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Equation 1

I. QUESTION 311, by Mr. John Hynes, Dublin.
To divide a given square number n2, into two such parts that the sum of their squares
and the sum of their cubes may both be rational squares.

Solution published under the pseudonym ”a Lady”.
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Mary Somerville’s Solution

Somerville begins her solution by denoting the first part by x. Hence, in her notation, the
problem asks to find such x, n that make{

x2 + (n2 − x)2 = square

x3 + (n2 − x)3 = square

Expanding she gets that x2 + (n2 − x)2 = n4 − 2n2x+ 2x2 and
x3 + (n2 − x)3 = n2(n4 − 3n2x+3x2) must be squares and notices that the later reduces
to n4 − 3n2x+ 3x2 being a square.
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Mary Somerville’s Solution

Consequently, she assumes that{
−3n2 + 3x = −2n2px+ p2x2

−2n2 + 2x = −2n2q + q2x
(1)

which will give n4 − 2n2x+ 2x2 = (n2 − qx)2 and n4 − 3n2x+ 3x2 = (n2 − px)2.

Then she solves both equations in (1) for x and equalizes them, and hence getting

3n2 − 2n2p

3− p2
=

2n2 − 2n2q

2− q2
.

Here, she makes the strict assumptions that 3− 2p = 2− 2q and 3− p2 = 2− q2, which
gives her q = 3

4 and p = 5
4 . Finally, these values give the desired values x = 8n2

23 and

n2 − x = 15n2

23 .

7 / 73



Mary Somerville’s Solution

Consequently, she assumes that{
−3n2 + 3x = −2n2px+ p2x2

−2n2 + 2x = −2n2q + q2x
(1)

which will give n4 − 2n2x+ 2x2 = (n2 − qx)2 and n4 − 3n2x+ 3x2 = (n2 − px)2.
Then she solves both equations in (1) for x and equalizes them, and hence getting

3n2 − 2n2p

3− p2
=

2n2 − 2n2q

2− q2
.

Here, she makes the strict assumptions that 3− 2p = 2− 2q and 3− p2 = 2− q2, which
gives her q = 3

4 and p = 5
4 . Finally, these values give the desired values x = 8n2

23 and

n2 − x = 15n2

23 .

8 / 73



Mary Somerville’s Solution

Consequently, she assumes that{
−3n2 + 3x = −2n2px+ p2x2

−2n2 + 2x = −2n2q + q2x
(1)

which will give n4 − 2n2x+ 2x2 = (n2 − qx)2 and n4 − 3n2x+ 3x2 = (n2 − px)2.
Then she solves both equations in (1) for x and equalizes them, and hence getting

3n2 − 2n2p

3− p2
=

2n2 − 2n2q

2− q2
.

Here, she makes the strict assumptions that 3− 2p = 2− 2q and 3− p2 = 2− q2, which
gives her q = 3

4 and p = 5
4 . Finally, these values give the desired values x = 8n2

23 and

n2 − x = 15n2

23 .

9 / 73



Equation 2

XX. PRIZE QUESTION 310, by Mr. W. Wallace.
Find such integer values of x, y, z as shall render the three expressions x2 + axy + y2,
x2 + a′xz + z2, y2 + a′′yz + z2 squares, a, a′, a′′ being given numbers.
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Mary’s solution

She starts her solution by assuming that x, y and z are parameterized by two new
variables m,n in the following way:

x = an2 + 2mn,

y = m2 − n2,

z = a′′n2 + 2mn.

(2)

These make the first and third expression into a square as Somerville writes:{
x2 + axy + y2 = (m2 + amn+ n2)2,

y2 + a′′yz + z2 = (m2 + a′′mn+ n2)2.
(3)
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Mary’s Solution

Next, in order to make the middle expression into a square, Somerville reparameterizes
an+ 2m = p2 − q2, a′′n+ 2m = a′q2 + 2pq in order to get

x2 + a′xz + z2 = n2(p2 + a′pq + q2)2.

The rest of her solution consists in writing m,n in terms of the parameters p, q which
after several simplifications leads to the following formulae:
Recall x = an2 + 2mn {

m = a′′p2 − 2apq − (a′a+ a′′)q2,

n = 2(a′ + 1)q2 + 4pq − 2p2.
(4)
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Diophantine Equations

= polynomial equation in two or more unknowns with integer coefficients, such that the
only solutions of interest are the integer ones.

Examples

Linear Diophantine equation
ax+ by = c

Pell’s equations
x2 − ny2 = ±1

Elliptic Curves
y2 = x3 + ax+ b

Generalized Fermat Equation
xn + ym = zr

13 / 73



Diophantine Equations

= polynomial equation in two or more unknowns with integer coefficients, such that the
only solutions of interest are the integer ones.

Examples

Linear Diophantine equation
ax+ by = c

Pell’s equations
x2 − ny2 = ±1

Elliptic Curves
y2 = x3 + ax+ b

Generalized Fermat Equation
xn + ym = zr

14 / 73



Algebraic Varieties
Let k be an algebraically closed field.

Affine n-space An := kn (vector space)

R := k[x1, ..., xn] polynomial ring over k in n variables. Let fi ∈ R for i ∈ {1, ..., n}.
Algebraic (affine) variety over k
V (f1, f2, ..., fn) := {a ∈ An|fi(a) = 0, for i ∈ {1, ..., n}}.

Examples

V (0) = kn

V (1) = ∅
V (x− a1, x− a2, ..., x− an) = {(a1, ...., an)}.
n = 2, V (xy) = the two axis V (x2 + y2 − 1) = unit circle , V (y2 − x3 − x− 1) =
elliptic curve

n = 3, V (a1x1 + ...+ a3x3) = hyperplane, V (x2 + y2 − z2) = cone .
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Dimensions

A variety X := V (f1, f2, ..., fn) is reducible if X = X1 ∪X2 and irreducible
otherwise.

FACT: irreducible ⇔ the vanishing ideal I(X) := {f ∈ R : f(x) = 0, ∀x ∈ X} is a
prime ideal.

Chain of length m is a chain of strict inclusions: ∅ ≠ X0 ⊊ X1... ⊊ Xm

The local dimension dimpX of X at a point p ∈ X is the maximum over all lengths
of chains starting with X0 = {p}. The dimension of X is

dimX := max
p∈X

dimpX.
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Dimensions

Examples

V (0) = kn

V (1) = ∅
V (x− a1, x− a2, ..., x− an) = {(a1, ...., an)}.
n = 2, V (xy) = the two cartesian axes , V (x2 + y2 − 1) =
unit circle , V (y2 − x3 − x− 1) = elliptic curve

n = 3, V (a1x1 + ...+ a3x3) = hyperplane, V (x2 + y2 − z2) = cone .
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Singularities

A tangent space to an affine variety X at a point p:
TpX := ∪(lines tangent to Xat p)

A point p ∈ X is a smooth point if dimkTpX = dimpX. A point p ∈ X is a
singular point if dimkTpX > dimpX.
FACT: Sing(X) := {all singular points} ⊂ X is a subvariety when X is irreducible.

Theorem

Let X ⊂ An be an irreducible aff. var. of dimension d with I(X) =< f1, f2, ..., fn >.
Then Sing(X) ⊂ X is a subvariety given by the vanishing in X of all (n− d)× (n− d)
minors of the Jacobian matrix

Jac =

(
∂fi
∂xj

)
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Singularities
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Maps

F : An → Am is a morphism (or polynomial map) if it is defined by polynomials:
F (a) = (f1(a), ..., fm(a)) for some f1, ..., fm ∈ R := k[x1, ..., xn].

F : X → Y is a morphism of affine varieties if it is the restriction of a morphism
An → Am (here X ⊂ An and Y ⊂ Am).
F (a) = (f1(a), ..., fm(a)) for some f1, ..., fm ∈ k[X] := R/I(X).

isomorphism = morphism which has an inverse which is a morphism
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Projective Space

Zariski topology on An: declare the basic open sets to be for any f ∈ R:

D(f) = An \ V (f) := {a ∈ kn : f(a) ̸= 0}

=⇒ induces a topology on an algebraic variety X ⊂ An

PROBLEM: not compact

SOLUTION: “compactifying” An by hyperplanes, planes, and points at infinity

The projective space is Pn
k :=(space of straight lines in k(n+1) through 0)

affine variety
homogenization
=========⇒ projective variety

Birational map between two (affine/projective) varieties is “an isomorphism
between open dense subsets”
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Resolution of Singularities

Let k be an algebraically closed field.

The problem of resolution of singularities asks whether every algebraic variety X
has a resolution, a non-singular variety Y with a proper birational map Y → X.

Hironaka (1964): proved it for varieties over k, of characteristic 0

Open for characteristic p and dimension > 4.

TODAY: characteristic 0: dimension 1 (curves), dimension 2 (surfaces).
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Dimension 1: Curves

Let k be an algebraically closed field.

Let C be a variety of dimension 1, then we call C an algebraic curve.

Every algebraic curve has a unique nonsingular projective resolution.

The genus of a smooth complete algebraic curve C is a numerical invariant under
birational maps. If k = C, then an algebraic curve C is the same as a Riemann
surface. In this case, the smooth complex curve X of genus g is homeomorphic to
the sphere with g handles.
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Examples
Let k be an algebraically closed field.

genus 0 : P1, ”rational curves” .
Every smooth conic over k is birational to P1.

genus 1: elliptic curves
Every smooth curve of genus 1 is birationally isomorphic to smooth cubic curves in
P2. In characteristic 0 they have an affine model:

E/k : y2 = x3 +Ax+B with ∆ = 4A3 + 27B2 ̸= 0

genus ≥ 2: Every smooth curve of genus ≥ 2 is birationally isomorphic to
hyper-elliptic curves and non-hyper-elliptic curves.
Example: hyperelliptic curves:

C/k : y2 = f(x), deg(f) ≥ 5
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Dimension 2: Surfaces

Let k be an algebraically closed field.

Let S be a variety of dimension 2, then we call S an algebraic surface.

Surfaces have many different nonsingular projective resolutions (unlike the case of
curves). However, a surface still has a unique minimal resolution.

κ is the Kodaira dimension, an arithmetic invariant which classifies algebraic
surfaces.
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Examples

κ = −∞: rational surfaces, ruled surface
Any rational surface is birational to P2. A ruled surface: every point lies on a line.

κ = 0: abelian surfaces, hyperelliptic surface, K3 surface, Enriques surface
For example the K3 surface given by x4 + y4 + z4 + w4 = 0:

κ = 1: elliptic surface
For example, E × C where E is an elliptic curve and C is any curve.

κ = 2: surface of general type
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Diophantine Equation 1

I. QUESTION 311, by Mr. John Hynes, Dublin.
To divide a given square number n2, into two such parts that the sum of their squares
and the sum of their cubes may both be rational squares.

Somerville rewrites the problem such that one needs to find such x, n that make
x2 + (n2 − x)2 and x3 + (n2 − x)3 into squares. Expanding she gets that
x2 + (n2 − x)2 = n4 − 2n2x+ 2x2 and x3 + (n2 − x)3 = n2(n4 − 3n2x+ 3x2) must be
squares and notices that the later reduces to n4 − 3n2x+ 3x2 being a square.

We denote by y = n2.
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Diophantine Equation 1

We can rewrite the problem as finding the common zeros of the following two
equations: {

y2 − 2yx+ 2x2 = w2

y2 − 3yx+ 3x2 = w′2.

(5)

Let’s denote by C the vanishing set of these two equations in P3 of coordinates
[x : y : w : w′]. We note that Somerville’s solution corresponds to the point
S = [8 : 23 : 17 : 13].
Let’s examine C(Q) which are the points in P3 with rational coordinates.

Dimension of C is 1 and genus of C is 1 and has an obvious rational point
[0 : 1 : 1 : 1] =⇒ C is birational to an elliptic curve.
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Diophantine Equation 1: An Elliptic Curve

Since C is birational to an elliptic curve, it has an model which can be computed to
be:

E : y2 = x3 + 8x2 + 12x

where [0 : 1 : 1 : 1] is the point at infinity.

Somerville’s point S = [8 : 23 : 17 : 13] corresponds to the affine point
SE = (48, 360) on E.

Hence, a modern algebraic geometer would say that Mary Somerville constructed a point
on an elliptic curve.
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Other rational points?

Recall that elliptic curves come with a group law.

Theorem (Mordell-Weil)

Let E/Q be an elliptic curve. Then,

E(Q) ∼= Tors+ Zr,

where r is called the rank of E.
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Other rational points?

In our case, E : y2 = x3 + 8x2 + 12x and

E(Q) ∼= Z/2Z⊕ Z/2Z⊕ Z

with generators S1 = (−6, 0), S2 = (−2, 0), S3 = (6,−24).

They correspond to the points S1 = [1 : 1 : 1 : −1], S2 = [1 : 1 : −1 : 1],
S3 = [1 : 1 : −1 : −1] on the initial curve C, which all lead to the rather
uninteresting pair of solutions. Somerville’s point turns out to be
S = S3 + S3 = [2]S3, which has infinite order.

In conclusion, Somerville’s point gives rise to infinitely many solutions. For example,

S + S = (36481/3600, 9620479/216000)

which gives rise to the solution: [10130640, 18240049, 12976609, 9286489].
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Diophantine equation 2
A present-day mathematician would rewrite the statement in the following way. Find such
integer values of x, y, z such that:

x2 + axy + y2 = w2

x2 + a′xz + z2 = w′2

y2 + a′′yz + z2 = w′′2.

(6)

As the above equations are homogeneous, a natural way to view their common solutions
is as a projective variety in P5. More concretely, consider the following homogeneous
polynomials of degree 2:

f1(x, y, z, w,w
′, w′′) = x2 + axy + y2 − w2

f2(x, y, z, w,w
′, w′′) = x2 + a′xz + z2 − w′2

f3(x, y, z, w,w
′, w′′) = y2 + a′′yz + z2 − w′′2.

(7)
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Diophantine equation 2

Define the projective variety:

Sa,a′,a′′ := {p = [x : y : z : w : w′ : w′′] ∈ P5 : f1(p) = 0, f2(p) = 0, f3(p) = 0}.

We can show that Sa,a′,a′′ has dimension 2 so it is a surface.

If a /∈ {±2}, a′ /∈ {±2} and a′′ /∈ {±2}, then the singularities of Sa,a′,a′′ consist in
12 isolated singularities, and Sa,a′,a′′ is irreducible. These singularities are double
points (”not too bad”).

The resolution of singularities theorem tells us that Sa,a′,a′′ has a minimal resolution
belonging to the classification of surfaces.Which one?
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Diophantine equation 2: a K3 surface

Theorem

Let k be a field of characteristic 0. Assume that X is a surface over k of one of the
following three types:

1. a quartic surface in P3
k,

2. an intersection of a cubic and a quadric hypersurface in P4
k,

3. an intersection of three quadrics in P5
k.

Furthermore, assume that all singularities of X are rational double points. Then the
minimal regular model of X is a K3-surface.
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Back to Somerville’s Solution

We will work in the general case (i.e. when a /∈ {±2}, a′ /∈ {±2} and a′′ /∈ {±2})
and moreover we assume that a, a′ and a′′ are all distinct. In the language of
Algebraic Geometry, Somerville’s solution proposes a birational map

F : P1 99K Sa,a′,a′′

defined over Q, given as a composition of a couple of explicit rational maps. More
precisely, F = f ◦ g, where f is given by (2) and g is given by (4).

Hence, Somerville’s solution Im(F ) ⊂ Sa,a′,a′′ is birational to P1 and it can be
shown that it misses the singularities.

Hence, in modern language, Somerville constructs a rational curve on a K3 surface.
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Thank you!

73 / 73


	Introduction

