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Abstract

In this project, we discuss some aspects of the theory of formal group laws, and we see how
the theory changes when we pass to equivariant formal group laws. In particular, we show
that it is not true that commutative equivariant formal group laws over the rationals have a
logarithm. However, we are able to prove interesting decomposition theorems when the
group acting is simple enough. In the last part of the project, we show that any equivariant
formal group law on the group with two elements is rationally isomorphic to a suitable
multiplicative one.
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1Introduction

The goal of this project is to introduce the theory of equivariant formal group laws. In
the non-equivariant case, covered by the first part of the project, we can think of a formal
group law as a power series encoding the behaviour of the multiplication map in a one-
dimensional formal group, that is, a group object in the category of formal schemes with
some additive properties. We develop the group scheme point of view by following [12] as
the main reference. By a theorem of Quillen, giving a formal group law with coefficients
in a ℚ-algebra R, is the same as giving a homomorphism from the rationalized cobordism
ring to R. Following [7], [8], and [9] we show that these homomorphisms, which we call
Genera, are in turn closely related to characteristic numbers of vector bundles.
These correspondences create an extremely interesting picture in the non-equivariant case
that has not a clear analogue when we try to equip things with a group action. The reason
is that, in the non-equivariant case, every commutative formal group law is rationally
isomorphic to a very simple one, that is the additive formal group law, whereas in the
equivariant context this is not true.
We refer to [greenlees2001equivariant] and [4] to formalize the notion of equivariant
formal group law. The idea is to think about the ring of functions on a formal group that
receives a map from the dual of a certain abelian compact Lie group.
To understand what happens in the equivariant case, we explore some examples coming
from algebraic topology, indeed any equivariant complex oriented cohomology theory
witnesses, in a natural way, an equivariant formal group law. We analyse in detail the case of
equivariant K-theory following [2] and [segal1966equivariant]. In the last chapter of the
project, we show that any commutative equivariant formal group law on the group with
two elements is rationally isomorphic to a multiplicative one, that is still a very simple one.
We refer to [6] and [3] for facts regardingG-spectra and equivariant cohomology theories
that we will use, to [1] for a complete development of the non-equivariant case, and to [10]
for general facts about cohomology and homotopy.
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2Characteristic numbers

In this chapter, we introduce characteristic classes of complex vector bundles and we use
them to construct the associated characteristic numbers. We start by defining Chern classes
as cohomology classes satisfying the following four axioms.
Axiom 1. To each complex vector bundle E over a manifoldX there corresponds a sequence
of cohomology classes

ci(E) ∈ H2i(X; ℤ), i = 0, 1, 2, ...

called Chern classes. Furthermore c0(E) = 1 and ci(E) = 0 for i > rk(E).
Axiom 2. If f ∶ X → Y, denote with f∗E the pullback bundle with respect to f, then

ci(f∗E) = f∗ci(E).

Axiom 3. Define the total Chern class of E as c(E) = ∑∞
i=0 ci(E) ∈ H∗(X; ℤ). If E and F

are complex vector bundles over the same base manifold X, then

c(E ⊕ F) = c(E) ⋅ c(F).

Axiom 4. Let g ∈ H2(ℂPn; ℤ) denote the generating element of the cohomology ring of
ℂPn, Poincaré dual to the homology class of the hyperplane ℂPn−1 ⊂ ℂPn. Let γn be the
tautological vector bundle over ℂPn, having as fiber over each point of ℂPn the line in ℂn+1

represented by it. Then
c(γn) = 1 − g.

As a first calculation, we want to understand who are the Chern classes of the tangent
bundle of ℂPn. First observe that, since γn is contained in the trivial bundle ℂn+1, we can
consider its orthogonal complement γ⊥.

Lemma 1. The tangent bundle τ of ℂPn is isomorphic toHom(γn, γ⊥).

Proof. Viewing ℂPn as a quotient of the sphere S2n+1 ⊂ ℂn+1 by S1, the tangent space of
the quotient can be seen as the set of the orbits S1 ⋅ (x, v), where (x, v) is a point of the
tangent bundle of S2n+1, that is x ⋅ x = 1 and x ⋅ v = 0. Each of these orbits determines
and is determined by a linear map

l ∶ spanℂ(x) → spanℂ(x)⊥

where
l(x) = v.

It follows that τ is canonically isomorphic toHom(γn, γ⊥). �
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2 Characteristic numbers 3

In the following, when X is an almost complex manifold, we will indicate with c(X) the
total Chern class of the tangent bundle of X.

Theorem 1. c(ℂPn) = (1 + g)n+1 = 1 + (n + 1) ⋅ g + (n+1
2 ) ⋅ g2 + ... + (n + 1) ⋅ gn.

Note that we have omitted the summand gn+1 becauseH2n+2(ℂPn) = 0.

Proof. Note that the bundleHom(γn, γn) is trivial since it is a line bundle with a canonical
nowhere zero cross-section. Therefore,

τ ⊕ ℂ ≅ Hom(γn, γ⊥) ⊕ Hom(γn, γn) ≅ Hom(γn, ℂn+1).

This is clearly isomorphic to

Hom(γn, ℂ ⊕ ... ⊕ ℂ) ≅ Hom(γn, ℂ) ⊕ ... ⊕ Hom(γn, ℂ).

Therefore,
τ ⊕ ℂ ≅ (γn)∗ ⊕ ... ⊕ (γn)∗ .

Now by [9] lemma 14.9,
ck ((γn)∗) = (−1)kck (γn)

so the result follows by applying axiom 3. �

Let E be a real vector bundle over X. we define the Pontryagin classes pi(E) by

pi(E) ∶= (−1)ic2i(E ⊗ ℂ) ∈ H4i(X; ℤ).

In case E is the real vector bundle underlying a complex vector bundle, we have that E⊗ℂ ≅
E ⊕ E. This observation allows us to prove the following result.

Theorem 2. The equality

∞
∑
i=0

(−1)ipi(E) = c(E) ⋅
∞
∑
i=0

(−1)ici(E)

holds inH∗(X; ℤ).

Proof.
∞
∑
i=0

(−1)ipi(E) =
∞
∑
i=0

c2i(E ⊗ ℂ) =
∞
∑
i=0

2i
∑
j=0

cj(E)c2i−j(E).

Again by [9] lemma 14.9, ci (E) = (−1)ici(E), therefore the last term is equal to

∞
∑
i=0

2i
∑
j=0

(−1)2i−jcj(E)c2i−j(E) =
∞
∑
i=0

i
∑
j=0

(−1)i−jcj(E)ci−j(E).

Indeed, in the last sum the terms in which i is odd vanish. Now the last term is simply
c(E ⊕ E) and the result follows. �



2 Characteristic numbers 4

By applying the theorem to the tangent bundle of ℂPn we get

∞
∑
i=0

(−1)ipi(E) = (1 + g)n+1 ⋅ (1 − g)n+1 = (1 − g2)n+1.

Therefore
p(ℂPn) =

∞
∑
i=0

pi(E) = (1 + g2)n+1.

Having these characteristic classes we can define their characteristic numbers as follows.
Let X be a compact, oriented, almost complex manifold of dimension 2n and let (i1, ..., ir)
be a partition of n (i.e. ∑j ij = n). Then, the Chern number corresponding to this
partition is defined as

(
r

∏
j=1

cij(X)) [X]

where [X] denotes the fundamental cycle of the oriented manifold X.
In the differentiable case, the Pontryagin numbers of a manifold X of dimension 4n are
defined as

(
r

∏
j=1

pij(X)) [X]

where (i1, ..., ir) is again a partition of n.



3Genera

In this Chapter, we introduce the notion of cobordism and we study the ring homomor-
phisms from the rationalized cobordism ring to any commutativeℚ-algebra.
For an orientedmanifoldWwe indicatewith∂W its boundarywith the induced orientation.

Definition 1. Let V be a compact, oriented, differentiable, n-dimensional manifold without
boundary. We say that V bounds if there exists a compact, oriented, differentiable, (n + 1)-
dimensional manifoldW such that ∂W = V.

Theorem 3. ℂP2k+1 bounds.

Idea of the Proof. Observe that the bijection σ ∶ ℂ2k+2 → ℍk+1

σ(z1, ..., z2k+2) = (z1 + z2 ⋅ j, ..., z2k+1 + z2k+2 ⋅ j)

induces a fibration
S2 → ℂP2k+1 → ℍPk.

This fibration yields a locally trivial fiber bundle which can be given the structure group
SO(3). One can extend this operation to the associated disk bundle

D3 → E → ℍPk

with fiber the 3-ball obtaining a 4k+ 3-dimensional manifold Ewhose boundary is ℂP2k+1.
�

Definition 2. Two compact, oriented, differentiable, n-dimensional manifold without
boundary V andW are said to be cobordant (V ∼ W) if the manifold V + (−W) bounds.
Here ”+” denotes the disjoint union and−W is the manifoldW with reversed orientation.

It’s easy to check that the relation ∼ is an equivalence relation, for example for reflexivity we
have that V + (−V) = ∂(V × [0, 1]) and for transitivity, we can glue two manifolds along
diffeomorphic boundary components. We callΩn the set of equivalence classes of compact,
oriented, differentiable, n-dimensional manifolds with respect to ∼.
(Ωn, +) is a finitely generated abelian group and theCartesian product ofmanifolds induces
a mapΩn ×Ωm → Ωn+m makingΩ ∶= ∑∞

n=0 Ωn into a graded commutative unital ring
called cobordism ring.
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3 Genera 6

Theorem 4. Ωn ⊗ ℚ = 0 when n is not a multiple of 4 andΩ4k is a finitely generated
abelian group with rank equal to the number of partitions of k. Furthermore,

Ω⊗ℚ = ℚ[ℂP2, ℂP4, ℂP6, ...]

as a graded polynomial ring.

See [7] Chapter II for a proof. For example,Ω4 ⊗ ℚ = ⟨ℂP2 × ℂP2, ℂP4⟩.

Definition 3. Let R be a commutative unitalℚ-algebra. A genus is a ring homomorphism
φ ∶ Ω ⊗ ℚ → R.

Consider an even power series Q(x) with constant term 1 and with coefficients in R. If
x1, x2, ..., xn are indeterminates ofweight two, then theproductQ(x1)⋅⋅⋅Q(xn) is symmetric
in the x2i and hence can be written in terms of the elementary symmetric functions pj of
the x2i in the form

Q(x1) ⋅ ⋅ ⋅Q(xn) = 1+K1(p1)+K2(p1, p2)+ ...+Kn(p1, ..., pn)+Kn+1(p1, ..., pn, 0)+ ...

for homogeneous polynomialsKr of weight 4r. For example, ifQ(x) = 1+a2x2+a4x4+...
thenQ(x1) ⋅ ⋅ ⋅ Q(xn) = 1 + a2 ∑n

i=1 x2i + ... so K1(p1) = a2p1.
Given a power seriesQ as described above, we can associate to it a genusφQ. Namely, if
M is a compact, oriented, differentiable, 4n-dimensional manifold, then we can define
φQ(M) ∶= Kn(p1, ..., pn)[M] ∈ R, with pi = pi(M) ∈ H4i(M;ℤ). In addition, if 4 ∤
dim(M) we put φQ(M) = 0. Furthermore, we define K(TM) ∶= K(p1, ..., pn) ∶= 1 +
K1(p1) + K2(p1, p2) + ..., so thatφQ(M) = K(TM)[M].

Remark 1. φQ is a well-defined genus, that is

• φQ vanishes on boundaries

• It is compatible with the disjoint union

• It is compatible with the Cartesian product.

Indeed, for the first assertion, supposeM = ∂W then the tangent bundle ofW restricted
to M is the tangent bundle of M plus the normal bundle of M in W, which is trivial.
Therefore, the Pontryagin classes ofM are those ofW restricted to the boundary, hence

P(M) ∩ [M] = i∗P(W) ∩ [∂W] = δ ∘ i∗P(W) ∩ [W] = 0

where P(M) is a cohomology class ofM of maximum dimension given by any product of
Pontryagin classes. The second assertion is clear, and the last follows from the following
general fact (see [7] Lemma 1.2.2 for a proof): if pi, p′

i, p″
i are indeterminates for which

1 + p1 + p2 + ... = (1 + p′
1 + p′

2 + ...) ⋅ (1 + p″
1 + p″

2 + ...)



3 Genera 7

then
∑
n≥0

Kn(p1, ..., pn) = ∑
n≥0

Kn(p′
1, ..., p′

n) ⋅∑
n≥0

Kn(p″
1, ..., p″

n) (3.1)

where the Kn are the polynomials defined byQ as before. This is exactly the multiplicative
property satisfied by the Cartesian product of two manifolds.
Now we discuss an important lemma relating characteristic numbers and genera.
Start with an even power seriesQwith constant tern 1 and with coefficients in a ℚ-algebra
R as before, and define f as the odd power series f(x) = x/Q(x).
SinceQ(x) begin with 1, f(x) begins with x and has coefficients in R. Now define g as the
formal inverse function of f.

Lemma 2. g′(y) =
∞
∑
n=0

φQ(ℂPn) ⋅ yn.

Proof.
c(ℂPn) = (1 + x)n+1 ⇒ p(ℂPn) = (1 + x2)n+1.

Then by the multiplicative property 3.1 we have

∑
n≥0

Kn(p1, ..., pn) = (∑
n≥0

Kn(x2, 0, ..., 0))
n+1

= Q(x)n+1

where thepi are the Pontryagin classes ofℂPn and x ∈ H2(ℂPn; ℤ) is the generator Poincaré-
dual to ℂPn−1 ⊂ ℂPn.

φQ(ℂPn) = ( x
f(x))

n+1
[ℂPn]

= coefficient of xn in ( x
f(x))

n+1
= res0 (

1
f(x))

n+1
dx

= 1
2πi ∫

γ

( 1
f(x))

n+1
dx = 1

2πi ∫
f(γ)

( 1
yn+1)

n+1
g′(y)dy

= res0 (
g′(y)dy
yn+1 ) = coefficient of yn in g′(y).

Note that f is a power series starting with x, so when it converges, f(γ) is also a closed path
with winding number 1. When f does not converge, the substitution formula works anyway
for formal power series. �

The power series g is called the logarithm of the genusφQ and the lemma shows that the
genus is determined by its logarithm.
On the other hand, if we fix the values of a genus on the complex projective spaces, then we
can form the power series g′ and reverse the process ending upwithQ(x). This determines a
one-to-one correspondence between genera and even power series starting with 1. Roughly
speaking, this shows in particular that genera are nothing but infinite linear combinations
of characteristic numbers.
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As an example, if we start with Q(x) = x/tanh(x) we get f(x) = tanh(x). Then f′(x) =
1 − f(x)2 and g′(y) = 1/(1 − y2) = 1 + y2 +y4 + .... So we obtain the genus whose value
on all ℂP2n is 1, this is called the L-genus.

Recall that a stably almost-complex manifoldM is a differentiable manifold for which there
exists a trivial vector bundle ℝn such that TM ⊕ ℝn admits a complex structure.
If instead of considering cobordism classes of compact oriented differentiable manifolds we
consider cobordism classes of stably almost-complex manifolds, we obtain a variant of the
cobordism ring, called the complex cobordism ringΩU.
In this case we haveΩU ⊗ ℚ = ℚ[ℂP1, ℂP2, ℂP3, ...] and we can considerU-genera, as ring
homomorphisms from the rationalized complex cobordism ring to aℚ-algebra R.
If we apply the same constructions that we have seen in this chapter, replacing the Pon-
tryagin numbers with the Chern numbers, we see that theseU-genera are in one-to-one
correspondence with the power seriesQ(x)with constant term 1 (not necessarly even).



4Formal group laws

Using the notation of [12] we think of a scheme as a represented functor from 𝐑𝐢𝐧𝐠 to
𝐒𝐞𝐭. We define the category of formal schemes as the category whose objects are small
filtered colimits of schemes and whose morphisms are natural transformations.
As an example, we have the functor �̂�1 whose value at a ring R is the set of its nilpotent
elements �̂�1(R) = Nil(R). This is a formal scheme because it is the colimit of the represented
functorsRing(ℤ[t]/tn, −).
Wewill indicate the category of formal schemes with �̂� and, ifX is a scheme, we will indicate
the slice category over X as �̂�X.
When not differently specified, wewill assume that our formal schemes are one-dimensional
over a scheme X, this means formal schemes isomorphic to �̂�1 × X in �̂�X (in general an
n-dimensional formal scheme over X is one isomorphic to �̂�n × X in �̂�X).
Given S ∈ �̂�X, a coordinate on S is a map S → �̂�1 × X giving rise to an isomorphism.
Associated to a formal scheme S ∈ �̂�we have its ring of functions𝒪S that is the set of maps
from S to the forgetful functor𝔸1 ∶ Ring → Setwith the ring structure given by pointwise
operations. That is, given two natural transformations ϕ,ψ ∶ S → 𝔸1, their product is
the natural transformation that, on a ring R, is given bymR ∘ (ϕ × ψ) ∘ Δ ∶ S(R) → R,
wheremR is the multiplication in the ring R and Δ is the diagonal inclusion. Note that the
forgetful functor is a scheme, indeed it is represented by the ring ℤ[t].
By [12] chapter II, the functor that associates to any scheme its ring of functions X ↦ 𝒪X

is an isomorphism between the category of schemes and the opposite category of rings, in
particular, for a scheme X it holds that X = Ring(𝒪X, −).
If S ∈ �̂�X is a one-dimensional formal scheme over a scheme X, then

𝒪S ≅ Nat(X × �̂�1, 𝔸1)

≅ Nat(X × colim𝐑𝐢𝐧𝐠(ℤ[t]/tn, −), 𝔸1)

≅ lim Nat(𝐑𝐢𝐧𝐠(𝒪X ⊗ ℤ[t]/tn, −), 𝔸1)

≅ lim𝔸1(𝒪X[t]/tn) ≅ 𝒪X[[t]].

For the second isomorphism we have used that in any presheaf category, filtered colimits
are stable under pullback. So, in our cases of interest, the rings of functions will always be
power series rings, at least in this non-equivariant setting.
A formal group over a scheme X is a group object in the category of formal schemes over X,
note that if 𝔾 ∈ �̂�X, specifying a multiplication map 𝔾 ×X 𝔾 → 𝔾 is the same as specifying
an element of �̂�X(X × �̂�2, X × �̂�1)where �̂�2 = �̂�1 × �̂�1.

9



4 Formal group laws 10

With a calculation similar to the previous one we obtain that

�̂�X(X × �̂�2, X × �̂�1) ≅ �̂�(X × �̂�2, �̂�1)

≅ �̂�(𝐑𝐢𝐧𝐠(𝒪X, −) × colim𝐑𝐢𝐧𝐠(ℤ[x]/xn ⊗ ℤ[y]/ym, −), �̂�1)

≅ lim �̂�(𝐑𝐢𝐧𝐠(𝒪X ⊗ ℤ[x]/xn ⊗ ℤ[y]/ym, −), �̂�1)

≅ lim �̂�1(𝒪X ⊗ ℤ[x]/xn ⊗ ℤ[y]/ym) ⊆ 𝒪X[[x, y]].

It means that we can encode the behaviour of the multiplication map in a power series in
two variables with coefficients in the ring 𝒪X. As a consequence, we can also encode the
group axioms in the coefficients of this power series, for example, we unravel the right-unit
axiom, which says that the following diagram commutes

𝔾 𝔾 ×X X 𝔾 ×X 𝔾 𝔾≅

id𝔾

𝔾×e m

We start by observing that Id𝔾 ∶ 𝔾 → 𝔾 corresponds to x ∈ 𝒪X[[x]]. This can be seen
just by unrevealing the isomorphisms, indeed IdX×�̂�1 ∈ �̂�X(X × �̂�1, X × �̂�1) corresponds
to the natural transformation colimRing(𝒪X ⊗ ℤ[x]/xn, −) → colimRing(ℤ[x]/xn, −)
given by precomposition with the ring homomorphism x ↦ 1 ⊗ x. As a consequence, the
corresponding element in �̂�(𝐑𝐢𝐧𝐠(𝒪X ⊗ ℤ[x]/xn, −), �̂�1) is the one that corresponds to
x ∈ �̂�1(𝒪X ⊗ ℤ[x]/xn) through the Yoneda lemma for each n, so by taking the image in
the limit we get that the corresponding power series is x ∈ 𝒪X[[x]].
Now if our multiplicationm is represented by the power series F(x, y) = ∑j,k ajkxjyk ∈
𝒪X[[x, y]], and the unit map by 0 ∈ 𝒪X, then we must have that x ↦ (x, 0) ↦ F(x, 0)
coincides with the identity x ↦ x. In other words

ai0 =
⎧
⎨
⎩

1, if i = 1.

0, otherwise.
(4.1)

Asking that e is a two-sided unit witness also the symmetrical condition so we conclude
that

F(x, 0) = x = F(0, x). (4.2)

The associativity axiom translates into an associativity for F, namely

F(x, F(y, z)) = F(F(x, y), z) (4.3)

and the inverse axiom in
F(ι(x), x) = F(x, ι(x)) = 0. (4.4)

For some power series ι(x) ∈ 𝒪X[[x]].
We will call formal group law an element of 𝒪X[[x, y]] satisfying 4.2, 4.3 and 4.4.
When not differently specified we will also assume that our formal group laws are commu-
tative, that is F(x, y) = F(y, x).
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It’s worth remarking that we started by saying that a power series has to satisfy the formal
group law axioms in order to specify a group structure on a formal scheme, but now we
can also guarantee that given a one-dimensional formal group 𝔾 ∈ �̂�X and a coordinate
y ∶ 𝔾 → X× �̂�1, a formal group law over the ring𝒪X really specifies a group structure on 𝔾
because the first axiom forces the constant term of the formal group law to vanish, therefore
any formal group law is really in the image of the inclusion
lim �̂�1(𝒪X ⊗ ℤ[x]/xn ⊗ ℤ[y]/ym) ⊆ 𝒪X[[x, y]].

4.1 Topological Hopf algebra structure on the ring
of functions

In this section, we make explicit some links between the formal group aspects and the
implications they have on its ring of functions, this digression will be very useful in under-
standing how to generalize these concepts to the equivariant case and will be used a lot in
chapter 6.
A formal group law defines a comultiplication on the ring of functions 𝒪X[[t]] of a for-
mal group 𝔾 over X by Δ(t) = F(1 ⊗ t, t ⊗ 1) ∈ 𝒪X[[t]] ⊗̂𝒪X𝒪X[[t]] that makes it in a
complete Hopf algebra over 𝒪X. Furthermore, we can think of the ring of functions on
a one-dimensional formal group 𝔾 over X as a complete topological Hopf algebra where
the topology is generated under powers, translations, finite intersections and unions by a
certain ideal I ⊴ 𝒪𝔾.
In general, for each ring S and for each element x ∈ 𝔾(S), we have a corresponding natural
transformation φx ∶ Y = 𝐑𝐢𝐧𝐠(S,−) → 𝔾 through the Yoneda lemma. We obtain a
map on the respective rings of functions by pullbackφ∗

x ∶ 𝒪𝔾 → 𝒪Y, call Ix the kernel of
φ∗

x. More explicitly, if x ∈ 𝔾(S), a natural transformation η ∈ �̂�x(𝔾, 𝔸1) belongs to the
kernel of φ∗

x if and only if the composition η ∘ φx vanishes and, by the Yoneda lemma,
this is equivalent to η(S)(x) = 0 ∈ 𝔸1(S). Now x ∈ 𝔾(S) = colimRing(𝒪X ⊗ ℤ[t]/tn, S)
because colimits in functors categories are computed pointwise, and the Yoneda lemma
tells us that for each nwe have

Id𝒪X⊗ℤ[t]/tn xn

Ring(𝒪X ⊗ ℤ[t]/tn, 𝒪X ⊗ ℤ[t]/tn) Ring(𝒪X ⊗ ℤ[t]/tn, S)

𝔸1(𝒪X ⊗ ℤ[t]/tn) 𝔸1(S)

η(Id𝒪X⊗ℤ[t]/tn) xn(η(Id𝒪X⊗ℤ[t]/tn)) = η(S)(xn)

∈ ∈

η(𝒪X⊗ℤ[t]/tn) η(S)

∈ ∈

where we have called xn the preimage of x under the universal map in the colimit, this
preimage exists for n sufficiently large. So the natural transformation η belongs to Ix if and
only if, for some n, we can evaluate the morphism xn on the power series corresponding
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to η truncated at level n and obtain zero. But xn, by definition, is just a map of rings
ϕ ∶ 𝒪X → S together with an element s ∈ S such that sn = 0, therefore an element x in
the colimit 𝔾(S) is a map of ringsϕ ∶ 𝒪X → S together with a nilpotent element s ∈ S and
x(∑αixi) = ∑ϕ(αi)si.
Define now the ideal I as the kernel ofφ∗

0 with 0 ∈ 𝒪X, this is just the ideal of the power
series that evaluated at 0 give 0. Note thatφ∗

0 acts on a power series by evaluation at 0 exactly
as the counit θ of 𝒪𝔾, obtained by pullback with respect to the unit of the formal group
𝔾. With the topology on 𝒪𝔾 defined by I, that is the kernel of θ, it is apparent that the
product 𝒪𝔾⊗̂𝒪X𝒪𝔾 → 𝒪𝔾 and the coproduct 𝒪𝔾 → 𝒪𝔾⊗̂𝒪X𝒪𝔾 are continuous maps once
the completed tensor product is equipped with the right topology.
We can verify either by direct computation at the power series level or via the formal group
axioms that (θ⊗̂θ) ∘ Δ = Δ ∘ θ = θ.
The upshot of this discussion is that making a one-dimensional formal scheme S over X
into a formal group is the same as specifying a complete topological Hopf algebra structure
over on its ring of functions 𝒪S where the topology is defined by θ. This is the point of
view that we will use to generalize the theory to the equivariant case.

4.2 Formal group laws from spectra

In this section we see how formal group laws naturally arise in algebraic topology from
cohomology theories.
Let E be a homotopy associative and homotopy commutative ring spectrum provided with
a homotopy unit i ∶ S0 → E. Suppose that E is provided with an orientation, that is an
elementx ∈ Ẽ∗(ℂℙ∞) such that Ẽ2(ℂP1) is a freemodule overE∗ on the generator i∗x, where
i ∶ ℂP1 → ℂℙ∞ is the inclusion. Note that, since ℂP1 ≈ S2 and Ẽ2(S2) ≅ Ẽ0(S0) = π0(E),
by the suspension isomorphism, we have a canonical generator γ of the cyclic module
Ẽ2(ℂP1) represented by the unit map S0 → E. However, we are not requiring i∗x to be
exactly that generator, so, in general, we will have a relation of the form i∗x = uγ for some
invertible u ∈ E∗.
For example, for E = Hwe can take as orientation the usual generator x ∈ H2(ℂℙ∞; ℤ).
For E = K, the spectrum representing K-theory, we can fix the orientation ξ = 1 − z ∈
K̃0(ℂℙ∞), where z is the tautological vector bundle over ℂℙ∞. If we consider the pullback

i∗z z

ℂℙ1 ℂℙ∞

y

i

we see that i∗z is what we called γ1 in chapter 2, therefore, by [2], 1 − i∗z generates the
cyclic module K̃0(S2). In this particular case, we are allowed to choose the orientation in
degree zero instead of two because of the Bott periodicity theorem.
Now consider E∗(ℂℙ∞), by [1] lemma 2.5 E∗(ℂℙ∞) ≅ E∗[[x]] and E∗(ℂℙ∞ × ℂℙ∞) ≅
E∗[[x1, x2]].
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Over ℂℙ∞ × ℂℙ∞ we have the line bundles π∗
1z and π∗

2z obtained by pullback along the
projections, so we can form their tensor product that is a line bundle over ℂℙ∞. But z →
ℂℙ∞ is the universal line bundle, it follows that we have a mapm ∶ ℂℙ∞ × ℂℙ∞ → ℂℙ∞

such that
π∗
1(z) ⊗ π∗

2(z) z

ℂℙ∞ × ℂℙ∞ ℂℙ∞

y

m

Therefore,m∗ ∶ E∗[[x]] → E∗[[x1, x2]]maps the orientation x in a power seriesm∗(x) =
μ(x1, x2) = ∑

i,j
aijxi1x

j
2 ∈ E∗[[x1, x2]] and this power series is a formal group law in the

sense discussed before.
For example, the unity axiom is ensured by the commutativity of the diagram

z π∗
1(z) ⊗ π∗

2(z) z

ℂℙ∞ ℂℙ∞ × ℂℙ∞ ℂℙ∞

y
y

Id×0

Id

m

and the others are obtainable similarly.
For example,whenE = Hwithour choices for the orientationswehavem∗(x) = m∗(−c1(z)) =
−c1(m∗(z)) = −c1(π∗

1(z) ⊗ π∗
2(z)) = −c1(π∗

1(z)) − c1(π∗
2(z)) = x1 + x2. This is probably

the simplest example of a formal group law, and it is called additive formal group law.
If we take E = K, the spectrum representing the K-theory, we get
m∗(z) = (z1)(z2) that ism∗(ξ) = ξ1 +ξ2 −ξ1ξ2. This other formal group law is called the
multiplicative formal group law.

4.3 The Lazard ring

Consider now, more abstractly, a formal group law over a ring R, that is a power series in
two variables, with coefficients in R and with the proprieties 4.2, 4.3 and 4.4. A morphism
of rings θ ∶ R → S carries a formal group law μ over R into a formal group law θ∗μ over
S simply by applying θ to the coefficients of the power series. In this section we discuss a
universal commutative, unital ring L with a commutative formal group law μL with the
property that for any other commutative, unital ring Rwith a commutative formal group
law μR, we have a unique homomorphism θ ∶ L → R such that θ∗μL = μR.
The ring L can be defined explicitly as a quotient of the free abelian group
P = ℤ[a11, a12, a21, ..., aij, ...] for formal symbols aij. Set

μL(x, y) = x + y + ∑
i,j≥1

aijxiyj

and set
μL(x, μL(y, z)) − μL(μL(x, y), z) = ∑

i,j,k
bijkxiyjzk
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so that bijk is a well-defined polynomial in the aij. Let I ⊴ P be the ideal generated by bijk

and aij − aji. By construction, the ring L = P/Iwith the formal group law μL ∈ L[[x, y]]
has the desired property.
Therefore, giving a formal group law on a commutative unital ring R is the same as giving a
homomorphism L → R.
There is a very important theorem by Quillen regarding this universal ring L, namely, since
the spectrumMU has a canonical orientation, the ringMU∗ has a canonical formal group
law in the way explained before. Therefore, we obtain a canonical map θ ∶ L → MU∗

Theorem 5. θ is an isomorphism.

As a consequence, specifying a formal group law over R is the same as giving a homomor-
phismMU∗ → R.
But the coefficients ring of the spectrumMU is the complex cobordism ringΩU, therefore,
if R is aℚ-algebra, then specifying a formal group law over R is the same as giving aU-genus
ϕ ∶ ΩU ⊗ ℚ = MU∗ ⊗ ℚ → R.



5Morphisms of FGLs and
invariant differentials

In this chapter, we discuss some examples of formal group laws and exhibit some isomor-
phisms between them. The easiest one is probably the additive formal group law, defined
by Fa(x, y) = x + y that we already encountered at the end of section 4.2. Another fun-
damental formal group law is the multiplicative one defined by Fm(x, y) = x + y − xy
that we have seen arising from K-theory in section 4.2. Now we want to define morphisms
between formal group laws and from our previous discussion about formal groups it is
natural to require the commutativity of the diagrams

𝔾 ×X 𝔾 𝔾

ℍ ×X ℍ ℍ

m𝔾

η×Xη η

mℍ

This can be translated in η(F𝔾(x, y)) = Fℍ(η(x), η(y)).
For example, consider the power series f(x) = −

∞
∑
n=1

xn
n = log(1 − x) ∈ ℚ[[x]], then

f(Fm(x, y)) = log((1 − x)(1 − y)) = f(x) + f(y) = Fa(f(x), f(y)). Furthermore, f(x)
is a functional-invertible power series, in the sense that there exists g ∈ ℚ[[x]] such that
f ∘ g = g ∘ f = id, thus, f is an isomorphism between the multiplicative and the additive
formal group law (rationally). This is not a particular case, as the following result tells

Theorem 6. Every commutative formal group law is rationally isomorphic to the additive
one.

Idea of the Proof. If R is a ℚ-algebra, then to every formal group law F ∈ R[[x, y]]we have
an associated genusϕ ∶ MU∗ ⊗ ℚ → R by theorem 5, so we can form the corresponding
power series g′(x) ∈ R[[x]] by lemma 2 and integrate it to obtain the logarithm g of the
genus. Then unrevealing all the one-to-one correspondences, one sees that g(F(x, y)) =
g(x) + g(y) = Fa(g(x), g(y)). �

In this situation, we will call g the logarithm of the formal group law F.
As we will see, this is one of the results that do not generalize to the equivariant case.

5.1 The invariant differentials

Given a formal group 𝔾 ∈ �̂�X, there is a more intrinsic way to understand the isomorphism
g of formal group laws from F𝔾 to Fa in terms of the invariant differentials of 𝔾.

15
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We need some definitions, let 𝔾 be an n-dimensional formal group over X and consider
the kernel J of the multiplication map 𝒪𝔾⊗̂𝒪X𝒪𝔾 → 𝒪𝔾. Call Ω1

𝔾/X = J/J2, this is a
module over 𝒪𝔾⊗̂𝒪X𝒪𝔾/J ≅ 𝒪𝔾. For f ∈ 𝒪𝔾, write d(f) = f⊗̂1 − 1⊗̂f + J2 ∈ Ω1

𝔾/X, if
x = (x1, ..., xn) ∶ 𝔾 → X × �̂�n = X × (�̂�1)n is an isomorphism over X, thenΩ1

𝔾/X turns
out to be a free module over𝒪𝔾 generated by the elements d(x1), ..., d(xn) (see [12] section
5.3).
We can pullback these differentials as in differential topology, that is, if we have a map
from an n-dimensional formal group to a one-dimensional one over X, f ∶ ℍ → 𝔾 and
y = (y1, ..., yn) ∶ ℍ → X × �̂�n, x ∶ 𝔾 → 𝔾 × �̂�1 are coordinates, then x ∘ f = φ(y) ∈
𝒪X[[y1, ..., yn]] for some power seriesφ and we define f∗(r ⋅ dx) = ∑i r ∘ f

∂φ(y)
∂yi

⋅ dyi for
any r ∈ 𝒪𝔾.
We say thatω ∈ Ω1

𝔾/X is an invariant differential ifm∗ω = π∗
1(ω)+π∗

2(ω) ∈ Ω1
𝔾×X𝔾, where

m ∶ 𝔾 ×X 𝔾 → 𝔾 is the multiplication and πi are the projections. This condition can be
checkedwith the correspondingpower series, namely,ω(x)dx ∈ Ω1

𝔾/X = 𝒪𝔾⋅dx ≅ 𝒪X[[x]]⋅
dx is an invariant differential if and only ifω(F(x, y))∂F(x,y)∂x dx + ω(F(x, y))∂F(x,y)∂y dy =
ω(x)dx + ω(y)dy. Since we are dealing with commutative formal group laws, this is
equivalent to asking thatω(F(x, y))∂F(x,y)∂x = ω(x). We are now ready to prove the following
result

Theorem 7. Given a one-dimensional formal group 𝔾 over a scheme X, if F𝔾(x, y) ∈
𝒪X[[x, y]] is its formal group law and g(x) ∈ ℚ ⊗ 𝒪X[[x]] is the logarithm of F, then g′(x)dx
is the invariant differential.

Remark 2. We use the expression the invariant differential because the set of the invariant
differentials is a free module of rank 1 over 𝒪X (see [12], proposition 7.2) so, for example, if
the ground ring is a field then an invariant differential is unique up to scalar multiplication.

Proof. Since g(F(x, y)) = g(x) + g(y), by differentiating with respect to x we find that
g′(F(x, y))∂F(x,y)∂x = g′(x) that is exactly the condition to check. �

We observe that since 1 − exp(x) is the functional inverse of log(1 − x), then every com-
mutative formal group law Fwith logarithm g is isomorphic to the multiplicative formal
group law through h = (1 − exp(x)) ∘ g.

Theorem 8. In the hypothesis of the previous theorem, if h = (1 − exp(x)) ∘ g then h′(x)
1−h(x)dx

is the invariant differential.

Proof. Since log(1 − h(x)) = g(x), h′(x)
1−h(x)dx = −g′(x)dx. �



6The equivariant case

In this chapter we considerA-equivariant formal group laws whereA is an abelian compact
Lie group. We will indicate withA∗ = hom(A, S1) the dual ofA.
We introduce the concept of a completeA-universe𝒰 as an infinite-dimensional complex
vector space that contains a countable infinite amount of copies of each irreducible A-
representation. we define a complete flag for𝒰 as a sequence of vector spaces V0 ⊂ V1 ⊂
V2 ⊂ ... such that dimℂ(V i) = i and⋃i≥0 V i = 𝒰.
Inspired by our previous discussion about the ring of functions of a formal group over a
scheme X, we define anA-equivariant formal group law in terms of the ring of functions of
a correspondingA-equivariant formal group.

Definition 4. AnA-equivariant formal group law over a commutative ring k is

• A complete topological Hopf k-algebra R with

• A homomorphism θ ∶ R → kA∗ of topological Hopf k-algebras so that the topology on R
is defined by the finite intersections of kernels of its components

• A regular element y(ε) ∈ R that generates the kernel of the ϵth component of θ, that is

0 R R k 0y(ε) θε

is a short exact sequence.

We are giving to kA∗ the natural structure ofHopf k-algebra where the coproduct is induced
by the group multiplication and the counit by the inclusion of the identity of the group. In
particular, from the diagram

R kA∗

k k

θ

counit πϵ

idk

we see that θϵ must be the counit of the Hopf algebra R. Therefore, we may think of θϵ as
the map corresponding to the unit of the respective formal group X → 𝔾 in �̂�X.
The augmentation map θ can be viewed as the effect on the ring of functions of the group
action, indeed the following diagram in the category �̂�X

𝔾 𝔾 ×X 𝔾 X ×X 𝔾 𝔾m ζα×X𝔾 ≅

17
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at ring of functions level, becomes

R R⊗̂kR k⊗̂kR RΔ θα−1⊗̂R
≅

Thus, we may define the action of the representation α ∈ A∗ on an element r ∈ R by
lα(r) = (θ(α−1)⊗̂id)Δ(r). We define the elements y(α) = lα(y(ϵ)) so we have that y(α) is
regular and generates the kernel of θα.
Note that, with these definitions, the topology of R is defined by all the finite products
ideals (∏i y(αi)).
We now define new elements that have no analogous in the non-equivariant case, these
are the Euler classes, defined by e(α) = θ(ϵ)(y(α)) and, in general, if V = ⨁i αi, e(V) =
∏i e(αi).
By the unital axiom of the formal group 𝔾we have the commutativity of the diagram

X 𝔾 𝔾 ×X X 𝔾 ×X 𝔾 𝔾ζϵ

ζα

≅ 𝔾×Xζα m

From which we expect the formula θϵ ∘ lα = θα−1 to hold. Indeed, using the axioms of
equivariant formal group law, we have θϵ ∘lα = θϵ ∘(θα−1⊗̂id)∘Δ = (θα−1⊗̂θϵ)∘Δ = θα−1 .
As a corollary, we have that e(α) = θ(α−1)(y(ϵ)).
The definition of equivariant formal group law we have given is a natural generalization of
the non-equivariant definition, however, we also give an equivalent one that is more explicit
and is usually more convenient to perform calculations, as we will see.
Given a ring k and a complete flag F = (0 = V0 ⊂ V1 ⊂ V2 ⊂ ...) for 𝒰, we write
k{{F}} = k{{1, y(V1), y(V2), ...}} for the inverse limit of the free k-modules with basis
1, y(V1), y(V2), ..., y(Vs). Call αi the quotient V i/V i−1.

Definition 5. An (A, F)-equivariant formal group law over a commutative ring k relative
to a complete flag F is the topological k-module k{{F}} with a continuous product, a continuous
coproduct and a continuous action ofA∗ satisfying the following conditions.

• The product is commutative, associative, and unital.

• The action is through ring homomorphisms, associative and unital.

• The coproduct is through ring homomorphisms, equivariant (that isΔ∘lαβ = (lα⊗̂lβ)∘
Δ), commutative, associative and unital.

• y(αj+1)y(V j) = y(V j+1).

• For each i the ideal (y(V i)) has topological basis y(V i), y(V i+1), y(V i+2), ....

The continuity conditions can be made slightly more explicit by specifying the product,
the action, and the coproduct with respect to a topological basis, indeed
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y(V i)y(V j) = ∑
s≥0

bi,j
s y(Vs) lαy(V i) = ∑

s≥0
d(α)isy(Vs) Δy(V i) = ∑

s,t≥0
fis,ty(Vs)⊗̂y(Vt)

for suitable structure constants bi,j
s , d(α)is and fis,t in k. In these terms, the continuity of the

product is equivalent to asking that for fixed i, s the elements bi,j
s vanish for j sufficiently

large, and the same must be true with i and j exchanged. The continuity of the action
is equivalent to d(α)is vanishing for fixed α and s and sufficiently large i and finally the
continuity of the coproduct is just the vanishing of fis,t for fixed s, t and sufficiently large i.
Nowwe give an idea about the equivalence of the above definitions ofA-equivariant formal
group law, more details can be found in [4].

Idea of the Proof. Topass froman (A, F) formal group lawk{{F}} to anA-equivariant formal
group law in the sense of the first definition, we take R = k{{F}} and define the elements
y(α) = lαy(ϵ). We already have the comultiplication and, assuming that F starts with ϵ, we
define θ ∶ k{{F}} → kA∗ by taking θ(r)(α) to be the constant coefficient in lα−1(r). On the
other hand we can pass from anA-equivariant formal group law R to an (A, F)-equivariant
one by defining y(V) = y(α1)y(α2) ⋯y(αn)where V = α1 ⊕ α2 ⊕ ... ⊕ αn. �

From this fact, we deduce that an (A, F)-equivariant formal group law is essentially inde-
pendent of the complete flag F.
Using the definition relative to a flag it is possible to prove the existence of a representing
ring also for equivariant formal group laws, the key is the following lemma that makes
uniform the continuity conditions of the product, the action, and the coproduct.

Lemma 3. For any (A, F)-equivariant formal group law over kwe have the following explicit
vanishing conditions:

• bi,j
s = 0 for s < i or s < j

• d(α)is = 0 for V i ⊗ α ≥ Vs+1

• fis,t = 0 for V i ≥ α−1
1 Vs+1 ⊗ Vt+1.

see [4] proposition 14.1 for a proof.

Corollary 1. There is a representing ring LA(F) for (A, F)-equivariant formal group laws,
it is constructed as the ℤ-algebra with generators bi,j

s , d(α)is and fis,t subject to the relations
specified by the first four axioms of definition 5 and the three uniform continuity conditions.

Wecannow formalize the independence of the flag by saying that if F and F′ are two complete
flags for the completeA-universe𝒰, then there is a canonical isomorphism LA(F) ≅ LA(F′).
In view of this isomorphism, we will assume from now that our complete flag F starts with
the trivial representation ϵ if not differently specified. We can use the universal ring to
perform some ’universal’ calculations and obtain relations that hold in every equivariant
formal group law, as an example we prove the following lemma.



6 The equivariant case 20

Lemma 4.
d(β)ik = ∑

j
fij,ke(β ⊗ V j).

Proof. By definition, we have
lβ = (θβ−1⊗̂id) ∘ Δ

and applying it to y(V i)we obtain

∑
s

d(β)isy(Vs) = (θβ−1⊗̂id)(∑
j,k

fij,ky(V j)⊗̂y(Vk))

∑
s

d(β)isy(Vs) = ∑
j,k

fij,ke(βV j)y(Vk).

�

From the proof, we see that the formula holds for any complete flag, however, when the
complete flag begins with V1 = ϵwe observe the following simplifications.
Since e(ϵ) = θϵ(y(ϵ)), if V is anyA-representation that contains a trivial direct summand,
then e(V) = 0. By the counitality of the Hopf algebra, (idR⊗̂θϵ) ∘Δ = idR, evaluating this
equality aty(V i) givesy(V i) = (idR⊗̂θϵ) (∑j,k fij,ky(V j)⊗̂y(Vk)) = ∑j,k fij,ke(Vk)y(V j) =
∑j fij,0y(V j) so, when our flag begins with V1 = ϵ, we must have fij,0 = δij and similarly
fi0,j = δij .

6.1 Equivariant formal group laws from G-spectra

We have seen in chapter 4.2 that formal group laws naturally arise in algebraic topology
from oriented cohomology theory, in this chapter we show that the same thing happens in
the equivariant case.
For each complexA-representation Vwe form theA-space ℂP(V) of complex lines in V. If
α is one-dimensional, we have a short exact sequence

0 ℂP(V) ℂP(V ⊕ α) SV⊗α−1 0

where the first map is the inclusion [v1 ∶ ... ∶ vn] ↦ [v1 ∶ ... ∶ vn ∶ 0]. Its cokernel is
topologically a dimℂ(V)-dimensional sphere where every point, except the basepoint, can
be written as [v1 ∶ ... ∶ vn ∶ a] ∼ [v1/a ∶ ... ∶ vn/a ∶ 1] so we see that the group action on the
sphere is the one given by V ⊗ α−1.
TheA-invariant complex lines are exactly the subrepresentations of V, so we have

ℂP(V)A = ⨿αℂP(Vα)

where Vα = HomA(α, V) is the α-isotropical part of V. We fix the completeA-universe
𝒰 = ⨁k≥0 ⨁α∈A∗ α and consider ℂP(𝒰) with its topology as a colimit of its subspaces
ℂP(V)with V finite-dimensional.
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Now sinceℂP(𝒰) classifies line bundles, in the sense that everyA-line bundle is a pullback of
the tautologicalA-line bundle z over ℂP(𝒰), we have that ℂP(𝒰) is an abelian group object
up to homotopy, and the inclusion of fixed points is a group homomorphism. Indeed, we
can use the equivariant version of the multiplication mapm defined in chapter 4.2, this
defines a commutative (associative) product because the tensor product of line bundles
is commutative (associative) up to homotopy. We can take ℂP(ϵ) as the unit, as we can
deduce from the diagram

z ⊗ ℂ π∗
1(z) ⊗ π∗

2(z) z

ℂP(𝒰) × {∗} ℂP(𝒰) × ℂP(𝒰) ℂP(𝒰)

y y

Id×e

Id

m

Note that we have an equivariant isomorphism

A∗ × ℂP(𝒰ϵ) ≅ ⨿αℂP(𝒰α)

given by (α,W) ↦ α ⊗W, thus, since ℂP(𝒰α) is connected, there is a unique homotopy
class of mapsA∗ → (ℂP(𝒰))A splitting the natural augmentation (ℂP(𝒰))A → A∗ and it is
a group homomorphism up to homotopy. In particularA∗ acts on ℂP(𝒰) throughA-maps
by α ⋅ L = α ⊗ L and there is the group homomorphism ℂP(𝒰ϵ) ↪ ℂP(𝒰).
Now we introduce our cohomology theories. First, a genuine equivariant cohomology
theory E∗

A(−) is an exact contravariant functor onA-spaces, which admits a RO(G)-graded
extension so that we have coherent suspension isomorphisms

ẼV+n
A (SV ∧ X) ≅ Ẽn

A(X)

for all real representations V. We are interested in the following subfamily of them

Definition 6. A genuine equivariant cohomology theory E∗
A(−) is said to be complex stable if

the stronger stability property

Ẽ|V|+n
A (SV ∧ X) ≅ Ẽn

A(X)

holds.

For any complex representation V , complex stability provides an element λ(V) ∈ Ẽ|V|
A (SV)

corresponding to the unit 1 ∈ Ẽ0
A and Ẽ∗

A(SV) is a free E∗
A-module on this generator. Since

complex stability isomorphisms are give by multiplication by λ(V), we have λ(V ⊕W) =
λ(V)λ(W).
We define the Euler classes as χ(V) = e∗V(λ(V)) ∈ E|V|

A , where eV ∶ S0 → SV is the inclusion,
as a consequence χ(V ⊕W) = χ(V)χ(W).
Nowweneed a concept analogous to theorientation thatwehaveused in thenon-equivariant
case in chapter 4.2.
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Definition 7. x(ϵ) ∈ E∗
A(ℂP(𝒰), ℂP(ϵ)) is an orientation if for all one-dimensional repre-

sentations α ∈ A∗,

res𝒰ϵ⊕αx(ϵ) ∈ E∗
A(ℂP(ϵ ⊕ α), ℂP(ϵ)) ≅ Ẽ∗

A(Sα
−1)

is a generator.

From this definition, we see that if x(ϵ) is an orientation then for all irreducible representa-
tions α, we have res𝒰ϵ⊕αx(ϵ) = uα−1λ(α−1) for some unit uα−1 . We use these units to define
elements e(α−1) = uα−1χ(α−1) ∈ E∗

A.
We call x(α) ∈ E∗

A(ℂP(𝒰), ℂP(α)) the pullback of x(ϵ) through the map lα ∶= (⊗α−1)∗ ∶
(ℂP(𝒰), ℂP(α)) → (ℂP(𝒰), ℂP(ϵ)). Taking external products, we can define also x(V) ∈
E∗
A(ℂP(𝒰), ℂP(V)) and forgetting the subspace we obtain just y(V) ∈ E∗

A(ℂP(𝒰)). By the
short exact sequence

0 E∗
A(ℂP(W)) E∗

A(ℂP(V ⊕W)) E∗
A(ℂP(V ⊕W), ℂP(V)) 0

we see that x determines y and vice versa and from the properties of x we deduce that
y(0) = 1, y(V ⊕W) = y(V)y(W) and (α−1)∗y(V) = y(V ⊗ α).
By the commutativity of the diagram

(ℂP(α ⊕ ϵ), ℂP(ϵ)) (ℂP(𝒰), ℂP(ϵ))

ℂP(α ⊕ ϵ) ℂP(𝒰)

ℂP(α) ℂP(α)

we see that
res𝒰αy(ϵ) = e(α−1) ∈ E∗

A(ℂP(α)) = E∗
A.

Theorem 9. A complete flag F = (V0 ⊂ V1 ⊂ V2 ⊂ ...) for𝒰 specifies a basis of E∗
A(ℂP(𝒰))

as follows
E∗
A(ℂP(𝒰)) = E∗

A{{y(V0) = 1, y(V1), y(V2), ...}}.

Proof. The cofiber sequence

(Sα−1
n+1) (ℂP(Vn+1), ℂP(Vn)) (ℂP(𝒰), ℂP(Vn)) (ℂP(𝒰), ℂP(Vn+1))=

splits in cohomology by x(Vn). �

Finally, we can state our result as a corollary.

Corollary 2. A complex oriented cohomology theory E∗
A(−) gives rise to anA-equivariant

formal group law with

• k = E∗
A
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• R = E∗
A(ℂP(𝒰))

• the coproductΔ ∶ R → R⊗̂R induced by ⊗ ∶ ℂP(𝒰) × ℂP(𝒰) → ℂP(𝒰)

• the map θ ∶ R → kA∗ induced byA∗ → ℂP(𝒰)

• the coordinate y(ϵ) obtained from the orientation x(ϵ).

Idea of the Proof. The first two conditions of definition 4 descend from the Künneth theo-
rem, together with some properties of ℂP(𝒰) and the last from the particular basis. �

6.2 Equivariant K-theory

As a concrete example, we see more in detail the equivariant formal group law arising from
equivariantK-theory. This cohomology theory is complex stable in view of Bott periodicity,
and we can work entirely in degree 0. We can view the projective space ℂP(V) as a quotient
of the sphere S(V ⊗ z) and write

KA×𝕋(S(V ⊗ z)) = KA(ℂP(V))

where z is the natural representation of the circle group 𝕋. Now consider the based cofiber
sequence S(V)+ → D(V)+ → SV, the associate long exact sequence in cohomology has the
form

⋯ KA×𝕋(s(V ⊗ z)) R(A)[z, z−1] KA×𝕋(SV⊗z) ⋯ .KA×𝕋(j)

But sinceD(V) is contractible, KA×𝕋(j) is based homotopic to (eV⊗z)∗, therefore we have
the following isomorphism of long exact sequences

⋯ KA×𝕋(s(V ⊗ z)) R(A)[z, z−1] KA×𝕋(SV⊗z) ⋯

⋯ KA×𝕋(s(V ⊗ z)) R(A)[z, z−1] R(A)[z, z−1] ⋯

(eV⊗z)∗

⋅λ(V⊗z)

χ(V⊗z)

To understand who is χ(V ⊗ z)we have to unravel the stability isomorphism.
By [segal1966equivariant] proposition 3.1 we are allowed to identify complexA-vector
bundles over a locally compactA-space X and complexes of vector bundles over X that are
non-exact only on a compact subset ofX. Consider the trivialA-vector bundle p ∶ α → {∗},
by [segal1966equivariant] proposition 3.2, the Thom isomorphism K∗

A({∗}) → K∗
A(α)

maps anA-vector bundle over the point (that is just anA-representation) F• to the tensor
productΛ•

α ⊗ p∗F• whereΛ•
α is the Koszul complex on theA-space α that over the point

x ∈ α is given by

⋯ 0 ϵ α 0 ⋯ . ∗ +⋅x

So we have that the unit of K∗
A is sent to p∗(ϵ•) ⊗ Λ•

α = Λ•
α as a complex, that corresponds

to 1 − α as a vector bundle over Sα. In this way we see that λ(α) = 1 − α and pulling back
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with respect to the inclusion eV⊗z we obtain the bundle 1 − α over the point, so, finally, we
have that χ(α) = 1−α and χ(V ⊗z) = ∏i(1−αiz)whereV = ⨁i αi. In particular, since
the multiplication by χ(V ⊗ z) is injective, we can turn the previous long exact sequence in
a short exact sequence and deduce that

KA(ℂP(V)) = KA×𝕋(S(V ⊗ z)) = R(A)[z, z−1]/χ(V ⊗ z) = R(A)[z]/χ(V ⊗ z)

where the last equality follows from the fact that z is already invertible in R(A)[z]/χ(V ⊗ z),
indeed

1 − χ(V ⊗ z) = z ⋅ (V + higher terms)

in particular, we see that the groups KA(ℂP(V ⊕ V ⊕ ... ⊕ V)) satisfy the Mittag-Leffler
condition, thus we can pass to the inverse limit and obtain that

KA(ℂP(∞V)) = R(A)[z] ̂
(χ(V⊗z)).

Wemay take as orientation y = 1 − z, indeed this expression makes sense as an element of
KA(ℂP(V)) for any V, and 1 − z visibly generates the kernel of

KA(ℂP(ϵ ⊕ α)) = R(A)[z]/(1 − z)(1 − αz) ⟶ R(A)[z]/(1 − z) = KA(ℂP(ϵ)).

The element z, regarded as an element of KA(ℂP(V)), is the tautological line bundle over
ℂP(V). From the diagram

z ⊗ α z

ℂP(𝒰) ℂP(𝒰)

y

⊗α−1

we can identify theA∗ action on KA(ℂP(V)) as lαz = αz, so y(α) = lα(1 − z) = 1 − αz.
Now assume thatA is finite and let V be the regular representation. DefineΠ = χ(V ⊗ α),
then the inclusion j ∶ A∗ × ℂP(𝒰ϵ) → ℂP(𝒰) induces a map

j∗ ∶ R(A)[z] ̂
Π ⟶ ∏

α
R(A)[z] ̂

(1−αz)

whose αth component is induced by completing the identity map of R(A)[z]with respect
toΠ in the domain and (1 − αz) in the codomain, as is legitimate since (1 − αz) dividesΠ.
Note that if we invert the Euler classes e(α) then we have that y(α) − αβ−1y(β) becomes
invertible, so all the ideals (1 − αz) are coprime and we can apply the Chinese Remainder
Theorem to conclude that j∗ is an isomorphism. On the other hand, working modulo the
Euler classes, we have 1 − αz = 1 − z so that j∗ is just the diagonal inclusion.

6.3 Examples and computations

In this section we see some examples of equivariant formal group laws, first, we prove the
following lemma.

Lemma 5. e(αβ) = e(α) + e(β) + e(α)e(β) (∑i,j≥1 f1i,je(αV i/α)e(βV j/β)).
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Proof.

e(αβ) = θα−1β−1(y(ϵ))

= Δ ∘ θα−1β−1(y(ϵ))

= (θα−1⊗̂θβ−1) ∘ Δ(y(ϵ))

= ∑
i,j

f1j,iθα−1(y(V j))θβ−1(y(V i))

= ∑
i,j

f1j,ie(αV j))e(βV i)

= e(α) + e(β) + e(α)e(β)(∑
i,j≥1

f1i,je(αV i/α)e(βV j/β)) .

�

6.3.1 The additive equivariant FGL

In the equivariant setting, the additive formal group law is one for which

Δa(y(ϵ)) = y(ϵ)⊗̂1 + 1⊗̂y(ϵ).

The difference from the non-equivariant case is that this form of the coproduct now has
more implications, for examples by the lemma we have just proven, we must have e(αβ) =
e(α) + e(β). This is an important observation because it means that it is improbable for an
equivariant formal group law to be isomorphic to the additive one. Indeed, ifA is finite,
say of order n, then in the additive equivariant formal group law we have

0 = e(ϵ) = e(αn) = ne(α).

Thus, an additive equivariant formal group law over the rationals has zero Euler classes,
which means, by lemma 4, that lα = idR for all α, hence theA∗-action is trivial. Indeed,
since we have f11,0 = f10,1 = 1 and all the others f1j,k = 0, we obtain d(β)10 = e(β), d(β)11 = 1
and d(β)1k = 0 for k ≥ 2. In other words y(β) = e(β) + y(ϵ).

6.3.2 The multiplicative equivariant FGL

As in the non-equivariant case, we define a multiplicative equivariant formal group law as
one for which

Δm(y(ϵ)) = y(ϵ)⊗̂1 + 1⊗̂y(ϵ) − y(ϵ)⊗̂y(ϵ)

or equivalently, f11,0 = f10,1 = 1, f11,1 = −1 and all the others f1j,k = 0. We have seen a
concrete example of such an equivariant formal group law in section 6.2. In this case, by
lemma 4 we obtain the relations

y(β) = e(β) + (1 − e(β))y(ϵ)

and by applying θϵ ∘ lα

1 − e(αβ) = (1 − e(α))(1 − e(β)).
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6.3.3 The group of order 2

If we consider the example in which A has order 2 we can perform some more explicit
calculations to understand exactly who is R.
First we fix the complete flag (0 ⊂ ϵ ⊂ ϵ ⊕ α ⊂ ϵ ⊕ α ⊕ ϵ ⊂ ϵ ⊕ α ⊕ ϵ ⊕ α ⊂ ...) and
we call y = y(ϵ) and x = y(ϵ)y(α). We know that a topological basis of R is given by
1, y, x, yx, x2, yx2, x3, ....
If we apply lα to the equation

y(α) = d(α)10 + d(α)11y(ϵ) + d(α)12y(ϵ)y(α) + ...

we obtain
y(ϵ) = d(α)10 + d(α)11y(α) + d(α)12y(α)y(ϵ) + ...

and multiplying by y(ϵ)

y(ϵ)2 = d(α)10y(ϵ) + d(α)11y(ϵ)y(α) + d(α)12y(ϵ)y(α)y(ϵ) + ...

that is

y2 = d(α)10y + d(α)11x + d(α)12yx + d(α)13x2 + ...

= y(d(α)10 + d(α)12x + d(α)14x2 + ...) + x(d(α)11 + d(α)13x + d(α)15x2 + ...)

=∶ yp(x) + xq(x).

So in this case, we have

R = k[[x]][y]/(y2 = yp(x) + xq(x)).

In particular, it is not just a power series ring, this is another difference from the non-
equivariant case.

6.3.4 The Euler-invertible case

We now discuss a situation in which we can describe our equivariant formal group law in
terms of a non-equivariant one very easily.
When the Euler classes are invertible, the ideals of R generated by y(α) for α ∈ A∗ are all
coprime, simply because, by lemma 4, we have y(α) = e(αβ−1) + ry(β) for some r ∈ R.
By the Chinese Reminder Theorem, we deduce that the natural map

R ⟶ ∏
α∈A∗

R ̂
(y(α))

is an isomorphism, furthermore, by completing the map lα−1β ∶ R → R with respect
to (y(α)) in the domain and (y(β)) in the codomain, we obtain an isomorphism ̂lα−1β ∶
R ̂
(y(α)) → R ̂

(y(β)) so that R splits as a product of power series rings and A acts simply by
permuting them isomorphically. Each of these power series rings is a non-equivariant formal
group law, indeed on the ϵth component we can use the image of y(ϵ) as a coordinate and
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the split surjection R → R ̂
(y(ϵ)) to define the coproduct and the counit. They have the

desired proprieties in view of the commutative diagram

R R⊗̂R R

R ̂
(y(ϵ)) R ̂

(y(ϵ))⊗̂R ̂
(y(ϵ)) R ̂

(y(ϵ))

Δ

IdR

R⊗̂θϵ

Δ̃

IdR ̂
(y(ϵ))

R ̂
(y(ϵ))⊗̂θ̃

The other components are isomorphic to the ϵth one so they have the formal group law
structure induced by the isomorphism.
Notice that the isomorphism ̂lα−1β ∶ R ̂

(y(α)) → R ̂
(y(β)) maps the coordinate y(α) ofR ̂

(y(α)) to
the coordinate y(β) of R ̂

(y(β)), as a consequence, the coproduct in all these non-equivariant
formal group laws have the same formal expression.
Summarizing, we have proved the following localization theorem

Theorem 10. If R is anA-equivariant formal group law with all the Euler classes (except
e(ϵ)) invertible, then R splits as a product of isomorphic non-equivariant formal group laws,
one for each element ofA∗, andA∗ acts by permuting these copies.



7Building blocks & isomorphisms
of equivariant FGLs

In this chapter, we will prove a weaker version of theorem 6 for theA-equivariant case when
A is the group with two elements. Indeed, by section 6.3.1 we know that, over the rationals,
anA-equivariant formal group law with non-trivialA∗ action cannot be isomorphic to the
additiveA-equivariant formal group law. In this section,Awill always be cyclic of order a
prime p, and all the formal group laws are rationalized (every integer is invertible in their
ground rings).

Lemma 6. LetA be a cyclic group of order a prime p and let R be anA-equivariant formal
group law. If one Euler class e(α) of R is invertible, then all the Euler classes of R, except e(ϵ),
are invertible.

Proof. Let β ≠ ϵ, since both α and β are generators ofAwe can write α = βi and β = αj

for some i and j. Now, by applying lemma 5, we find that e(α) = r⋅e(β) and e(β) = s⋅e(α)
for some r, s ∈ k. In particular e(α) = r ⋅ s ⋅ e(α) but since e(α) is invertible, we see that r
and s are units of the ground ring, therefore e(β) is the product of two invertible. �

Lemma 7. IfA is finite of prime order p, then, over the rationals, every equivariant formal
group law decomposes as a direct product of one with invertible Euler classes and one with zero
Euler classes.

Proof. Let α be a generator of A∗, by lemma 5, 0 = e(αp) = pe(α) + e(α)2r for some
r ∈ k. Thus, if we define f = −e(α)r/p we have f2 = f and (1 − f)2 = 1 − f. Then, we
can use these idempotents to obtain the decomposition

R ≅ f ⋅ R × (1 − f) ⋅ R

≅ (f ⋅ k){{y(V0), y(V1), ...}} × ((1 − f) ⋅ k){{y(V0), y(V1), ...}}

≅ (k/(1 − f)) {{y(V0), y(V1), ...}} × (k/(f)) {{y(V0), y(V1), ...}}.

All the operations of equivariant formal group law factor through this decomposition,
giving both components the structure of equivariant formal group law.
Because f ⋅ e(α) = e(α), the image of e(α) in the first component is just e(α) that, in the
first component, is invertible since f is. On the other hand, (1 − f) ⋅ e(α) = 0, therefore, its
image in the second component vanishes. Now by lemma 7 we can conclude that all the
Euler classes, except e(ϵ), are invertible in the first component. In the second component,
by lemma 4, we have that lα acts trivially, as a consequence also lαi acts trivially, in particular
0 = d(αi)10 = e(αi). �

28
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WhenA is cyclic of order pwe will refer to the components of this decomposition of an
A-equivariant formal group law R by R1 and R2 respectively, and we will indicate with fR
the idempotent described in the proof that allows this decomposition. Note that R1 and R2

may be zero.

Remark 3. By putting together lemma 7 and the subsection 6.3.4, we see that, for any A-
equivariant formal group law R withA of prime order, the component R2 is isomorphic to |A|
copies of a non-equivariant formal group law (R2) ̂

(y(ϵ)) andA∗ acts through isomorphisms
simply by permuting the coordinates of these copies. These non-equivariant formal group laws
are all isomorphic to the additive one by theorem 6. However, since the different copies are
isomorphic through the isomorphisms ̂lα−1β ∶ R ̂

(y(α)) → R ̂
(y(β)) that just map the coordinate of

one copy to the coordinate of another copy, we can choose the same logarithm for all the copies.
As a consequence, R2 is isomorphic to |A| copies of the additive non-equivariant formal group
law, andA∗ still acts by permuting the coordinates of these additive formal group laws.

Corollary 3. LetA be a cyclic group of order p and let R and S be twoA-equivariant formal
group laws over the same ground ring. Then, as a consequence of the previous remark, if
fR = fS then R and S are isomorphic as equivariant formal group laws.

We now prove the following lemma, which, at this point, is the last missing piece. The
proof involves a lot of straightforward but long and tedious verifications. At each step, we
mention what we have to check andwhy, but we omit some of the non-exciting calculations.

Lemma 8. LetA be the group with two elements. Given any ground ring k and any e, v ∈ k
such that 2e + ve2 = 0, there is anA-equivariant v-multiplicative formal group law, that is
one with coproductΔ(y(ϵ)) = y(ϵ)⊗̂1 + 1⊗̂y(ϵ) + vy(ϵ)⊗̂y(ϵ), over that ground ring with
Euler class e(α) = e.

Proof. First fix the complete flag F = (0 ⊂ ϵ ⊂ ϵ ⊕ α ⊂ ϵ ⊕ α ⊕ ϵ ⊂ ...) and define R as
the k-module k{{F}}. If we want anA-equivariant formal group law structure on R, then,
by [4] appendix C, we must have that the structure constants relative to the product are

bi,j
k = δi+j

k + e(αij)f11,k−i−j+1 = δi+j
k (ve(αij) + 1) + δi+j

k+1e(αij).

By using them to define our product, we automatically obtain a commutative unital and
associative product on R. Again by [4] we must have the following structure constants
relative to theA-action

d(α)nk = δnk + e(αn)f11,k−n+1 = δnk (1 + ve(αn)) + δnk+1e(αn).

In particular, d(α)10 = e(α), d(α)11 = 1 + ve(α) and d(α)1i = 0 for i ≥ 2.
By the discussion in section 2, we can say that R = k[[x]][y]/(y2 = (1 + ve)x + ey)where
we have defined y = y(ϵ), x = y(ϵ)y(α) and e = e(α). With this description, we see
that the coefficients d(α)ij we have defined, are specifying the map lα ∶ R → R given by
y ↦ e + (1 + ve)y, x ↦ x and extended in order to respect the product: xn ↦ xn and
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xny ↦ xn(e + (1 + ve)y). This map extends to a ring homomorphism R → R, indeed, the
equation 2e + ve2 = 0 ensures that lα(y)2 = lα((1 + ve)x + ey) so that the map respects
the relation of R. From the explicit definition, it is easy to verify that lα ∘ lα = id so that
l ∶ A∗ → End(R) defines an action ofA∗ on R trough ring homomorphisms. This action
is clearly associative and unital.
We define the coproduct on the generators of R by

Δ(y) = y⊗̂1 + 1⊗̂y + vy⊗̂y

Δ(x) = (y⊗̂y)(2 + ev) + 1⊗̂x + x⊗̂1 + (x⊗̂x + x⊗̂y)(2v + ev2) + (x⊗̂x)(v2 + v3e).

We can check that (Δ(y))2 = e(y⊗̂1 + 1⊗̂y) + (2 + 2ve)(y⊗̂y) + (1 + ve)(x⊗̂1 + 1⊗̂x) +
v2(x⊗̂x) + (2v + ev2)(x⊗̂y + y⊗̂x) = Δ((1 + ve)x + ey), so that ourΔ defined on the gen-
erators can be extended to a ring homomorphismΔ ∶ R → R⊗̂R. This coproduct is clearly
commutative and counital, with counit θϵ ∶ R → k defined by θϵ(x) = θϵ(y) = 0, indeed
from the definitions it is apparent that the equalities (θϵ⊗̂id)∘Δ(x) = x, (θϵ⊗̂id)∘Δ(y) = y
and the symmetrical ones hold.
For the associativity, it follows from the definitions that (Δ⊗̂id)∘Δ(x) = (id⊗̂Δ)∘Δ(x) and
that (Δ⊗̂id) ∘Δ(y) = (id⊗̂Δ) ∘Δ(y) and for the equivariance, again with the definition it is
easy to check that the operators (lα⊗̂id) ∘Δ, (id⊗̂lα) ∘Δ andΔ∘ la agree on the generators.
The last two axioms of definition 5 are clear by construction, therefore we have verified all
the five axioms of definition 5.
Finally, we have to make sure that our operators are continuous, so we can use the conti-
nuity conditions. Using the explicit description of the structure constants d(α)ij and bi,j

k

that we have that the continuity conditions for the action and the product are obvious.
Understanding the symbols fii,j is a bit more complicated, but having already verified that
the five axioms of definition 5 hold, we can apply the proof of proposition 14.1 of [4] that
gives fis,t = 0 if V i ≥ Vs+1 ⊗ Vt+1. Hence, we also have the continuity of the coproduct
and the proof is complete.

�

Putting all the pieces together, we can now prove the final theorem.

Theorem 11. LetA be the group with two elements, then anyA-equivariant formal group
law is rationally isomorphic to the v-multiplicative one for some v in its ground ring.

Proof. By lemma 5, we know that in anyA-equivariant formal group law R, the relation
2e(α) + e(α)2f11,1 = 0 holds, therefore if we put v = f11,1, by lemma 8, we can find an
A-equivariant v-multiplicative formal group lawM with the same ground ring as R and
with the same Euler class eM = e(α)R. Furthermore, the idempotents fR and fM of the two
must agree, because fR = −e(α)Rf11,1/2 = −eMv/2 = fM, thus, we can apply corollary
3. �



AA different proof of a weaker
version of theorem 11

Lemma 8 is essential for our purpose, however its proof is not that satisfying. There are
particular cases of the lemma in which we do not need to construct a multiplicative formal
group law by hand. For example, if we start with anA-equivariant formal group law R for
which the structure constant f11,1 is−1, then we can use theA-equivariant multiplicative
formal group lawM arising from equivariant K-theory discussed in section 6.2.
In this appendix, we briefly sketch how the calculation goes in this particular case.
Once again, letA be the group of order 2 and fix the complete flag F = (0 ⊂ ϵ ⊂ ϵ ⊕ α ⊂
ϵ ⊕ α ⊕ ϵ ⊂ ...).
Consider an equivariant formal group law RwithΔR(y(ϵ)R) = ∑j,k(f1j,k)Ry(V j)R⊗̂y(Vk)R
for which (f11,1)R = −1.
By lemma 5, we have

2e(α)R = e(α)2R ⇒ 1 = (1 − e(α)R)2. (A.1)

Now there are two different cases, namely

1. 1 − e(α)R ∈ ℚ ⊆ k

2. 1 − e(α)R ∈ k − ℚ .

(We are assumingℚ ⊆ k because we are working rationally). Consider the multiplicative
A-equivariant formal group lawM arising fromA-equivariant K-theory. Then we have the
decomposition of lemma 7 that in this case gives

ℚ ⊗ R(A){{F}} ≅ (ℚ ⊗ R(A)/(α = 1)){{F}} × (ℚ ⊗ R(A)/(α = −1)){{F}}.

Indeed, in equivariant K-theory, e(α)M = 1 − α, therefore, the idempotent element fM of
lemma 7 is (1 − α)/2, and 1 − fM is (1 + α)/2.
In the case 2, we have an isomorphism of ground rings

k → (k ⊗ ℚ ⊗ R(A)) /((1 − e(α)R) ⊗ 1 ⊗ 1 = 1 ⊗ 1 ⊗ α)

= (k ⊗ (ℚ[α]/(α2 = 1))) /((1 − e(α)R) ⊗ 1 = 1 ⊗ α).

Basically we are tensoring k andℚ ⊗ R(A) over the two isomorphic copies of theℚ-linear
subspace spanℚ(1, 1 − e(α)R) in k and spanℚ(1, α) in ℚ ⊗ R(A). These subspaces are iso-
morphic also as subrings since both 1 − e(α)R and α square to 1, hence the operation is
legitimate.
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Note that this isomorphism of ground rings maps 1−e(α)R toα and thus, also the idempo-
tent fR = −(f11,1)Re(α)R/2 = e(α)R/2 is mapped to e(α)M/2 = −(f11,1)Me(α)M/2 = fM.
From here we can conclude by applying lemma 3 as before.
In the case 1, that is if e(α)R ∈ ℚ, the only possibilities to satisfy A.1 are that e(α)R = 0 or
e(α)R = 2. If e(α)R = 0 then the action ofA∗ is trivial thus, by theorem 6, R is isomorphic
to the non-equivariant multiplicative formal group law (which is a particular case of the
equivariant multiplicative formal group law).
If e(α)R = 2, then we can quotient the equivariant multiplicative formal group lawM
arising from equivariant K-theory by adding the relation α = −1 in the ground ring and
proceed as before. Just notice that this quotient is still an equivariant multiplicative formal
group law, indeed it is just the second blockM2 of the decomposition ofMwith respect to
lemma 7.
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