primes of K above p.

If E / K is an elliptic curve and $\mathfrak{p} \mid p$ is a prime of K, then E is semistable at \mathfrak{p} if E has good or multiplicative reduction at \mathfrak{p}.

- This is not a very restrictive assumption.
- It is already an assumption in the modular method for the level-lowering theorem.

Section 2

Results

We will work with quadratic fields.

- Most useful for applications of the modular method.
- More techniques available.
- Sharper results are more easily obtained.

We will work with quadratic fields.

- Most useful for applications of the modular method.
- More techniques available.
- Sharper results are more easily obtained.

Theorem (M., 2022)

Let $K=\mathbb{Q}(\sqrt{5})$ and let p be a prime. There exists an elliptic curve E / K which admits a K-rational p-isogeny and is semistable at all primes of K above p if and only if $p \in\{2,3,5,7,13,17,37\}$.

We will work with quadratic fields.

- Most useful for applications of the modular method.
- More techniques available.
- Sharper results are more easily obtained.

Theorem (M., 2022)

Let $K=\mathbb{Q}(\sqrt{5})$ and let p be a prime. There exists an elliptic curve E / K which admits a K-rational p-isogeny and is semistable at all primes of K above p if and only if $p \in\{2,3,5,7,13,17,37\}$.

Theorem (M., 2022)
Let $K=\mathbb{Q}(\sqrt{-5})$ and let p be a prime. There exists an elliptic curve E / K which admits a K-rational p-isogeny and is semistable at all primes of K above p if and only if $p \in\{2,3,5,7,13,37,43\}$.

Theorem (M., 2023)

Let K be a real quadratic field with $h(K) \leq 7$ and let ϵ be a fundamental unit of K. Let p be a prime such that there exists an elliptic curve E / K which admits a K-rational p-isogeny and is semistable at all primes of K above p. Then either
(i) p ramifies in K; or
(ii) $p \in\{2,3,5,7,11,13,17,19,37\}$; or
(iii) p splits in K and $p \mid \operatorname{Norm}_{K / \mathbb{Q}}\left(\epsilon^{12}-1\right)$.

Theorem (M., 2023)

Let K be a real quadratic field with $h(K) \leq 7$ and let ϵ be a fundamental unit of K. Let p be a prime such that there exists an elliptic curve E / K which admits a K-rational p-isogeny and is semistable at all primes of K above p. Then either
(i) p ramifies in K; or
(ii) $p \in\{2,3,5,7,11,13,17,19,37\}$; or
(iii) p splits in K and $p \mid \operatorname{Norm}_{K / \mathbb{Q}}\left(\epsilon^{12}-1\right)$.

- This gives a simple criterion for ruling out primes.
- Any leftover primes can normally be dealt with separately.

Section 3

Proofs

Modular curves and Galois representations

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:

Modular curves and Galois representations

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:

- Choose $\mathfrak{q} \nmid p$ a prime (of K).

Modular curves and Galois representations

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:

- Choose $\mathfrak{q} \nmid p$ a prime (of K).
- Case (i): \mathfrak{q} is a prime of potentially multiplicative reduction for E (meaning $v_{\mathfrak{q}}(j(E))<0$). Use the theory of modular curves.

Modular curves and Galois representations

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:

- Choose $\mathfrak{q} \nmid p$ a prime (of K).
- Case (i): \mathfrak{q} is a prime of potentially multiplicative reduction for E (meaning $v_{\mathfrak{q}}(j(E))<0$). Use the theory of modular curves.
- Case (ii): \mathfrak{q} is a prime of potentially good reduction for E (meaning $v_{\mathfrak{q}}(j(E)) \geq 0$). Use the theory of Galois representations.

The modular curve $X_{0}(p)$

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.
The curve $X_{0}(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.

The modular curve $X_{0}(p)$

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.
The curve $X_{0}(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.

The pair (E, φ) gives rise to a non-cuspidal K-rational point on the modular curve $X_{0}(p)$:

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\}
$$

The modular curve $X_{0}(p)$

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.
The curve $X_{0}(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.

The pair (E, φ) gives rise to a non-cuspidal K-rational point on the modular curve $X_{0}(p)$:

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\}
$$

- We have the j-map $j: X_{0}(p) \longrightarrow \mathbb{P}^{1}$ that satisfies $j(x)=j(E)$.

The modular curve $X_{0}(p)$

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ.
The curve $X_{0}(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.

The pair (E, φ) gives rise to a non-cuspidal K-rational point on the modular curve $X_{0}(p)$:

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\}
$$

- We have the j-map $j: X_{0}(p) \longrightarrow \mathbb{P}^{1}$ that satisfies $j(x)=j(E)$.
- The cusps $0, \infty \in X_{0}(p)(\mathbb{Q})$ are the poles of the j-map.

A prime of potentially multiplicative reduction

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\}
$$

We know $j(x)=j(E)$.
Suppose $\mathfrak{q} \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

A prime of potentially multiplicative reduction

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\}
$$

We know $j(x)=j(E)$.
Suppose $\mathfrak{q} \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $v_{\mathfrak{q}}(j(E))=v_{\mathfrak{q}}(j(x))<0$.

A prime of potentially multiplicative reduction

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\}
$$

We know $j(x)=j(E)$.
Suppose $\mathfrak{q} \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $v_{\mathfrak{q}}(j(E))=v_{\mathfrak{q}}(j(x))<0$.
- So $x(\bmod \mathfrak{q})$ is a pole of the j-map $\bmod \mathfrak{q}$.

A prime of potentially multiplicative reduction

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\} .
$$

We know $j(x)=j(E)$.
Suppose $\mathfrak{q} \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $v_{\mathrm{q}}(j(E))=v_{\mathrm{q}}(j(x))<0$.
- So $x(\bmod \mathfrak{q})$ is a pole of the j-map $\bmod \mathfrak{q}$.
- $x(\bmod \mathfrak{q})=\infty(\bmod \mathfrak{q})$ or $0(\bmod \mathfrak{q})$.

A prime of potentially multiplicative reduction

Let E / K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$
[E, \varphi]=x \in X_{0}(p)(K) \backslash\{0, \infty\} .
$$

We know $j(x)=j(E)$.
Suppose $\mathfrak{q} \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $v_{\mathrm{q}}(j(E))=v_{\mathrm{q}}(j(x))<0$.
- So $x(\bmod \mathfrak{q})$ is a pole of the j-map $\bmod \mathfrak{q}$.
- $x(\bmod \mathfrak{q})=\infty(\bmod \mathfrak{q})$ or $0(\bmod \mathfrak{q})$.
- Argue that $x=\infty$ or 0 , a contradiction (think of Hensel's lemma!).

The $\bmod p$ Galois representation

Let E / K be an elliptic curve and p a prime. Write $E[p] \subset E(\bar{K})$ for the p-torsion points of E.

The $\bmod p$ Galois representation

Let E / K be an elliptic curve and p a prime. Write $E[p] \subset E(\bar{K})$ for the p-torsion points of E.
The group $G_{K}=\operatorname{Gal}(\bar{K} / K)$ acts on $E[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and gives rise to the $\bmod p$ Galois representation attached to E :

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) .
$$

The $\bmod p$ Galois representation

Let E / K be an elliptic curve and p a prime. Write $E[p] \subset E(\bar{K})$ for the p-torsion points of E.
The group $G_{K}=\operatorname{Gal}(\bar{K} / K)$ acts on $E[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and gives rise to the $\bmod p$ Galois representation attached to E :

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Fix a basis $\left(R_{1}, R_{2}\right)$ of $E[p]$.

The $\bmod p$ Galois representation

Let E / K be an elliptic curve and p a prime. Write $E[p] \subset E(\bar{K})$ for the p-torsion points of E.
The group $G_{K}=\operatorname{Gal}(\bar{K} / K)$ acts on $E[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and gives rise to the $\bmod p$ Galois representation attached to E :

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Fix a basis $\left(R_{1}, R_{2}\right)$ of $E[p]$.
For $\sigma \in G_{K}$,

$$
\begin{aligned}
& R_{1}^{\sigma}=a R_{1}+b R_{2} \\
& R_{2}^{\sigma}=c R_{1}+d R_{2}
\end{aligned}
$$

The $\bmod p$ Galois representation

Let E / K be an elliptic curve and p a prime. Write $E[p] \subset E(\bar{K})$ for the p-torsion points of E.
The group $G_{K}=\operatorname{Gal}(\bar{K} / K)$ acts on $E[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and gives rise to the $\bmod p$ Galois representation attached to E :

$$
\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Fix a basis $\left(R_{1}, R_{2}\right)$ of $E[p]$.
For $\sigma \in G_{K}$,

$$
\begin{aligned}
& R_{1}^{\sigma}=a R_{1}+b R_{2}, \\
& R_{2}^{\sigma}=c R_{1}+d R_{2} .
\end{aligned}
$$

Then $\bar{\rho}_{E, p}(\sigma)=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$.

A key equivalence

Let E / K be an elliptic curve and let p be a prime. The following are equivalent:
(i) E admits a K-rational p-isogeny, φ.
(ii) $\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is reducible.

A key equivalence

Let E / K be an elliptic curve and let p be a prime. The following are equivalent:
(i) E admits a K-rational p-isogeny, φ.
(ii) $\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is reducible.

Proof.

(i) \Longrightarrow (ii) $\operatorname{ker}(\varphi)$ is a nontrivial proper G_{K}-submodule of $E[p]$.

A key equivalence

Let E / K be an elliptic curve and let p be a prime. The following are equivalent:
(i) E admits a K-rational p-isogeny, φ.
(ii) $\bar{\rho}_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is reducible.

Proof.

(i) \Longrightarrow (ii) $\operatorname{ker}(\varphi)$ is a nontrivial proper G_{K}-submodule of $E[p]$.
(ii) \Longrightarrow (i) For some basis $\left\{R_{1}, R_{2}\right\} \subset E[p]$,

$$
\bar{\rho}_{E, p} \sim\left(\begin{array}{cc}
\lambda & * \\
0 & \lambda^{\prime}
\end{array}\right) .
$$

Then $\left\langle R_{1}\right\rangle \subset E[p]$ is a K-rational subgroup of order p. Quotienting out by this subgroup gives rise to a K-rational p-isogeny.

The isogeny character

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible. So

$$
\bar{\rho}_{E, p} \sim\left(\begin{array}{cc}
\lambda & * \\
0 & \lambda^{\prime}
\end{array}\right) .
$$

The isogeny character

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible. So

$$
\bar{\rho}_{E, p} \sim\left(\begin{array}{cc}
\lambda & * \\
0 & \lambda^{\prime}
\end{array}\right) .
$$

The isogeny character
$\lambda: G_{K} \rightarrow \mathbb{F}_{p}^{\times}$is the isogeny character of (E, φ).

The isogeny character

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible. So

$$
\bar{\rho}_{E, p} \sim\left(\begin{array}{cc}
\lambda & * \\
0 & \lambda^{\prime}
\end{array}\right) .
$$

The isogeny character
$\lambda: G_{K} \rightarrow \mathbb{F}_{p}^{\times}$is the isogeny character of (E, φ).

- λ tells us how G_{K} acts on $\operatorname{ker}(\varphi)$: if $\operatorname{ker}(\varphi)=\left\langle R_{1}\right\rangle$, then for $\sigma \in G_{K}$,

$$
R_{1}^{\sigma}=\lambda(\sigma) R_{1}
$$

The isogeny character

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible. So

$$
\bar{\rho}_{E, p} \sim\left(\begin{array}{cc}
\lambda & * \\
0 & \lambda^{\prime}
\end{array}\right) .
$$

The isogeny character
$\lambda: G_{K} \rightarrow \mathbb{F}_{p}^{\times}$is the isogeny character of (E, φ).

- λ tells us how G_{K} acts on $\operatorname{ker}(\varphi)$: if $\operatorname{ker}(\varphi)=\left\langle R_{1}\right\rangle$, then for $\sigma \in G_{K}$,

$$
R_{1}^{\sigma}=\lambda(\sigma) R_{1}
$$

We study λ as it encodes key information about E and φ.

The group G_{K} and Frobenius elements

We want to study $\lambda: G_{K} \rightarrow \mathbb{F}_{p}^{\times}$. The group G_{K} is complicated and we want to work with concrete elements.

The group G_{K} and Frobenius elements

We want to study $\lambda: G_{K} \rightarrow \mathbb{F}_{p}^{\times}$. The group G_{K} is complicated and we want to work with concrete elements.

Let \mathfrak{q} be a prime of K and let $\sigma_{\mathfrak{q}} \in G_{K}$ be a Frobenius element at \mathfrak{q}. This is any element that maps to the Frobenius automorphism in $\operatorname{Gal}(\bar{k} / k)$, where $k=\mathcal{O}_{K} / \mathfrak{q}$.

The group G_{K} and Frobenius elements

We want to study $\lambda: G_{K} \rightarrow \mathbb{F}_{p}^{\times}$. The group G_{K} is complicated and we want to work with concrete elements.

Let \mathfrak{q} be a prime of K and let $\sigma_{\mathfrak{q}} \in G_{K}$ be a Frobenius element at \mathfrak{q}. This is any element that maps to the Frobenius automorphism in $\operatorname{Gal}(\bar{k} / k)$, where $k=\mathcal{O}_{K} / \mathfrak{q}$.

We study $\lambda\left(\sigma_{\mathfrak{q}}\right) \in \mathbb{F}_{p}^{\times}$.

A prime of potentially good reduction

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible and is semistable at the primes of K above p.

A prime of potentially good reduction

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible and is semistable at the primes of K above p.

Suppose $\mathfrak{q} \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $\mathfrak{q}^{r}=\alpha \mathcal{O}_{K}$ is principal.

A prime of potentially good reduction

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible and is semistable at the primes of K above p.

Suppose $\mathfrak{q} \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $\mathfrak{q}^{r}=\alpha \mathcal{O}_{K}$ is principal.

Can prove: $\lambda\left(\sigma_{\mathfrak{q}}\right)$ is a root of the following polynomials (after reducing $\bmod p$):
(I) $X^{12}-\alpha^{t}$ for some $t \in\{0,12\}$; and
(II) $X^{2}-a X+\operatorname{Norm}(\mathfrak{q})$ for some $|a| \leq 2 \sqrt{\operatorname{Norm}(\mathfrak{q})}$.

A prime of potentially good reduction

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible and is semistable at the primes of K above p.

Suppose $\mathfrak{q} \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $\mathfrak{q}^{r}=\alpha \mathcal{O}_{K}$ is principal.

Can prove: $\lambda\left(\sigma_{\mathfrak{q}}\right)$ is a root of the following polynomials (after reducing $\bmod p$):
(I) $X^{12}-\alpha^{t}$ for some $t \in\{0,12\}$; and
(II) $X^{2}-a X+\operatorname{Norm}(\mathfrak{q})$ for some $|a| \leq 2 \sqrt{\operatorname{Norm}(\mathfrak{q})}$.

Considering all cases restricts the possible values of p.

A prime of potentially good reduction

Let E / K be an elliptic such that $\bar{\rho}_{E, p}$ is reducible and is semistable at the primes of K above p.

Suppose $\mathfrak{q} \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $\mathfrak{q}^{r}=\alpha \mathcal{O}_{K}$ is principal.

Can prove: $\lambda\left(\sigma_{\mathfrak{q}}\right)$ is a root of the following polynomials (after reducing $\bmod p$):
(I) $X^{12}-\alpha^{t}$ for some $t \in\{0,12\}$; and
(II) $X^{2}-a X+\operatorname{Norm}(\mathfrak{q})$ for some $|a| \leq 2 \sqrt{\operatorname{Norm}(\mathfrak{q})}$.

Considering all cases restricts the possible values of p.
The fact that E is semistable at the primes of K above p means that $t \in\{0,12\}$. Otherwise, $t \in\{0,4,6,8,12\}$.

An algorithm

- Fix a number field K.

An algorithm

- Fix a number field K.
- Choose some primes $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t}$ of K.

An algorithm

- Fix a number field K.
- Choose some primes $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t}$ of K.
- For each \mathfrak{q}_{i}, obtain a finite list of primes \mathcal{P}_{i} such that if there exists an elliptic curve E / K that admits a K-rational p-isogeny and is semistable at the primes of K above p, then $p \in \mathcal{P}_{i}$.

An algorithm

- Fix a number field K.
- Choose some primes $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t}$ of K.
- For each \mathfrak{q}_{i}, obtain a finite list of primes \mathcal{P}_{i} such that if there exists an elliptic curve E / K that admits a K-rational p-isogeny and is semistable at the primes of K above p, then $p \in \mathcal{P}_{i}$.
- Intersect the sets \mathcal{P}_{i} to obtain a finite list of primes.

An algorithm

- Fix a number field K.
- Choose some primes $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t}$ of K.
- For each \mathfrak{q}_{i}, obtain a finite list of primes \mathcal{P}_{i} such that if there exists an elliptic curve E / K that admits a K-rational p-isogeny and is semistable at the primes of K above p, then $p \in \mathcal{P}_{i}$.
- Intersect the sets \mathcal{P}_{i} to obtain a finite list of primes.
- Use additional techniques to try and remove even more primes.

Section 4

Examples

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.
- Start with $\mathfrak{q}_{1}=3 \cdot \mathcal{O}_{K}$.

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.
- Start with $\mathfrak{q}_{1}=3 \cdot \mathcal{O}_{K}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{1}.

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.
- Start with $\mathfrak{q}_{1}=3 \cdot \mathcal{O}_{K}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{1}.
- By considering $\bar{\rho}_{E, p}$:

$$
p \in \mathcal{P}_{1}:=\{37,43,61,73,89,97,109,157,313,1489\} .
$$

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.
- Start with $\mathfrak{q}_{1}=3 \cdot \mathcal{O}_{K}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{1}.
- By considering $\bar{\rho}_{E, p}$:

$$
p \in \mathcal{P}_{1}:=\{37,43,61,73,89,97,109,157,313,1489\} .
$$

- Now use $\mathfrak{q}_{2}=\sqrt{2} \cdot \mathcal{O}_{K}$ to study $p \in \mathcal{P}_{1}$.

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.
- Start with $\mathfrak{q}_{1}=3 \cdot \mathcal{O}_{K}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{1}.
- By considering $\bar{\rho}_{E, p}$:

$$
p \in \mathcal{P}_{1}:=\{37,43,61,73,89,97,109,157,313,1489\} .
$$

- Now use $\mathfrak{q}_{2}=\sqrt{2} \cdot \mathcal{O}_{K}$ to study $p \in \mathcal{P}_{1}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{2}.

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.
- Start with $\mathfrak{q}_{1}=3 \cdot \mathcal{O}_{K}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{1}.
- By considering $\bar{\rho}_{E, p}$:

$$
p \in \mathcal{P}_{1}:=\{37,43,61,73,89,97,109,157,313,1489\}
$$

- Now use $\mathfrak{q}_{2}=\sqrt{2} \cdot \mathcal{O}_{K}$ to study $p \in \mathcal{P}_{1}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{2}.
- By considering $\bar{\rho}_{E, p}$: find that $p=37$.

Example: $K=\mathbb{Q}(\sqrt{2})$

Suppose E / K is an elliptic curve and that p is a prime such that E / K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p>19$.
- Start with $\mathfrak{q}_{1}=3 \cdot \mathcal{O}_{K}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{1}.
- By considering $\bar{\rho}_{E, p}$:

$$
p \in \mathcal{P}_{1}:=\{37,43,61,73,89,97,109,157,313,1489\} .
$$

- Now use $\mathfrak{q}_{2}=\sqrt{2} \cdot \mathcal{O}_{K}$ to study $p \in \mathcal{P}_{1}$.
- By considering $X_{0}(p)$: either $p=37$ or E has potentially good reduction at \mathfrak{q}_{2}.
- By considering $\bar{\rho}_{E, p}$: find that $p=37$.

Conclusion: $p \leq 19$ or $p=37$.

The Fermat equation over $K=\mathbb{Q}(\sqrt{2})$

Theorem (Jarvis-Meekin, 2004)
The equation

$$
x^{n}+y^{n}=z^{n},
$$

with $n \geq 4$ has no solutions for $x, y, z \in K=\mathbb{Q}(\sqrt{2})$ with $x y z \neq 0$.

The Fermat equation over $K=\mathbb{Q}(\sqrt{2})$

Theorem (Jarvis-Meekin, 2004)

The equation

$$
x^{n}+y^{n}=z^{n},
$$

with $n \geq 4$ has no solutions for $x, y, z \in K=\mathbb{Q}(\sqrt{2})$ with $x y z \neq 0$.

- 'Classical' for $n \in\{4,5,6,7,9,11,13\}$.
- Let $n=p \geq 17$ be prime and suppose $x^{p}+y^{p}=z^{p}$ with $x y z \neq 0$.
- Define the Frey elliptic curve $E: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)$.
- E does not admit a K-rational p-isogeny.
- E is modular.
- E 'corresponds' to a newform at level $\sqrt{2} \cdot \mathcal{O}_{K} \rightsquigarrow$ contradiction.

We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in\{17,19,37\}$.

We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in\{17,19,37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_{0}(2 p)$.

We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in\{17,19,37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_{0}(2 p)$.
- (Ozman-Siksek, 2019): No non-cuspidal K-rational points on $X_{0}(34)$ or $X_{0}(38)$.

We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in\{17,19,37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_{0}(2 p)$.
- (Ozman-Siksek, 2019): No non-cuspidal K-rational points on $X_{0}(34)$ or $X_{0}(38)$.
- (Adžaga-Keller-M.-Najman-Ozman-Vukorepa, 2023): No non-cuspidal K-rational points on $X_{0}(74)$.

We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in\{17,19,37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_{0}(2 p)$.
- (Ozman-Siksek, 2019): No non-cuspidal K-rational points on $X_{0}(34)$ or $X_{0}(38)$.
- (Adžaga-Keller-M.-Najman-Ozman-Vukorepa, 2023): No non-cuspidal K-rational points on $X_{0}(74)$.

Hvala!

