Isogenies of elliptic curves and Diophantine equations

Philippe Michaud-Jacobs

University of Warwick

Seminar on Number Theory and Algebra
University of Zagreb
3rd May 2023
Section 1

Motivation
Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).
Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).

Proof.

1. Classical for \(n \in \{3, 4\} \).
Motivation

Results

Proofs

Examples

Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).

Proof.

1. Classical for \(n \in \{3, 4\} \).
2. Let \(n = p \geq 5 \) be prime and suppose \(x^p + y^p = z^p \) with \(xyz \neq 0 \).
Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).

Proof.

1. Classical for \(n \in \{3, 4\} \).
2. Let \(n = p \geq 5 \) be prime and suppose \(x^p + y^p = z^p \) with \(xyz \neq 0 \).
3. Define the Frey elliptic curve \(E: Y^2 = X(X - x^p)(X + y^p) \).
Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).

Proof.

1. Classical for \(n \in \{3, 4\} \).
2. Let \(n = p \geq 5 \) be prime and suppose \(x^p + y^p = z^p \) with \(xyz \neq 0 \).
3. Define the **Frey** elliptic curve \(E : Y^2 = X(X - x^p)(X + y^p) \).
4. \(E \) does not admit a rational \(p \)-isogeny (**Mazur’s isogeny thm**).
Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).

Proof.

1. Classical for \(n \in \{3, 4\} \).
2. Let \(n = p \geq 5 \) be prime and suppose \(x^p + y^p = z^p \) with \(xyz \neq 0 \).
3. Define the Frey elliptic curve \(E : Y^2 = X(X - x^p)(X + y^p) \).
4. \(E \) does not admit a rational \(p \)-isogeny (Mazur’s isogeny thm).
5. \(E \) is a modular elliptic curve (Wiles’ modularity thm).
Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).

Proof.

1. Classical for \(n \in \{3, 4\} \).
2. Let \(n = p \geq 5 \) be prime and suppose \(x^p + y^p = z^p \) with \(xyz \neq 0 \).
3. Define the Frey elliptic curve \(E : Y^2 = X(X - x^p)(X + y^p) \).
4. \(E \) does not admit a rational \(p \)-isogeny (Mazur’s isogeny thm).
5. \(E \) is a modular elliptic curve (Wiles’ modularity thm).
6. \(E \) ‘corresponds’ to a newform at level 2 (Ribet’s level-lowering thm) \(\leadsto \) contradiction.
Fermat’s Last Theorem

The equation

\[x^n + y^n = z^n, \]

with \(n \geq 3 \), has no solutions for \(x, y, z \in \mathbb{Z} \) with \(xyz \neq 0 \).

Proof.

1. Classical for \(n \in \{3, 4\} \).
2. Let \(n = p \geq 5 \) be prime and suppose \(x^p + y^p = z^p \) with \(xyz \neq 0 \).
3. Define the Frey elliptic curve \(E : Y^2 = X(X - x^p)(X + y^p) \).
4. \(E \) does not admit a rational \(p \)-isogeny (Mazur’s isogeny thm).
5. \(E \) is a modular elliptic curve (Wiles’ modularity thm).
6. \(E \) ‘corresponds’ to a newform at level 2 (Ribet’s level-lowering thm) \(\leadsto \) contradiction.
Mazur’s isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E/\mathbb{Q} that admits a rational p-isogeny. Then

$$p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$$
Mazur’s isogeny theorem, 1978

Let p be a prime such that there exists an elliptic curve E/\mathbb{Q} that admits a rational p-isogeny. Then

$$p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$$

Why is this an important theorem?

- Isogenies are the basic building blocks of maps between elliptic curves.
- It’s proof introduced many important concepts and techniques.
- Leads to a deeper understanding of modular curves and Galois representations.
- Plays a crucial role in the modular method.
Mazur’s isogeny theorem, 1978

Let \(p \) be a prime such that there exists an elliptic curve \(E/\mathbb{Q} \) that admits a rational \(p \)-isogeny. Then

\[
p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.
\]

Why is this an important theorem?

- Isogenies are the basic building blocks of maps between elliptic curves.
- It’s proof introduced many important concepts and techniques.
- Leads to a deeper understanding of modular curves and Galois representations.
- Plays a crucial role in the modular method.

Key question: Does this theorem generalise to number fields?
Let E_1, E_2 be elliptic curves over a number field K.

- An isogeny between elliptic curves is a non-constant morphism $\phi: E_1 \to E_2$ that induces a group homomorphism.
- The degree of an isogeny is the size of its kernel. If ϕ has prime degree p, we say it is a p-isogeny.
- An isogeny is K-rational if it can be expressed using rational functions with coefficients in K.

Example.

E_1: $Y^2 = X^3 + X^2 - X$,

E_2: $Y^2 = X^3 - 2X^2 + 5X$.

ϕ: $(x, y) \mapsto (y^2x^2, y(x^2 + 1)x^2)$.

$\ker(\phi) = \{(0, E_1), (0, 0)\}$, it is a ($\mathbb{Q}$-)rational 2-isogeny.
Let E_1, E_2 be elliptic curves over a number field K.

- An isogeny between elliptic curves is a non-constant morphism $\varphi : E_1 \to E_2$ that induces a group homomorphism.
Let E_1, E_2 be elliptic curves over a number field K.

- An **isogeny** between elliptic curves is a non-constant morphism $\varphi : E_1 \to E_2$ that induces a group homomorphism.
- The **degree** of an isogeny is the size of its kernel. If φ has prime degree p, we say it is a p-isogeny.
Let E_1, E_2 be elliptic curves over a number field K.

- An **isogeny** between elliptic curves is a non-constant morphism $\varphi : E_1 \to E_2$ that induces a group homomorphism.
- The **degree** of an isogeny is the size of its kernel. If φ has prime degree p, we say it is a p-isogeny.
- An isogeny is **K-rational** if it can be expressed using rational functions with coefficients in K.

Let E_1, E_2 be elliptic curves over a number field K.

- An isogeny between elliptic curves is a non-constant morphism $\varphi : E_1 \to E_2$ that induces a group homomorphism.
- The degree of an isogeny is the size of its kernel. If φ has prime degree p, we say it is a p-isogeny.
- An isogeny is K-rational if it can be expressed using rational functions with coefficients in K.

Example.

$$E_1 : Y^2 = X^3 + X^2 - X, \quad E_2 : Y^2 = X^3 - 2X^2 + 5X.$$

$$\varphi : (x, y) \mapsto \left(\frac{y^2}{x^2}, \frac{y(x^2 + 1)}{x^2} \right).$$

$\ker(\varphi) = \{0_{E_1}, (0, 0)\}$, it is a ($\mathbb{Q}$-)rational 2-isogeny.
Question

Let K be a number field. For which primes p does there exist an elliptic curve E/K admitting a K-rational p-isogeny?
Let K be a number field. For which primes p does there exist an elliptic curve E/K admitting a K-rational p-isogeny?

This is an **open problem** for any given number field other than \mathbb{Q}.
Question

Let K be a number field. For which primes p does there exist an elliptic curve E/K admitting a K-rational p-isogeny?

This is an open problem for any given number field other than \mathbb{Q}.

Why is this an important question?

- Isogenies are the basic building blocks of maps between elliptic curves.
- An answer would lead to a deeper understanding of modular curves and Galois representations.
- An answer would lead to a simpler application of the modular method over number fields.
The modular method over number fields

- Start with an equation:

\[x^p + y^p = z^p, \quad \text{for } x, y, z \in K. \]
\[x^{2p} + y^{2p} = z^7, \quad \text{for } x, y, z \in \mathbb{Z}. \]
\[x^{2p} + 6x^p + 1 = 8y^2, \quad \text{for } x, y \in \mathbb{Z}. \]
The modular method over number fields

- Start with an equation:
 \[x^p + y^p = z^p, \quad \text{for } x, y, z \in K. \]
 \[x^{2p} + y^{2p} = z^7, \quad \text{for } x, y, z \in \mathbb{Z}. \]
 \[x^{2p} + 6x^p + 1 = 8y^2, \quad \text{for } x, y \in \mathbb{Z}. \]

- Write down a Frey elliptic curve \(E/K \).
The modular method over number fields

• Start with an equation:

\[x^p + y^p = z^p, \quad \text{for } x, y, z \in K. \]
\[x^{2p} + y^{2p} = z^7, \quad \text{for } x, y, z \in \mathbb{Z}. \]
\[x^{2p} + 6x^p + 1 = 8y^2, \quad \text{for } x, y \in \mathbb{Z}. \]

• Write down a Frey elliptic curve \(E/K \).

• Prove that \(E \) is modular.
The modular method over number fields

- Start with an equation:
 \[x^p + y^p = z^p, \quad \text{for } x, y, z \in K. \]
 \[x^{2p} + y^{2p} = z^7, \quad \text{for } x, y, z \in \mathbb{Z}. \]
 \[x^{2p} + 6x^p + 1 = 8y^2, \quad \text{for } x, y \in \mathbb{Z}. \]

- Write down a Frey elliptic curve \(E/K \).
- Prove that \(E \) is modular.
- Prove that \(E \) does not admit a \(K \)-rational \(p \)-isogeny.
The modular method over number fields

- Start with an equation:
 \[x^p + y^p = z^p, \quad \text{for } x, y, z \in K. \]
 \[x^{2p} + y^{2p} = z^7, \quad \text{for } x, y, z \in \mathbb{Z}. \]
 \[x^{2p} + 6x^p + 1 = 8y^2, \quad \text{for } x, y \in \mathbb{Z}. \]

- Write down a Frey elliptic curve \(E/K \).
- Prove that \(E \) is modular.
- Prove that \(E \) does not admit a \(K \)-rational \(p \)-isogeny.
- Apply a level-lowering theorem to obtain a contradiction.
The modular method over number fields

- Start with an equation:
 \[x^p + y^p = z^p, \quad \text{for } x, y, z \in K. \]
 \[x^{2p} + y^{2p} = z^7, \quad \text{for } x, y, z \in \mathbb{Z}. \]
 \[x^{2p} + 6x^p + 1 = 8y^2, \quad \text{for } x, y \in \mathbb{Z}. \]

- Write down a Frey elliptic curve \(E/K \).
- Prove that \(E \) is modular.
- Prove that \(E \) does not admit a \(K \)-rational \(p \)-isogeny.
- Apply a level-lowering theorem to obtain a contradiction.

No set method for proving that \(E \) does not admit a \(K \)-rational \(p \)-isogeny.
Aims and concessions

Aims:

• Obtain general results to help solve Diophantine equations using the modular method over number fields.
• Understand more about isogenies of elliptic curves.
• Understand more about modular curves and Galois representations.

Concessions:

• Assume \(E/K \) is semistable at all primes of \(K \) above \(p \).

If \(E/K \) is an elliptic curve and \(p \) is a prime of \(K \), then \(E \) is semistable at \(p \) if \(E \) has good or multiplicative reduction at \(p \).

• This is not a very restrictive assumption.

• It is already an assumption in the modular method for the level-lowering theorem.
Aims and concessions

Aims:

- Obtain general results to help solve Diophantine equations using the modular method over number fields.
- Understand more about isogenies of elliptic curves.
- Understand more about modular curves and Galois representations.

Concessions:

- Assume E/K is semistable at all primes of K above p.
Aims and concessions

Aims:

- Obtain general results to help solve Diophantine equations using the modular method over number fields.
- Understand more about isogenies of elliptic curves.
- Understand more about modular curves and Galois representations.

Concessions:

- Assume E/K is semistable at all primes of K above p.

If E/K is an elliptic curve and $p | p$ is a prime of K, then E is semistable at p if E has good or multiplicative reduction at p.
Aims and concessions

Aims:

• Obtain general results to help solve Diophantine equations using the modular method over number fields.
• Understand more about isogenies of elliptic curves.
• Understand more about modular curves and Galois representations.

Concessions:

• Assume E/K is **semistable at all primes of K above p.**

If E/K is an elliptic curve and $p | p$ is a prime of K, then E is semistable at p if E has good or multiplicative reduction at p.

• This is not a very restrictive assumption.
• It is *already* an assumption in the modular method for the level-lowering theorem.
Section 2

Results
We will work with **quadratic fields**.

- Most useful for applications of the modular method.
- More techniques available.
- Sharper results are more easily obtained.
We will work with **quadratic fields**.

- Most useful for applications of the modular method.
- More techniques available.
- Sharper results are more easily obtained.

Theorem (M., 2022)

Let $K = \mathbb{Q}(\sqrt{5})$ *and let* p *be a prime. There exists an elliptic curve* E/K *which admits a* K-*rational* p-*isogeny and is semistable at all primes of* K *above* p *if and only if* $p \in \{2, 3, 5, 7, 13, 17, 37\}$.
We will work with **quadratic fields**.

- Most useful for applications of the modular method.
- More techniques available.
- Sharper results are more easily obtained.

Theorem (M., 2022)

Let $K = \mathbb{Q}(\sqrt{5})$ *and let* p *be a prime. There exists an elliptic curve* E/K *which admits a* K-*rational* p-*isogeny and is semistable at all primes of* K *above* p *if and only if* $p \in \{2, 3, 5, 7, 13, 17, 37\}$.

Theorem (M., 2022)

Let $K = \mathbb{Q}(\sqrt{-5})$ *and let* p *be a prime. There exists an elliptic curve* E/K *which admits a* K-*rational* p-*isogeny and is semistable at all primes of* K *above* p *if and only if* $p \in \{2, 3, 5, 7, 13, 37, 43\}$.
Theorem (M., 2023)

Let K be a real quadratic field with $h(K) \leq 7$ and let ϵ be a fundamental unit of K. Let p be a prime such that there exists an elliptic curve E/K which admits a K-rational p-isogeny and is semistable at all primes of K above p. Then either

(i) p ramifies in K; or

(ii) $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$; or

(iii) p splits in K and $p | \text{Norm}_{K/Q}(\epsilon^{12} - 1)$.

• This gives a simple criterion for ruling out primes.
• Any leftover primes can normally be dealt with separately.
Theorem (M., 2023)

Let K be a real quadratic field with $h(K) \leq 7$ and let ϵ be a fundamental unit of K. Let p be a prime such that there exists an elliptic curve E/K which admits a K-rational p-isogeny and is semistable at all primes of K above p. Then either

(i) p ramifies in K; or

(ii) $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37\}$; or

(iii) p splits in K and $p \mid \text{Norm}_{K/Q}(\epsilon^{12} - 1)$.

• This gives a simple criterion for ruling out primes.
• Any leftover primes can normally be dealt with separately.
Section 3

Proofs
Modular curves and Galois representations

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:
Modular curves and Galois representations

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:

- Choose $q \nmid p$ a prime (of K).
Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:

- Choose $q \nmid p$ a prime (of K).
- Case (i): q is a prime of \textit{potentially multiplicative reduction for E} (meaning $v_q(j(E)) < 0$). Use the theory of \textbf{modular curves}.
Modular curves and Galois representations

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

Strategy:

- Choose $q \nmid p$ a prime (of K).
- Case (i): q is a prime of *potentially multiplicative reduction for E* (meaning $v_q(j(E)) < 0$). Use the theory of *modular curves*.
- Case (ii): q is a prime of *potentially good reduction for E* (meaning $v_q(j(E)) \geq 0$). Use the theory of *Galois representations*.
The modular curve $X_0(p)$

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

The curve $X_0(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.
The modular curve $X_0(p)$

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

The curve $X_0(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.

The pair (E, φ) gives rise to a non-cuspidal K-rational point on the modular curve $X_0(p)$:

$$[E, \varphi] = x \in X_0(p)(K) \backslash \{0, \infty\}.$$
The modular curve $X_0(p)$

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

The curve $X_0(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.

The pair (E, φ) gives rise to a non-cuspidal K-rational point on the modular curve $X_0(p)$:

$$[E, \varphi] = x \in X_0(p)(K) \setminus \{0, \infty\}.$$

- We have the j-map $j : X_0(p) \to \mathbb{P}^1$ that satisfies $j(x) = j(E)$.
The modular curve $X_0(p)$

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ.

The curve $X_0(p)$ is an algebraic curve defined over \mathbb{Q} whose points parametrise elliptic curves with a p-isogeny.

The pair (E, φ) gives rise to a non-cuspidal K-rational point on the modular curve $X_0(p)$:

$$[E, \varphi] = x \in X_0(p)(K) \setminus \{0, \infty\}.$$

- We have the j-map $j : X_0(p) \longrightarrow \mathbb{P}^1$ that satisfies $j(x) = j(E)$.
- The cusps $0, \infty \in X_0(p)(\mathbb{Q})$ are the poles of the j-map.
A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$[E, \varphi] = x \in X_0(p)(K) \setminus \{0, \infty\}.$$

We know $j(x) = j(E)$.

Suppose $q \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).
A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$[E, \varphi] = x \in X_0(p)(K) \backslash \{0, \infty\}.$$

We know $j(x) = j(E)$.

Suppose $q \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $\nu_q(j(E)) = \nu_q(j(x)) < 0$.

• $v_q(j(E)) = v_q(j(x)) < 0$.
A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$[E, \varphi] = x \in X_0(p)(K) \setminus \{0, \infty\}.$$

We know $j(x) = j(E)$.

Suppose $q \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $\nu_q(j(E)) = \nu_q(j(x)) < 0$.
- So $x \pmod{q}$ is a pole of the j-map mod q.
A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$[E, \varphi] = x \in X_0(p)(K) \setminus \{0, \infty\}.$$

We know $j(x) = j(E)$.

Suppose $q \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $\nu_q(j(E)) = \nu_q(j(x)) < 0$.
- So $x \pmod{q}$ is a pole of the j-map mod q.
- $x \pmod{q} = \infty \pmod{q}$ or $0 \pmod{q}$.
A prime of potentially multiplicative reduction

Let E/K be an elliptic curve that admits a K-rational p-isogeny, φ. We have

$$[E, \varphi] = x \in X_0(p)(K) \setminus \{0, \infty\}.$$

We know $j(x) = j(E)$.

Suppose $q \nmid p$ is a prime of potentially multiplicative reduction for E (this is Case (i)).

- $v_q(j(E)) = v_q(j(x)) < 0$.
- So $x \pmod{q}$ is a pole of the j-map mod q.
- $x \pmod{q} = \infty \pmod{q}$ or $0 \pmod{q}$.
- Argue that $x = \infty$ or 0, a contradiction (think of Hensel's lemma!).
The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write $E[p] \subset E(K)$ for the p-torsion points of E.
The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write $E[p] \subset E(\bar{K})$ for the p-torsion points of E.

The group $G_K = \text{Gal}(\bar{K}/K)$ acts on $E[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ and gives rise to the \textbf{mod p Galois representation} attached to E:

$$\bar{\rho}_{E,p} : G_K \to \text{GL}_2(\mathbb{F}_p).$$
The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write $E[p] \subset E(K)$ for the p-torsion points of E.

The group $G_K = \text{Gal}(\overline{K}/K)$ acts on $E[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ and gives rise to the mod p Galois representation attached to E:

$$\overline{\rho}_{E,p} : G_K \to \text{GL}_2(\mathbb{F}_p).$$

Fix a basis (R_1, R_2) of $E[p]$.
The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write $E[p] \subset E(\bar{K})$ for the p-torsion points of E.

The group $G_K = \text{Gal}(\bar{K}/K)$ acts on $E[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ and gives rise to the **mod p Galois representation** attached to E:

$$\bar{\rho}_{E,p} : G_K \to \text{GL}_2(\mathbb{F}_p).$$

Fix a basis (R_1, R_2) of $E[p]$.

For $\sigma \in G_K$,

$$R_1^\sigma = aR_1 + bR_2,$$

$$R_2^\sigma = cR_1 + dR_2.$$
The mod p Galois representation

Let E/K be an elliptic curve and p a prime. Write $E[p] \subset E(K)$ for the p-torsion points of E.

The group $G_K = \text{Gal}(K/K)$ acts on $E[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ and gives rise to the mod p Galois representation attached to E:

$$
\overline{\rho}_{E,p} : G_K \to \text{GL}_2(\mathbb{F}_p).
$$

Fix a basis (R_1, R_2) of $E[p]$.

For $\sigma \in G_K$,

$$
R_1^\sigma = aR_1 + bR_2, \\
R_2^\sigma = cR_1 + dR_2.
$$

Then $\overline{\rho}_{E,p}(\sigma) = (a \ b \ c \ d)$.

A key equivalence

Let E/K be an elliptic curve and let p be a prime. The following are equivalent:

(i) E admits a K-rational p-isogeny, φ.

(ii) $\bar{\rho}_{E,p} : G_K \to \text{GL}_2(\mathbb{F}_p)$ is reducible.
A key equivalence

Let E/K be an elliptic curve and let p be a prime. The following are equivalent:

(i) E admits a K-rational p-isogeny, φ.
(ii) $\bar{\rho}_{E,p} : G_K \to \text{GL}_2(\mathbb{F}_p)$ is reducible.

Proof.

(i) \implies (ii) $\ker(\varphi)$ is a nontrivial proper G_K-submodule of $E[p]$.
A key equivalence

Let \(E/K \) be an elliptic curve and let \(p \) be a prime. The following are equivalent:

(i) \(E \) admits a \(K \)-rational \(p \)-isogeny, \(\varphi \).

(ii) \(\bar{\rho}_{E,p} : G_K \to \text{GL}_2(\mathbb{F}_p) \) is reducible.

Proof.

(i) \(\implies \) (ii) \(\ker(\varphi) \) is a nontrivial proper \(G_K \)-submodule of \(E[p] \).

(ii) \(\implies \) (i) For some basis \(\{R_1, R_2\} \subset E[p] \),

\[
\bar{\rho}_{E,p} \sim \begin{pmatrix} \lambda & * \\ 0 & \chi' \end{pmatrix}.
\]

Then \(\langle R_1 \rangle \subset E[p] \) is a \(K \)-rational subgroup of order \(p \). Quotienting out by this subgroup gives rise to a \(K \)-rational \(p \)-isogeny. \(\square \)
The isogeny character

Let \(E/K \) be an elliptic such that \(\bar{\rho}_{E,p} \) is reducible. So

\[
\bar{\rho}_{E,p} \sim \begin{pmatrix} \lambda & * \\ 0 & \lambda' \end{pmatrix}.
\]
The isogeny character

Let E/K be an elliptic such that $\overline{\rho}_{E,p}$ is reducible. So

$$\overline{\rho}_{E,p} \sim \begin{pmatrix} \lambda & * \\ 0 & \lambda' \end{pmatrix}.$$

The isogeny character

$\lambda : G_K \rightarrow \mathbb{F}_p^\times$ is the **isogeny character** of (E, φ).
Let E/K be an elliptic such that $\bar{\rho}_{E,p}$ is reducible. So

$$\bar{\rho}_{E,p} \sim \begin{pmatrix} \lambda & \ast \\ 0 & \lambda' \end{pmatrix}.$$

The isogeny character

$\lambda : G_K \to \mathbb{F}_p^\times$ is the **isogeny character** of (E, φ).

- λ tells us how G_K acts on $\ker(\varphi)$: if $\ker(\varphi) = \langle R_1 \rangle$, then for $\sigma \in G_K$,

 $$R_1^\sigma = \lambda(\sigma)R_1.$$
The isogeny character

Let E/K be an elliptic such that $\bar{\rho}_{E,p}$ is reducible. So

$$\bar{\rho}_{E,p} \sim \begin{pmatrix} \lambda & \ast \\ 0 & \lambda' \end{pmatrix}.$$

The isogeny character

$\lambda : G_{K} \to \mathbb{F}_{p}^{\times}$ is the isogeny character of (E, φ).

- λ tells us how G_{K} acts on ker(φ): if ker$(\varphi) = \langle R_{1} \rangle$, then for $\sigma \in G_{K}$,

$$R_{1}^{\sigma} = \lambda(\sigma)R_{1}.$$

We study λ as it encodes key information about E and $\varphi.$
The group G_K and Frobenius elements

We want to study $\lambda : G_K \to \mathbb{F}_p^\times$. The group G_K is complicated and we want to work with concrete elements.
The group G_K and Frobenius elements

We want to study $\lambda : G_K \rightarrow \mathbb{F}_p^\times$. The group G_K is complicated and we want to work with concrete elements.

Let q be a prime of K and let $\sigma_q \in G_K$ be a Frobenius element at q. This is any element that maps to the Frobenius automorphism in $\text{Gal}(\overline{k}/k)$, where $k = \mathcal{O}_K/q$.
The group G_K and Frobenius elements

We want to study $\lambda : G_K \rightarrow \mathbb{F}_p^\times$. The group G_K is complicated and we want to work with concrete elements.

Let q be a prime of K and let $\sigma_q \in G_K$ be a Frobenius element at q. This is any element that maps to the Frobenius automorphism in $\text{Gal}(\overline{k}/k)$, where $k = \mathcal{O}_K/q$.

We study $\lambda(\sigma_q) \in \mathbb{F}_p^\times$.
A prime of potentially good reduction

Let E/K be an elliptic such that $\overline{\rho}_{E,p}$ is reducible and is semistable at the primes of K above p.
A prime of potentially good reduction

Let E/K be an elliptic such that $\overline{\rho}_{E,p}$ is reducible and is semistable at the primes of K above p.

Suppose $q \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $q^r = \alpha O_K$ is principal.
A prime of potentially good reduction

Let E/K be an elliptic such that $\bar{\rho}_{E,p}$ is reducible and is semistable at the primes of K above p.

Suppose $q \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $q^r = \alpha \mathcal{O}_K$ is principal.

Can prove: $\lambda(\sigma_q)$ is a root of the following polynomials (after reducing mod p):

(I) $X^{12} - \alpha^t$ for some $t \in \{0, 12\}$; and

(II) $X^2 - aX + \text{Norm}(q)$ for some $|a| \leq 2\sqrt{\text{Norm}(q)}$.

Considering all cases restricts the possible values of p. The fact that E is semistable at the primes of K above p means that $t \in \{0, 12\}$. Otherwise, $t \in \{0, 4, 6, 8, 12\}$.
A prime of potentially good reduction

Let E/K be an elliptic such that $\bar{\rho}_{E,p}$ is reducible and is semistable at the primes of K above p.

Suppose $q \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $q^r = \alpha \mathcal{O}_K$ is principal.

Can prove: $\lambda(\sigma_q)$ is a root of the following polynomials (after reducing mod p):

(I) $X^{12} - \alpha^t$ for some $t \in \{0, 12\}$; and
(II) $X^2 - aX + \text{Norm}(q)$ for some $|a| \leq 2\sqrt{\text{Norm}(q)}$.

Considering all cases restricts the possible values of p.
A prime of potentially good reduction

Let E/K be an elliptic such that $\bar{\rho}_{E,p}$ is reducible and is semistable at the primes of K above p.

Suppose $q \nmid p$ is a prime of potentially good reduction for E (this is Case (ii)). Choose r such that $q^r = \alpha \mathcal{O}_K$ is principal.

Can prove: $\lambda(\sigma_q)$ is a root of the following polynomials (after reducing mod p):

(I) $X^{12} - \alpha^t$ for some $t \in \{0, 12\}$; and

(II) $X^2 - aX + \text{Norm}(q)$ for some $|a| \leq 2\sqrt{\text{Norm}(q)}$.

Considering all cases restricts the possible values of p.

The fact that E is semistable at the primes of K above p means that $t \in \{0, 12\}$. Otherwise, $t \in \{0, 4, 6, 8, 12\}$.
An algorithm

- Fix a number field K.
An algorithm

- Fix a number field K.
- Choose some primes q_1, \ldots, q_t of K.
An algorithm

- Fix a number field K.
- Choose some primes q_1, \ldots, q_t of K.
- For each q_i, obtain a finite list of primes \mathcal{P}_i such that if there exists an elliptic curve E/K that admits a K-rational p-isogeny and is semistable at the primes of K above p, then $p \in \mathcal{P}_i$.
An algorithm

• Fix a number field K.
• Choose some primes q_1, \ldots, q_t of K.
• For each q_i, obtain a finite list of primes \mathcal{P}_i such that if there exists an elliptic curve E/K that admits a K-rational p-isogeny and is semistable at the primes of K above p, then $p \in \mathcal{P}_i$.
• Intersect the sets \mathcal{P}_i to obtain a finite list of primes.
An algorithm

- Fix a number field K.
- Choose some primes q_1, \ldots, q_t of K.
- For each q_i, obtain a finite list of primes \mathcal{P}_i such that if there exists an elliptic curve E/K that admits a K-rational p-isogeny and is semistable at the primes of K above p, then $p \in \mathcal{P}_i$.
- Intersect the sets \mathcal{P}_i to obtain a finite list of primes.
- Use additional techniques to try and remove even more primes.
Section 4

Examples
Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.
Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p > 19$.

- Start with $q_1 = 3 \cdot O_K$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_1.
- By considering $\rho_{E,p}$, $p \in P_1 := \{37, 43, 61, 73, 89, 97, 109, 157, 313, 1489\}$.
- Now use $q_2 = \sqrt{2} \cdot O_K$ to study $p \in P_1$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_2.
- By considering $\rho_{E,p}$: find that $p = 37$.

Conclusion: $p \leq 19$ or $p = 37$.

Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p > 19$.

- Start with $q_1 = 3 \cdot \mathcal{O}_K$.
Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p > 19$.

- Start with $q_1 = 3 \cdot \mathcal{O}_K$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_1.

Conclusion: $p \leq 19$ or $p = 37$.
Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p > 19$.
- Start with $q_1 = 3 \cdot \mathcal{O}_K$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_1.
- By considering $\bar{\rho}_{E,p}$:

$$p \in \mathcal{P}_1 := \{37, 43, 61, 73, 89, 97, 109, 157, 313, 1489\}.$$
Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p > 19$.
- Start with $q_1 = 3 \cdot \mathcal{O}_K$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_1.
- By considering $\bar{\rho}_{E,p}$:
 \[p \in \mathcal{P}_1 := \{37, 43, 61, 73, 89, 97, 109, 157, 313, 1489\}.
- Now use $q_2 = \sqrt{2} \cdot \mathcal{O}_K$ to study $p \in \mathcal{P}_1$.
Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p > 19$.

- Start with $q_1 = 3 \cdot \mathcal{O}_K$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_1.
- By considering $\overline{\rho}_{E,p}$:

 $$p \in \mathcal{P}_1 := \{37, 43, 61, 73, 89, 97, 109, 157, 313, 1489\}.$$

- Now use $q_2 = \sqrt{2} \cdot \mathcal{O}_K$ to study $p \in \mathcal{P}_1$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_2.
Example: \(K = \mathbb{Q}(\sqrt{2}) \)

Suppose \(E/K \) is an elliptic curve and that \(p \) is a prime such that \(E/K \) admits a \(K \)-rational \(p \)-isogeny and is semistable at the primes of \(K \) above \(p \).

- Assume \(p > 19 \).
- Start with \(q_1 = 3 \cdot \mathcal{O}_K \).
- By considering \(X_0(p) \): either \(p = 37 \) or \(E \) has potentially good reduction at \(q_1 \).
- By considering \(\rho_{E,p} \):

\[
p \in \mathcal{P}_1 := \{37, 43, 61, 73, 89, 97, 109, 157, 313, 1489\}.
\]

- Now use \(q_2 = \sqrt{2} \cdot \mathcal{O}_K \) to study \(p \in \mathcal{P}_1 \).
- By considering \(X_0(p) \): either \(p = 37 \) or \(E \) has potentially good reduction at \(q_2 \).
- By considering \(\rho_{E,p} \): find that \(p = 37 \).
Example: $K = \mathbb{Q}(\sqrt{2})$

Suppose E/K is an elliptic curve and that p is a prime such that E/K admits a K-rational p-isogeny and is semistable at the primes of K above p.

- Assume $p > 19$.
- Start with $q_1 = 3 \cdot \mathcal{O}_K$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_1.
- By considering $\bar{\rho}_{E,p}$:

 $$p \in \mathcal{P}_1 := \{37, 43, 61, 73, 89, 97, 109, 157, 313, 1489\}.$$

Now use $q_2 = \sqrt{2} \cdot \mathcal{O}_K$ to study $p \in \mathcal{P}_1$.
- By considering $X_0(p)$: either $p = 37$ or E has potentially good reduction at q_2.
- By considering $\bar{\rho}_{E,p}$: find that $p = 37$.

Conclusion: $p \leq 19$ or $p = 37$.
The Fermat equation over $K = \mathbb{Q}(\sqrt{2})$

Theorem (Jarvis–Meekin, 2004)

The equation

$$x^n + y^n = z^n,$$

with $n \geq 4$ has no solutions for $x, y, z \in K = \mathbb{Q}(\sqrt{2})$ with $xyz \neq 0$.
The Fermat equation over $K = \mathbb{Q}(\sqrt{2})$

Theorem (Jarvis–Meekin, 2004)

The equation

$$x^n + y^n = z^n,$$

with $n \geq 4$ has no solutions for $x, y, z \in K = \mathbb{Q}(\sqrt{2})$ with $xyz \neq 0$.

- 'Classical' for $n \in \{4, 5, 6, 7, 9, 11, 13\}$.
- Let $n = p \geq 17$ be prime and suppose $x^p + y^p = z^p$ with $xyz \neq 0$.
- Define the Frey elliptic curve $E : Y^2 = X(X - x^p)(X + y^p)$.
- E does not admit a K-rational p-isogeny.
- E is modular.
- E 'corresponds' to a newform at level $\sqrt{2} \cdot \mathcal{O}_K \leadsto$ contradiction.
We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.
We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

• From example: $p \in \{17, 19, 37\}$.
We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in \{17, 19, 37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_0(2p)$.

(Ozman–Siksek, 2019): No non-cuspidal K-rational points on $X_0(34)$ or $X_0(38)$.

Hvala!
We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in \{17, 19, 37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_0(2p)$.
- (Ozman–Siksek, 2019): No non-cuspidal K-rational points on $X_0(34)$ or $X_0(38)$.
We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in \{17, 19, 37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_0(2p)$.
- (Ozman–Siksek, 2019): No non-cuspidal K-rational points on $X_0(34)$ or $X_0(38)$.
We need to prove that E does not admit a K-rational p-isogeny for $p \geq 17$.

Proof.

- From example: $p \in \{17, 19, 37\}$.
- E has a 2-torsion point defined over K, so E gives rise to a non-cuspidal K-rational point on $X_0(2p)$.
- (Ozman–Siksek, 2019): No non-cuspidal K-rational points on $X_0(34)$ or $X_0(38)$.

Hvala!