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Abstract

Let K be a totally real number field and consider a Fermat-type
equation al + bm = cn over K. We call the triple of exponents (l,m, n)
the signature of the equation.
In this project we start with Işik, Kara and Ozman’s work in [21]
which gives a computable criteria of testing if the asymptotic Fer-
mat Last Theorem holds for certain type of solutions of the equations
with signatures (p, p, 2). We first generalize this result by relaxing
the assumption on the class number. Then, we use the same method
involving modularity, lever lowering and image of inertia comparison
to study the (p, p, 3) equation. This approach was first developed by
Freitas and Siksek in [29] and relies on a partial result towards the
modularity conjecture for elliptic curves over totally real fields proved
in [12].
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1 Introduction

1.1 Historical background

The study of Diophantine equations is of great interest in Mathematics and
goes back to antiquity. The most famous example of a Diophantine equation
appears in Fermat’s Last Theorem. This is the statement, asserted by Fer-
mat in 1637 without proof, that the Diophantine equation an + bn = cn has
no solutions in whole numbers when n is at least 3, other than the trivial
solutions which arise when abc = 0. Andrew Wiles famously proved the
Fermat’s Last Theorem in 1995 in his paper "Modular elliptic curves and
Fermat’s Last Theorem" [38]. The proof is by contradiction employing tech-
niques from algebraic geometry and number theory to prove a special case
of the modularity theorem for elliptic curves, which together with Ribet’s
lever lowereing theorem gives the long-waited result. Since then, number
theorists extensively studied Diophantine equations using Wiles’ modularity
approach. Siksek gives a comprehensive survey about this method over the
field of rationals in [29].
Even before Wiles announced his proof, various generalizations of Fermat’s
Last Theorem had already been considered, which is of the shape

Aap +Bbq = Ccr (1)

for fixed integers A,B and C. We call (p, q, r) the signature of the equation
(1). A primitive solution (a, b, c) is a solution where a, b and c are pairwise
coprime and a non-trivial solution (a, b, c) is a solution where abc 6= 0.
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In [21], Işik, Kara and Ozman list all known cases where equation (1) has
been solved in integers in two tables (pg. 4). Table 1 contains all uncondi-
tional results for infinitely many primes. In Table 2, they give all conditional
results.
We highlight here one relevant family of solutions, namely (p, p, k) where p
is a rational prime and k ∈ {2, 3}. Darmon and Merel [8] and Poonen [23]
proved the following theorem:

Theorem 1.1. (i) The equation an+bn = c2 has no non-trivial primitive
integer solutions for n ≥ 4.

(ii) The equation an+bn = c3 has no non-trivial primitive integer solutions
for n ≥ 3.

Note that the above equations, typically have infinitely many non-primitive
solutions. For example, if n is odd, and a and b are any two integers with
an + bn = c, then

(ac)n + (bc)n = (c
n+1
2 )2

giving a rather uninteresting supply of solutions. Thus, we would only study
the primitive solutions of the above equations.
A naive sketch of the proof of Theorem 1.1 is as follows. First note that it is
enough to prove the assumption for n = p an odd prime. Suppose a, b, c ∈ Z
is a non-trivial, primitive solution to (i) or (ii). In each of the cases, we can
associate a so-called Frey elliptic curve Ea,b,c/Q and let ρE,p be its mod p
Galois representation, where E = Ea,b,c. Then ρE,p is irreducible by Mazur
[22] and modular by Wiles and Taylor [38] and [33]. Applying Ribet’s lever
lowering theorem [25] shows that ρE,p arises from a weight 2 newform of
level 32 for (i) and level 27 for (ii). These are closely related to the modular
curves X0(32) and X0(27) which turn out to be elliptic curves with com-
plex multiplication. Darmon and Merel prove in [8], by using the theory of
complex multiplication that this implies jE ∈ Z[1

p ] for p > 7, which gives a
contradiction. The cases when p ≤ 7 are treated in a more elementary way
by Poonen [23].
Recently, important progress has been done towards generalisation of the
modularity approach over larger fields. In [14] Freitas and Siksek proved the
asymptotic Fermat’s Last Theorem (FLT) for certain totally real fields K .
That is, they showed that there is a constant BK such that for any prime
p > BK , the only solutions to the Fermat equation ap + bp + cp = 0 where
a, b, c ∈ OK are the trivial ones i.e. the ones satisfying abc = 0. Then, De-
coninck [9] extended the results of Freitas and Siksek [14] to the generalized
Fermat equation of the form Aap + Bbp + Ccp = 0 where A,B,C are odd
integers belonging to a totally real field. Later in [28] Şengün and Siksek
proved the asymptotic FLT for any number field K by assuming modularity.
This result has been generalized by Kara and Ozman in [18] to the case of
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generalized Fermat equation. Also, recently in [34] and [35] T, urcas, studied
Fermat equation over imaginary quadratic field Q(

√
−d) with class number

one.
Finally, we present a result by Işik, Kara and Ozman, proved in [21] which
serves as the starting point of this project.
It gives a computable criteria of testing if the asymptotic Fermat Last The-
orem holds for certain type of solutions of the equations with signatures
(p, p, 2).
To state it, we need the following notation:

SK := {P : P is a prime of K above 2}, TK := {P ∈ SK : f(P/2) = 1}

WK := {(a, b, c) ∈ O3
K : ap + bp = c2 with P|b for every P ∈ TK}

Note 1.2. When (a, b, c) are primitive (pairwise coprime), P|b implies P - a
and P - c.

Theorem 1.3. Let K be a totally real number field with narrow class number
h+
K = 1. For each a ∈ K(SK , 2), let L = K(

√
a).

(A):Suppose that for every solution (λ, µ) to the SK-unit equation:

λ+ µ = 1, λ, µ ∈ O∗SK

there is some P ∈ TK that satisfies max{|vP(λ)|, |vP(µ)|}≤ 4vP(2).
(B):Suppose also that for each L, for every solution (λ, µ) of the SL-unit
equation λ + µ = 1, λ, µ ∈ O∗SL

, there is some P′ ∈ TL that satisfies
max{|vP′(λ)|, |vP′(µ)|}≤ 4vP′(2).
Then, there is a BK - depending only on K- such that for each p > BK , the
equation ap + bp = c2 has no primitive, non-trivial solutions with (a, b, c) ∈
WK (i.e. the asymptotic Fermat holds for WK).

Remark 1.4. Inspired by this result:

• we would like to find a more general assumption on the class group
Cl(K) of K for which this result holds. It turns out that requiring
ClSK

(K)[2] to be trivial is enough.

• we will rephrase the theorem without imposing separate constraints on
the extensions L/K.

However, these will come at an expense of solving an equation of the form:

α+ β = γ2, α, β ∈ O∗SK
, γ ∈ OSK

By Theorem 5.3 (i) this has a finite number of solutions with gcd(α, β)
square-free. In practice we compute these solutions by solving the S-unit
equation X + Y = 1 over finitely many field extensions of K of degree at
most 2 (see Theorem 5.3 (i)).
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1.2 Our results

Our main theorem regarding the Asymptotic Fermat Last Theorem for sig-
nature (p, p, 2) reads as follows:

Theorem 1.5 (Main Theorem for (p, p, 2)). Let K be a totally real number
field and SK := {P : P is a prime of K above 2}. Suppose ClSK

(K)[2] = 1.
Moreover, define UK,P := {(a, b, c) ∈ O3

K : ap+bp = c2 with P|b}, where P ∈
SK is a fixed prime.
Suppose that there exists some distinguished prime P̃ ∈ SK , such that for
every solution (α, β) to the SK-unit equation:

α+ β = γ2, α, β ∈ O∗SK
, γ ∈ OSK

it satisfies |vP̃(αβ )| ≤ 6vP̃(2).
Then, there is a BK - depending only on K- such that for each rational prime
p > BK , the equation ap + bp = c2 has no non-trivial , primitive solutions
with (a, b, c) ∈ UK,P̃ (i.e. the asymptotic Fermat holds for UK,P̃).

Notation 1.6. Note that by Proposition 2.2 we allow ourselves to use
ClS(K) to mean Cl(K)/〈[P]〉P∈S for S a finite set of primes of K and
consequently, ClS(K)[n] denotes its n-torsion points.

We use the same method involving modularity, lever lowering and image
of inertia comparison to study the analogue asymptotic behaviour of the
(p, p, 3) equation and we get the following:

Theorem 1.7 (Main Theorem for (p, p, 3)). Let K be a totally real number
field and SK := {P : P is a prime of K above 3}. Suppose ClSK

(K)[3] = 1.
Moreover, define UK,P := {(a, b, c) ∈ O3

K : ap+bp = c3 with P|b}, where P ∈
SK is a fixed prime.
Suppose that there exists some distinguished prime P̃ ∈ SK such that for
every solution (α, β) to the SK-unit equation:

α+ β = γ3, α, β ∈ O∗SK
, γ ∈ OSK

it satisfies |vP̃(αβ )| ≤ 3vP̃(3).
Then, there is a BK - depending only on K- such that for each rational prime
p > BK , the equation ap + bp = c3 has no non-trivial, primitive solutions
with (a, b, c) ∈ UK,P̃ (i.e. the asymptotic Fermat holds for UK,P̃).

Remark 1.8. By Theorem 5.3 (ii) the S-unit equation α + β = γ3 has a
finite number of solutions with gcd(α, β) cube-free. In practice we compute
these solutions by solving the S-unit equation X +Y = 1 over finitely many
field extensions of K of degree at most 3 (see Theorem 5.3 (ii)).
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We now answer the natural question of how these proofs differ from the
proof of Theorem 1.1. The strategy is very similar, and requires a partial
result towards the modularity conjecture for elliptic curves over totally real
fields proved in [12] by Freitas, Hung and Siksek (discussed in Section 2.6).
More precisely, the proof goes as follows. In each of the above main theorems,
we assume the existence of a non-trivial, primitive solution (a, b, c). As in the
rational case, we can assign a Frey elliptic curve E and prove that ρE,p, its
mod p Galois representation, is irreducible (Section 2.4). Then, we can use a
result analogue to Ribet level lowering theorem to get a Hilbert eigenform f of
parallel weight 2 of lower level than the conductor of E. Here the modularity
result in Section 2.3 gives an elliptic curve E′ which has the same mod p
Galois representation ρE′,p ∼ ρE,p.
We cannot use complex multiplication to get a contradiction as in the rational
case. However, inspired by [14] and [21], we study the image of inertia
subgroups Iq (for certain primes q) under ρE,p and hence we get information
about the action of Iq on E′[p]. We use this to conclude that E′ has good
reduction outside even primes in Theorem 1.5 and outside primes dividing
3 in Theorem 1.7. To get a contradiction, we parametrize all of the possible
elliptic curves E′ by S-unit equations involving α, β and then make use of
the action of IP̃ to get information about vp̃(αβ ). These valuations will lead
to the contradictions which conclude the proofs.

1.3 Notational conventions

We will follow the notational conventions established by Siksek and Freitas
in [14]. Throughout p denotes a rational prime, and K a totally real number
field, with ring of integers OK . For a non-zero ideal I of OK , we denote by
[I] the class of I in the class group Cl(K).
Let GK = Gal(K̄/K). For an elliptic curve E/K, we write

ρE,p : GK → Aut(E[p]) ' GL2(Fp)

for the representation of GK on the p-torsion of E. For a Hilbert eigenform
f over K, we let Qf denote the field generated by its eigenvalues. In this
situation ω will denote a prime of Qf above p; of course if Qf = Q we write p
instead of ω. All other primes we consider are primes of K. We reserve the
symbol P for primes belonging to S. An arbitrary prime of K is denoted by
q, and Gq and Iq are the decomposition and inertia subgroups of GK at q.

2 Preliminaries

2.1 S-properties

In this section fix K a number field and let S be a finite set of prime ideals
of K. As usual, Cl(K) is the class group of K.
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We define the ring of S-integers and the group of S-units of K to be:

OK,S = {x ∈ K : vq(x) ≥ 0,∀ q /∈ S}

O∗K,S = {x ∈ K : vq(x) = 0,∀ q /∈ S}

If the field K is understood from the context we just use OS ,O∗S respectively.
We observe that O∗K,S is the group of units of OK,S . One can show that
OK,S is a Dedekind domain and O∗K,S is finitely generated abelian group.
The generators of O∗K,S can be chosen to be algebraic integers and O∗K,S
decomposes as:

O∗K,S = O∗K ⊕
#S⊕
i=1

Zγi (2)

with γi /∈ O∗K .

Remark 2.1. Identity (2) together with Dirichlet’s Unit Theorem (see [6] for
an insightful survey of this) give an explicit way to compute the generators
of O∗K,S . Moreover, this is implemented in various mathematics softwares
(e.g. Sage).

We say that an ideal I of K is S-integral if vq(I) ≥ 0 for all q /∈ S and
that is an S-ideal if vq(I) = 0 for all q /∈ S. We define the S-class group
ClS(K) to be the class group of OK,S .

Proposition 2.2. There is a canonical isomorphism:

ClS(K) ' Cl(K)/〈[P]〉P∈S

where 〈[P]〉P∈S is the subgroup of Cl(K) generated by the images of P in
Cl(K).

Proof. See [4], Proposition 7.4.4.

For a positive natural integer n we denote the n-Selmer group of K and
S to be

K(S, n) = {x ∈ K∗/(K∗)n : vP(x) ≡ 0 mod n,∀P /∈ S}

The n-Kummer exact sequnce of O∗K,S holds:

1 O∗K,S/(O∗K,S)n K(S, n) CLS(K)[n] 1
an (3)

where CLS(K)[n] is the n-torsion subgroup of CLS(K) and the map an : K(S, n)→
CLS(K)[n] is given by x→ [IS ] such that (x)OK,S = InS .
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2.2 Elliptic Curves

We begin by collecting some useful results about elliptic curves, as they play
a key role in the modular approach of solving Diophantine equations.

Lemma 2.3. Let K be a field of char(K) 6= 2, 3 and E/K an elliptic curve.
The following holds:

(i) If E has a K-rational point of order 2, then E can has a model of the
form

E : Y 2 = X3 + aX2 + bX. (4)

Moreover, there is a bijection between

{E/K with a K-torsion of order 2 up to K̄−isomorphism} 7−→ P1(K)−{4,∞}

via the map E 7−→ λ := a2

b .

(ii) If E has a K-rational point of order 3, then E has a model of the form

E : Y 2 + cXY + dY = X3. (5)

Moreover, there is a bijection between

{E/K with a K-torsion of order 3 up to K̄−isomorphism} 7−→ P1(K)−{27,∞}

via the map E 7−→ λ := c3

d .

Proof. (i) Any elliptic curve E in the Weirstrass form over a field K of
char(K) 6= 2 can be turned into:

E : Y 2 = X3 + aX2 + bX + c

after a change of variables, see [30] (III.1) for details. Now, the K-
torsion point of order 2 can be moved via a translation to the point
(0, 0), giving the desired form: E : Y 2 = X3 + aX2 + bX. As (0, 0) +
(0, 0) = ∞, under the group law, we are done. See [30] (III.2) for an
explicit group law algorithm.

For the second part, we are given an elliptic curve E/K with a K-
torsion point of order 2. After writing it as in (4), we make the assign-
ment E 7→ λ := a2

b . As ∆E = 24b2(a2 − 4b), non-singularity of E gives
λ ∈ P1(K)− {4,∞}, which proves our map is well-defined. Moreover,
any λ ∈ P1(K)− {4,∞} can be written as a ratio of the form a2

b with
b 6= 0 and a2 6= 4b, and hence comes from an elliptic curve with a
K-rational 2-torsion. Thus, our map is surjective.
Injectivity follows from writing

jE = 28 (a2 − 3b)3

b2(a2 − 4b)
= 28 (λ− 3)3

λ− 4
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and noting that λ = λ′ for given E → λ, E′ → λ′ implies jE = jE′ ,
which gives E ' E′.

(ii) Again, if E is in Weirstrass form we can translate the K-torsion point
to (0, 0). This will give a model of the form:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X

As before, explicit computations can be found in [30] (III.1). We
now impose the condition that (0, 0) has order 3. First, we compute
−(0, 0) = (0,−a3) and note that we require (0, 0) 6= −(0, 0) = (0,−a3)
(see [30] (III.2) for an explicit group law algorithm), so a3 6= 0. Now,
by performing the change of variables:®

Y → (Y + a4
a3
X)

X → X
(6)

we get a model of the form:

E : Y 2 + cXY + dY = X3 + eX2 with d = a3 6= 0.

Finally, we make use of the order 3 again and rules of adding points
on E, as given in [30] (III.2):®

(0, 0) + (0, 0) = −(0, 0) = (0,−d)

(0, 0) + (0, 0) = (−e,−d)
(7)

Hence, we need e = 0, and we get the desired form: E : Y 2 + cXY +
dY = X3.

For the second part, we are given an elliptic curve E/K with a K-
torsion point of order 3. After writing it as in (5), we make the assign-
ment E 7→ λ := c3

d . As ∆E = d3(c3 − 27d), non-singularity of E gives
λ ∈ P1(K)−{27,∞}, which proves our map is well-defined. Moreover,
any λ ∈ P1(K)−{27,∞} can be written as a ratio of the form c3

d with
d 6= 0 and c3 6= 27d, and hence comes from an elliptic curve with a
K-rational 3-torsion. Thus, our map is surjective.
Injectivity follows from writing

jE =
c3(c3 − 24d)3

d3(c3 − 27d)
=
λ(λ− 24)3

λ− 27

and noting that λ = λ′ for given E → λ, E′ → λ′ implies jE = jE′ ,
which gives E ' E′.
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Lemma 2.4. Let K be a number field and S a set of finite primes of K.
Then:

(i) If S contains the primes above 2 we get the following bijectionß
E/K with a K-torsion of order 2 with potentially
good reduction outside S up to K̄-isomorphism

™
7−→ O∗S via the

map E 7−→ µ := λ− 4 ∈ O∗S, where λ is as in Lemma 2.3 (i).

(ii) If S contains the primes above 3 we get the following bijectionß
E/K with a K-torsion of order 3 with potentially
good reduction outside S up to K̄-isomorphism

™
7−→ O∗S via the

map E 7−→ µ := λ− 27 ∈ O∗S, where λ is as in Lemma 2.3 (ii).

Proof. (i) Let E be an elliptic curve with a K-torsion point of order 2
with potentially good reduction outside S. By Lemma 2.3 (i) E has a
model:

E : Y 2 = X3 + aX2 + bX

with λ := a2

b and µ := λ− 4 = a2−4b
b . Thus,

jE = 28 (λ− 3)3

λ− 4
= 28 (µ+ 1)3

µ
. (8)

Good reduction outside S implies that vq(jE) ≥ 0 for all q /∈ S, in
other words jE′ ∈ OS .
Consequently both λ and µ satisfy monic equations with coefficients
in OS . Thus, we can conclude that λ, µ ∈ OS . Moreover, by writing
jE in terms of µ−1 and using the same reasoning, we deduce that also
µ−1 ∈ OS and hence µ ∈ O∗S and so the assignment E 7−→ µ is well-
defined.
Note that every µ ∈ O∗S can be written in the form µ = a2

b −4 for some
a, b ∈ K, thus coming from an elliptic curve with 2-torsion. Moreover,
µ ∈ O∗S implies jE ∈ OS , thus this represents a curve with potentially
good reduction outside S, proving surjectivity.
Injectivity follows by noting that µ = µ′ implies jE = j′E which gives
E ' E′..

(ii) Let E be an elliptic curve with a K-torsion point of order 3 with
potentially good reduction outside S. By Lemma 2.3 (ii) E has a
model:

E : Y 2 + cXY + dY = X3

10



with λ := c3

d and µ = λ− 27 = c3−27d
d Thus,

jE =
λ(λ− 24)3

λ− 27
=

(µ+ 27)(µ+ 3)3

µ
. (9)

Same arguments as in the proof of (i) give jE , λ ∈ OS and µ ∈ O∗S ,
giving E 7−→ µ is well-defined.
Surjectivity and injectivity follow exactly as in (i).

Lemma 2.5. Let K be a number field and S a set of finite primes of K. Let
E/K be an elliptic curve with good reduction outside S.

(i) If S contains the primes above 2 and E has a K-torsion point of order
2, we get by Lemma 2.4 (i) an equation λ−µ = 4 with λ ∈ OS, µ ∈ O∗S
depending on the coefficients of E.
Moreover, good reduction gives the ideal relation (λ)OK = I2J where
J is an S-ideal.

(ii) If S contains the primes above 3 and E has a K-torsion point of order
3, we get by Lemma 2.4 (ii) an equation λ − µ = 27 with λ ∈ OS,
µ ∈ O∗S depending on the coefficients of E.
Moreover, good reduction gives the ideal relation (λ)OK = I3J where
J is an S-ideal.

Proof. (i) By Lemma 2.3 (i) E has a model:

E : Y 2 = X3 + aX2 + bX

with ∆E = 24b2(a2−4b) and c4 = 24(a2−3b). Good reduction outside
S implies that for a q /∈ S we have that vq(∆min) = 0 (where ∆min
is the minimal discriminant of E viewed over the local field Kq). So,
q12k||∆E and q4k|c4 for some integer k. This follows from standard
results about minimal discriminants of elliptic curves which can be
found in [30] VII.1. Therefore, q2k|a and q4k||b . Hence,

(a)OK =
∏
q/∈SK

q4kq+2lq
∏

P∈SK

PaP , (b)OK =
∏
q/∈SK

q4kq
∏

P∈SK

PbP .

Thus, as λ = a2

b , we get:

(λ)OK = I2J , where I :=
∏
q/∈SK

qlq , J :=
∏

P∈SK

P2aP−bP .

which makes J an S-ideal.
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(ii) By Lemma 2.3 (ii) E has a model:

E : Y 2 + cXY + dY = X3

with ∆E = d3(c3− 27d) and c4 = c(c3− 24d). Good reduction outside
S implies that for a q /∈ S we have that vq(∆min) = 0 (where ∆min
is the minimal discriminant of E viewed over the local field Kq). So,
q12k||∆E and q4k|c4 for some integer k. This follows from standard
results about minimal discriminants of elliptic curves which can be
found in [30] VII.1. Therefore, q3k|d and qk||c . Hence,

(c)OK =
∏
q/∈S

qkq+lq
∏
P∈S

PcP , (d)OK =
∏
q/∈S

q3kq
∏
P∈S

PdP .

Thus, as λ = c3

d , we get:

(λ)OK = I3J , where I :=
∏
q/∈S

qlq , J :=
∏
P∈S

P3cP−dP .

which makes J an S-ideal.

2.3 Modularity Results

It is perhaps not surprising that the modular approach for Diophantine equa-
tions over totally real fields involves some adaptation of the classical modu-
larity theorem over the rationals.
Let’s first recall that given K a totally real number field, GK its absolute
Galois group and E an elliptic curve over K, we say that E is modular if
there exists a Hilbert cuspidal eigenform f over K of parallel weight 2, with
rational Hecke eigenvalues, such that the Hasse–Weil L-function of E is equal
to the Hecke L-function of f. A more conceptual way to phrase this is that
there is an isomorphism of compatible systems of Galois representations

ρE,p ' ρf,p

where the left-hand side is the Galois representation arising from the action
of GK on the p-adic Tate module Tp(E), while the right-hand side is the
Galois representation associated to f. A comprehensive definition of Hilbert
modular forms and their associated representation can be found, for example
in Wiles’ [37].
We will need the following remarkable theorem proved by Freitas, Hung and
Siksek in [12]:

Theorem 2.6. Let K be a totally real field. Up to isomorphism over K̄, there
are at most finitely many non-modular elliptic curves E over K. Moreover,
if K is real quadratic, then all elliptic curves over K are modular.
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Furthermore Derickx, Najman and Siksek have recently proved in [10]:

Theorem 2.7. Let K be a totally real cubic number field and E be an elliptic
curve over K. Then E is modular.

2.4 Irreductibility of mod p representations of elliptic curves

We need the following theorem in the lever lowering step of our proof. This
was proved in [13] as Theorem 2 and it is derived from the work of David,
Momose who in turn built on Merel’s Uniform Boundedness Theorem.

Theorem 2.8. Let K be a Galois totally real field. There is an effective
constant CK , depending only on K, such that the following holds. If p > CK
is prime, and E is an elliptic curve over K which has multiplicative reduction
at all q|p, then ρE,p is irreducible.

2.5 Level lowering

We present a lever lowering result proved by Freitas and Siksek in [14] derived
from the work of Fujira [15], Jarvis[17], and Rajaei[24]. Let K be a totally
real field and E/K be an elliptic curve of conductor NE . Let p be a rational
prime. Define the following quantities:

Mp =
∏
q||NE

p|vq(∆q)

q, and Np =
NE
Mp

(10)

where ∆q is the minimal discriminant of a local minimal model for E at q.
For a Hilbert eigenform f over K, we write Qf for the field generated by its
eigenvalues.

Theorem 2.9. With the notation above, suppose the following statements
hold:

(i) p ≥ 5, the ramification index e(q/p) < p− 1 for all q|p, and Q(ζp)
+ *

K;

(ii) E is modular;

(iii) ρE,p is irreducible;

(iv) E is semistable at all q|p;

(v) p|vq(∆q) for all q|p.

Then, there is a Hilbert eigenform f of parallel weight 2 that is new at level
Np and some prime ω of Qf such that ω|p and ρE,p ∼ ρf,ω.

13



Proof. We give a sketch of the proof as described in [14] for completion,
using the theorems in [15], [17] and [24]. Assumption (i) takes care of some
technical restrictions in those theorems.
By assumption (ii), there is a newform f0 of parallel weight 2, level N and
field of coefficients Qf0 = Q, such that ρE,p ∼ ρf0,p. Thus ρE,p is modular,
and by (iii) is irreducible. Since K may be of even degree, in order to apply
the main result of [24], we need to add an auxiliary (special or supercuspidal)
prime to the level. From [24], Theorem 5 we can add an auxiliary (special)
prime q0 - N so that ρf0,p(σq0) is conjugate to ρf0,p(σ), where σq0 denotes a
Frobenius element of GK at q0 and σ is complex conjugation. We now apply
the main theorem of [24] to remove from the level all primes q - p dividing
Mp. Next we remove from the level the primes above p without changing
the weight. By [17], Theorem 6.2 we can do this provided ρE,pGq is finite at
all q|p, where Gq is the decomposition subgroup of G + K at q. But from
(iv), q is a prime of good or multiplicative reduction for E. In the former
case, ρE,p|Gq is finite; in the latter case it is finite by (v). Finally, from
the condition imposed on q0 it follows that Norm(q0) 6≡ 1( mod p), and we
can apply Fujiwara’s version of Mazur’s principle [15] to remove q0 from the
level. We conclude that there is an eigenform q of parallel weight 2, new at
level Np, and a prime ω̄|p of Qf such that ρE,p ∼ ρf0,p ∼ ρf,ω̄.

2.6 Eichler-Shimura

We would like to use the following:

Conjecture 2.10 (Eichler-Shimura). Let K be a totally real field. Let f be
a Hilbert newform of level N and parallel weight 2, and rational eigenvalues.
Then there is an elliptic curve Ef/K with conductor N having the same
L-function as f.

However, we do not have a proof for this yet, but the following partial
result holds:

Theorem 2.11. Let K be a totally real field and let f be a Hilbert newform
over K of level N and parallel weight 2, such that Qf = Q. Suppose that:

(i) either [K : Q] is odd;

(ii) or there is a finite prime q such that such that vq(N ) = 1.

Then there is an elliptic curve Ef/K of conductor N with the same L-
function as f.

Proof. This was derived by Blasius in [3] from the work of Hilda for a more
general (ii). For the particular case that we use, the proof was given by
Darmon [7] and Zhang [39].

14



Freitas and Siksek obtain the following corollary from the above theorem
in [14].

Corollary 2.12. Let E be an elliptic curve over a totally real fiel K , and p
be an odd prime. Suppose that ρE,p is irreducible, and ρE,p ∼ ρf,ω for some
Hilbert newform f over K of level N and parallel weight 2 which satisfies
Qf = Q. Let q - p be a prime ideal of OK such that:

(i) E has potentially multiplicative reduction at q;

(ii) p|#ρE,p(Iq);

(iii) p - (NormK/Q(q)± 1)

Then there is an elliptic curve Ef/K of conductor N with the same L-
function as f.

Proof. We will give the proof as in [14] for completion.
Write c4 and c6 for the usual c-invariants of E, which are non-zero as E has
potentially multiplicative reduction at q. Let γ = −c4/c6. Write χ for the
quadratic character associated to K(

√
γ)/K and E ⊗ χ for the γ-quadratic

twist of E.
By [31] Theorem V.5.3, E ⊗ χ has split multiplicative reduction at q. Let
g = f⊗ χ. As χ is quadratic and Qf = Q it follows that Qg = Q.
Suppose g is new at some level Ng. We will prove vq(Ng) = 1. Then, by
Theorem 2.11 there is some elliptic curve Eg having the same L-function as
g. Thus, the L-functions of Eg ⊗ χ and q ⊗ χ = f are equal, and we take
Ef = Eg ⊗ χ.
It remains to prove that vq(Ng) = 1. Since ρE⊗χ,p ∼ ρg,p, the two rep-
resentations have the same optimal Serre level R (say). Now E ⊗ χ has
multiplicative reduction at q, so vq(R) = 0 or 1. Since E and E ⊗ χ are
isomorphic over K(γ), and as p|#ρE,p(Iq), we have p|#ρE⊗χ,p(Iq), hence
vq(R) 6= 0 so vq(R) = 1.
We now think of R as the optimal Serre level at ρq,p and compare it to the
level Ng of g. By [16] Theorem 1.5, vq(Nq) = vq(R) except possibly when
vq(Nq) = 1 and vq(R = 0 or when NormK/Q(q) = ±1( mod p). The for-
mer is impossible as vq(R) = 1 and the latter is ruled out by (iii). Thus
vq(Ng) = 1.

3 Proof of Main Theorem for signature (p, p, 2)

This section is dedicated to proving Theorem 1.5. Let K be a totally real
field. Recall the sets:

SK = {P : P is a prime of K above 2}

UK,P = {(a, b, c) ∈ O3
K : ap+bp = c2 with P|b}, where P ∈ SK is a fixed prime.
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3.1 Frey Curve

For a non-trivial, primitive solution (a, b, c) of ap + bp = c2 we associate the
following Frey elliptic curve defined over K:

E : Y 2 = X3 + 4cX2 + 4apX. (11)

We use [30] (III.1) to compute the arithmetic invariants:

∆E = 212(a2b)p, c4 = 26(4bp + ap) and jE = 26 (4bp + ap)3

(a2b)p
.

Lemma 3.1. Let (a, b, c) be the non-trivial, primitive solution to the equation
ap + bp = c2. Let E be the associated Frey curve (11) with conductor NE.
Then, for all primes q /∈ SK , the model E is minimal, semistable and satisfies
p|vq(∆E). Moreover

NE =
∏

P∈SK

PrP
∏
q|ab
q/∈SK

q, Np =
∏

P∈SK

Pr′P (12)

where 0 ≤ r′P ≤ rP ≤ 2 + 6vP(2).

Proof. Let q be an odd prime of K. The invariants of the model E are
∆E = 212(a2b)p and c4 = 26(4bp + ap). Suppose that q divides ∆E , so q|ab.
Since a and b are relatively prime, q divides exactly one of a and b. Therefore,
q does not divide c4. In particular, vq(c4) < 4 and as the coefficients of E are
in OK we can use [30] VII.1 Remark 1.1. to deduce that the model is minimal
at q and [30] VII.5. Proposition 5.1. to deduce that E has multiplicative
reduction at q as vq(∆E) > 0 and vq(c4) = 0. Hence p|vq(∆E) = vq(∆q).
On the other hand, if P ∈ SK , an even prime, we have rP = vP(NE) ≤
2 + 6vP(2) by [31] Theorem IV.10.4. The definition of NE gives the desired
form in (12). Then, use (10) to get Np and observe that r′P = rP unless E
has multiplicative reduction at P and p|vP(∆P) in which case rP = 1 and
r′P = 0.

Lemma 3.2. Let K be a totally real field. There is some constant AK
depending only on K, such that for any non-trivial, primitive solution (a, b, c)
of ap + bp = c2 and p > AK , the Frey curve given by (11) is modular.

Proof. By Theorem 2.6, there are at most finitely many possible K̄-isomorphism
classes of elliptic curves over E which are not modular. Let j1, j2, . . . , jn ∈ K
be the j-invariants of these classes. Define λ := bp/ap /∈ {0,±1} (as a, b are
non-trivial and coprime). The j-invariant of E is

j(λ) = 26(4λ+ 1)3λ−1.

Each equation j(λ) = ji has at most three solutions λ ∈ K. Thus there
are values λ1, . . . , λm ∈ K(m ≤ 3n) such that if λ 6= λk for all k, then the
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elliptic curve E with j-invariant j(λ) is modular.
If λ = λk then (b/a)p = λk, but the polynomial xp + λk has a root in K if
and only if λk ∈ (K∗)p because K is totally real and λk /∈ {0,±1}. Hence
we get a lower bound on p for each k, and by taking the maximum of these
bounds we get AK .

Remark 3.3. The constant AK is ineffective as the finiteness of Theorem 2.6
relies on Falting’s Theorem (which is ineffective). See [12] for more details.
Note that if K is quadratic or cubic we get AK = 0 (by the last part of
Theorem 2.6 and Theorem 2.7).

3.2 Images of Inertia

We gather information about the images of inertia ρE,p(Iq). This is a crucial
step in applying Corollary 2.12 and for controlling the behaviour at the
primes in SK of the newform obtained by level lowering.

Lemma 3.4. Let E be an elliptic curve over K with j-invariant jE. Let
p ≥ 5 and let q - p be a prime of K. Then p|#ρE,p(Iq) if and only if E has
potentially multiplicative reduction at q (i.e. vq(jE) < 0) and p - vq(jE).

Proof. See [14] Lemma 3.4.

Lemma 3.5. Let q - 2 and let (a, b, c) be a non-trivial, primitive solution to
the equation ap + bp = c2 with the prime exponent p ≥ 5, such that q - p. Let
E be the Frey curve in (11). Then p - #ρE,p(Iq).

Proof. Using Lemma 3.4, it is enough to show that at all q - 2 and q - p
either vq(jE) ≥ 0 or p|vq(jE). If q - ∆E , then E has good reduction at q,
so vq(jE) ≥ 0. If q|∆E then q|ab. Thus q divides exactly one of a and b.
This implies that q - c4, i.e. vq(c4) = 0. Thus, vq(jE) = −pvq(a2b), i.e.
p|vq(jE).

Lemma 3.6. Let P ∈ SK and (a, b, c) ∈ UK,P non-trivial, primitive with
prime exponent p > 6vP(2). Let E be the Frey curve in (11) with j-invariant
jE. Then E has potentially multiplicative reduction at P and p|#ρE,p(IP).

Proof. Assume that P ∈ SK with vP(b) = k. Then vP(jE) = 6vP(2) − pk.
Since p > 6vP(2), it follows that vP(jE) < 0 and clearly p - vP(jE). This
implies that E has potentially multiplicative reduction at P and by Lemma
3.4 we get p|#ρE,p(IP).
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3.3 Lever Lowering and Eichler Shimura

This is a key result in the proof of Theorem 1.5, for which we have prepared
the ingredients in the previous sections. We will follow the corresponding
proofs in [14] and [21].

Theorem 3.7. Let K be a totally real number field and assume it has a
distinguished prime P̃ ∈ SK . Then there is a constant BK depending only
on K such that the following hold. Let (a, b, c) ∈ UK,P̃ non-trivial, primitive
with prime exponent p > BK . Write E for the Frey curve (11). Then, there
is an elliptic curve E′ over K such that:

(i) the elliptic curve E′ has good reduction outside SK ;

(ii) ρE,p ∼ ρE′,p;

(iii) E′ has a K-rational point of order 2;

(iv) E′ has multiplicative reduction at P̃ (vP̃(jE′) < 0 where jE′ is the
j-invariant of E′).

Proof. We first observe that by Lemma 3.1 that E has multiplicative reduc-
tion outside SK . By taking BK sufficiently large, we see from Lemma 3.2
that E is modular and by Theorem 2.8 that ρE,p is irreducible. Applying
Theorem 2.9 and Lemma 3.1 we see that ρE,p ∼ ρf,ω for a Hilbert newform
f of level Np and some prime ω|p of Qf. Here Qf denotes the field generated
by the Hecke eigenvalues f.
Next we reduce to the case when Qf = Q, after possibly enlarging BK . This
step uses standard ideas originally due to Mazur that can be found in [2]
Section 4, [5] Proposition 15.4.2., and so we omit the details.
Next we want to show that there is some elliptic curve E′/K of conductor
Np having the same L-function as f.
We apply Lemma 3.6 with P = P̃ and get that E has potentially multiplica-
tive reduction at P̃ and p|#ρE,p(IP). The existence of E′ follows from Corol-
lary 2.12 after possibly enlarging BK to ensure that p - (NormK/Q(P̃)± 1).
By putting all the pieces together we can conclude that there is an elliptic
curve E′/K of conductor Np satisfying ρE,p ∼ ρE′,p. This proves (i) and (ii).
We now want to show that we can choose E′ such that it has a K-rational
point of order 2. We will sketch the argument and refer the reader to [26]
Section IV-6 for the details of the various equivalences involved. Note that
since E has aK-rational point of order 2, then 2|#Tors(E(K)) which implies
that 2|#E(Fq) for all primes q at which E has good reduction. This is in
turn equivalent to the fact that for all s ∈ Im(ρE,2), det(1− s) ≡ 0 mod 2.
By (ii) we know ρE,p ∼ ρE′,p, so for all s ∈ Im(ρE′,2), det(1− s) ≡ 0 mod 2.
This is equivalent to the existence of an elliptic curve E′′ with a K-rational
point of order 2 which is either isomorphic to E′ or it is 2-isogenous to E′.
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So, by possibly replacing E′ by E′′ we get (iii).
Now let jE′ be the j-invariant of E′. As we have already seen, Lemma 3.6
implies p|#ρE,p(IP̃), hence p|#ρE′,p(IP̃), thus by Lemma 3.4 we get that E′

has multiplicative reduction at P̃ and so vP̃(jE′) < 0.

3.4 Proof of the Main Theorem

Proof. So far, we have shown that for a primitive, non-trivial solution (a, b, c) ∈
UK,P̃ with a prime exponent p we associate the Frey elliptic curve in (11).
By Theorem 3.7 for p > BK we can find an elliptic curve E′ which is re-
lated to E by ρE,p ∼ ρE′,p and has a K-rational point of order 2. Hence by
Theorem 2.3 (i) we get a model:

E′ : Y 2 = X3 + a′X2 + b′X

with arithmetic invariants ∆E′ = 24b′2(a′2 − 4b′), jE′ = 28 (a′2−3b′)3

b′2(a′2−4b′) .
Moreover, by Theorem 3.7 (i), we know that E′ has good reduction outside
SK which implies that vq(jE′) ≥ 0 for q /∈ SK . Therefore, jE′ ∈ OSK

.
Consider λ := a′2

b′ and µ := λ − 4 = a′2−4b′

b′ . Next, we need to show that λ
can be written as λ = uγ2, where u is an SK-unit.
By Lemma 2.5 (i) applied to E′ we get that

(λ)OK = I2J where J is an S-ideal.

Thus [I]2 = [J ] as elements of the class group Cl(K) and [J ] ∈ 〈[P]〉P∈SK
.

This implies that [I] ∈ ClSK
(K)[2] and by our assumption on K that

ClSK
(K)[2] is trivial, we get that [I] ∈ 〈[P]〉P∈SK

, i.e. I := γĨ, where Ĩ
is an S-ideal and γ ∈ OK . Consequently,

(λ)OK = (γ)2Ĩ2J where both Ĩ and J are S-ideals.

Finally, ( λ
γ2

)OK is an S-ideal, which implies that u := λ
γ2

is an S-unit. Now,
by dividing µ+ 4 = λ by u, we get:

α+ β = γ2 where α :=
µ

u
∈ O∗SK

and β :=
4

u
∈ O∗SK

(13)

Now, suppose that there is some P̃ ∈ SK that satisfies |vP̃(αβ )| ≤ 6vP̃(2). We
will show that this leads to a contradiction with 3.7 (iv) (i.e. vP̃(jE′) < 0),
and hence conclude the proof.
By using (13) we can rewrite our assumption in terms of the valuation of
µ: −4vP̃(2) ≤ vP̃(µ) ≤ 8vP̃(2). Note that jE′ = 28(µ + 1)3µ−1, hence
vP̃(jE′) = 8vP̃(2) + 3vP̃(µ+ 1)− vP̃(µ). There are three cases according to
the valuation of P̃ at µ:
Case (1): Suppose vP̃(µ) = 0. This implies that vP̃(µ + 1) ≥ 0, thus
vP̃(jE′) ≥ 0, a contradiction.
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Case (2): Suppose vP̃(µ) > 0. This implies vP̃(µ + 1) = 0, thus, by using
vP̃(µ) ≤ 8vP̃(2) we get again vP̃(jE′) ≥ 0.
Case (3): Finally, suppose vP̃(µ) < 0. This implies vP̃(µ + 1) = vP̃(µ),
thus, by using −4vP̃(2) ≤ vP̃(µ), we get one last time vP̃(jE′) ≥ 0.
All three cases lead to contradictions and hence we conclude the proof.

4 Proof of Main Theorem for signature (p, p, 3)

This section is dedicated to proving Theorem 1.7. Let K be a totally real
field. Recall the sets:

SK = {P : P is a prime of K above 3}

UK,P = {(a, b, c) ∈ O3
K : ap+bp = c3 with P|b}, where P ∈ SK is a fixed prime.

4.1 Frey Curve

For a non-trivial, primitive solution (a, b, c) of ap + bp = c3 we associate the
following Frey elliptic curve defined over K:

E : Y 2 + 3cXY + apY = X3 (14)

We use [30] (III.1) to compute the arithmetic invariants:

∆E = 33(a3b)p, c4 = 32c3(9bp + ap)3 and jE = 33 c
3(9bp + ap)3

(a3b)p
.

Lemma 4.1. Let (a, b, c) be the non-trivial, primitive solution to the equation
ap + bp = c3. Let E be the associated Frey curve (14) with conductor NE.
Then, for all primes q /∈ SK , the model E is minimal, semistable and satisfies
p|vq(∆E). Moreover

NE =
∏

P∈SK

PrP
∏
q|ab
q/∈SK

q, Np =
∏

P∈SK

Pr′P (15)

where 0 ≤ r′P ≤ rP ≤ 2 + 3vP(3).

Proof. Let q be an a prime of K which does not divide 3. The invariants
of the model E are ∆E = 33(a3b)p and c4 = 32c3(9bp + ap)3 Suppose that q
divides ∆E , so q|ab. Since a, b and c are pairwise coprime, q divides exactly
one of a and b, but not c. Therefore, q does not divide c4. In particular,
vq(c4) < 4 and as the coefficients of E are inOK we can use [30] VII.1 Remark
1.1. to deduce that the model is minimal at q and [30] VII.5. Proposition
5.1. to deduce that E has multiplicative reduction at q as vq(∆E) > 0 and
vq(c4) = 0. Hence p|vq(∆E) = vq(∆q). On the other hand, if P ∈ SK , a
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prime which divides 3, we have rP = vP(NE) ≤ 2 + 3vP(3) by [31] Theorem
IV.10.4. The definition of NE gives the desired form in (15). Then, use (10)
to get Np and observe that r′P = rP unless E has multiplicative reduction
at P and p|vP(∆P) in which case rP = 1 and r′P = 0.

Lemma 4.2. Let K be a totally real field. There is some constant AK
depending only on K, such that for any non-trivial, primitive solution (a, b, c)
of ap + bp = c3 the Frey curve given by (14) is modular.

Proof. The proof uses the same idea as the proof of Lemma 3.2, but note
that here, by taking λ := bp/ap we will get

j(λ) = 33(λ+ 1)(9λ+ 1)3λ−1

so each equation j(λ) = ji will have at most four solutions. From here the
argument works exactly as before.

4.2 Images of Inertia

Lemma 4.3. Let q - 3 and let (a, b, c) be a non-trivial, primitive solution to
the equation ap + bp = c3 with the prime exponent p ≥ 5, such that q - p. Let
E be the Frey curve in (14). Then p - #ρE,p(Iq).

Proof. The proof follow exactly like in Lemma 3.5 by replacing all of the "2"
with "3".

Lemma 4.4. Let P ∈ SK and (a, b, c) ∈ UK,P with prime exponent p >
3vP(3). Let E be the Frey curve in (14) with j-invariant jE. Then E has
potentially multiplicative reduction at P and p|#ρE,p(IP).

Proof. The proof follows exactly like the proof of Lemma 3.6 by replacing
all of the "6vP(2)" with "3vP(3)".

4.3 Level Lowering and Eichler Shimura

As in the previous section, the crucial level lowering theorem reads as follows:

Theorem 4.5. Let K be a totally real number field and assume it has a
distinguished prime P̃ ∈ SK . Then there is a constant BK depending only
on K such that the following hold. Let (a, b, c) ∈ UK,P̃ non-trivial, primitive
with prime exponent p > BK . Write E for the Frey curve (14). Then, there
is an elliptic curve E′ over K such that:

(i) the elliptic curve E′ has good reduction outside SK ;

(ii) ρE,p ∼ ρE′,p;

(iii) E′ has a K-rational point of order 3;
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(iv) E′ has multiplicative reduction at P̃ (vP̃(jE′) < 0 where jE′ is the
j-invariant of E′).

Proof. The proof follows exactly like the proof of Theorem 3.7 by replacing
2 by 3.

4.4 Proof of the Main Theorem

Proof. So far, we have shown that for a primitive, non-trivial solution (a, b, c) ∈
UK,P̃ with a prime exponent p we associate the Frey elliptic curve in (14).
By Theorem 4.5 for p > BK we can find an elliptic curve E′ which is re-
lated to E by ρE,p ∼ ρE′,p and has a K-rational point of order 3. Hence by
Theorem 2.3 (ii) we get a model:

E′ : Y 2 + c′XY + d′Y = X3

with arithmetic invariants ∆E′ = d′3(c′3 − 27d′) and jE′ = c′3(c′3−24d′)3

d′3(c′3−27d′) .
Moreover, by Theorem 3.7 (i), we know that E′ has good reduction outside
SK which implies that vq(jE′) ≥ 0 for q /∈ SK . Therefore, jE′ ∈ OSK

.
Consider λ := c′3

d′ and µ := λ− 27 = c′3−27d′

d′ . Next, we need to show that λ
can be written as λ = uγ3, where u is an SK-unit.
By Lemma 2.5 (ii) applied to E′ we get that

(λ)OK = I3J where J is an S-ideal.

Thus [I]3 = [J ] as elements of the class group Cl(K) and [J ] ∈ 〈[P]〉P∈SK
.

This implies that [I] ∈ ClSK
(K)[3] and by our assumption on K that

ClSK
(K)[3] is trivial, we get that [I] ∈ 〈[P]〉P∈SK

, i.e. I := γĨ, where Ĩ
is an S-ideal and γ ∈ OK . Consequently,

(λ)OK = (γ)3Ĩ3J where both Ĩ and J are S-ideals.

Finally, ( λ
γ3

)OK is an S-ideal, which implies that u := λ
γ3

is an S-unit. Now,
by dividing µ+ 27 = λ by u, we get:

α+ β = γ3 where α :=
µ

u
∈ O∗SK

and β :=
27

u
∈ O∗SK

(16)

Now, suppose that there is some distinguished P̃ ∈ SK that satisfies |vP̃(αβ )| ≤
3vP̃(3). We will show that this leads to a contradiction with 3.7 (iv) (i.e.
vP̃(jE′) < 0), and hence conclude the proof.
By using (16) we can rewrite our assumption in terms of the valuation of
µ: 0 ≤ vP̃(µ) ≤ 6vP̃(3). Note that jE′ = (µ + 27)(µ + 3)3µ−1, hence
vP̃(jE′) = vP(µ+ 27) + 3vP(µ+ 3)− vP(µ). There are three cases according
to the valuation of P̃ at µ:
Case (1): Suppose 0 ≤ vP̃(µ) ≤ vP̃(3). This implies that vP̃(µ + 27) =
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vP̃(µ) and vP̃(µ+ 3) ≥ vP̃(µ), thus vP̃(jE′) ≥ 0.
Case (2): Suppose vP̃(3) < vP̃(µ) ≤ 3vP̃(3). This implies that vP̃(µ+27) ≥
vP̃(µ) and vP̃(µ+ 3) = vP̃(3), thus we get again vP̃(jE′) ≥ 0.
Case (3): Suppose 3vP̃(3) < vP̃(µ) ≤ 6vP̃(3). This implies that vP̃(µ +
27) = 3vP̃(3) and vP̃(µ+ 3) = vP̃(3), thus we get one last time vP̃(jE′) ≥ 0.
All three cases lead to contradictions and hence we conclude the proof.

5 S-unit equations and computability

Finally, we will describe how to algorithmically check the hypothesises in
our two main theorems 1.5 and 1.7 by studying how to compute solutions
of certain (linear) S-unit equations over the totally real number field K, i.e.
equations of the form:

ax+ by = 1 where a, b ∈ K∗ with solutions x, y ∈ O∗S .

Throughout this section S denotes a finite set of prime ideals in OK .
More generally, S-unit equations play a crucial role in Number Theory. They
have many fruitful applications: in Algebraic Number Theory, Transcenden-
tal Number Theory, and moreover, in irreducible polynomials and arithmetic
graphs, finitely generated groups, and beyond. See Evertse’s [11] for a com-
prehensive survey about this.
They have been of particular interest in the study of certain problems about
elliptic curves. Siegel’s famous result about the finiteness of S-integral points
on affine curves C/K of genus at least one reduces to solving several linear
S-units equations of the form ax+ by = 1. See [30] (IX.4.) for more details.
Recently, they were used to parametrise different families of elliptic curves, in
particular this was a crucial step in both [14] and [21] (and consequently, in
this project) when finding the lever lowered elliptic curves with full 2-torsion
and one 2-torison point respectively. Another application of a similar flavour
can be found in [20] where Koutsianas uses S-unit equations to find the j-
invariants of all elliptic curves of good reduction outside S.
The reason why people turned their attention to S-unit equations is because
they have a finite number of solutions, effectively computable, which thanks
to the increased computer power available, turned out to be a powerful tool
in modern Number Theory.
The following result is vital for our discussion:

Theorem 5.1. Let K be a number field and S ⊂ OK a finite set of prime
ideals, and let a, b ∈ K∗. Then, the equation

ax+ by = 1

has only finitely many solutions in O∗S .
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Proof. For an ineffective proof of this see [30] (IX.4.) or [27].

Remark 5.2. More recently, methods of effectively computing solutions to
S-unit equations became available, pioneered by De Weger’s famous thesis
[36] for the special case K = Q. His method of lattice approximation reduc-
tion algorithms was later generalized for all number fields by others, see for
example Smart’s [32].
An S-unit solver for a = b = 1 has been implemented in the free open-
source mathematics software by A. Alvarado, A. Koutsianas, B. Malmskog,
C. Rasmussen, D. Roe, C. Vincent, M. West in [1].

In the two main results of this project, we would like to compute the
solutions of two non-linear S-unit equations. Namely, in Theorem 1.5 we
work with α+β = γ2, and similarly, in Theorem 1.7 with α+β = γ3, where
α, β ∈ O∗SK

, γ ∈ OSK
in both cases. The next result shows that these can

be reduced to solving a finite set of linear S−unit equations.

Theorem 5.3. Let K be a totally real number field and S ⊂ OK a finite set
of prime ideals and consider the equation:

α+ β = γi, α, β ∈ O∗S , γ ∈ OS .

(i) If i = 2, the equation has a finite number of solutions with gcd(α, β)
square-free;

(ii) If i = 3 the above equation has a finite number of solutions with
gcd(α, β) cube-free.

In both cases, the solutions are effectively computable.

Proof. (i) Let i = 2. Then, we can write α+ β = γ2 as:

(γ −
√
β)(γ +

√
β) = α over K(

√
β).

Denote x := γ−
√
β, y := γ+

√
β, L := K(

√
β) and S′ := {PL prime of OL :

PL|PK ∈ S}. Note that S′ is a finite set as S is finite and [L : K] ≤ 2.
Working over L, we get x, y ∈ O∗S′ . This can be seen by simply consid-
ering the valuation of the product xy = α ∈ O∗S at primes of L outside
the set S′.
Note that x− y = −2

√
β (17). Letting:

X :=
x

2
√
β
, Y :=

−y
2
√
β

we get X+Y=1. (18)

The desired solutions can be recovered as α = −4βXY , β = β(X +
Y )2 = β. So the square-free condition reduces to β is square-free,
implying β ∈ O∗S/(O∗S)2. By Remark 2.1 we know that O∗S is finitely
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generated, hence the quotient O∗S/(O∗S)2 is finite and computable. (?)
By Theorem 5 (with a = b = 1), (18) has a finite number of solutions
(X,Y ) and by Remark 5.2 the solutions are effectively computable.(??)
By (?) and (??) each L gives a finite set of solutions (α, β) ∈ O∗S×O∗S .
Now, let’s prove it is enough to consider only finitely many fields L =
K(
√
β) for our purpose (of finding α and β). This follows from the

fact that we only get different extensions when β ∈ O∗S/(O∗S)2, which
we just proved to be a finite set.

(ii) Let i = 3. We can write α+ β = γ3 as:

(γ − 3
√
β)(γ − ω 3

√
β)(γ − ω2 3

√
β) = α over K(ω, 3

√
β)

where ω := cos(2π
3 ) + i sin(2π

3 ) if β 6= −1.

Denote x := γ − 3
√
β, y := γ − ω 3

√
β, z := γ − ω2 3

√
β, L := K(ω, 3

√
β)

and S′ := {PL prime of OL : PL|PK ∈ S}. We make the quick note
that if β = −1 we take x := γ+ 1, y := γ+ω, z := γ+ω2, L := K(ω).
The same arguments as above give S′ finite and x, y, z ∈ O∗S′ .
Note that ®

x− y = (ω − 1) 3
√
β

y − z = (ω2 − ω) 3
√
β

(19)

By letting

X :=
1

(ω − 1) 3
√
β
x, Y :=

−1

(ω − 1) 3
√
β
y, Z :=

−1

(ω2 − ω) 3
√
β
z

we get: ®
X + Y = 1
−1
ω Y + Z = 1

(20)

The desired α can be recovered as α = −3(ω+ 2)XY Zβ. So the cube-
free condition reduces to β is cube-free, implying β ∈ O∗S/(O∗S)3. By
Remark 2.1 we know that O∗S is finitely generated, hence the quotient
O∗S/(O∗S)3 is finite and computable. (†)
By Theorem 5 (with a = b = 1 applied to 20), there are finitely many
pairs (X,Y ) and Z = 1+ 1

ωY by Remark 5.2 the solutions are effectively
computable.(††)
By (†) and (††) each L gives a finite set of solutions (α, β) ∈ O∗S ×O∗S .
Now, let’s prove it is enough to consider only finitely many fields L :=
K(ω, 3

√
β) for our purpose (of finding α and β). This follows from the

fact that we only get different extensions when β ∈ O∗S/(O∗S)3, which
we just proved to be a finite set.
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Remark 5.4. On a computational note, we can restrict the search of our
solutions in the following way:

(i) In (17) we are only looking for the solutions (x, y) ∈ O∗S′ × O∗S′ such
that xy ∈ O∗S and σ(x) = y, where σ is the generator of Gal(L/K) =
{id, σ}. In particular, σ(X) = Y which we will use in our computa-
tions.

(ii) Similarly, in (19) we only need to search for (x, y, z) ∈ O∗S′×O∗S′×O∗S′

such that xyz ∈ O∗S and τ(x) = y, τ2(x) = z, where τ is the element
of Gal(L/K(ω)) such that τ( 3

√
β) = ω 3

√
β.

Corollary 5.5. Let K be a totally real number field and S ⊂ OK a finite
set of prime ideals and consider the equation:

α+ β = γi, α, β ∈ O∗S , γ ∈ OS

with i ∈ {1, 2}.
Then α/β belongs to a finite computable set.

Proof. We give an effective method to compute α/β by following the steps
in the proof of Theorem 5.3. Note that as we are only interested in the ratio
α/β we can assume gcd(α, β) = 1.

(i) If i = 2 we get α
β = −4XY where X+Y = 1 is an S′-unit as described

in (18). So it is enough to compute a finite number of S′-unit equations
(one for each L) to get α

β . We have algorithms to solve each of these
S′-unit equations by Remark 5.2.

(ii) If i = 3 we get α
β = −3(ω + 2)XY Z = −3(ω + 2)XY (1 + 1

ωY ) where
X + Y = 1 is an S′-unit and Z = 1 + 1

ωY as described in (20). So
it is enough to compute a finite number of S′-unit equations (one for
each L) to get α

β . We have algorithms to solve each of these S′-unit
equations by Remark 5.2.

6 Examples for signature (p, p, 2)

In this section, we give a few examples of totally real fields K on which
the asymptotic Fermat Last Theorem holds for ap + bp = c2. We present
three examples: K1 = Q(

√
2), K2 = Q(

√
26), K3 = Q(

√
35). The field K1

has narrow class number one and it satisfies the conditions in Theorem 1.3
(proved in [21]). The fields K1 and K2 have class number 2, so we can no
longer use Theorem 1.3. However CLSK

(K)[2] is trivial, so we use our Main
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Theorem for (p, p, 2) (Theorem 1.5) to prove that the asymptotic Fermat
Last Theorem holds for ap + bp = c2 over K1 and K2.
We are in the set-up of Section 3, so recall the sets:

SK = {P : P is a prime of K above 2}, TK = {P ∈ SK : f(P/2) = 1}

WK = {(a, b, c) ∈ O3
K : ap + bp = c2 with P|b for every P ∈ TK}

UK,P = {(a, b, c) ∈ O3
K : ap+bp = c2 with P|b}, where P ∈ SK is a fixed prime.

Naturally, SL = {P : P is a prime of L above 2}.

Corollary 6.1. Let K1 = Q(
√

2) and P̃ = (
√

2)OK1. Then ap + bp = c2

does not have any non-trivial, primitive solution (a, b, c) in K1 such that P̃|b
whenever p ≥ BK1 where BK1 is a constant that depends only on K1.

Proof. As h+
K = 1 (where h+

K represents the narrow class number), we want
to prove the conditions in Theorem 1.3 are satisfied. In [21], Section 6, Işik,
Kara and Ozman compute the solutions of the S-unit equation λ + µ = 1
over K1 and over L where L = K1(

√
a) for a ∈ K(SK , 2). The list of such L

is below:

• L1 = Q(a1) where a1 is a root of x4 + 1

• L2 = Q(a2) where a2 is a root of x4 − 2x2 + 9

• L3 = Q(a3) where a3 is a root of x4 − 2

• L4 = Q(a4) where a4 is a root of x4 − 2x2 − 1

• L5 = Q(a5) where a5 is a root of x4 + 2x2 − 1

• L6 = Q(a6) where a6 is a root of x4 + 4x2 + 2

• L7 = Q(a7) where a7 is a root of x4 − 4x2 + 2

After computing the above-mentioned solutions, they check that the criteria
in (A) and (B) of Theorem 1.3 are satisfied, and hence prove the corollary.
Moreover, they compute (a non-optimal) bound BK1 = 282430599364. See
their paper [21] Section 6 for the details.

Corollary 6.2. Let K2 = Q(
√

26) and P̃ = (2,
√

26)OK2. Then ap+bp = c2

does not have any non-trivial, primitive solution (a, b, c) in K2 such that P̃|b
whenever p ≥ BK2 where BK2 is a constant that depends only on K2.

Proof. We prove that we are in the set-up of Theorem 1.5, more precisely
we want to show that for every solution (α, β) to the SK2-unit equation
α+ β = γ2 we get that |vP̃(αβ )| ≤ 6vP̃(2).
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By the proof of Corollary 5.5 (i) applied on K2 = Q(
√

26) and S = SK2 , we
get

vP̃(
α

β
) = vP̃(−4XY ) (21)

where X + Y = 1 is an SL-unit equation on L = K2(
√
β) (note that S′ be-

comes SL). By Theorem 5.3 (i) we only need to consider β ∈ O∗SK2
/(O∗SK2

)2

for our purpose. Hence we end up with the following cases:

• L0 = K2 = Q(a0) where a0 is a root of x2 − 26

• L1 = Q(a1) where a1 is a root of x4 − 50x2 + 729

• L2 = Q(a2) where a2 is a root of x4 − 10x2 − 1

• L3 = Q(a3) where a3 is a root of x4 − 56x2 + 576

• L4 = Q(a4) where a4 is a root of x4 + 10x2 − 1

• L5 = Q(a5) where a5 is a root of x4 − 48x2 + 784

• L6 = Q(a6) where a6 is a root of x4 − 20x2 − 4

• L7 = Q(a7) where a7 is a root of x4 + 20x2 − 4

We used the S-unit solver in Sage by A. Alvarado, A. Koutsianas, B. Malm-
skog, C. Rasmussen, D. Roe, C. Vincent, M. West in [1] to compute solutions
to the SL-unit equation X + Y = 1 over L0, L1, L2, L4, L5, L6, L7. See Ap-
pendix A. By Remark 5.4, it is enough to considerX+Y = 1 with σ(X) = Y
where σ is the generator of Gal(Li/K2) = {id, σ}, 1 ≤ i ≤ 7. This is partic-
ularly useful in the case of L3 and L6.
We check using Sage that for each of these solutions

vP̃(
α

β
)

(21)
= vP̃(−4XY ) ≤ 6vP̃(2).

Therefore, we are only left with the case L3. Here, we came across some
computational limitations of the above-mentioned S-unit solver, so we will
treat this case by studying how 2 lifts in L3.
The extension L3 is given by L3 = K2(

√
2). The prime decomposition of 2

is as follows: ®
(2)OK2 = P̃2 where P̃ = (2,

√
26)OK2

(2)OL3 = P2
L where PL = (

√
2)OL3

In particular, SK2 = {P̃} and SL3 = {PL}. We examine the SL3-unit
solutions of X + Y = 1 where we require X = σ(Y ) for σ the generator
of Gal(L3/K2) = {id, σ}. Note that σ(PL) = PL. Therefore vPL

(X) =
vPL

(Y ).
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Suppose vPL
(X) = vPL

(Y ) > 0, then PL|1, a contradiction. Hence, we have
vPL

(X) = vPL
(Y ) := s ≤ 0, giving XY = 2st, where t is a unit. Finally

vP̃(
α

β
)

(21)
= vP̃(−4XY ) = (2 + s)vP̃(2) ≤ 6vP̃(2).

By symmetry of α and β we get vP̃(βα) = −vP̃(αβ ) ≤ 6vP̃(2) and hence we
can conclude the proof by Theorem 1.5 as promised.

Corollary 6.3. Let K3 = Q(
√

35) and P̃ = (2,
√

35+1)OK3. Then ap+bp =
c2 does not have any non-trivial, primitive solution (a, b, c) in K3 such that
P̃|b whenever p ≥ BK3 where BK3 is a constant that depends only on K3.

Proof. As in the previous example, we prove that we are in the set-up of
Theorem 1.5, more precisely we want to show that for every solution (α, β)
to the SK3-unit equation α+ β = γ2 we get that |vP̃(αβ )| ≤ 6vP̃(2).
By the proof of Corollary 5.5 (i) applied on K3 = Q(

√
35) and S = SK3 , we

get
vP̃(

α

β
) = vP̃(−4XY ) (22)

where X + Y = 1 is an SL-unit equation of L = K2(
√
β) (note that S′ be-

comes SL). By Theorem 5.3 (i) we only need to consider β ∈ O∗SK3
/(O∗SK3

)2

for our purpose. Hence we end up with the following cases:

• L0 = K3 = Q(a0) where a0 is a root of x2 − 35

• L1 = Q(a1) where a1 is a root of x4 − 68x2 + 1296

• L2 = Q(a2) where a2 is a root of x4 − 12x2 + 1

• L3 = Q(a3) where a3 is a root of x4 − 74x2 + 1089

• L4 = Q(a4) where a4 is a root of x4 + 12x2 + 1

• L5 = Q(a5) where a5 is a root of x4 − 66x2 + 1369

• L6 = Q(a6) where a6 is a root of x4 − 24x2 + 4

• L7 = Q(a7) where a7 is a root of x4 + 24x2 + 4

As before, we used the S-unit solver in Sage by A. Alvarado, A. Koutsianas,
B. Malmskog, C. Rasmussen, D. Roe, C. Vincent, M. West in [1] to compute
solutions to the SL-unit equation X + Y = 1 over L0, L1, L4, L5, L7.
We came across some computational limitations of this S-unit solver for
the field extensions L2, L3 and L6. However, Benjamin Matschke kindly
offered to compute the S-unit equations in these cases, using his indepen-
dent S-unit solver which can be found at https://github.com/bmatschke/
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s-unit-equations.
All the above-mentioned solutions can be found in Appendix B. We check
using Sage that for each of these solutions

vP̃(
α

β
)

(21)
= vP̃(−4XY ) ≤ 6vP̃(2).

By symmetry of α and β we get vP̃(βα) = −vP̃(αβ ) ≤ 6vP̃(2) and hence we
can conclude the proof by Theorem 1.5 as promised.

Remark 6.4. The field extensions L that we need to inspect as part of
solving α+β = γ2 in Theorem 1.5 are the same as the ones in the assumptions
of Theorem 1.3. This is easy to see from the Kummer exact sequence in (3)
with n = 2.

Remark 6.5. The choice of the quadratic fields K2 = Q(
√

26) and K3 =
Q(
√

35) might seem aleatory, but the reason why we chose them this way is
because the S-unit solver seem to perform better on these number fields.

7 Examples for signature (p, p, 3)

We are in the set-up of Section 4, so recall the sets:

SK = {P : P is a prime of K above 3}

UK,P = {(a, b, c) ∈ O3
K : ap+bp = c3 with P|b}, where P ∈ SK is a fixed prime.

Corollary 7.1. Suppose K = Q(
√
d) with d a positive square-free integer

and d ≡ 2 mod 3. Then 3 is inert in K. Take P̃ = (3)OK . Assume
moreover that ClSK

(K)[3] is trivial. Then ap + bp = c3 does not have any
non-trivial, primitive solution (a, b, c) in K such that 3|b whenever p ≥ BK
where BK is a constant that depends only on K.

Proof. We prove that we are in the set-up of Theorem 1.7, more precisely we
want to show that for every solution (α, β) to the SK-unit equation α+β = γ3

we get that |vP̃(αβ )| ≤ 3vP̃(3).
We will make use of the notations in Theorem 5.3 (ii). Recall that α+β = γ3

leads to an equation

(γ − 3
√
β)(γ − ω 3

√
β)(γ − ω2 3

√
β) = α over K(ω, 3

√
β)

We denoted®
x := γ − 3

√
β, y := γ − ω 3

√
β, z := γ − ω2 3

√
β, L := K(ω, 3

√
β), if β 6= −1

x := γ + 1, y := γ + ω, z := γ + ω2, L := K(ω), if β = −1.

(23)
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Now, we slightly deviate from the proof of Theorem 5.3. As 3 is inert
in K, it follows that P̃ = (3)OK and SK = {(3)OK}. Thus, O∗SK

=

{3k for k integer}.
Case (1): If β 6= ±1 and β ∈ O∗SK

\ (O∗SK
)3 we have that [L : K] = 6

by (23). Standard algebraic number theory gives OL = OK(ω, 3
√
β). So, by

Dedekind Theorem, it follows that

(3)OL = P6
L.

Observe that x+ ω2y + ωz = −3 3
√
β. Denote

X̄ :=
−x

3 3
√
β
, Ȳ :=

−ω2y

3 3
√
β

and Z̄ :=
−ωz
3 3
√
β
.

Then, ®
X̄ + Ȳ + Z̄ = 1

X̄Ȳ Z̄ = −α(27β)−1 ∈ O∗SK

(24)

giving
vP̃(

α

β
) = vP̃(27X̄Ȳ Z̄)

Consider τ the element of Gal(L/K(ω)) such that τ( 3
√
β) = ω 3

√
β. Note that

τ(X̄) = Ȳ and τ(Ȳ ) = Z̄. Moreover, τ(PL) = PL.
Hence we get vPL

(X̄) = vPL
(Ȳ ) = vPL

(Z̄) =: s. If s > 0, we would get
PL|1 by (24), a contradiction. Thus, we always have s ≤ 0. By (24) again,
we get that vPL

(X̄Ȳ Z̄) = 3s must be a multiple of 6 as X̄Ȳ Z̄ ∈ O∗SK
. Thus

s = 2n for n ≤ 0. Consequently,

vP̃(
α

β
) = vP̃(27X̄Ȳ Z̄) = 3vP̃(3) + n ≤ 3vP̃(3) as n ≤ 0

.
Case (2): If β = ±1 and β ∈ (O∗SK

)3 we have that [L : K] = 2 by (23).
Standard algebraic number theory gives OL = OK(ω). So, by Dedekind
Theorem, it follows that

(3)OL = P2
L.

The argument follows exactly as in case (1) from here giving

vP̃(
α

β
) = vP̃(27X̄Ȳ Z̄) = 3vP̃(3) +m ≤ 3vP̃(3) for an integer m ≤ 0.

By symmetry of α and β we get vP̃(βα) = −vP̃(αβ ) ≤ 3vP̃(3) and hence we
can conclude the proof by Theorem 1.5 as promised.
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8 Further work

We plan to work further on the two main theorems and the corresponding
examples aiming to:

(i) give a more comprehensive set of examples for both the (p, p, 2) and
(p, p, 3) case;

(ii) compute the effective constant BK in some of the cases;

(iii) see if we can find out more about the solutions if we assume the Eichler-
Shimura modularity conjecture, for example, find a larger set than
UK,P̃ on which the asymptotic Fermat holds.
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Appendix A Solutions to S-unit equations for L/K2

Using the S-unit solver in Sage by A. Alvarado, A. Koutsianas, B. Malmskog,
C. Rasmussen, D. Roe, C. Vincent, M. West in [1] we got:

L0=NumberField ( x^2−26 )
SK−uni t s o l u t i o n s o f K are
[ ( ( 0 , 0 , 1 ) , (1 , 0 , 0 ) , 2 , −1) , ( ( 0 , 0 , −1) , (0 , 0 , −1) , 1/2 , 1/2 ) ]

L1.<a1>=NumberField ( x^4 − 50∗x^2 + 729 )
[ ( ( 3 , 0 , 2 ) , (2 , 0 , 0 ) , 2 , −1) , ( ( 1 , 0 , −1) , (0 , 0 , −1) ,
−1/108∗a1^3 + 23/108∗ a1 + 1/2 , 1/108∗ a1^3 − 23/108∗ a1 + 1/2) ,

( ( 1 , 0 , 0 ) , (3 , 0 , 1 ) , −1/54∗a1^3 + 23/54∗a1 , 1/54∗a1^3 − 23/54∗ a1 + 1) ,
( ( 0 , 0 , 1 ) , (3 , 0 , 0 ) , −1/54∗a1^3 + 23/54∗ a1 + 1 , 1/54∗a1^3 − 23/54∗ a1 ) ,
( ( 1 , 0 , −2) , (1 , 0 , −2) , 1/2 , 1/2 ) ]

L2.<a2>=NumberField ( x^4 − 10∗x^2 − 1 )
[ ( ( 1 , 0 , 1 , 2 ) , (1 , 0 , 0 , 0 ) , 2 , −1) ,
( ( 1 , 0 , −1, −2) , (1 , 0 , −1, −2) , 1/2 , 1/2 ) ]

L3.<a3>=NumberField ( x^4 − 56∗x^2 + 576 )
S−uni t s o l v e r got a SystemExit e r r o r .

L4.<a4>=NumberField ( x^4 + 10∗x^2 − 1 )
[ ( ( 1 , 0 , 1 , 2 ) , (1 , 0 , 0 , 0 ) , 2 , −1) ,
( ( 1 , 0 , −1, −2) , (1 , 0 , −1, −2) , 1/2 , 1/2 ) ]

L5.<a5>=NumberField ( x^4 − 48∗x^2 + 784 )
[ ( ( 1 , 0 , 1 , 2 ) , (1 , 0 , 0 , 0 ) , 2 , −1) ,
( ( 1 , 0 , −1, −2) , (1 , 0 , −1, −2) , 1/2 , 1/2 ) ]

L6.<a6>=NumberField ( x^4 − 20∗x^2 − 4 )
[ ( ( 0 , 1 , 0 , 2 ) , (1 , 0 , 0 , 0 ) , 2 , −1) ,
( ( 1 , 3 , 1 , 4 ) , (0 , 1 , 2 , 0 ) , a6^3 − 4∗a6^2 − 2∗a6 ,
−a6^3 + 4∗a6^2 + 2∗a6 + 1) , ( ( 1 , −3, −1, −4) , (0 , −2, 1 , −4) ,

−1/16∗a6^3 + 11/8∗a6 + 1/2 , 1/16∗a6^3 − 11/8∗a6 + 1/2) ,
( ( 0 , −1, −2, 0 ) , (0 , 2 , −1, 4 ) , a6^3 + 4∗a6^2 − 2∗a6 + 1 ,
−a6^3 − 4∗a6^2 + 2∗a6 ) , ( ( 0 , −1, 0 , −2) , (0 , −1, 0 , −2) , 1/2 , 1/2 ) ]

L7.<a7>=NumberField ( x^4 + 20∗x^2 − 4 )
[ ( ( 0 , 1 , 0 , 2 ) , (1 , 0 , 0 , 0 ) , 2 , −1) , ( ( 1 , 3 , 1 , 4 ) , (0 , 1 , 2 , 0 ) ,
−9∗a7^3 − 4∗a7^2 − 182∗a7 − 80 , 9∗a7^3 + 4∗a7^2 + 182∗a7 + 81) ,
( ( 1 , −3, −1, −4) , (0 , −2, 1 , −4) , −1/16∗a7^3 − 9/8∗a7 + 1/2 ,
1/16∗a7^3 + 9/8∗a7 + 1/2 ) , ( ( 0 , −1, −2, 0 ) , (0 , 2 , −1, 4 ) ,
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−9∗a7^3 + 4∗a7^2 − 182∗a7 + 81 , 9∗a7^3 − 4∗a7^2 + 182∗a7 − 80) ,
( ( 0 , −1, 0 , −2) , (0 , −1, 0 , −2) , 1/2 , 1/2 ) ]

Appendix B Solutions to S-unit equations for L/K3

L0, L1, L4, L5, L7 are computed using the open-source S-unit solver in Sage
by A. Alvarado, A. Koutsianas, B. Malmskog, C. Rasmussen, D. Roe, C.
Vincent, M. West in [1].
L2, L3, L6 are computed using Benjamin Matschke’s S-unit solver which can
be found at https://github.com/bmatschke/s-unit-equations.

L0=NumberField ( x^2−35 )
[ ( ( 0 , 0 , 1 ) , (1 , 0 , 0 ) , 2 , −1) , ( ( 0 , 0 , −1) , (0 , 0 , −1) , 1/2 , 1/2 ) ]

L1.<a1>=NumberField ( x^4 − 68∗x^2 + 1296 )
[ ( ( 3 , 0 , 2 ) , (2 , 0 , 0 ) , 2 , −1) , ( ( 0 , 0 , −1) , (1 , 0 , −1) ,
−1/144∗c^3 + 2/9∗ c + 1/2 , 1/144∗ c^3 − 2/9∗ c + 1/2) ,
( ( 1 , 0 , 0 ) , (3 , 0 , 1 ) , 1/72∗ c^3 − 4/9∗c , −1/72∗c^3 + 4/9∗ c + 1) ,
( ( 0 , 0 , 1 ) , (3 , 0 , 0 ) , 1/72∗ c^3 − 4/9∗ c + 1 , −1/72∗c^3 + 4/9∗ c ) ,
( ( 1 , 0 , −2) , (1 , 0 , −2) , 1/2 , 1/2 ) ]

L2.<a2>=NumberField ( x^4 − 12∗x^2 + 1 )
S−uni t s o l v e r got a SystemExit e r r o r .

[
"−14∗x^3 + 48∗x^2 + 2∗x − 3" ,
"2" ,
"5/4∗x^3 − 59/4∗x + 1/2" ,
"1/2" ,
"1/4∗x^3 − 7/4∗x + 1/2" ,
"−4∗x^3 + 52∗x − 15" ,
"1/8∗x^3 − 13/8∗x + 1/2" ,
"−166∗x^3 − 48∗x^2 + 1978∗x + 573" ,
"166∗x^3 + 48∗x^2 − 1978∗x − 572" ,
"−1/8∗x^3 + 13/8∗x + 1/2" ,
"−1/4∗x^3 + 7/4∗x + 1/2" ,
"−5/4∗x^3 + 59/4∗x + 1/2" ,
"−4∗x^3 + 52∗x + 16" ,
"−14∗x^3 − 48∗x^2 + 2∗x + 4" ,
"−166∗x^3 + 48∗x^2 + 1978∗x − 572" ,
"4∗x^3 − 52∗x + 16" ,
"14∗x^3 − 48∗x^2 − 2∗x + 4" ,
"14∗x^3 + 48∗x^2 − 2∗x − 3" ,
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"4∗x^3 − 52∗x − 15" ,
"−1",
"166∗x^3 − 48∗x^2 − 1978∗x + 573"

]
L3.<a3>=NumberField ( x^4 − 74∗x^2 + 1089 )
S−uni t s o l v e r got a SystemExit e r r o r .

" s e t o f va lue s f o r x " : [
"2" ,
"1/132∗ a3^3 − 41/132∗ a3 + 1" ,
"1/2" ,
"−1/132∗a3^3 + 41/132∗ a3 + 1/2" ,
"−1/33∗a3^3 + 41/33∗ a3 + 4" ,
"−1/264∗a3^3 + 41/264∗ a3 + 1/2" ,
"1/33∗ a3^3 − 41/33∗ a3 − 3" ,
"1/33∗ a3^3 − 41/33∗ a3 + 4" ,
"−1/33∗a3^3 + 41/33∗ a3 − 2" ,
"1/264∗ a3^3 − 41/264∗ a3 + 1/2" ,
"−2/11∗a3^3 + 82/11∗ a3 + 17" ,
"2/11∗ a3^3 − 82/11∗ a3 + 17" ,
"1/66∗ a3^3 − 41/66∗ a3 " ,
"1/33∗ a3^3 − 41/33∗ a3 + 3" ,
"1/176∗ a3^3 − 41/176∗ a3 + 1/2" ,
"2/11∗ a3^3 − 82/11∗ a3 − 16" ,
"−1/132∗a3^3 + 41/132∗ a3 " ,
"1/132∗ a3^3 − 41/132∗ a3 + 1/2" ,
"−1/66∗a3^3 + 41/66∗ a3 + 2" ,
"1/66∗ a3^3 − 41/66∗ a3 + 2" ,
"−1/66∗a3^3 + 41/66∗ a3 − 1" ,
"−1/66∗a3^3 + 41/66∗ a3 + 1" ,
"−1/176∗a3^3 + 41/176∗ a3 + 1/2" ,
"1/33∗ a3^3 − 41/33∗ a3 − 2" ,
"−2/11∗a3^3 + 82/11∗ a3 − 16" ,
"−1/33∗a3^3 + 41/33∗ a3 − 3" ,
"−1/66∗a3^3 + 41/66∗ a3 " ,
"1/66∗ a3^3 − 41/66∗ a3 + 1" ,
"1/132∗ a3^3 − 41/132∗ a3 " ,
"1/66∗ a3^3 − 41/66∗ a3 − 1" ,
"−1/33∗a3^3 + 41/33∗ a3 + 3" ,
"−1/132∗a3^3 + 41/132∗ a3 + 1" ,
"−1"

]
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L4.<a4>=NumberField ( x^4 + 12∗x^2 + 1 )
[ ( ( 0 , 0 , 1 ) , (1 , 0 , 0 ) , 2 , −1) , ( ( 0 , 0 , −1) , (0 , 0 , −1) , 1/2 , 1/2 ) ]

L5.<a5>=NumberField ( x^4 − 66∗x^2 + 1369 )
[ ( ( 1 , 0 , 2 ) , (1 , 0 , 0 ) , 2 , −1) , ( ( 1 , 0 , −2) , (1 , 0 , −2) , 1/2 , 1/2 ) ]

L6.<a6>=NumberField ( x^4 − 24∗x^2 + 4 )
S−uni t s o l v e r got a SystemExit e r r o r .

" s e t o f va lue s f o r x " : [
"2" ,
"1/8∗a6^2 + 3/4∗a6 + 3/4" ,
"−1/8∗a6^2 + 3/4∗a6 + 1/4" ,
"−39/4∗a6^3 + 4∗a6^2 + 465/2∗ a6 − 95" ,
"−a6^3 + 22∗a6 + 9" ,
"3/4∗a6^3 + 1/4∗a6^2 − 18∗a6 − 13/2" ,
"−3/16∗a6^3 − 1/8∗a6^2 + 39/8∗a6 + 2" ,
"3/4∗a6^3 + 1/4∗a6^2 − 18∗a6 − 11/2" ,
"3/16∗ a6^3 + 1/8∗a6^2 − 39/8∗a6 − 1" ,
"3/8∗a6^3 + 1/8∗a6^2 − 9∗a6 − 11/4" ,
"a6^3 − 22∗a6 + 9" ,
"59/4∗ a6^3 + 6∗a6^2 − 703/2∗ a6 − 143" ,
"−3/4∗a6^3 + 1/4∗a6^2 + 18∗a6 − 13/2" ,
"−3/4∗a6^3 + 1/4∗a6^2 + 18∗a6 − 11/2" ,
"−3/16∗a6^3 + 1/8∗a6^2 + 39/8∗a6 − 1" ,
"−3/8∗a6^3 + 1/8∗a6^2 + 9∗a6 − 11/4" ,
"39/4∗ a6^3 + 4∗a6^2 − 465/2∗ a6 − 95" ,
"−1/4∗a6^3 + 11/2∗a6 − 1" ,
"−1/4∗a6^3 + 11/2∗a6 − 2" ,
"3/64∗ a6^3 − 39/32∗ a6 + 1/2" ,
"−1/8∗a6^3 + 11/4∗a6 − 1/2" ,
"1/4∗a6^3 − 11/2∗a6 − 2" ,
"1/4∗a6^3 − 11/2∗a6 − 1" ,
"1/8∗a6^3 − 11/4∗a6 − 1/2" ,
"39/4∗ a6^3 − 4∗a6^2 − 465/2∗ a6 + 96" ,
"−59/4∗a6^3 − 6∗a6^2 + 703/2∗ a6 + 144" ,
"−59/4∗a6^3 + 6∗a6^2 + 703/2∗ a6 − 143" ,
"1/2" ,
"5/4∗a6^3 + 6∗a6^2 − 1/2∗a6 " ,
"−12∗a6^3 + 312∗a6 + 128" ,
"3/4∗a6^3 + 4∗a6^2 + 3/2∗a6 " ,
"−1/4∗a6^2 − 3/2∗a6 − 1/2" ,
"−5/4∗a6^3 + 6∗a6^2 + 1/2∗a6 " ,
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"−3/64∗a6^3 + 39/32∗ a6 + 1/2" ,
"−1/8∗a6^3 + 5/4∗a6 + 1/2" ,
"−1/4∗a6^3 + 11/2∗a6 + 3" ,
"−1/4∗a6^3 + 11/2∗a6 + 2" ,
"−1/8∗a6^3 + 11/4∗a6 + 1/2" ,
"3/4∗a6^3 − 4∗a6^2 + 3/2∗a6 + 1" ,
"−1/8∗a6^3 + 11/4∗a6 + 3/2" ,
"−5/4∗a6^3 − 6∗a6^2 + 1/2∗a6 + 1" ,
"12∗a6^3 − 312∗a6 − 127" ,
"−3/4∗a6^3 − 4∗a6^2 − 3/2∗a6 + 1" ,
"5/4∗a6^3 − 6∗a6^2 − 1/2∗a6 + 1" ,
"−3/4∗a6^3 + 4∗a6^2 − 3/2∗a6 " ,
"−1/16∗a6^3 + 11/8∗a6 + 1/4" ,
"1/4∗a6^3 − 11/2∗a6 + 2" ,
"−1/16∗a6^3 + 11/8∗a6 + 3/4" ,
"−1/16∗a6^3 + 11/8∗a6 + 1/2" ,
"1/4∗a6^3 − 11/2∗a6 + 3" ,
"59/4∗ a6^3 − 6∗a6^2 − 703/2∗ a6 + 144" ,
"1/8∗a6^3 − 11/4∗a6 + 1/2" ,
"1/8∗a6^3 − 11/4∗a6 + 3/2" ,
"−39/4∗a6^3 − 4∗a6^2 + 465/2∗ a6 + 96" ,
"−1/4∗a6^2 + 3/2∗a6 − 1/2" ,
"1/8∗a6^3 − 5/4∗a6 + 1/2" ,
"1/4∗a6^2 − 3/2∗a6 + 3/2" ,
"1/16∗ a6^3 − 11/8∗a6 + 1/4" ,
"1/16∗ a6^3 − 11/8∗a6 + 1/2" ,
"1/16∗ a6^3 − 11/8∗a6 + 3/4" ,
"−1/4∗a6^2 − 3/2∗a6 + 1/2" ,
"1/4∗a6^2 − 3/2∗a6 + 1/2" ,
"1/8∗a6^2 − 3/4∗a6 + 3/4" ,
"3/4∗a6^3 − 1/4∗a6^2 − 18∗a6 + 13/2" ,
"−a6^3 + 22∗a6 − 8" ,
"3/4∗a6^3 − 1/4∗a6^2 − 18∗a6 + 15/2" ,
"−1/8∗a6^2 − 3/4∗a6 + 1/4" ,
"−12∗a6^3 + 312∗a6 − 127" ,
"a6^3 − 22∗a6 − 8" ,
"3/8∗a6^3 − 1/8∗a6^2 − 9∗a6 + 15/4" ,
"−7/8∗a6^3 + 83/4∗a6 + 1/2" ,
"3/16∗ a6^3 − 1/8∗a6^2 − 39/8∗a6 + 2" ,
"12∗a6^3 − 312∗a6 + 128" ,
"−3/4∗a6^3 − 1/4∗a6^2 + 18∗a6 + 15/2" ,
"−3/4∗a6^3 − 1/4∗a6^2 + 18∗a6 + 13/2" ,
"7/8∗a6^3 − 83/4∗a6 + 1/2" ,
"−1",
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"1/4∗a6^2 + 3/2∗a6 + 3/2" ,
"−1/4∗a6^2 + 3/2∗a6 + 1/2" ,
"1/4∗a6^2 + 3/2∗a6 + 1/2" ,
"−3/8∗a6^3 − 1/8∗a6^2 + 9∗a6 + 15/4" ]

L7.<a7>=NumberField ( x^4 + 24∗x^2 + 4 )
[ ( ( 1 , 0 , 2 ) , (1 , 0 , 0 ) , 2 , −1) , ( ( 1 , 0 , −2) , (1 , 0 , −2) , 1/2 , 1/2 ) ]
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