
Genus 2 Isogeny Cryptography
Isogeny-based Cryptography Study Group, Week 10

Robin Visser
Mathematics Institute
University of Warwick

9 December 2022

1 / 41

Elliptic isogeny graph

Let’s recap elliptic curve isogeny graphs:

Elliptic curve ℓ-isogeny graph

Let p be prime. Define Γ1(ℓ, p) to be the graph whose vertices are isomorphism classes of
supersingular elliptic curves over Fp, and whose edges are ℓ-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p
12 vertices.

• Every vertex has ℓ+ 1 neighbours.

• Ramanujan. (random walks of length O(log p) give (near) uniform distribution)

2 / 41

Elliptic isogeny graph

Let’s recap elliptic curve isogeny graphs:

Elliptic curve ℓ-isogeny graph

Let p be prime. Define Γ1(ℓ, p) to be the graph whose vertices are isomorphism classes of
supersingular elliptic curves over Fp, and whose edges are ℓ-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p
12 vertices.

• Every vertex has ℓ+ 1 neighbours.

• Ramanujan. (random walks of length O(log p) give (near) uniform distribution)

2 / 41

Elliptic isogeny graph

Let’s recap elliptic curve isogeny graphs:

Elliptic curve ℓ-isogeny graph

Let p be prime. Define Γ1(ℓ, p) to be the graph whose vertices are isomorphism classes of
supersingular elliptic curves over Fp, and whose edges are ℓ-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p
12 vertices.

• Every vertex has ℓ+ 1 neighbours.

• Ramanujan. (random walks of length O(log p) give (near) uniform distribution)

2 / 41

Elliptic isogeny graph

Let’s recap elliptic curve isogeny graphs:

Elliptic curve ℓ-isogeny graph

Let p be prime. Define Γ1(ℓ, p) to be the graph whose vertices are isomorphism classes of
supersingular elliptic curves over Fp, and whose edges are ℓ-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p
12 vertices.

• Every vertex has ℓ+ 1 neighbours.

• Ramanujan. (random walks of length O(log p) give (near) uniform distribution)

2 / 41

Elliptic isogeny graph

Let’s recap elliptic curve isogeny graphs:

Elliptic curve ℓ-isogeny graph

Let p be prime. Define Γ1(ℓ, p) to be the graph whose vertices are isomorphism classes of
supersingular elliptic curves over Fp, and whose edges are ℓ-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p
12 vertices.

• Every vertex has ℓ+ 1 neighbours.

• Ramanujan. (random walks of length O(log p) give (near) uniform distribution)

2 / 41

Elliptic isogeny graph

Figure: The 2-isogeny graph for p = 2521 (credit to Denis Charles, Microsoft Research).
3 / 41

Elliptic curve SIDH
Public parameters:

• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.

• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.

2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.

2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.

3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.

5. Computes shared secret key
s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.

5. Computes shared secret key
s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′

:)

4 / 41

Elliptic curve SIDH
Public parameters:
• Choose some large prime p = 2n3mf − 1. Let E/Fp2 be supersingular elliptic curve.
• Pick bases {P1,P2} for E [2n] and {Q1,Q2} for E [3m].

Alice

1. Picks random a ∈ {0, 1, . . . , 2n − 1}.
2. Calculates A := ⟨P1 + [a]P2⟩ ⊂ E [2n].

3. Sends (E/A, ϕA(Q1), ϕA(Q2)) to Bob!

4. Calculates A′ := ⟨ϕB(P1) + [a]ϕB(P2)⟩.
5. Computes shared secret key

s := j((E/B)/A′)

Bob

1. Picks random b ∈ {0, 1, . . . , 3m − 1}.
2. Calculates B := ⟨Q1 + [b]Q2⟩.
3. Sends (E/B, ϕB(P1), ϕB(P2)) to Alice!

4. Calculates B ′ := ⟨ϕA(Q1) + [b]ϕB(Q2)⟩.
5. Computes shared secret key

s := j((E/A)/B ′)

(E/A)/B ′ = (E/A)/ϕA(B) ∼= E/⟨A,B⟩ ∼= (E/B)/ϕB(A) = (E/B)/A′ :)

4 / 41

Abelian varieties recap

• An abelian variety is a complete connected algebraic variety A/K with a “group
law”.

• A genus g hyperelliptic curve C/K (for charK ̸= 2) has affine model

C : y2 = f (x)

where f (x) is squarefree polynomial and deg(f) = 2g + 1 or 2g + 2.

• Given a genus g curve C , there exists an abelian variety Jac(C) (the Jacobian of C)
of dimension g which parameterises Pic0(C).

• Given an abelian variety A/K , there exists a dual abelian variety A∨/K of the same
dimension which parameterises Pic0(A).

5 / 41

Abelian varieties recap

• An abelian variety is a complete connected algebraic variety A/K with a “group
law”.

• A genus g hyperelliptic curve C/K (for charK ̸= 2) has affine model

C : y2 = f (x)

where f (x) is squarefree polynomial and deg(f) = 2g + 1 or 2g + 2.

• Given a genus g curve C , there exists an abelian variety Jac(C) (the Jacobian of C)
of dimension g which parameterises Pic0(C).

• Given an abelian variety A/K , there exists a dual abelian variety A∨/K of the same
dimension which parameterises Pic0(A).

5 / 41

Abelian varieties recap

• An abelian variety is a complete connected algebraic variety A/K with a “group
law”.

• A genus g hyperelliptic curve C/K (for charK ̸= 2) has affine model

C : y2 = f (x)

where f (x) is squarefree polynomial and deg(f) = 2g + 1 or 2g + 2.

• Given a genus g curve C , there exists an abelian variety Jac(C) (the Jacobian of C)
of dimension g which parameterises Pic0(C).

• Given an abelian variety A/K , there exists a dual abelian variety A∨/K of the same
dimension which parameterises Pic0(A).

5 / 41

Abelian varieties recap

• An abelian variety is a complete connected algebraic variety A/K with a “group
law”.

• A genus g hyperelliptic curve C/K (for charK ̸= 2) has affine model

C : y2 = f (x)

where f (x) is squarefree polynomial and deg(f) = 2g + 1 or 2g + 2.

• Given a genus g curve C , there exists an abelian variety Jac(C) (the Jacobian of C)
of dimension g which parameterises Pic0(C).

• Given an abelian variety A/K , there exists a dual abelian variety A∨/K of the same
dimension which parameterises Pic0(A).

5 / 41

Abelian varieties recap

• An abelian variety is a complete connected algebraic variety A/K with a “group
law”.

• A genus g hyperelliptic curve C/K (for charK ̸= 2) has affine model

C : y2 = f (x)

where f (x) is squarefree polynomial and deg(f) = 2g + 1 or 2g + 2.

• Given a genus g curve C , there exists an abelian variety Jac(C) (the Jacobian of C)
of dimension g which parameterises Pic0(C).

• Given an abelian variety A/K , there exists a dual abelian variety A∨/K of the same
dimension which parameterises Pic0(A).

5 / 41

Abelian varieties recap

• A polarisation λ of an abelian variety A/K is an isogeny λ : A → A∨ such that
λ = λL (a 7→ t∗aL ⊗ L−1) for some ample divisor L of A.

• An abelian variety A/K is principally polarised if deg(λ) = 1.

Fact: Jacobians are principally polarisable (using theta divisors).

• A superspecial abelian variety A/K over a field K of char p if the trace of Frobenius
vanishes (mod p). (equivalently, if A is isomorphic over K to a product of
supersingular elliptic curves A ∼= E1 × · · · × Eg).

• Let m be coprime to char(K). The Weil pairing for A/K :

em : A[m](K)× A∨[m](K) → µm(K)

satisfies the following properties:
• e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q + R) = e(P,Q)e(P,R)
• e(P,P) = 1 and e(P,Q) = e(Q,P)−1

• e(Pσ,Qσ) = e(P,Q)σ for any σ ∈ Gal(K/K).

6 / 41

Abelian varieties recap

• A polarisation λ of an abelian variety A/K is an isogeny λ : A → A∨ such that
λ = λL (a 7→ t∗aL ⊗ L−1) for some ample divisor L of A.

• An abelian variety A/K is principally polarised if deg(λ) = 1.

Fact: Jacobians are principally polarisable (using theta divisors).

• A superspecial abelian variety A/K over a field K of char p if the trace of Frobenius
vanishes (mod p). (equivalently, if A is isomorphic over K to a product of
supersingular elliptic curves A ∼= E1 × · · · × Eg).

• Let m be coprime to char(K). The Weil pairing for A/K :

em : A[m](K)× A∨[m](K) → µm(K)

satisfies the following properties:
• e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q + R) = e(P,Q)e(P,R)
• e(P,P) = 1 and e(P,Q) = e(Q,P)−1

• e(Pσ,Qσ) = e(P,Q)σ for any σ ∈ Gal(K/K).

6 / 41

Abelian varieties recap

• A polarisation λ of an abelian variety A/K is an isogeny λ : A → A∨ such that
λ = λL (a 7→ t∗aL ⊗ L−1) for some ample divisor L of A.

• An abelian variety A/K is principally polarised if deg(λ) = 1.
Fact: Jacobians are principally polarisable (using theta divisors).

• A superspecial abelian variety A/K over a field K of char p if the trace of Frobenius
vanishes (mod p). (equivalently, if A is isomorphic over K to a product of
supersingular elliptic curves A ∼= E1 × · · · × Eg).

• Let m be coprime to char(K). The Weil pairing for A/K :

em : A[m](K)× A∨[m](K) → µm(K)

satisfies the following properties:
• e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q + R) = e(P,Q)e(P,R)
• e(P,P) = 1 and e(P,Q) = e(Q,P)−1

• e(Pσ,Qσ) = e(P,Q)σ for any σ ∈ Gal(K/K).

6 / 41

Abelian varieties recap

• A polarisation λ of an abelian variety A/K is an isogeny λ : A → A∨ such that
λ = λL (a 7→ t∗aL ⊗ L−1) for some ample divisor L of A.

• An abelian variety A/K is principally polarised if deg(λ) = 1.
Fact: Jacobians are principally polarisable (using theta divisors).

• A superspecial abelian variety A/K over a field K of char p if the trace of Frobenius
vanishes (mod p). (equivalently, if A is isomorphic over K to a product of
supersingular elliptic curves A ∼= E1 × · · · × Eg).

• Let m be coprime to char(K). The Weil pairing for A/K :

em : A[m](K)× A∨[m](K) → µm(K)

satisfies the following properties:
• e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q + R) = e(P,Q)e(P,R)
• e(P,P) = 1 and e(P,Q) = e(Q,P)−1

• e(Pσ,Qσ) = e(P,Q)σ for any σ ∈ Gal(K/K).

6 / 41

Abelian varieties recap

• A polarisation λ of an abelian variety A/K is an isogeny λ : A → A∨ such that
λ = λL (a 7→ t∗aL ⊗ L−1) for some ample divisor L of A.

• An abelian variety A/K is principally polarised if deg(λ) = 1.
Fact: Jacobians are principally polarisable (using theta divisors).

• A superspecial abelian variety A/K over a field K of char p if the trace of Frobenius
vanishes (mod p). (equivalently, if A is isomorphic over K to a product of
supersingular elliptic curves A ∼= E1 × · · · × Eg).

• Let m be coprime to char(K). The Weil pairing for A/K :

em : A[m](K)× A∨[m](K) → µm(K)

satisfies the following properties:
• e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q + R) = e(P,Q)e(P,R)
• e(P,P) = 1 and e(P,Q) = e(Q,P)−1

• e(Pσ,Qσ) = e(P,Q)σ for any σ ∈ Gal(K/K).

6 / 41

Isogenies recap

• Given an isogeny ϕ : A → A′, there exists a dual isogeny ϕ̂ : Â′ → Â.

• Given an isogeny ϕ : A → A′, there is a canonical isomorphism between ker(ϕ̂) and

k̂er(ϕ).

• Given two PPAVs (A, λ) and (A′, λ′), a (polarised) isogeny between PPAVs is an
isogeny ϕ : A → A′ such that ϕ̂ ◦ λ′ ◦ ϕ = [d]λ for some d .

• Given an abelian variety A/Fp, and a positive integer m coprime to p, a proper
subgroup G ⊂ A[m] is maximal m-isotropic if em|G = id and G not properly
contained in another isotropic subgroup G ′ ⊂ A[m].

• Let A/Fq be a PPAV, and let G ⊂ A(Fq) be a proper subgroup. Then there exists a
PPAV A′/Fq and an isogeny ϕ : A → A′ with kernel G if and only if G is maximal
m-isotropic for some m.

7 / 41

Isogenies recap

• Given an isogeny ϕ : A → A′, there exists a dual isogeny ϕ̂ : Â′ → Â.

• Given an isogeny ϕ : A → A′, there is a canonical isomorphism between ker(ϕ̂) and

k̂er(ϕ).

• Given two PPAVs (A, λ) and (A′, λ′), a (polarised) isogeny between PPAVs is an
isogeny ϕ : A → A′ such that ϕ̂ ◦ λ′ ◦ ϕ = [d]λ for some d .

• Given an abelian variety A/Fp, and a positive integer m coprime to p, a proper
subgroup G ⊂ A[m] is maximal m-isotropic if em|G = id and G not properly
contained in another isotropic subgroup G ′ ⊂ A[m].

• Let A/Fq be a PPAV, and let G ⊂ A(Fq) be a proper subgroup. Then there exists a
PPAV A′/Fq and an isogeny ϕ : A → A′ with kernel G if and only if G is maximal
m-isotropic for some m.

7 / 41

Isogenies recap

• Given an isogeny ϕ : A → A′, there exists a dual isogeny ϕ̂ : Â′ → Â.

• Given an isogeny ϕ : A → A′, there is a canonical isomorphism between ker(ϕ̂) and

k̂er(ϕ).

• Given two PPAVs (A, λ) and (A′, λ′), a (polarised) isogeny between PPAVs is an
isogeny ϕ : A → A′ such that ϕ̂ ◦ λ′ ◦ ϕ = [d]λ for some d .

• Given an abelian variety A/Fp, and a positive integer m coprime to p, a proper
subgroup G ⊂ A[m] is maximal m-isotropic if em|G = id and G not properly
contained in another isotropic subgroup G ′ ⊂ A[m].

• Let A/Fq be a PPAV, and let G ⊂ A(Fq) be a proper subgroup. Then there exists a
PPAV A′/Fq and an isogeny ϕ : A → A′ with kernel G if and only if G is maximal
m-isotropic for some m.

7 / 41

Isogenies recap

• Given an isogeny ϕ : A → A′, there exists a dual isogeny ϕ̂ : Â′ → Â.

• Given an isogeny ϕ : A → A′, there is a canonical isomorphism between ker(ϕ̂) and

k̂er(ϕ).

• Given two PPAVs (A, λ) and (A′, λ′), a (polarised) isogeny between PPAVs is an
isogeny ϕ : A → A′ such that ϕ̂ ◦ λ′ ◦ ϕ = [d]λ for some d .

• Given an abelian variety A/Fp, and a positive integer m coprime to p, a proper
subgroup G ⊂ A[m] is maximal m-isotropic if em|G = id and G not properly
contained in another isotropic subgroup G ′ ⊂ A[m].

• Let A/Fq be a PPAV, and let G ⊂ A(Fq) be a proper subgroup. Then there exists a
PPAV A′/Fq and an isogeny ϕ : A → A′ with kernel G if and only if G is maximal
m-isotropic for some m.

7 / 41

Isogenies recap

• Given an isogeny ϕ : A → A′, there exists a dual isogeny ϕ̂ : Â′ → Â.

• Given an isogeny ϕ : A → A′, there is a canonical isomorphism between ker(ϕ̂) and

k̂er(ϕ).

• Given two PPAVs (A, λ) and (A′, λ′), a (polarised) isogeny between PPAVs is an
isogeny ϕ : A → A′ such that ϕ̂ ◦ λ′ ◦ ϕ = [d]λ for some d .

• Given an abelian variety A/Fp, and a positive integer m coprime to p, a proper
subgroup G ⊂ A[m] is maximal m-isotropic if em|G = id and G not properly
contained in another isotropic subgroup G ′ ⊂ A[m].

• Let A/Fq be a PPAV, and let G ⊂ A(Fq) be a proper subgroup. Then there exists a
PPAV A′/Fq and an isogeny ϕ : A → A′ with kernel G if and only if G is maximal
m-isotropic for some m.

7 / 41

Isogenies recap

(ℓ, . . . , ℓ)-isogeny

Let A,A′ be PPAVs of dimension d , and ϕ : A → A′ a (polarised) isogeny. Then ϕ is a
(ℓ, . . . , ℓ)-isogeny if kerϕ ∼= (Z/ℓZ)d (and kerϕ is maximal ℓ-isotropic).

• (ℓ, . . . , ℓ)-isogenies preserve superspeciality!

Richelot isogenies (i.e. (2,2) isogenies)

Let A be a PPAS. A Richelot isogeny ϕ : A → A/G is an isogeny where G ∼= (Z/2Z)2 is
a maximal 2-isotropic subgroup of A[2].

8 / 41

Isogenies recap

(ℓ, . . . , ℓ)-isogeny

Let A,A′ be PPAVs of dimension d , and ϕ : A → A′ a (polarised) isogeny. Then ϕ is a
(ℓ, . . . , ℓ)-isogeny if kerϕ ∼= (Z/ℓZ)d (and kerϕ is maximal ℓ-isotropic).

• (ℓ, . . . , ℓ)-isogenies preserve superspeciality!

Richelot isogenies (i.e. (2,2) isogenies)

Let A be a PPAS. A Richelot isogeny ϕ : A → A/G is an isogeny where G ∼= (Z/2Z)2 is
a maximal 2-isotropic subgroup of A[2].

8 / 41

Isogenies recap

(ℓ, . . . , ℓ)-isogeny

Let A,A′ be PPAVs of dimension d , and ϕ : A → A′ a (polarised) isogeny. Then ϕ is a
(ℓ, . . . , ℓ)-isogeny if kerϕ ∼= (Z/ℓZ)d (and kerϕ is maximal ℓ-isotropic).

• (ℓ, . . . , ℓ)-isogenies preserve superspeciality!

Richelot isogenies (i.e. (2,2) isogenies)

Let A be a PPAS. A Richelot isogeny ϕ : A → A/G is an isogeny where G ∼= (Z/2Z)2 is
a maximal 2-isotropic subgroup of A[2].

8 / 41

Richelot isogenies
Computing Richelot isogenies:

• Let C/K : y2 = f (x) be a genus 2 curve. Take some quadratic splitting of f (x):

f (x) = g1(x)g2(x)g3(x)

where gj(x) = gj ,2x
2 + gj ,1x + gj ,0.

• Define δ as the determinant of the matrix

δ := det

g1,0 g1,1 g1,2
g2,0 g2,1 g2,2
g3,0 g3,1 g3,2

 .

• If δ ̸= 0, then there exists a Richelot isogeny ϕ : J(C) → J(C ′) where

C ′ : y2 = h1(x)h2(x)h3(x)

Here, hi (x) := δ−1(g ′
i+1(x)gi+2(x)− gi+1(x)g

′
i+2(x)) (indices taken mod 3)

9 / 41

Richelot isogenies
Computing Richelot isogenies:

• Let C/K : y2 = f (x) be a genus 2 curve. Take some quadratic splitting of f (x):

f (x) = g1(x)g2(x)g3(x)

where gj(x) = gj ,2x
2 + gj ,1x + gj ,0.

• Define δ as the determinant of the matrix

δ := det

g1,0 g1,1 g1,2
g2,0 g2,1 g2,2
g3,0 g3,1 g3,2

 .

• If δ ̸= 0, then there exists a Richelot isogeny ϕ : J(C) → J(C ′) where

C ′ : y2 = h1(x)h2(x)h3(x)

Here, hi (x) := δ−1(g ′
i+1(x)gi+2(x)− gi+1(x)g

′
i+2(x)) (indices taken mod 3)

9 / 41

Richelot isogenies
Computing Richelot isogenies:

• Let C/K : y2 = f (x) be a genus 2 curve. Take some quadratic splitting of f (x):

f (x) = g1(x)g2(x)g3(x)

where gj(x) = gj ,2x
2 + gj ,1x + gj ,0.

• Define δ as the determinant of the matrix

δ := det

g1,0 g1,1 g1,2
g2,0 g2,1 g2,2
g3,0 g3,1 g3,2

 .

• If δ ̸= 0, then there exists a Richelot isogeny ϕ : J(C) → J(C ′) where

C ′ : y2 = h1(x)h2(x)h3(x)

Here, hi (x) := δ−1(g ′
i+1(x)gi+2(x)− gi+1(x)g

′
i+2(x)) (indices taken mod 3)

9 / 41

Richelot isogenies

Example

Let C/F13 be the genus 2 curve y2 = x5 + 3x4 − 4x3 + 2x2 − 2x .

• We can factorise f (x) over F13 as x(x2 − 3x + 2)(x2 + 6x − 1).

• We calculate δ = −3 (and δ−1 = 4) and

h1(x) = g2(x)
′g3(x)− g2(x)g3(x)

′ = 9x2 − 6x − 9

h2(x) = g3(x)
′g1(x)− g3(x)g1(x)

′ = x2 + 1

h3(x) = g1(x)
′g2(x)− g1(x)g2(x)

′ = −x2 + 2

• Thus J(C) is (2, 2)-isogeneous to J(C ′) where

C ′ : y2 = (9x2 − 6x − 9)(x2 + 1)(x2 − 2).

10 / 41

Richelot isogenies

Example

Let C/F13 be the genus 2 curve y2 = x5 + 3x4 − 4x3 + 2x2 − 2x .

• We can factorise f (x) over F13 as x(x2 − 3x + 2)(x2 + 6x − 1).

• We calculate δ = −3 (and δ−1 = 4) and

h1(x) = g2(x)
′g3(x)− g2(x)g3(x)

′ = 9x2 − 6x − 9

h2(x) = g3(x)
′g1(x)− g3(x)g1(x)

′ = x2 + 1

h3(x) = g1(x)
′g2(x)− g1(x)g2(x)

′ = −x2 + 2

• Thus J(C) is (2, 2)-isogeneous to J(C ′) where

C ′ : y2 = (9x2 − 6x − 9)(x2 + 1)(x2 − 2).

10 / 41

Richelot isogenies

Example

Let C/F13 be the genus 2 curve y2 = x5 + 3x4 − 4x3 + 2x2 − 2x .

• We can factorise f (x) over F13 as x(x2 − 3x + 2)(x2 + 6x − 1).

• We calculate δ = −3 (and δ−1 = 4) and

h1(x) = g2(x)
′g3(x)− g2(x)g3(x)

′ = 9x2 − 6x − 9

h2(x) = g3(x)
′g1(x)− g3(x)g1(x)

′ = x2 + 1

h3(x) = g1(x)
′g2(x)− g1(x)g2(x)

′ = −x2 + 2

• Thus J(C) is (2, 2)-isogeneous to J(C ′) where

C ′ : y2 = (9x2 − 6x − 9)(x2 + 1)(x2 − 2).

10 / 41

Richelot isogenies

Example

Let C/F13 be the genus 2 curve y2 = x5 + 3x4 − 4x3 + 2x2 − 2x .

• We can factorise f (x) over F13 as x(x2 − 3x + 2)(x2 + 6x − 1).

• We calculate δ = −3 (and δ−1 = 4) and

h1(x) = g2(x)
′g3(x)− g2(x)g3(x)

′ = 9x2 − 6x − 9

h2(x) = g3(x)
′g1(x)− g3(x)g1(x)

′ = x2 + 1

h3(x) = g1(x)
′g2(x)− g1(x)g2(x)

′ = −x2 + 2

• Thus J(C) is (2, 2)-isogeneous to J(C ′) where

C ′ : y2 = (9x2 − 6x − 9)(x2 + 1)(x2 − 2).

10 / 41

(3, 3)-isogenies

Theorem (Bruin–Flynn–Testa (2014))

Let C/K be a genus 2 curve such that JC has a maximal 3-isotropic subgroup. Then C
admits a model y2 = G (x)2 + λH(x)3 where

H(x) = x2 + rx + t,

G (x) = (s − st − 1)x3 + 3s(r − t)x2 + 3sr(r − t)x − st2 + sr3 + t

for some r , s, t ∈ K. (here r , s, t depend on the given maximal 3-isotropic subgroup)

Theorem (Bruin–Flynn–Testa (2014))

Let Crst/K be described as above. Then Jac(Crst) is (3, 3)-isogenous to Jac(C ′) where
C ′/K is the genus 2 curve −3y2 = G ′(x)2 + 4∆stH ′(x)3 and where

G ′(x) = ∆((s − st − 1)x3 + 3s(r − t)x2 + 3rs(r − t)x + (r3s − st2 − t)),

H ′(x) = (r − 1)(rs − st − 1)x2 + (r3s − 2r2s + rst + r − st2 + st − t)x − (r2 − t)(rs − st − 1),

∆ = r6s2 − 6r4s2t − 3r4s + 2r3s2t2 + 2r3s2t + 3r3st + r3s + r3 + 9r2s2t2 + 6r2st − 6rs2t3 − 6rs2t2 − 9rst2 − ...

11 / 41

(3, 3)-isogenies

Theorem (Bruin–Flynn–Testa (2014))

Let C/K be a genus 2 curve such that JC has a maximal 3-isotropic subgroup. Then C
admits a model y2 = G (x)2 + λH(x)3 where

H(x) = x2 + rx + t,

G (x) = (s − st − 1)x3 + 3s(r − t)x2 + 3sr(r − t)x − st2 + sr3 + t

for some r , s, t ∈ K. (here r , s, t depend on the given maximal 3-isotropic subgroup)

Theorem (Bruin–Flynn–Testa (2014))

Let Crst/K be described as above. Then Jac(Crst) is (3, 3)-isogenous to Jac(C ′) where
C ′/K is the genus 2 curve −3y2 = G ′(x)2 + 4∆stH ′(x)3 and where

G ′(x) = ∆((s − st − 1)x3 + 3s(r − t)x2 + 3rs(r − t)x + (r3s − st2 − t)),

H ′(x) = (r − 1)(rs − st − 1)x2 + (r3s − 2r2s + rst + r − st2 + st − t)x − (r2 − t)(rs − st − 1),

∆ = r6s2 − 6r4s2t − 3r4s + 2r3s2t2 + 2r3s2t + 3r3st + r3s + r3 + 9r2s2t2 + 6r2st − 6rs2t3 − 6rs2t2 − 9rst2 − ...11 / 41

Maximal isotropic subgroups

Theorem

Let A be a PPAS, let G ⊂ A[ℓn] be a maximal ℓn-isotropic subgroup. Then
G ∼= Cℓn × Cℓn−k × Cℓk for some 0 ≤ k ≤ n.

Proof:

• Let G = Cℓa × Cℓb × Cℓc × Cℓd and assume wlog a ≥ b ≥ c ≥ d .

• As G must be proper, G must have rank ≤ 3, and so d = 0.

• Let ϕ : A → A′ be an isogeny with kernel G . Then as ker(ϕ̂ ◦ ϕ) = C 4
ℓn , this implies

the kernel of ϕ̂ is
Cℓn−a × Cℓn−b × Cℓn−c × Cℓn−d

• As both A and A′ are principally polarised (A ∼= Â and A′ ∼= Â′), thus G ∼= ker(ϕ̂).

• Therefore n − a = d and n − b = c , which yields the result.

12 / 41

Maximal isotropic subgroups

Theorem

Let A be a PPAS, let G ⊂ A[ℓn] be a maximal ℓn-isotropic subgroup. Then
G ∼= Cℓn × Cℓn−k × Cℓk for some 0 ≤ k ≤ n.

Proof:

• Let G = Cℓa × Cℓb × Cℓc × Cℓd and assume wlog a ≥ b ≥ c ≥ d .

• As G must be proper, G must have rank ≤ 3, and so d = 0.

• Let ϕ : A → A′ be an isogeny with kernel G . Then as ker(ϕ̂ ◦ ϕ) = C 4
ℓn , this implies

the kernel of ϕ̂ is
Cℓn−a × Cℓn−b × Cℓn−c × Cℓn−d

• As both A and A′ are principally polarised (A ∼= Â and A′ ∼= Â′), thus G ∼= ker(ϕ̂).

• Therefore n − a = d and n − b = c , which yields the result.

12 / 41

Maximal isotropic subgroups

Theorem

Let A be a PPAS, let G ⊂ A[ℓn] be a maximal ℓn-isotropic subgroup. Then
G ∼= Cℓn × Cℓn−k × Cℓk for some 0 ≤ k ≤ n.

Proof:

• Let G = Cℓa × Cℓb × Cℓc × Cℓd and assume wlog a ≥ b ≥ c ≥ d .

• As G must be proper, G must have rank ≤ 3, and so d = 0.

• Let ϕ : A → A′ be an isogeny with kernel G . Then as ker(ϕ̂ ◦ ϕ) = C 4
ℓn , this implies

the kernel of ϕ̂ is
Cℓn−a × Cℓn−b × Cℓn−c × Cℓn−d

• As both A and A′ are principally polarised (A ∼= Â and A′ ∼= Â′), thus G ∼= ker(ϕ̂).

• Therefore n − a = d and n − b = c , which yields the result.

12 / 41

Maximal isotropic subgroups

Theorem

Let A be a PPAS, let G ⊂ A[ℓn] be a maximal ℓn-isotropic subgroup. Then
G ∼= Cℓn × Cℓn−k × Cℓk for some 0 ≤ k ≤ n.

Proof:

• Let G = Cℓa × Cℓb × Cℓc × Cℓd and assume wlog a ≥ b ≥ c ≥ d .

• As G must be proper, G must have rank ≤ 3, and so d = 0.

• Let ϕ : A → A′ be an isogeny with kernel G . Then as ker(ϕ̂ ◦ ϕ) = C 4
ℓn , this implies

the kernel of ϕ̂ is
Cℓn−a × Cℓn−b × Cℓn−c × Cℓn−d

• As both A and A′ are principally polarised (A ∼= Â and A′ ∼= Â′), thus G ∼= ker(ϕ̂).

• Therefore n − a = d and n − b = c , which yields the result.

12 / 41

Maximal isotropic subgroups

Theorem

Let A be a PPAS, let G ⊂ A[ℓn] be a maximal ℓn-isotropic subgroup. Then
G ∼= Cℓn × Cℓn−k × Cℓk for some 0 ≤ k ≤ n.

Proof:

• Let G = Cℓa × Cℓb × Cℓc × Cℓd and assume wlog a ≥ b ≥ c ≥ d .

• As G must be proper, G must have rank ≤ 3, and so d = 0.

• Let ϕ : A → A′ be an isogeny with kernel G . Then as ker(ϕ̂ ◦ ϕ) = C 4
ℓn , this implies

the kernel of ϕ̂ is
Cℓn−a × Cℓn−b × Cℓn−c × Cℓn−d

• As both A and A′ are principally polarised (A ∼= Â and A′ ∼= Â′), thus G ∼= ker(ϕ̂).

• Therefore n − a = d and n − b = c , which yields the result.

12 / 41

Maximal isotropic subgroups

Theorem

Let A be a PPAS, let G ⊂ A[ℓn] be a maximal ℓn-isotropic subgroup. Then
G ∼= Cℓn × Cℓn−k × Cℓk for some 0 ≤ k ≤ n.

Proof:

• Let G = Cℓa × Cℓb × Cℓc × Cℓd and assume wlog a ≥ b ≥ c ≥ d .

• As G must be proper, G must have rank ≤ 3, and so d = 0.

• Let ϕ : A → A′ be an isogeny with kernel G . Then as ker(ϕ̂ ◦ ϕ) = C 4
ℓn , this implies

the kernel of ϕ̂ is
Cℓn−a × Cℓn−b × Cℓn−c × Cℓn−d

• As both A and A′ are principally polarised (A ∼= Â and A′ ∼= Â′), thus G ∼= ker(ϕ̂).

• Therefore n − a = d and n − b = c , which yields the result.

12 / 41

Genus 2 isogeny graph

Genus 2 isogeny graph

Let p be prime. Define Γ2(ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised abelian surfaces over Fp, and whose edges are
(ℓ, ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p3

2880 vertices.

• Every vertex has (ℓ2 + 1)(ℓ+ 1) neighbours.

• Not quite Ramanujan, but close enough.

13 / 41

Genus 2 isogeny graph

Genus 2 isogeny graph

Let p be prime. Define Γ2(ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised abelian surfaces over Fp, and whose edges are
(ℓ, ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p3

2880 vertices.

• Every vertex has (ℓ2 + 1)(ℓ+ 1) neighbours.

• Not quite Ramanujan, but close enough.

13 / 41

Genus 2 isogeny graph

Genus 2 isogeny graph

Let p be prime. Define Γ2(ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised abelian surfaces over Fp, and whose edges are
(ℓ, ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p3

2880 vertices.

• Every vertex has (ℓ2 + 1)(ℓ+ 1) neighbours.

• Not quite Ramanujan, but close enough.

13 / 41

Genus 2 isogeny graph

Genus 2 isogeny graph

Let p be prime. Define Γ2(ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised abelian surfaces over Fp, and whose edges are
(ℓ, ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p3

2880 vertices.

• Every vertex has (ℓ2 + 1)(ℓ+ 1) neighbours.

• Not quite Ramanujan, but close enough.

13 / 41

Genus 2 isogeny graph

Genus 2 isogeny graph

Let p be prime. Define Γ2(ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised abelian surfaces over Fp, and whose edges are
(ℓ, ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected.

• Graph has ≈ p3

2880 vertices.

• Every vertex has (ℓ2 + 1)(ℓ+ 1) neighbours.

• Not quite Ramanujan, but close enough.

13 / 41

Genus 2 isogeny graph

Figure: The (2,2)-isogeny graph for p = 97.
14 / 41

Genus 2 isogeny graph

Figure: The (2,2)-isogeny graph for p = 151.
15 / 41

Genus 2 isogeny graph

Theorem

Let A be a PPAS. Then the number of PPAS’s which are (ℓ, ℓ)-isogenous to A is
(ℓ2 + 1)(ℓ+ 1).

Proof:

• As the kernel of any isogeny ϕ : A → A′ corresponds to some maximal isotropic
subgroup, it suffices to count the number of maximal ℓ-isotropic subgroups of A[ℓ]
isomorphic to C 2

ℓ .
• Let A[ℓ] = ⟨P1,P2,P3,P4⟩. We first count the number of pairs a, b ∈ A[ℓ] such that
⟨a, b⟩ ∼= C 2

ℓ is maximal ℓ-isotropic.
• Let

a = a1P1 + a2P2 + a3P3 + a4P4 for some ai ∈ {0, 1, . . . , ℓ− 1},
b = b1P1 + b2P2 + b3P3 + b4P4 for some bi ∈ {0, 1, . . . , ℓ− 1}.

• We have ℓ4 − 1 choices for the first element a ∈ A[ℓ].

16 / 41

Genus 2 isogeny graph

Theorem

Let A be a PPAS. Then the number of PPAS’s which are (ℓ, ℓ)-isogenous to A is
(ℓ2 + 1)(ℓ+ 1).

Proof:
• As the kernel of any isogeny ϕ : A → A′ corresponds to some maximal isotropic
subgroup, it suffices to count the number of maximal ℓ-isotropic subgroups of A[ℓ]
isomorphic to C 2

ℓ .

• Let A[ℓ] = ⟨P1,P2,P3,P4⟩. We first count the number of pairs a, b ∈ A[ℓ] such that
⟨a, b⟩ ∼= C 2

ℓ is maximal ℓ-isotropic.
• Let

a = a1P1 + a2P2 + a3P3 + a4P4 for some ai ∈ {0, 1, . . . , ℓ− 1},
b = b1P1 + b2P2 + b3P3 + b4P4 for some bi ∈ {0, 1, . . . , ℓ− 1}.

• We have ℓ4 − 1 choices for the first element a ∈ A[ℓ].

16 / 41

Genus 2 isogeny graph

Theorem

Let A be a PPAS. Then the number of PPAS’s which are (ℓ, ℓ)-isogenous to A is
(ℓ2 + 1)(ℓ+ 1).

Proof:
• As the kernel of any isogeny ϕ : A → A′ corresponds to some maximal isotropic
subgroup, it suffices to count the number of maximal ℓ-isotropic subgroups of A[ℓ]
isomorphic to C 2

ℓ .
• Let A[ℓ] = ⟨P1,P2,P3,P4⟩. We first count the number of pairs a, b ∈ A[ℓ] such that

⟨a, b⟩ ∼= C 2
ℓ is maximal ℓ-isotropic.

• Let
a = a1P1 + a2P2 + a3P3 + a4P4 for some ai ∈ {0, 1, . . . , ℓ− 1},
b = b1P1 + b2P2 + b3P3 + b4P4 for some bi ∈ {0, 1, . . . , ℓ− 1}.

• We have ℓ4 − 1 choices for the first element a ∈ A[ℓ].

16 / 41

Genus 2 isogeny graph

Theorem

Let A be a PPAS. Then the number of PPAS’s which are (ℓ, ℓ)-isogenous to A is
(ℓ2 + 1)(ℓ+ 1).

Proof:
• As the kernel of any isogeny ϕ : A → A′ corresponds to some maximal isotropic
subgroup, it suffices to count the number of maximal ℓ-isotropic subgroups of A[ℓ]
isomorphic to C 2

ℓ .
• Let A[ℓ] = ⟨P1,P2,P3,P4⟩. We first count the number of pairs a, b ∈ A[ℓ] such that

⟨a, b⟩ ∼= C 2
ℓ is maximal ℓ-isotropic.

• Let
a = a1P1 + a2P2 + a3P3 + a4P4 for some ai ∈ {0, 1, . . . , ℓ− 1},
b = b1P1 + b2P2 + b3P3 + b4P4 for some bi ∈ {0, 1, . . . , ℓ− 1}.

• We have ℓ4 − 1 choices for the first element a ∈ A[ℓ].

16 / 41

Genus 2 isogeny graph

Theorem

Let A be a PPAS. Then the number of PPAS’s which are (ℓ, ℓ)-isogenous to A is
(ℓ2 + 1)(ℓ+ 1).

Proof:
• As the kernel of any isogeny ϕ : A → A′ corresponds to some maximal isotropic
subgroup, it suffices to count the number of maximal ℓ-isotropic subgroups of A[ℓ]
isomorphic to C 2

ℓ .
• Let A[ℓ] = ⟨P1,P2,P3,P4⟩. We first count the number of pairs a, b ∈ A[ℓ] such that

⟨a, b⟩ ∼= C 2
ℓ is maximal ℓ-isotropic.

• Let
a = a1P1 + a2P2 + a3P3 + a4P4 for some ai ∈ {0, 1, . . . , ℓ− 1},
b = b1P1 + b2P2 + b3P3 + b4P4 for some bi ∈ {0, 1, . . . , ℓ− 1}.

• We have ℓ4 − 1 choices for the first element a ∈ A[ℓ].
16 / 41

Genus 2 isogeny graph

• We now pick b ∈ A[ℓ] with order ℓ and such that eℓ(a, b) = 1.

• Using linearity and skew-symmetry of the Weil pairing:

eℓ(a, b) = eℓ(P1,P2)
a1b2−a2b1eℓ(P1,P3)

a1b3−a3b1eℓ(P1,P4)
a1b4−a4b1

· eℓ(P2,P3)
a2b3−a3b2eℓ(P2,P4)

a2b4−a4b2eℓ(P3,P4)
a3b4−a4b3 = 1

• As eℓ(Pi ,Pj) = ζ
αi,j

ℓ for some non-zero αi ,j ∈ Z, this yields

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡ α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)

+ α2,3(a3b2 − a2b3) + α1,4a4b1

+ α2,4a4b2 + α3,4a4b3 (mod ℓ)

• If α1,4a1 + α2,4a2 + α3,4a3 ̸≡ 0 (mod ℓ), then this gives a free choice for b1, b2, b3,
which then determines b4 (and other cases done similarly). So we have ℓ3 − 1
choices for b.

17 / 41

Genus 2 isogeny graph

• We now pick b ∈ A[ℓ] with order ℓ and such that eℓ(a, b) = 1.

• Using linearity and skew-symmetry of the Weil pairing:

eℓ(a, b) = eℓ(P1,P2)
a1b2−a2b1eℓ(P1,P3)

a1b3−a3b1eℓ(P1,P4)
a1b4−a4b1

· eℓ(P2,P3)
a2b3−a3b2eℓ(P2,P4)

a2b4−a4b2eℓ(P3,P4)
a3b4−a4b3 = 1

• As eℓ(Pi ,Pj) = ζ
αi,j

ℓ for some non-zero αi ,j ∈ Z, this yields

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡ α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)

+ α2,3(a3b2 − a2b3) + α1,4a4b1

+ α2,4a4b2 + α3,4a4b3 (mod ℓ)

• If α1,4a1 + α2,4a2 + α3,4a3 ̸≡ 0 (mod ℓ), then this gives a free choice for b1, b2, b3,
which then determines b4 (and other cases done similarly). So we have ℓ3 − 1
choices for b.

17 / 41

Genus 2 isogeny graph

• We now pick b ∈ A[ℓ] with order ℓ and such that eℓ(a, b) = 1.

• Using linearity and skew-symmetry of the Weil pairing:

eℓ(a, b) = eℓ(P1,P2)
a1b2−a2b1eℓ(P1,P3)

a1b3−a3b1eℓ(P1,P4)
a1b4−a4b1

· eℓ(P2,P3)
a2b3−a3b2eℓ(P2,P4)

a2b4−a4b2eℓ(P3,P4)
a3b4−a4b3 = 1

• As eℓ(Pi ,Pj) = ζ
αi,j

ℓ for some non-zero αi ,j ∈ Z, this yields

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡ α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)

+ α2,3(a3b2 − a2b3) + α1,4a4b1

+ α2,4a4b2 + α3,4a4b3 (mod ℓ)

• If α1,4a1 + α2,4a2 + α3,4a3 ̸≡ 0 (mod ℓ), then this gives a free choice for b1, b2, b3,
which then determines b4 (and other cases done similarly). So we have ℓ3 − 1
choices for b.

17 / 41

Genus 2 isogeny graph

• We now pick b ∈ A[ℓ] with order ℓ and such that eℓ(a, b) = 1.

• Using linearity and skew-symmetry of the Weil pairing:

eℓ(a, b) = eℓ(P1,P2)
a1b2−a2b1eℓ(P1,P3)

a1b3−a3b1eℓ(P1,P4)
a1b4−a4b1

· eℓ(P2,P3)
a2b3−a3b2eℓ(P2,P4)

a2b4−a4b2eℓ(P3,P4)
a3b4−a4b3 = 1

• As eℓ(Pi ,Pj) = ζ
αi,j

ℓ for some non-zero αi ,j ∈ Z, this yields

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡ α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)

+ α2,3(a3b2 − a2b3) + α1,4a4b1

+ α2,4a4b2 + α3,4a4b3 (mod ℓ)

• If α1,4a1 + α2,4a2 + α3,4a3 ̸≡ 0 (mod ℓ), then this gives a free choice for b1, b2, b3,
which then determines b4 (and other cases done similarly). So we have ℓ3 − 1
choices for b.

17 / 41

Genus 2 isogeny graph

• But to ensure b ̸∈ ⟨a⟩, we must avoid ℓ− 1 elements. This gives a total of ℓ3 − ℓ
choices for b.

• Thus, the number of pairs a, b ∈ A[ℓ] such that that ⟨a, b⟩ ∼= C 2
ℓ is maximal

ℓ-isotropic is (ℓ4 − 1)(ℓ3 − ℓ).

• For any such subgroup Cℓ × Cℓ, there are (ℓ2 − 1)(ℓ2 − ℓ) generating pairs.

• Thus, the total number of maximal isotropic Cℓ × Cℓ subgroups of A[ℓ] is

(ℓ4 − 1)(ℓ3 − ℓ)

(ℓ2 − 1)(ℓ2 − ℓ)
= (ℓ2 + 1)(ℓ+ 1).

18 / 41

Genus 2 isogeny graph

• But to ensure b ̸∈ ⟨a⟩, we must avoid ℓ− 1 elements. This gives a total of ℓ3 − ℓ
choices for b.

• Thus, the number of pairs a, b ∈ A[ℓ] such that that ⟨a, b⟩ ∼= C 2
ℓ is maximal

ℓ-isotropic is (ℓ4 − 1)(ℓ3 − ℓ).

• For any such subgroup Cℓ × Cℓ, there are (ℓ2 − 1)(ℓ2 − ℓ) generating pairs.

• Thus, the total number of maximal isotropic Cℓ × Cℓ subgroups of A[ℓ] is

(ℓ4 − 1)(ℓ3 − ℓ)

(ℓ2 − 1)(ℓ2 − ℓ)
= (ℓ2 + 1)(ℓ+ 1).

18 / 41

Genus 2 isogeny graph

• But to ensure b ̸∈ ⟨a⟩, we must avoid ℓ− 1 elements. This gives a total of ℓ3 − ℓ
choices for b.

• Thus, the number of pairs a, b ∈ A[ℓ] such that that ⟨a, b⟩ ∼= C 2
ℓ is maximal

ℓ-isotropic is (ℓ4 − 1)(ℓ3 − ℓ).

• For any such subgroup Cℓ × Cℓ, there are (ℓ2 − 1)(ℓ2 − ℓ) generating pairs.

• Thus, the total number of maximal isotropic Cℓ × Cℓ subgroups of A[ℓ] is

(ℓ4 − 1)(ℓ3 − ℓ)

(ℓ2 − 1)(ℓ2 − ℓ)
= (ℓ2 + 1)(ℓ+ 1).

18 / 41

Genus 2 isogeny graph

• But to ensure b ̸∈ ⟨a⟩, we must avoid ℓ− 1 elements. This gives a total of ℓ3 − ℓ
choices for b.

• Thus, the number of pairs a, b ∈ A[ℓ] such that that ⟨a, b⟩ ∼= C 2
ℓ is maximal

ℓ-isotropic is (ℓ4 − 1)(ℓ3 − ℓ).

• For any such subgroup Cℓ × Cℓ, there are (ℓ2 − 1)(ℓ2 − ℓ) generating pairs.

• Thus, the total number of maximal isotropic Cℓ × Cℓ subgroups of A[ℓ] is

(ℓ4 − 1)(ℓ3 − ℓ)

(ℓ2 − 1)(ℓ2 − ℓ)
= (ℓ2 + 1)(ℓ+ 1).

18 / 41

Genus 2 SIDH

Initial Setup:

• Pick a large prime p = 2n3mf − 1.

• Pick a random hyperelliptic curve H/Fp2 , and let JH denote its Jacobian.

• This can be done by starting from some particular base hyperelliptic curve, e.g.
H0 : y

2 = x6 + 1.

• Jac(H0) is superspecial as it is double cover of y2 = x3 + 1.

• Take a random sequence of Richelot isogenies H0 → H1 → · · · → H (taking at least
O(log p) steps), to obtain a random curve H.

• Calculate bases {P1,P2,P3,P4} for JH [2
n] and bases {Q1,Q2,Q3,Q4} for JH [3

m].

19 / 41

Genus 2 SIDH

Initial Setup:

• Pick a large prime p = 2n3mf − 1.

• Pick a random hyperelliptic curve H/Fp2 , and let JH denote its Jacobian.

• This can be done by starting from some particular base hyperelliptic curve, e.g.
H0 : y

2 = x6 + 1.

• Jac(H0) is superspecial as it is double cover of y2 = x3 + 1.

• Take a random sequence of Richelot isogenies H0 → H1 → · · · → H (taking at least
O(log p) steps), to obtain a random curve H.

• Calculate bases {P1,P2,P3,P4} for JH [2
n] and bases {Q1,Q2,Q3,Q4} for JH [3

m].

19 / 41

Genus 2 SIDH

Initial Setup:

• Pick a large prime p = 2n3mf − 1.

• Pick a random hyperelliptic curve H/Fp2 , and let JH denote its Jacobian.

• This can be done by starting from some particular base hyperelliptic curve, e.g.
H0 : y

2 = x6 + 1.

• Jac(H0) is superspecial as it is double cover of y2 = x3 + 1.

• Take a random sequence of Richelot isogenies H0 → H1 → · · · → H (taking at least
O(log p) steps), to obtain a random curve H.

• Calculate bases {P1,P2,P3,P4} for JH [2
n] and bases {Q1,Q2,Q3,Q4} for JH [3

m].

19 / 41

Genus 2 SIDH

Initial Setup:

• Pick a large prime p = 2n3mf − 1.

• Pick a random hyperelliptic curve H/Fp2 , and let JH denote its Jacobian.

• This can be done by starting from some particular base hyperelliptic curve, e.g.
H0 : y

2 = x6 + 1.

• Jac(H0) is superspecial as it is double cover of y2 = x3 + 1.

• Take a random sequence of Richelot isogenies H0 → H1 → · · · → H (taking at least
O(log p) steps), to obtain a random curve H.

• Calculate bases {P1,P2,P3,P4} for JH [2
n] and bases {Q1,Q2,Q3,Q4} for JH [3

m].

19 / 41

Genus 2 SIDH

Initial Setup:

• Pick a large prime p = 2n3mf − 1.

• Pick a random hyperelliptic curve H/Fp2 , and let JH denote its Jacobian.

• This can be done by starting from some particular base hyperelliptic curve, e.g.
H0 : y

2 = x6 + 1.

• Jac(H0) is superspecial as it is double cover of y2 = x3 + 1.

• Take a random sequence of Richelot isogenies H0 → H1 → · · · → H (taking at least
O(log p) steps), to obtain a random curve H.

• Calculate bases {P1,P2,P3,P4} for JH [2
n] and bases {Q1,Q2,Q3,Q4} for JH [3

m].

19 / 41

Genus 2 SIDH

Initial Setup:

• Pick a large prime p = 2n3mf − 1.

• Pick a random hyperelliptic curve H/Fp2 , and let JH denote its Jacobian.

• This can be done by starting from some particular base hyperelliptic curve, e.g.
H0 : y

2 = x6 + 1.

• Jac(H0) is superspecial as it is double cover of y2 = x3 + 1.

• Take a random sequence of Richelot isogenies H0 → H1 → · · · → H (taking at least
O(log p) steps), to obtain a random curve H.

• Calculate bases {P1,P2,P3,P4} for JH [2
n] and bases {Q1,Q2,Q3,Q4} for JH [3

m].

19 / 41

Genus 2 SIDH

Round 1: Alice

1. Alice chooses 12 secret random scalars (a1, a2, . . . , a12) ⊂ {0, 1, . . . , 2n − 1}.
2. She computes the subgroup A ⊂ JH [2

n], given by

A :=
〈
a1P1 + a2P2 + a3P3 + a4P4,

a5P1 + a6P2 + a7P3 + a8P4,

a9P1 + a10P2 + a11P3 + a12P4

〉
The scalars (ai) are chosen such that A is maximal isotropic subgroup of order ℓ2n.

3. Alice sends the tuple (JH/A, ϕA(Q1), ϕA(Q2), ϕA(Q3), ϕA(Q4)) to Bob!

20 / 41

Genus 2 SIDH

Round 1: Alice

1. Alice chooses 12 secret random scalars (a1, a2, . . . , a12) ⊂ {0, 1, . . . , 2n − 1}.

2. She computes the subgroup A ⊂ JH [2
n], given by

A :=
〈
a1P1 + a2P2 + a3P3 + a4P4,

a5P1 + a6P2 + a7P3 + a8P4,

a9P1 + a10P2 + a11P3 + a12P4

〉
The scalars (ai) are chosen such that A is maximal isotropic subgroup of order ℓ2n.

3. Alice sends the tuple (JH/A, ϕA(Q1), ϕA(Q2), ϕA(Q3), ϕA(Q4)) to Bob!

20 / 41

Genus 2 SIDH

Round 1: Alice

1. Alice chooses 12 secret random scalars (a1, a2, . . . , a12) ⊂ {0, 1, . . . , 2n − 1}.
2. She computes the subgroup A ⊂ JH [2

n], given by

A :=
〈
a1P1 + a2P2 + a3P3 + a4P4,

a5P1 + a6P2 + a7P3 + a8P4,

a9P1 + a10P2 + a11P3 + a12P4

〉
The scalars (ai) are chosen such that A is maximal isotropic subgroup of order ℓ2n.

3. Alice sends the tuple (JH/A, ϕA(Q1), ϕA(Q2), ϕA(Q3), ϕA(Q4)) to Bob!

20 / 41

Genus 2 SIDH

Round 1: Alice

1. Alice chooses 12 secret random scalars (a1, a2, . . . , a12) ⊂ {0, 1, . . . , 2n − 1}.
2. She computes the subgroup A ⊂ JH [2

n], given by

A :=
〈
a1P1 + a2P2 + a3P3 + a4P4,

a5P1 + a6P2 + a7P3 + a8P4,

a9P1 + a10P2 + a11P3 + a12P4

〉
The scalars (ai) are chosen such that A is maximal isotropic subgroup of order ℓ2n.

3. Alice sends the tuple (JH/A, ϕA(Q1), ϕA(Q2), ϕA(Q3), ϕA(Q4)) to Bob!

20 / 41

Genus 2 SIDH
How should Alice pick scalars a1, a2, . . . , a12?

• Let

R1 = a1P1 + a2P2 + a3P3 + a4P4

R2 = a5P1 + a6P2 + a7P3 + a8P4

R3 = a9P1 + a10P2 + a11P3 + a12P4

• Alice needs to ensure that A is maximal ℓn-isotropic subgroup of JH [2
n], i.e. must

choose generators R1,R2,R3 such that e2n(R1,R2) = e2n(R1,R3) = e2n(R2,R3) = 1

• As shown before, this is equivalent to choosing (ai) which satisfy a system of linear
congruences, i.e. we require

e(R1,R2) = e(P1,P2)
a1a6−a2a5e(P1,P3)

a1a7−a3a5e(P1,P4)
a1a8−a4a5

· e(P2,P3)
a2a7−a3a6e(P2,P4)

a2a8−a4a6e(P3,P4)
a3a8−a4a7 = 1.

21 / 41

Genus 2 SIDH
How should Alice pick scalars a1, a2, . . . , a12?

• Let

R1 = a1P1 + a2P2 + a3P3 + a4P4

R2 = a5P1 + a6P2 + a7P3 + a8P4

R3 = a9P1 + a10P2 + a11P3 + a12P4

• Alice needs to ensure that A is maximal ℓn-isotropic subgroup of JH [2
n], i.e. must

choose generators R1,R2,R3 such that e2n(R1,R2) = e2n(R1,R3) = e2n(R2,R3) = 1

• As shown before, this is equivalent to choosing (ai) which satisfy a system of linear
congruences, i.e. we require

e(R1,R2) = e(P1,P2)
a1a6−a2a5e(P1,P3)

a1a7−a3a5e(P1,P4)
a1a8−a4a5

· e(P2,P3)
a2a7−a3a6e(P2,P4)

a2a8−a4a6e(P3,P4)
a3a8−a4a7 = 1.

21 / 41

Genus 2 SIDH
How should Alice pick scalars a1, a2, . . . , a12?

• Let

R1 = a1P1 + a2P2 + a3P3 + a4P4

R2 = a5P1 + a6P2 + a7P3 + a8P4

R3 = a9P1 + a10P2 + a11P3 + a12P4

• Alice needs to ensure that A is maximal ℓn-isotropic subgroup of JH [2
n], i.e. must

choose generators R1,R2,R3 such that e2n(R1,R2) = e2n(R1,R3) = e2n(R2,R3) = 1

• As shown before, this is equivalent to choosing (ai) which satisfy a system of linear
congruences, i.e. we require

e(R1,R2) = e(P1,P2)
a1a6−a2a5e(P1,P3)

a1a7−a3a5e(P1,P4)
a1a8−a4a5

· e(P2,P3)
a2a7−a3a6e(P2,P4)

a2a8−a4a6e(P3,P4)
a3a8−a4a7 = 1.

21 / 41

Genus 2 SIDH
How should Alice pick scalars a1, a2, . . . , a12?

• Let

R1 = a1P1 + a2P2 + a3P3 + a4P4

R2 = a5P1 + a6P2 + a7P3 + a8P4

R3 = a9P1 + a10P2 + a11P3 + a12P4

• Alice needs to ensure that A is maximal ℓn-isotropic subgroup of JH [2
n], i.e. must

choose generators R1,R2,R3 such that e2n(R1,R2) = e2n(R1,R3) = e2n(R2,R3) = 1

• As shown before, this is equivalent to choosing (ai) which satisfy a system of linear
congruences, i.e. we require

e(R1,R2) = e(P1,P2)
a1a6−a2a5e(P1,P3)

a1a7−a3a5e(P1,P4)
a1a8−a4a5

· e(P2,P3)
a2a7−a3a6e(P2,P4)

a2a8−a4a6e(P3,P4)
a3a8−a4a7 = 1.

21 / 41

Genus 2 SIDH

Alice can do the following:

(i) Calculate the values αi ,j (mod 2n) such that e2n(Pi ,Pj) = e2n(P1,P2)
αi,j .

(ii) Pick random a1, a2, a3, a4 ∈ {0, 1, . . . , 2n − 1} such that at least one of the four is
odd.

(iii) Pick a random k ∈ {0, 1, . . . , n}, and pick random a5, a6, a7, a8 such that

a1a6 − a2a5 + α1,3(a1a7 − a3a5) + α1,4(a1a8 − a4a5)

+ α2,3(a2a7 − a3a6) + α2,4(a2a8 − a4a6) + α3,4(a3a8 − a4a7) ≡ 0 mod 2k

(iv) Pick random a9, a10, a11, a12 such that

a1a10 − a2a9 + α1,3(a1a11 − a3a9) + α1,4(a1a12 − a4a9)

+ α2,3(a2a11 − a3a10) + α2,4(a2a12 − a4a10) + α3,4(a3a12 − a4a11) ≡ 0 mod 2n−k

22 / 41

Genus 2 SIDH

Alice can do the following:

(i) Calculate the values αi ,j (mod 2n) such that e2n(Pi ,Pj) = e2n(P1,P2)
αi,j .

(ii) Pick random a1, a2, a3, a4 ∈ {0, 1, . . . , 2n − 1} such that at least one of the four is
odd.

(iii) Pick a random k ∈ {0, 1, . . . , n}, and pick random a5, a6, a7, a8 such that

a1a6 − a2a5 + α1,3(a1a7 − a3a5) + α1,4(a1a8 − a4a5)

+ α2,3(a2a7 − a3a6) + α2,4(a2a8 − a4a6) + α3,4(a3a8 − a4a7) ≡ 0 mod 2k

(iv) Pick random a9, a10, a11, a12 such that

a1a10 − a2a9 + α1,3(a1a11 − a3a9) + α1,4(a1a12 − a4a9)

+ α2,3(a2a11 − a3a10) + α2,4(a2a12 − a4a10) + α3,4(a3a12 − a4a11) ≡ 0 mod 2n−k

22 / 41

Genus 2 SIDH

Alice can do the following:

(i) Calculate the values αi ,j (mod 2n) such that e2n(Pi ,Pj) = e2n(P1,P2)
αi,j .

(ii) Pick random a1, a2, a3, a4 ∈ {0, 1, . . . , 2n − 1} such that at least one of the four is
odd.

(iii) Pick a random k ∈ {0, 1, . . . , n}, and pick random a5, a6, a7, a8 such that

a1a6 − a2a5 + α1,3(a1a7 − a3a5) + α1,4(a1a8 − a4a5)

+ α2,3(a2a7 − a3a6) + α2,4(a2a8 − a4a6) + α3,4(a3a8 − a4a7) ≡ 0 mod 2k

(iv) Pick random a9, a10, a11, a12 such that

a1a10 − a2a9 + α1,3(a1a11 − a3a9) + α1,4(a1a12 − a4a9)

+ α2,3(a2a11 − a3a10) + α2,4(a2a12 − a4a10) + α3,4(a3a12 − a4a11) ≡ 0 mod 2n−k

22 / 41

Genus 2 SIDH

Alice can do the following:

(i) Calculate the values αi ,j (mod 2n) such that e2n(Pi ,Pj) = e2n(P1,P2)
αi,j .

(ii) Pick random a1, a2, a3, a4 ∈ {0, 1, . . . , 2n − 1} such that at least one of the four is
odd.

(iii) Pick a random k ∈ {0, 1, . . . , n}, and pick random a5, a6, a7, a8 such that

a1a6 − a2a5 + α1,3(a1a7 − a3a5) + α1,4(a1a8 − a4a5)

+ α2,3(a2a7 − a3a6) + α2,4(a2a8 − a4a6) + α3,4(a3a8 − a4a7) ≡ 0 mod 2k

(iv) Pick random a9, a10, a11, a12 such that

a1a10 − a2a9 + α1,3(a1a11 − a3a9) + α1,4(a1a12 − a4a9)

+ α2,3(a2a11 − a3a10) + α2,4(a2a12 − a4a10) + α3,4(a3a12 − a4a11) ≡ 0 mod 2n−k

22 / 41

Genus 2 SIDH

Alice can do the following:

(i) Calculate the values αi ,j (mod 2n) such that e2n(Pi ,Pj) = e2n(P1,P2)
αi,j .

(ii) Pick random a1, a2, a3, a4 ∈ {0, 1, . . . , 2n − 1} such that at least one of the four is
odd.

(iii) Pick a random k ∈ {0, 1, . . . , n}, and pick random a5, a6, a7, a8 such that

a1a6 − a2a5 + α1,3(a1a7 − a3a5) + α1,4(a1a8 − a4a5)

+ α2,3(a2a7 − a3a6) + α2,4(a2a8 − a4a6) + α3,4(a3a8 − a4a7) ≡ 0 mod 2k

(iv) Pick random a9, a10, a11, a12 such that

a1a10 − a2a9 + α1,3(a1a11 − a3a9) + α1,4(a1a12 − a4a9)

+ α2,3(a2a11 − a3a10) + α2,4(a2a12 − a4a10) + α3,4(a3a12 − a4a11) ≡ 0 mod 2n−k

22 / 41

Genus 2 SIDH

Round 1: Bob

1. Bob also chooses 12 secret random scalars (b1, b2, . . . , b12) ⊂ {0, 1, . . . , 3m − 1}.
2. He computes the group B ⊂ JH [3

m], given by

B :=
〈
b1Q1 + b2Q2 + b3Q3 + b4Q4,

b5Q1 + b6Q2 + b7Q3 + b8Q4,

b9Q1 + b10Q2 + b11Q3 + b12Q4

〉
.

Again, the scalars (bi) must be chosen such that B is maximal isotropic subgroup of
order 32m.

3. Bobs sends the tuple (JH/B, ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4)) to Alice!

23 / 41

Genus 2 SIDH

Round 1: Bob

1. Bob also chooses 12 secret random scalars (b1, b2, . . . , b12) ⊂ {0, 1, . . . , 3m − 1}.

2. He computes the group B ⊂ JH [3
m], given by

B :=
〈
b1Q1 + b2Q2 + b3Q3 + b4Q4,

b5Q1 + b6Q2 + b7Q3 + b8Q4,

b9Q1 + b10Q2 + b11Q3 + b12Q4

〉
.

Again, the scalars (bi) must be chosen such that B is maximal isotropic subgroup of
order 32m.

3. Bobs sends the tuple (JH/B, ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4)) to Alice!

23 / 41

Genus 2 SIDH

Round 1: Bob

1. Bob also chooses 12 secret random scalars (b1, b2, . . . , b12) ⊂ {0, 1, . . . , 3m − 1}.
2. He computes the group B ⊂ JH [3

m], given by

B :=
〈
b1Q1 + b2Q2 + b3Q3 + b4Q4,

b5Q1 + b6Q2 + b7Q3 + b8Q4,

b9Q1 + b10Q2 + b11Q3 + b12Q4

〉
.

Again, the scalars (bi) must be chosen such that B is maximal isotropic subgroup of
order 32m.

3. Bobs sends the tuple (JH/B, ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4)) to Alice!

23 / 41

Genus 2 SIDH

Round 1: Bob

1. Bob also chooses 12 secret random scalars (b1, b2, . . . , b12) ⊂ {0, 1, . . . , 3m − 1}.
2. He computes the group B ⊂ JH [3

m], given by

B :=
〈
b1Q1 + b2Q2 + b3Q3 + b4Q4,

b5Q1 + b6Q2 + b7Q3 + b8Q4,

b9Q1 + b10Q2 + b11Q3 + b12Q4

〉
.

Again, the scalars (bi) must be chosen such that B is maximal isotropic subgroup of
order 32m.

3. Bobs sends the tuple (JH/B, ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4)) to Alice!

23 / 41

Genus 2 SIDH

Round 2: Alice

4. Alice receives Bob’s tuple and calculates:

A′ :=
〈
a1ϕB(P1) + a2ϕB(P2) + a3ϕB(P3) + a4ϕB(P4),

a5ϕB(P1) + a6ϕB(P2) + a7ϕB(P3) + a8ϕB(P4),

a9ϕB(P1) + a10ϕB(P2) + a11ϕB(P3) + a12ϕB(P4)
〉
.

5. Alice thus has the isogeny ϕA′ : JH/B → (JH/B)/A
′, and can compute the G2

invariants of (JH/B)/A
′.

24 / 41

Genus 2 SIDH

Round 2: Alice

4. Alice receives Bob’s tuple and calculates:

A′ :=
〈
a1ϕB(P1) + a2ϕB(P2) + a3ϕB(P3) + a4ϕB(P4),

a5ϕB(P1) + a6ϕB(P2) + a7ϕB(P3) + a8ϕB(P4),

a9ϕB(P1) + a10ϕB(P2) + a11ϕB(P3) + a12ϕB(P4)
〉
.

5. Alice thus has the isogeny ϕA′ : JH/B → (JH/B)/A
′, and can compute the G2

invariants of (JH/B)/A
′.

24 / 41

Genus 2 SIDH

Round 2: Alice

4. Alice receives Bob’s tuple and calculates:

A′ :=
〈
a1ϕB(P1) + a2ϕB(P2) + a3ϕB(P3) + a4ϕB(P4),

a5ϕB(P1) + a6ϕB(P2) + a7ϕB(P3) + a8ϕB(P4),

a9ϕB(P1) + a10ϕB(P2) + a11ϕB(P3) + a12ϕB(P4)
〉
.

5. Alice thus has the isogeny ϕA′ : JH/B → (JH/B)/A
′, and can compute the G2

invariants of (JH/B)/A
′.

24 / 41

Genus 2 SIDH

Round 2: Bob

4. Similarly, Bob receives Alice’s tuple and calculates:

B ′ :=
〈
b1ϕA(Q1) + b2ϕA(Q2) + b3ϕA(Q3) + b4ϕA(Q4),

b5ϕA(Q1) + b6ϕA(Q2) + b7ϕA(Q3) + b8ϕA(Q4),

b9ϕA(Q1) + b10ϕA(Q2) + b11ϕA(Q3) + b12ϕA(Q4)
〉
.

5. Bob thus has the isogeny ϕB′ : JH/A → (JH/A)/B
′, and can compute the G2

invariants of (JH/A)/B
′.

As (JH/A)/B
′ = (JH/A)/ϕA(B) ∼= JH/⟨A,B⟩ ∼= (JH/B)/ϕB(A) = (JH/B)/A

′, Alice and
Bob can use their computed G2 invariants as their shared secret. :)

25 / 41

Genus 2 SIDH

Round 2: Bob

4. Similarly, Bob receives Alice’s tuple and calculates:

B ′ :=
〈
b1ϕA(Q1) + b2ϕA(Q2) + b3ϕA(Q3) + b4ϕA(Q4),

b5ϕA(Q1) + b6ϕA(Q2) + b7ϕA(Q3) + b8ϕA(Q4),

b9ϕA(Q1) + b10ϕA(Q2) + b11ϕA(Q3) + b12ϕA(Q4)
〉
.

5. Bob thus has the isogeny ϕB′ : JH/A → (JH/A)/B
′, and can compute the G2

invariants of (JH/A)/B
′.

As (JH/A)/B
′ = (JH/A)/ϕA(B) ∼= JH/⟨A,B⟩ ∼= (JH/B)/ϕB(A) = (JH/B)/A

′, Alice and
Bob can use their computed G2 invariants as their shared secret. :)

25 / 41

Genus 2 SIDH

Round 2: Bob

4. Similarly, Bob receives Alice’s tuple and calculates:

B ′ :=
〈
b1ϕA(Q1) + b2ϕA(Q2) + b3ϕA(Q3) + b4ϕA(Q4),

b5ϕA(Q1) + b6ϕA(Q2) + b7ϕA(Q3) + b8ϕA(Q4),

b9ϕA(Q1) + b10ϕA(Q2) + b11ϕA(Q3) + b12ϕA(Q4)
〉
.

5. Bob thus has the isogeny ϕB′ : JH/A → (JH/A)/B
′, and can compute the G2

invariants of (JH/A)/B
′.

As (JH/A)/B
′ = (JH/A)/ϕA(B) ∼= JH/⟨A,B⟩ ∼= (JH/B)/ϕB(A) = (JH/B)/A

′, Alice and
Bob can use their computed G2 invariants as their shared secret. :)

25 / 41

Genus 2 SIDH

Round 2: Bob

4. Similarly, Bob receives Alice’s tuple and calculates:

B ′ :=
〈
b1ϕA(Q1) + b2ϕA(Q2) + b3ϕA(Q3) + b4ϕA(Q4),

b5ϕA(Q1) + b6ϕA(Q2) + b7ϕA(Q3) + b8ϕA(Q4),

b9ϕA(Q1) + b10ϕA(Q2) + b11ϕA(Q3) + b12ϕA(Q4)
〉
.

5. Bob thus has the isogeny ϕB′ : JH/A → (JH/A)/B
′, and can compute the G2

invariants of (JH/A)/B
′.

As (JH/A)/B
′ = (JH/A)/ϕA(B) ∼= JH/⟨A,B⟩ ∼= (JH/B)/ϕB(A) = (JH/B)/A

′, Alice and
Bob can use their computed G2 invariants as their shared secret. :)

25 / 41

Security

Isogeny finding problem

Let p be a prime, and A,A′ two superspecial p.p. abelian surfaces over Fp2 . Find an
isogeny ϕ : A → A′.

Algorithms:

• Brute force exhaustive search: O(
√
p3).

• Meet in the middle search: O(4
√

p3).

• (Quantum) Tani’s claw finding algorithm: O(6
√
p3)

• Claw problem: Given two functions f : A → C and g : B → C , find a pair (a, b) such
that f (a) = g(b).

26 / 41

Security

Isogeny finding problem

Let p be a prime, and A,A′ two superspecial p.p. abelian surfaces over Fp2 . Find an
isogeny ϕ : A → A′.

Algorithms:

• Brute force exhaustive search: O(
√
p3).

• Meet in the middle search: O(4
√

p3).

• (Quantum) Tani’s claw finding algorithm: O(6
√
p3)

• Claw problem: Given two functions f : A → C and g : B → C , find a pair (a, b) such
that f (a) = g(b).

26 / 41

Security

Isogeny finding problem

Let p be a prime, and A,A′ two superspecial p.p. abelian surfaces over Fp2 . Find an
isogeny ϕ : A → A′.

Algorithms:

• Brute force exhaustive search: O(
√
p3).

• Meet in the middle search: O(4
√

p3).

• (Quantum) Tani’s claw finding algorithm: O(6
√
p3)

• Claw problem: Given two functions f : A → C and g : B → C , find a pair (a, b) such
that f (a) = g(b).

26 / 41

Security

Isogeny finding problem

Let p be a prime, and A,A′ two superspecial p.p. abelian surfaces over Fp2 . Find an
isogeny ϕ : A → A′.

Algorithms:

• Brute force exhaustive search: O(
√
p3).

• Meet in the middle search: O(4
√

p3).

• (Quantum) Tani’s claw finding algorithm: O(6
√

p3)
• Claw problem: Given two functions f : A → C and g : B → C , find a pair (a, b) such

that f (a) = g(b).

26 / 41

Security

Adaptive Attack:

• Let’s assume Alice uses the same secret key (a1, . . . , a12) over some period of time.

• An attacker pretending to be Bob could try to learn Alice’s secret key by maliciously
providing the incorrect tuple of torsion points to Alice.

• “Evil” Bob can send (ϕB(P1), ϕB(P2), ϕB(P3), ϕB([2
n−1]P4 + P4)) to Alice, which

allows Evil Bob to recover the first bit of a4.

• By repeatedly sending malformed data to Alice, Evil Bob can recover Alice’s full
secret key.

• Alice could safeguard against this by performing some (sufficiently thorough)
validation on the points received from Bob each time (e.g. using the
Fujisaki–Okamoto transformation).

27 / 41

Security

Adaptive Attack:

• Let’s assume Alice uses the same secret key (a1, . . . , a12) over some period of time.

• An attacker pretending to be Bob could try to learn Alice’s secret key by maliciously
providing the incorrect tuple of torsion points to Alice.

• “Evil” Bob can send (ϕB(P1), ϕB(P2), ϕB(P3), ϕB([2
n−1]P4 + P4)) to Alice, which

allows Evil Bob to recover the first bit of a4.

• By repeatedly sending malformed data to Alice, Evil Bob can recover Alice’s full
secret key.

• Alice could safeguard against this by performing some (sufficiently thorough)
validation on the points received from Bob each time (e.g. using the
Fujisaki–Okamoto transformation).

27 / 41

Security

Adaptive Attack:

• Let’s assume Alice uses the same secret key (a1, . . . , a12) over some period of time.

• An attacker pretending to be Bob could try to learn Alice’s secret key by maliciously
providing the incorrect tuple of torsion points to Alice.

• “Evil” Bob can send (ϕB(P1), ϕB(P2), ϕB(P3), ϕB([2
n−1]P4 + P4)) to Alice, which

allows Evil Bob to recover the first bit of a4.

• By repeatedly sending malformed data to Alice, Evil Bob can recover Alice’s full
secret key.

• Alice could safeguard against this by performing some (sufficiently thorough)
validation on the points received from Bob each time (e.g. using the
Fujisaki–Okamoto transformation).

27 / 41

Security

Adaptive Attack:

• Let’s assume Alice uses the same secret key (a1, . . . , a12) over some period of time.

• An attacker pretending to be Bob could try to learn Alice’s secret key by maliciously
providing the incorrect tuple of torsion points to Alice.

• “Evil” Bob can send (ϕB(P1), ϕB(P2), ϕB(P3), ϕB([2
n−1]P4 + P4)) to Alice, which

allows Evil Bob to recover the first bit of a4.

• By repeatedly sending malformed data to Alice, Evil Bob can recover Alice’s full
secret key.

• Alice could safeguard against this by performing some (sufficiently thorough)
validation on the points received from Bob each time (e.g. using the
Fujisaki–Okamoto transformation).

27 / 41

Security

Adaptive Attack:

• Let’s assume Alice uses the same secret key (a1, . . . , a12) over some period of time.

• An attacker pretending to be Bob could try to learn Alice’s secret key by maliciously
providing the incorrect tuple of torsion points to Alice.

• “Evil” Bob can send (ϕB(P1), ϕB(P2), ϕB(P3), ϕB([2
n−1]P4 + P4)) to Alice, which

allows Evil Bob to recover the first bit of a4.

• By repeatedly sending malformed data to Alice, Evil Bob can recover Alice’s full
secret key.

• Alice could safeguard against this by performing some (sufficiently thorough)
validation on the points received from Bob each time (e.g. using the
Fujisaki–Okamoto transformation).

27 / 41

Security

Fault Attack:

• An attacker with physical access to a device using Alice’s private key (ai) could
perform a loop-abort fault injection attack.

• This involves injecting some random fault in a loop counter to prematurely stop Alice
computing her isogeny JH → JH/A, and instead compute the intermediate PPAS
JH/⟨2n−k(a1P1 + . . .)⟩ for some k.

• Countermeasures include adding additional counters to verify the correct number of
iterations has been executed (or just running the same computation in parallel and
checking the outputs are the same)

28 / 41

Security

Fault Attack:

• An attacker with physical access to a device using Alice’s private key (ai) could
perform a loop-abort fault injection attack.

• This involves injecting some random fault in a loop counter to prematurely stop Alice
computing her isogeny JH → JH/A, and instead compute the intermediate PPAS
JH/⟨2n−k(a1P1 + . . .)⟩ for some k.

• Countermeasures include adding additional counters to verify the correct number of
iterations has been executed (or just running the same computation in parallel and
checking the outputs are the same)

28 / 41

Security

Fault Attack:

• An attacker with physical access to a device using Alice’s private key (ai) could
perform a loop-abort fault injection attack.

• This involves injecting some random fault in a loop counter to prematurely stop Alice
computing her isogeny JH → JH/A, and instead compute the intermediate PPAS
JH/⟨2n−k(a1P1 + . . .)⟩ for some k.

• Countermeasures include adding additional counters to verify the correct number of
iterations has been executed (or just running the same computation in parallel and
checking the outputs are the same)

28 / 41

Higher Isogenies

Genus g isogeny graph

Let p be prime. Define Γg (ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised dimension g abelian varieties over Fp, and whose edges
are (ℓ, . . . , ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected (Jordan–Zaytman).

• Graph has O(pg(g+1)/2) vertices.

• Every vertex has Ng (ℓ) neighbours, where Ng (ℓ) is a polynomial in ℓ of degree
g(g + 1)/2:

Ng (ℓ) :=

g∑
d=0

ℓ(
g−d+1

2) ·
d−1∏
j=0

1− ℓg−j

1− ℓj+1

• Not Ramanujan in general (Jordan–Zaytman), but still has good expansion
properties.

29 / 41

Higher Isogenies

Genus g isogeny graph

Let p be prime. Define Γg (ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised dimension g abelian varieties over Fp, and whose edges
are (ℓ, . . . , ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected (Jordan–Zaytman).

• Graph has O(pg(g+1)/2) vertices.

• Every vertex has Ng (ℓ) neighbours, where Ng (ℓ) is a polynomial in ℓ of degree
g(g + 1)/2:

Ng (ℓ) :=

g∑
d=0

ℓ(
g−d+1

2) ·
d−1∏
j=0

1− ℓg−j

1− ℓj+1

• Not Ramanujan in general (Jordan–Zaytman), but still has good expansion
properties.

29 / 41

Higher Isogenies

Genus g isogeny graph

Let p be prime. Define Γg (ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised dimension g abelian varieties over Fp, and whose edges
are (ℓ, . . . , ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected (Jordan–Zaytman).

• Graph has O(pg(g+1)/2) vertices.

• Every vertex has Ng (ℓ) neighbours, where Ng (ℓ) is a polynomial in ℓ of degree
g(g + 1)/2:

Ng (ℓ) :=

g∑
d=0

ℓ(
g−d+1

2) ·
d−1∏
j=0

1− ℓg−j

1− ℓj+1

• Not Ramanujan in general (Jordan–Zaytman), but still has good expansion
properties.

29 / 41

Higher Isogenies

Genus g isogeny graph

Let p be prime. Define Γg (ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised dimension g abelian varieties over Fp, and whose edges
are (ℓ, . . . , ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected (Jordan–Zaytman).

• Graph has O(pg(g+1)/2) vertices.

• Every vertex has Ng (ℓ) neighbours, where Ng (ℓ) is a polynomial in ℓ of degree
g(g + 1)/2:

Ng (ℓ) :=

g∑
d=0

ℓ(
g−d+1

2) ·
d−1∏
j=0

1− ℓg−j

1− ℓj+1

• Not Ramanujan in general (Jordan–Zaytman), but still has good expansion
properties.

29 / 41

Higher Isogenies

Genus g isogeny graph

Let p be prime. Define Γg (ℓ, p) to be the graph whose vertices are isomorphism classes of
superspecial principally polarised dimension g abelian varieties over Fp, and whose edges
are (ℓ, . . . , ℓ)-isogenies, for a prime ℓ ̸= p.

• Graph is connected (Jordan–Zaytman).

• Graph has O(pg(g+1)/2) vertices.

• Every vertex has Ng (ℓ) neighbours, where Ng (ℓ) is a polynomial in ℓ of degree
g(g + 1)/2:

Ng (ℓ) :=

g∑
d=0

ℓ(
g−d+1

2) ·
d−1∏
j=0

1− ℓg−j

1− ℓj+1

• Not Ramanujan in general (Jordan–Zaytman), but still has good expansion
properties.

29 / 41

Higher Attacks

Usual algorithms:

• Naive random walk: O(pg(g+1)/4)

• Meet in the middle: O(pg(g+1)/8).

• Tani’s claw finding quantum algorithm: O(pg(g+1)/12).

Theorem (Costello–Smith (2020))

Let A,A′ be SSPPAV over Fp of dimension g > 1.

1. There exists a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in
Γg (ℓ, p).

2. There exists a quantum Õ(
√
pg−1) algorithm which finds an isogeny ϕ : A → A′ in

Γg (ℓ, p).

30 / 41

Higher Attacks

Usual algorithms:

• Naive random walk: O(pg(g+1)/4)

• Meet in the middle: O(pg(g+1)/8).

• Tani’s claw finding quantum algorithm: O(pg(g+1)/12).

Theorem (Costello–Smith (2020))

Let A,A′ be SSPPAV over Fp of dimension g > 1.

1. There exists a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in
Γg (ℓ, p).

2. There exists a quantum Õ(
√
pg−1) algorithm which finds an isogeny ϕ : A → A′ in

Γg (ℓ, p).

30 / 41

Higher Attacks

Usual algorithms:

• Naive random walk: O(pg(g+1)/4)

• Meet in the middle: O(pg(g+1)/8).

• Tani’s claw finding quantum algorithm: O(pg(g+1)/12).

Theorem (Costello–Smith (2020))

Let A,A′ be SSPPAV over Fp of dimension g > 1.

1. There exists a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in
Γg (ℓ, p).

2. There exists a quantum Õ(
√
pg−1) algorithm which finds an isogeny ϕ : A → A′ in

Γg (ℓ, p).

30 / 41

Higher Attacks

Usual algorithms:

• Naive random walk: O(pg(g+1)/4)

• Meet in the middle: O(pg(g+1)/8).

• Tani’s claw finding quantum algorithm: O(pg(g+1)/12).

Theorem (Costello–Smith (2020))

Let A,A′ be SSPPAV over Fp of dimension g > 1.

1. There exists a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in
Γg (ℓ, p).

2. There exists a quantum Õ(
√
pg−1) algorithm which finds an isogeny ϕ : A → A′ in

Γg (ℓ, p).

30 / 41

Higher Attacks

Usual algorithms:

• Naive random walk: O(pg(g+1)/4)

• Meet in the middle: O(pg(g+1)/8).

• Tani’s claw finding quantum algorithm: O(pg(g+1)/12).

Theorem (Costello–Smith (2020))

Let A,A′ be SSPPAV over Fp of dimension g > 1.

1. There exists a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in
Γg (ℓ, p).

2. There exists a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in
Γg (ℓ, p).

30 / 41

Genus 2 Implementation

Let’s go through an implementation of the genus 2 SIDH algorithm, using values provided
by Flynn–Ti.

• Choose p = 251332 − 1 = 4172630516011578626876079341567 (100 bit).
• Base hyperelliptic curve H/Fp2 defined by

H : y2 = (380194068372159317574541564775i + 1017916559181277226571754002873)x6

+ (3642151710276608808804111504956i + 1449092825028873295033553368501)x5

+ (490668231383624479442418028296i + 397897572063105264581753147433)x4

+ (577409514474712448616343527931i + 1029071839968410755001691761655)x3

+ (4021089525876840081239624986822i + 3862824071831242831691614151192)x2

+ (2930679994619687403787686425153i + 1855492455663897070774056208936)x

+ 2982740028354478560624947212657i + 2106211304320458155169465303811

31 / 41

Genus 2 Implementation

Let’s go through an implementation of the genus 2 SIDH algorithm, using values provided
by Flynn–Ti.

• Choose p = 251332 − 1 = 4172630516011578626876079341567 (100 bit).

• Base hyperelliptic curve H/Fp2 defined by

H : y2 = (380194068372159317574541564775i + 1017916559181277226571754002873)x6

+ (3642151710276608808804111504956i + 1449092825028873295033553368501)x5

+ (490668231383624479442418028296i + 397897572063105264581753147433)x4

+ (577409514474712448616343527931i + 1029071839968410755001691761655)x3

+ (4021089525876840081239624986822i + 3862824071831242831691614151192)x2

+ (2930679994619687403787686425153i + 1855492455663897070774056208936)x

+ 2982740028354478560624947212657i + 2106211304320458155169465303811

31 / 41

Genus 2 Implementation

Let’s go through an implementation of the genus 2 SIDH algorithm, using values provided
by Flynn–Ti.

• Choose p = 251332 − 1 = 4172630516011578626876079341567 (100 bit).
• Base hyperelliptic curve H/Fp2 defined by

H : y2 = (380194068372159317574541564775i + 1017916559181277226571754002873)x6

+ (3642151710276608808804111504956i + 1449092825028873295033553368501)x5

+ (490668231383624479442418028296i + 397897572063105264581753147433)x4

+ (577409514474712448616343527931i + 1029071839968410755001691761655)x3

+ (4021089525876840081239624986822i + 3862824071831242831691614151192)x2

+ (2930679994619687403787686425153i + 1855492455663897070774056208936)x

+ 2982740028354478560624947212657i + 2106211304320458155169465303811

31 / 41

Genus 2 Implementation
Generators {P1,P2,P3,P4} for the torsion subgroup JH [2

51]:

P1 =


x2 + (2643268744935796625293669726227i + 1373559437243573104036867095531)x

+2040766263472741296629084172357i + 4148336987880572074205999666055,
+(2643644763015937217035303914167i + 3102052689781182995044090081179)x
+1813936678851222746202596525186i + 3292045648641130919333133017218

 ,

P2 =


x2 + (1506120079909263217492664325998i + 1228415755183185090469788608852)x

+510940816723538210024413022814i + 325927805213930943126621646192,
+(1580781382037244392536803165134i + 3887834922720954573750149446163)x
+167573350393555136960752415082i + 1225135781040742113572860497457

 ,

P3 =


x2 + (3505781767879186878832918134439i + 1904272753181081852523334980136)x

+646979589883461323280906338962i + 403466470460947461098796570690,
+(311311346636220579350524387279i + 1018806370582980709002197493273)x
+1408004869895332587263994799989i + 1849826149725693312283086888829

 ,

P4 =


x2 + (2634314786447819510080659494014i + 72540633574927805301023935272)x
+1531966532163723578428827143067i + 1430299038689444680071540958109,
+(3957136023963064340486029724124i + 304348230408614456709697813720)x
+888364867276729326209394828038i + 2453132774156594607548927379151

 .
32 / 41

Genus 2 Implementation
Generators {Q1,Q2,Q3,Q4} for the torsion subgroup JH [3

32]:

Q1 =


x2 + (2630852063481114424941031847450i + 66199700402594224448399474867)x

+497300488675151931970215687005i + 759563233616865509503094963984,
+(1711990417626011964235368995795i + 3370542528225682591775373090846)x
+2409246960430353503520175176754i + 1486115372404013153540282992605

 ,

Q2 =


x2 + (950432829617443696475772551884i + 3809766229231883691707469450961)x
+1293886731023444677607106763783i + 2152044083269016653158588262237,

+(3613765124982997852345558006302i + 4166067285631998217873560846741)x
+2494877549970866914093980400340i + 3422166823321314392366398023265

 ,

Q3 =


x2 + (1867909473743807424879633729641i + 3561017973465655201531445986517)x

+614550355856817299796257158420i + 3713818865406510298963726073088,
+(846565504796531694760652292661i + 2430149476747360285585725491789)x
+3827102507618362281753526735086i + 878843682607965961832497258982

 ,

Q4 =


x2 + (2493766102609911097717660796748i + 2474559150997146544698868735081)x

+843886014491849541025676396448i + 2700674753803982658674811115656,
+(2457109003116302300180304001113i + 3000754825048207655171641361142)x
+2560520198225087401183248832955i + 2490028703281853247425401658313

 .
33 / 41

Genus 2 Implementation
Alice chooses her 12 random secret scalars:

α1 = 937242395764589, α2 = 282151393547351, α3 = 0,

α4 = 0, α5 = 0, α6 = 0,

α7 = 1666968036125619, α8 = 324369560360356, α9 = 0,

α10 = 0, α11 = 0, α12 = 0.

Bob chooses his 12 random secret scalars:

β1 = 103258914945647, β2 = 1444900449480064, β3 = 0,

β4 = 0, β5 = 0, β6 = 0,

β7 = 28000236972265, β8 = 720020678656772, β9 = 0,

β10 = 0, β11 = 0, β12 = 0.

34 / 41

Genus 2 Implementation
Alice chooses her 12 random secret scalars:

α1 = 937242395764589, α2 = 282151393547351, α3 = 0,

α4 = 0, α5 = 0, α6 = 0,

α7 = 1666968036125619, α8 = 324369560360356, α9 = 0,

α10 = 0, α11 = 0, α12 = 0.

Bob chooses his 12 random secret scalars:

β1 = 103258914945647, β2 = 1444900449480064, β3 = 0,

β4 = 0, β5 = 0, β6 = 0,

β7 = 28000236972265, β8 = 720020678656772, β9 = 0,

β10 = 0, β11 = 0, β12 = 0.

34 / 41

Genus 2 Implementation

Bob computes the genus 2 curve:

HA : y2 = (3404703004587495821596176965058i + 403336181260435480105799382459)x6

+ (3001584086424762938062276222340i + 3110471904806922603655329247510)x5

+ (1017199310627230983511586463332i + 1599189698631433372650857544071)x4

+ (2469562012339092945398365678689i + 1154566472615236827416467624584)x3

+ (841874238658053023013857416200i + 422410815643904319729131959469)x2

+ (3507584227180426976109772052962i + 2331298266595569462657798736063)x

+ 2729816620520905175590758187019i + 3748704006645129000498563514734.

35 / 41

Genus 2 Implementation

Alice computes the genus 2 curve:

HB : y2 = (3434394689074752663579510896530i + 3258819610341997123576600332954)x6

+ (3350255113820895191389143565973i + 2681892489448659428930467220147)x5

+ (2958298818675004062047066758264i + 904769362079321055425076728309)x4

+ (2701255487608026975177181091075i + 787033120015012146142186182556)x3

+ (3523675811671092022491764466022i + 2804841353558342542840805561369)x2

+ (3238151513550798796238052565124i + 3437885792433773163395130700555)x

+ 1829327374163410097298853068766i + 3453489516944406316396271485172.

36 / 41

Genus 2 Implementation
Using ϕB , Bob computes the points ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4) and sends this to
Alice!

ϕB(P1) = ±


x2 + (576967470035224384447071691859i + 3905591233169141993601703381059)x
+1497608451125872175852448359137i + 2622938093324787679229413320405,
(2205483026731282488507766835920i + 1887631895533666975170960498604)x
+2270438136719486828147096768168i + 1098893079140511975119740789184

 ,

ϕB(P2) = ±


x2 + (200280720842476245802835273443i + 3878472110821865480924821702529)x

+476628031810757734488740719290i + 2957584612454518004162519574871,
(3949908621907714361071815553277i + 630639323620735966636718321043)x
+901597642385324157925700976889i + 2429302320101537821240219151082

 ,

ϕB(P3) = ±


x2 + (4133157753622694250606077231439i + 2486410359530824865039464484854)x

+217800646374565182483064906626i + 1249364962732904444334902689884,
(1265490246594537172661646499003i + 2130834160349159007051974433128)x
+2580286680987425601000738010969i + 578046610192146114698466530758

 ,

ϕB(P4) = ±


x2 + (6601102003779684073844190837i + 87106350729631184785549140074)x
+2330339334251130536871893039627i + 1494511552650494479113393669713,
(1706314262702892774109446145989i + 3539074449728790590891503255545)x
+1950619453681381932329106130008i + 685170915670741858430774920061

 ,37 / 41

Genus 2 Implementation
Using ϕA, Alice computes the points ϕA(Q1), ϕA(Q2), ϕA(Q3), ϕA(Q4) and sends this to
Bob!

ϕA(Q1) =


x2 + (3464040394311932964693107348618i + 1234121484161567611101667399525)x

+17895775393232773855271038385i + 3856858968014591645005318326985,
(2432835950855765586938146638349i + 3267484715622822051923177214055)x
+985386137551789348760277138076i + 1179835886991851012234054275735

 ,

ϕA(Q2) =


x2 + (363382700960978261088696293501i + 3499548729039922528103431054749)x
+3832512523382547716418075195517i + 3364204966204284852762530333038,
(3043817101596607612186808885116i + 4027557567198565187096133171734)x
+4087176631917166066356886198518i + 1327157646340760346840638146328

 ,

ϕA(Q3) =


x2 + (3946684136660787881888285451015i + 1250236853749119184502604023717)x

+3358152613483376587872867674703i + 467252201151076389055524809476,
(1562920784368105245499132757775i + 987920823075946850233644600497)x
+1675005758282871337010798605079i + 1490924669195823363601763347629

 ,

ϕA(Q4) =


x2 + (1629408242557750155729330759772i + 3235283387810139201773539373655)x

+1341380669490368343450704316676i + 1454971022788254094961980229605,
(2393675986247524032663566872348i + 3412019204974086421616096641702)x
+1890349696856504234320283318545i + 841699061347215234631210012075

 .

and send

38 / 41

Genus 2 Implementation

Finally, Alice and Bob can both compute their common G2-invariants:

g1 = 1055018150197573853947249198625i + 2223713843055934677989300194259,

g2 = 819060580729572013508006537232i + 3874192400826551831686249391528,

g3 = 1658885975351604494486138482883i + 3931354413698538292465352257393.

39 / 41

References

Bruin, N., Flynn, E.V., Testa, D. (2014)

Descent via (3, 3)-isogeny on Jacobians of genus 2 curves.

Acta Arith. 165, no. 3, 201–223.

Cassels, J.W.S., Flynn, E.V. (1996)

Prolegomena to a middlebrow arithmetic of curves of genus 2.

London Mathematical Society Lecture Note Series, 230. Cambridge University Press, Cambridge.

Costello, C., Smith, B. (2020)

The supersingular isogeny problem in genus 2 and beyond.

Post-quantum cryptography, 151–168.

De Feo, L., Jao, D., Plût, J. (2014)

Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.

J. Math. Cryptol. 8, no. 3, 209–247.

40 / 41

References

Flynn, E.V., Ti, Y.B. (2019)

Genus two isogeny cryptography.

Lecture Notes in Comput. Sci., 11505.

Kunzweiler, S., Ti, Y.B., Weitkämper, C. (2022)

Secret keys in genus-2 SIDH.

Lecture Notes in Comput. Sci., 13203.

Milne, J.S. (1986)

Abelian varieties.

Arithmetic geometry, 103–150, Springer, New York.

Mumford, D. (1970)

Abelian varieties.

Tata Institute of Fundamental Research Studies in Mathematics, 5.

40 / 41

Thank you!

..and many thanks to Diana, Alexandros, Kenji, Maryam, Arshay, James, Katerina,
Muhammad, and Alvaro for their wonderful talks, and with special thanks to Diana

Mocanu for organising this study group!

41 / 41

