Isogeny-based Cryptography - Talk 0

Diana Mocanu

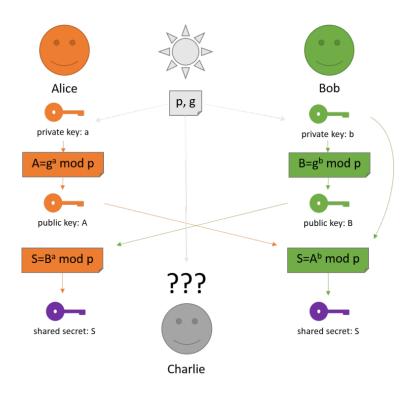
THE UNIVERSITY OF WARWICK

• Method of securely exchanging a cryptographic key over a public channel

- Method of securely exchanging a cryptographic key over a public channel
- Earliest practical examples of public key exchange (published in 1976 by Diffie and Hellman)

- Method of securely exchanging a cryptographic key over a public channel
- Earliest practical examples of public key exchange (published in 1976 by Diffie and Hellman)
- The key can then be used to encrypt subsequent communications using a symmetric-key cipher.

Finite Field Diffie-Hellman



In its most standard form, the **discrete logarithm problem** in a finite group G can be stated as follows: given $a \in G$ and $b \in \langle a \rangle$, find the least positive integer x such that $a^x = b$.

In its most standard form, the **discrete logarithm problem** in a finite group G can be stated as follows: given $a \in G$ and $b \in \langle a \rangle$, find the least positive integer x such that $a^x = b$.

Example

The discrete logarithm problem is easy when $G = (\mathbb{R}^*, \times)$ as it will reduce to finding $\log_a b$ which is a well known real function.

In its most standard form, the **discrete logarithm problem** in a finite group G can be stated as follows: given $a \in G$ and $b \in \langle a \rangle$, find the least positive integer x such that $a^x = b$.

Example

The discrete logarithm problem is easy when $G = (\mathbb{R}^*, \times)$ as it will reduce to finding $\log_a b$ which is a well known real function.

Example

In $G = \mathbb{F}_{17}$, the equation $3^x = 13$ has an infinite number of solutions, namely x = 4 + 16n.

Fact

If $G = E(\mathbb{F}_p)$, it turns out that the discrete logarithm problem is **very** hard \rightarrow Elliptic-Curve Diffie-Hellman (ECDH), a cryptosystem based on the hardness of this problem.

An elliptic curve over \mathbb{Q} consists of solutions (x, y) to an equation of the form:

$$E: Y^2 = X^3 + aX + b$$

where $a, b \in \mathbb{Q}$. Moreover, we require that the following quantity, (called the **discriminant**) is non-zero $\Delta = 4a^3 + 27b^2 \neq 0$. We think of the elliptic curve E as having a distinguished point called the **point at infinity** and denoted by ∞ .

Elliptic Curves over \mathbb{Q}^{d}

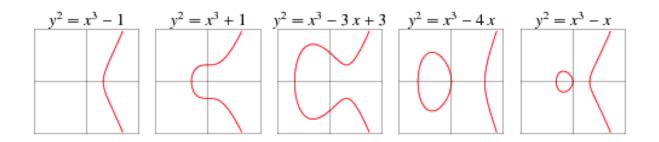


Figure 1: Elliptic curves for various values of a and b.

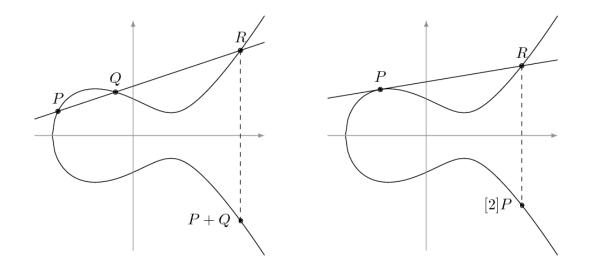


Figure 2: The Group law on an elliptic curve.

An elliptic curve over \mathbb{F}_q with characteristic $\neq 2, 3$ consists of solutions (x, y) to an equation of the form:

$$E: Y^2 = X^3 + aX + b$$

where $a, b \in \mathbb{F}_q$, with $\Delta = 4a^3 + 27b^2 \neq 0$.

We think of the elliptic curve E as having a distinguished point called the **point at infinity** and denoted by ∞ .

We define P = (x, y) to be an \mathbb{F}_q -rational point if P lies on E and $x, y \in \mathbb{F}_q$ and take $E(\mathbb{F}_q)$ to be the all of the \mathbb{F}_q -rational points, together with the point at infinity.

Elliptic curves over finite fields

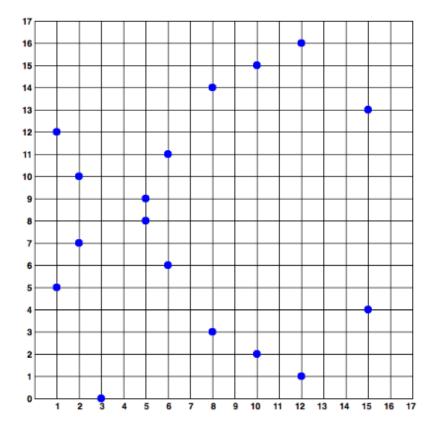


Figure 3: $E: Y^2 = X^3 + 7$ over \mathbb{F}_{17}

Diana Mocanu

Isogeny-based Cryptography - Talk 0

Theorem (Hasse bound)

Let E/\mathbb{F}_q . Then $\#E(\mathbf{F}_q) = q + 1 - t$ where $|t| \leq 2\sqrt{q}$.

Theorem (Hasse bound)

Let
$$E/\mathbb{F}_q$$
. Then $\#E(\mathbf{F}_q) = q + 1 - t$ where $|t| \leq 2\sqrt{q}$.

Definition

An elliptic curve E defined over a finite field \mathbb{F}_q of characteristic p is **supersingular** if and only if p divides t. The opposite of supersingular is **ordinary**.

Group Law over finite fields

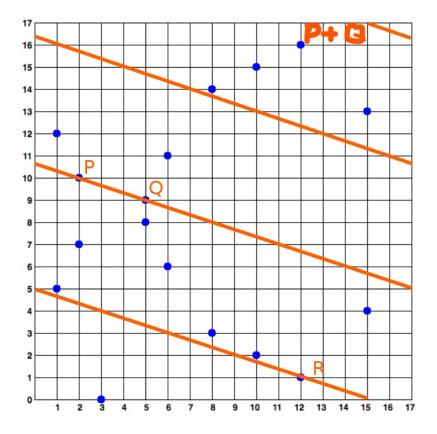
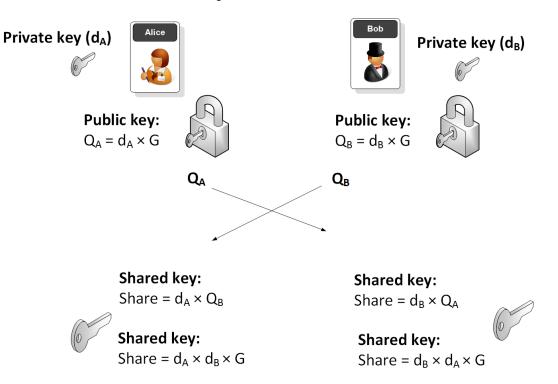


Figure 4: Here P = (2, 10), Q = (5, 9) and P + Q = (12, 16) and E as in Figure 12 Diana Mocanu

ECDH

Initialisation: $E: Y^2 = X^3 + AX + B$ over a fixed field \mathbb{F}_p , where p is a prime, a fixed point $G \in E(\mathbb{F}_p)$ and n the order of G.



• Post-quantum cryptography (PQC) = a set of classical cryptographic algorithms that are believed to be "quantum-safe," meaning that they are expected to remain safe even in the presence of quantum computers.

- Post-quantum cryptography (PQC) = a set of classical cryptographic algorithms that are believed to be "quantum-safe", meaning that they are expected to remain safe even in the presence of quantum computers.
- Examples: RSA, FFDH, ECDH \rightarrow not quantum-safe \rightarrow Schor's Algorithm

• 2006 (Couveignes and Rostovtsev–Stolbunov) - isogeny-based cryptography

- 2006 (Couveignes and Rostovtsev–Stolbunov) isogeny-based cryptography
- 2010 can be broken with a sub-exponential quantum attack due to Kuperberg

- 2006 (Couveignes and Rostovtsev–Stolbunov) isogeny-based cryptography
- 2010 can be broken with a sub-exponential quantum attack due to Kuperberg
- 2011 (Jao and De Feo) supersingular isogeny-based cryptography \rightarrow exponential quantum security

- 2006 (Couveignes and Rostovtsev–Stolbunov) isogeny-based cryptography
- 2010 can be broken with a sub-exponential quantum attack due to Kuperberg
- 2011 (Jao and De Feo) supersingular isogeny-based cryptography \rightarrow exponential quantum security
- SIDH= supersingular isogeny Diffie-Hellman

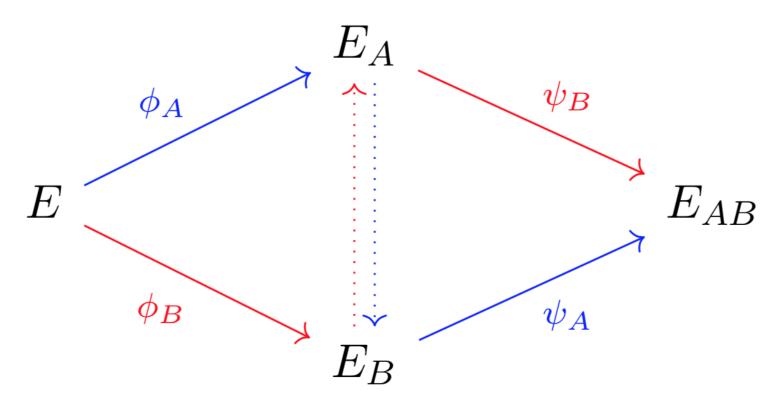
An **isogeny** φ between two elliptic curves E_1/\mathbb{F}_{p^n} and E_2/\mathbb{F}_{p^n} is a non-constant rational function that maps points from E_1 to points on E_2 and is compatible with the group law. For this talk, the **degree** of an isogeny is defined to be $|\text{Ker}(\varphi)|$. From now on, we only work with elliptic curves over finite fields.

Definition

An **isogeny** φ between two elliptic curves E_1/\mathbb{F}_{p^n} and E_2/\mathbb{F}_{p^n} is a non-constant rational function that maps points from E_1 to points on E_2 and is compatible with the group law. For this talk, the **degree** of an isogeny is defined to be $|\text{Ker}(\varphi)|$.

Example

Multiplication by l map denoted $[l]_E \colon E/\mathbb{F} \to E/\mathbb{F}$ is an isogeny of degree 1, l or l^2 if l is prime and coprime with char(\mathbb{F}).



Initialisations:

- E a supersingular elliptic curve over \mathbb{F}_{p^2} such that $E(\mathbb{F}_{p^2}) = (p+1)^2;$
- $p+1 = l^a_A l^b_B;$

Secret Data:

- Alice: the isogeny ϕ_A of degree l_A^a
- Bob: the isogeny ϕ_B of degree l_B^b

The graph of isogenies of prime degree $l \neq p$

Fix a finite field \mathbb{F} and a prime $l \neq \operatorname{char}(\mathbb{F})$. We look at the graph with **vertices** isomorphism classes of elliptic curves and **edges** isogenies of degree l between them, up to isomorphism.

The graph of isogenies of prime degree $l \neq p$

Fix a finite field \mathbb{F} and a prime $l \neq \operatorname{char}(\mathbb{F})$. We look at the graph with **vertices** isomorphism classes of elliptic curves and **edges** isogenies of degree l between them, up to isomorphism.

In our case: Supersingular case (algebraic closure) The graph is l + 1 regular. There is a unique (finite) connected component made of all supersingular curves with the same number of points.

The SIDH System

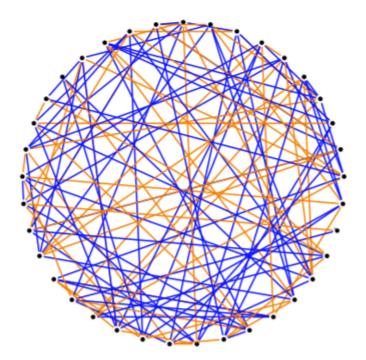


Figure 5: Vertices: Supersingular elliptic curves \mathbb{F}_{419^2} , edges are 2 and 3 isogenies.

Security:

• For SIDH an attacker is confronted with the problem of finding E_{AB} knowing E_A , E_B and some torsion information.

Security:

- For SIDH an attacker is confronted with the problem of finding E_{AB} knowing E_A , E_B and some torsion information.
- This is equivalent to finding one of the specific isogenies ϕ_A or ϕ_B by knowing their value at some torsion points. The isogeny finding problem is up to date believed to be quantum-hard.

Security:

- For SIDH an attacker is confronted with the problem of finding E_{AB} knowing E_A , E_B and some torsion information.
- This is equivalent to finding one of the specific isogenies ϕ_A or ϕ_B by knowing their value at some torsion points. The isogeny finding problem is up to date believed to be quantum-hard.
- The additional points have raised some concern but no attack has managed to break the security of SIDH yet → we are going to study torsion-points attacks as given in Christophe Petit's paper.

• D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On the quaternion *l-isogeny path problem*

- D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On the quaternion *l-isogeny path problem*
- KLPT algorithm is a probabilistic algorithm to solve a quaternion ideal analog of the path problem in supersingular *l*-isogeny graphs.

- D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On the quaternion *l-isogeny path problem*
- KLPT algorithm is a probabilistic algorithm to solve a quaternion ideal analog of the path problem in supersingular *l*-isogeny graphs.
- The Deuring correspondence gives a bijection between supersingular isomorphism classes of elliptic curves and maximal orders in quaternion algebras.

- D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On the quaternion *l-isogeny path problem*
- KLPT algorithm is a probabilistic algorithm to solve a quaternion ideal analog of the path problem in supersingular *l*-isogeny graphs.
- The Deuring correspondence gives a bijection between supersingular isomorphism classes of elliptic curves and maximal orders in quaternion algebras.
- KLPT gives a polynomial-time algorithm to solve the equivalent problem (under Deuring correspondence) of finding an isogeny between two elliptic curves.

Supersingular <i>j</i> -invariants over \mathbb{F}_{p^2}	Maximal orders in $\mathcal{B}_{p,\infty}$
j(E) (up to galois conjugacy)	$\mathcal{O} \cong \operatorname{End}(E)$ (up to isomorphia)
(E_1, φ) with $\varphi: E \to E_1$	I_{φ} integral left \mathcal{O} -ideal and right \mathcal{O}_1 -ideal
$\theta \in \operatorname{End}(E_0)$	Principal ideal $\mathcal{O}\theta$
$\deg(\varphi)$	$n(I_{arphi})$
$\hat{\varphi}$	$\overline{I_{arphi}}$
$\varphi: E \to E_1, \psi: E \to E_1$	Equivalent Ideals $I_{\varphi} \sim I_{\psi}$
Supersingular <i>j</i> -invariants over \mathbb{F}_{p^2}	$\operatorname{Cl}(\mathcal{O})$
$\tau \circ \rho : E \to E_1 \to E_2$	$I_{\tau \circ \rho} = I_{\rho} \cdot I_{\tau}$
	1

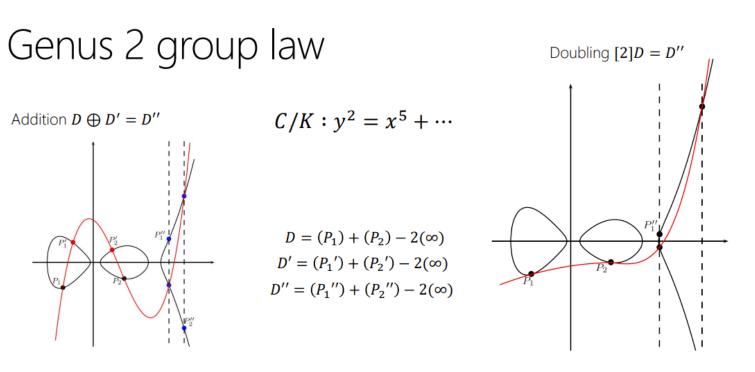
 Table 1. The Deuring correspondence, a summary.

• A **digital signature** is a mathematical scheme for verifying the authenticity of digital messages or documents.

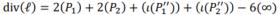
- A **digital signature** is a mathematical scheme for verifying the authenticity of digital messages or documents.
- Many signature algorithms are based on sigma protocols. A sigma protocol is a type of proof of knowledge protocol between a prover \mathcal{P} and a verifier \mathcal{V} , where the prover wants to convince the verifier that for some statement x, he knows a witness w, such that $(x, w) \in \mathcal{R}$, for some relation \mathcal{R} .

- A **digital signature** is a mathematical scheme for verifying the authenticity of digital messages or documents.
- Many signature algorithms are based on **sigma protocols**. A sigma protocol is a type of proof of knowledge protocol between a prover \mathcal{P} and a verifier \mathcal{V} , where the prover wants to convince the verifier that for some statement x, he knows a witness w, such that $(x, w) \in \mathcal{R}$, for some relation \mathcal{R} .
- Challenge: Design a SIDH-based sigma protocol for proving knowledge of the secret key.

Genus 2 (hyperelliptic) cryptography



 $\operatorname{div}(\ell) = (P_1) + (P_2) + (P_1') + (P_2') + (\iota(P_1'')) + (\iota(P_2'')) - 6(\infty)$



• It is possible to define DH with respect to the group law described above.

- It is possible to define DH with respect to the group law described above.
- It is possible to define an analogue for genus 2 isogeny-based cryptography \rightarrow Last talk

- It is possible to define DH with respect to the group law described above.
- It is possible to define an analogue for genus 2 isogeny-based cryptography \rightarrow Last talk
- Why stop at genus 2?

We will follow the isogeny-based cryptography school organized in 2020 by Christophe Petite and Chloe Martindale. Most of the materials can be found on the school's website: https://isogenyschool2020.co.uk/.

- Talk 1: Elliptic Curves over finite fields
- Talk 2: CSIDH & SIDH
- Talk 3: Class Groups
- Talk 4: Quaternion Algebras
- Talk 5: KLPT D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On
- the quaternion l-isogeny path problem
- Talk 6: Torsion Point Attacks on SIDH C. Petite Faster Algorithms
- for Isogeny Problems using Torsion Point Images
- Talk 7: Signature schemes
- Talk 8: Hyperelliptic curves and Jacobian varieties
- **Talk 9**: Hyperelliptic isogeny-based cryptography E.V. Flynn and Yan Bo Ti *Genus Two Isogeny Cryptography*

