

Diophantine Equations using the Modular Approach

Diana Mocanu, University of Warwick

Tue 22nd Oct, 2024

Outline

- 1. [Introduction Chapter 1](#page-2-0)
- 2. [The Modular Method Chapter 2](#page-7-0)
- 3. Signatures $(p, p, 2)$ and $(p, p, 3)$ [Chapter 3](#page-18-0)
- 4. Signature (r, r, p) [Chapter 4](#page-25-0)
- 5. [First step in Darmon's Program Chapter 5](#page-33-0)

[Introduction - Chapter 1](#page-2-0)

$$
a^p + b^q = c^r, \quad p, q, r \text{ primes.}
$$

A solution $(a, b, c) \in \mathbb{Z}^3$ is called non-trivial if $abc \neq 0$ and primitive if $\gcd(a, b, c) = 1$.

$$
a^p + b^q = c^r, \quad p, q, r \text{ primes.}
$$

A solution $(a, b, c) \in \mathbb{Z}^3$ is called non-trivial if $abc \neq 0$ and primitive if $\gcd(a, b, c) = 1$.

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p, q, r satisfying $1/p + 1/q + 1/r < 1$ the above equation has only finitely many integer solutions (a, b, c) which are non-trivial and primitive. (Here solutions like $2^3 + 1^q = 3^2$ are counted only once.)

$$
a^p + b^q = c^r, \quad p, q, r \text{ primes } \ge 2.
$$

We call (p, q, r) the signature of the equation.

$$
a^p + b^q = c^r, \quad p, q, r \text{ primes } \ge 2.
$$

We call (p, q, r) the signature of the equation. Some families of signatures that have been 'solved':

•
$$
(p, p, p), p \geq 3
$$
 Wiles, Taylor–Wiles 1995;

- $(p, p, 2), p > 4$ and $(p, p, 3), p > 3$ Darmon–Merel, Poonen 1998;
- $(11, 11, p)^*, p \ge 2$, Billerey, Chen, Dieulefait, Freitas 2022 (BCDF22);
- $(13, 13, p)^*, (19, 19, p)^*, (23, 23, p)^*, (37, 37, p)^*, (43, 43, p)^*, p$ large enough M. 2022.

[The Modular Method - Chapter 2](#page-7-0)

Let K be a totally real number field. We say the asymptotic Fermat Last Theorem holds for

$$
a^p + b^p = c^p
$$

if there is some bound B_K such that for all $p > B_K$, the equation has no non-trivial (i.e. $abc \neq 0$), primitive (i.e. $a\mathcal{O}_K + b\mathcal{O}_K + c\mathcal{O}_K = \mathcal{O}_K$) solutions $(a, b, c) \in \mathcal{O}_K^3$.

Let K be a totally real number field. We say the asymptotic Fermat Last Theorem holds for

$$
a^p + b^p = c^p
$$

if there is some bound B_K such that for all $p > B_K$, the equation has no non-trivial (i.e. $abc \neq 0$), primitive (i.e. $a\mathcal{O}_K + b\mathcal{O}_K + c\mathcal{O}_K = \mathcal{O}_K$) solutions $(a, b, c) \in \mathcal{O}_K^3$.

Theorem (Freitas-Siksek, 2014)

Let $d \geq 2$ be squarefree such that $d \equiv 3 \mod 8$. Then the effective asymptotic Fermat's Last Theorem holds over $K = \mathbb{Q}(\sqrt{d})$.

Idea: Diophantine equations \rightarrow S-unit equations (finetely many computable solutions)

Let K as above, denote by $\mathfrak P$ its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

Let K as above, denote by $\mathfrak P$ its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

• Frey curve:

$$
E(a,b,c)/K: y^2=x(x-a^p)(x+b^p)\\
$$

with $\mathcal{N}_E = \mathfrak{P}^r \prod$ q. $q|abc$, q∤2

Let K as above, denote by $\mathfrak V$ its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

• Frey curve:

$$
E(a,b,c)/K: y^2=x(x-a^p)(x+b^p)
$$

- with $\mathcal{N}_E = \mathfrak{P}^r \prod$ q. $q|abc$, q∤2
- **Modularity (Freitas-Siksek):**

elliptic curves / totally real fields $E/K \leadsto H$ ilbert modular forms of level \mathcal{N}_E

Let K as above, denote by $\mathfrak V$ its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

• Frey curve:

.

$$
E(a,b,c)/K: y^2=x(x-a^p)(x+b^p)
$$

- with $\mathcal{N}_E = \mathfrak{P}^r \prod$ q. q $|abc,$ q∤2
- Modularity (Freitas-Siksek):

elliptic curves / totally real fields $E/K \leadsto H$ ilbert modular forms of level \mathcal{N}_E

• Irreducibility, Level Lowering (Freitas-Siksek): for p large enough $E/K \sim$ Hilbert modular form f of level

$$
\mathcal{N}_p = \mathfrak{P}^{r'}, \quad 0 \le r' \le r \le 14
$$

 \bullet Eichler-Shimura curve: for p large enough

 $E/K \leadsto \mathfrak{f} \leadsto E'/K$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'}=\mathcal{N}_p=\mathfrak{P}^{r'};$

 \bullet Eichler-Shimura curve: for p large enough

 $E/K \leadsto \mathfrak{f} \leadsto E'/K$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'}=\mathcal{N}_p=\mathfrak{P}^{r'};$

• Image of inertia comparison: E' has potentially multiplicative reduction at \mathfrak{P} ;

 \bullet Eichler-Shimura curve: for p large enough

$$
E/K\leadsto \mathfrak{f}\leadsto E'/K
$$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'}=\mathcal{N}_p=\mathfrak{P}^{r'};$

- Image of inertia comparison: E' has potentially multiplicative reduction at \mathfrak{P} ;
- S -unit equations: all such elliptic curves E^\prime are parametrized by S -unit equations

$$
\lambda + \mu = 1,
$$

where $S:=\{\mathfrak{P}\}\text{, }\lambda,\mu\in\mathcal{O}^*_S$ such that

 $\max(|v_{\mathfrak{B}}(\lambda)|, |v_{\mathfrak{B}}(\mu)|) > 8;$

• Eichler-Shimura curve: for p large enough

$$
E/K\leadsto \mathfrak{f}\leadsto E'/K
$$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'}=\mathcal{N}_p=\mathfrak{P}^{r'};$

- Image of inertia comparison: E' has potentially multiplicative reduction at \mathfrak{P} ;
- S -unit equations: all such elliptic curves E^\prime are parametrized by S -unit equations

$$
\lambda + \mu = 1,
$$

where $S:=\{\mathfrak{P}\}\text{, }\lambda,\mu\in\mathcal{O}^*_S$ such that

 $\max(|v_{\mathfrak{B}}(\lambda)|, |v_{\mathfrak{B}}(\mu)|) > 8;$

• Contradiction: such pairs (λ, μ) do not exist.

Signatures $(p, p, 2)$ and $(p, p, 3)$ [- Chapter 3](#page-18-0)

Theorem (M. 2021)

Let $d > 5$ be a rational prime satisfying $d \equiv 5 \mod 8$. Write $K = \mathbb{Q}(\sqrt{3})$ $(d).$ Then, there is a constant B_K such that for each rational prime $p > B_K$, the equation

$$
a^p + b^p = c^2
$$

has no coprime, non-trivial solutions $(a, b, c) \in \mathcal{O}_K^3$ with $2|b$.

Signature $(p, p, 2)$

Let K as above and denote by 2 the unique (inert) prime above 2. Assume $a^p + b^p = c^2$ with $(a,b,c) \in (\mathcal{O}_K)^3$ non-trivial, primitive and $2|b.$

• Modularity machinery \rightsquigarrow find solutions to

$$
\alpha + \beta = \gamma^2 \tag{3.1}
$$

$$
\text{ where } S=\{2\},\ \alpha,\beta\in\mathcal{O}_S^*,\ \text{and}\ \gamma\in\mathcal{O}_S\ \text{such that}\ |v_2(\tfrac{\alpha}{\beta})|>6.
$$

Signature $(p, p, 2)$

Let K as above and denote by 2 the unique (inert) prime above 2. Assume $a^p + b^p = c^2$ with $(a,b,c) \in (\mathcal{O}_K)^3$ non-trivial, primitive and $2|b.$

• Modularity machinery \rightsquigarrow find solutions to

$$
\alpha + \beta = \gamma^2 \tag{3.1}
$$

where $S=\{2\}$, $\alpha,\beta\in\mathcal{O}^*_S$, and $\gamma\in\mathcal{O}_S$ such that $|v_2(\frac{\alpha}{\beta})|$ $\frac{\alpha}{\beta})| > 6.$

• Class Field Theory \rightsquigarrow relate [\(3.1\)](#page-20-0) to an S-unit equation

$$
\lambda + \mu = 1,\tag{3.2}
$$

such that $|v_2(\lambda \mu)| > 4$.

Signature $(p, p, 2)$

Let K as above and denote by 2 the unique (inert) prime above 2. Assume $a^p + b^p = c^2$ with $(a,b,c) \in (\mathcal{O}_K)^3$ non-trivial, primitive and $2|b.$

• Modularity machinery \rightsquigarrow find solutions to

$$
\alpha + \beta = \gamma^2 \tag{3.1}
$$

where $S=\{2\}$, $\alpha,\beta\in\mathcal{O}^*_S$, and $\gamma\in\mathcal{O}_S$ such that $|v_2(\frac{\alpha}{\beta})|$ $\frac{\alpha}{\beta})| > 6.$

• Class Field Theory \rightsquigarrow relate [\(3.1\)](#page-20-0) to an S-unit equation

$$
\lambda + \mu = 1,\tag{3.2}
$$

such that $|v_2(\lambda \mu)| > 4$.

• Contradiction: the only solutions to [\(3.2\)](#page-20-1) are the so-called *irrelevant* solutions $(-1, 2), (1/2, 1/2), (2, -1).$

Theorem (M. 2021)

Let d a positive, square-free satisfying $d \equiv 2 \mod 3$. Write $K = \mathbb{Q}(\sqrt{3})$ (d) and suppose $3\nmid h_{K(\zeta_3)},\, 3\nmid h_K.$ Then, there is a constant B_K such that for each prime $p>B_K$, the equation

$$
a^p + b^p = c^3
$$

has no coprime, non-trivial solutions $(a, b, c) \in \mathcal{O}_K^3$ with $3 \mid b$.

S-unit equations and computabiity

Theorem

Let K be a number field and S a finite set of prime ideals. Consider the equation

$$
\alpha + \beta = \gamma^i, \ \alpha, \beta \in \mathcal{O}_S^*, \ \ \gamma \in \mathcal{O}_S.
$$

For $i = 2, 3$, the equation has a finite number of solutions up to scaling.

Idea of the proof: break it down in several S -unit equations over some L/K

Signature (r, r, p) [- Chapter 4](#page-25-0)

Theorem (M. 2022)

There exists a constant B_r depending on r such that the equation

 $a^r + b^r = c^p$

no non-trivial, primitive, integer solutions with $2 | c$ and $p > B_r$ for

 $r \in \{5, 7, 11, 13, 19, 23, 37, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 131, 139, 149\}.$

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime and $2 \mid c$.

Frey curve Define $E(a, b)/\mathbb{Q}(\zeta_r + \zeta_r^{-1})$ as follows. Consider

$$
a^r + b^r = (a+b)(a+\zeta_r b)(a+\zeta_r^2 b) \cdots (a+\zeta_r^{r-2} b)(a+\zeta_r^{r-1} b).
$$

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime and $2 \mid c$.

Frey curve Define $E(a, b)/\mathbb{Q}(\zeta_r + \zeta_r^{-1})$ as follows. Consider

$$
a^r + b^r = (a+b)(a+\zeta_r b)(a+\zeta_r^2 b) \cdots (a+\zeta_r^{r-2} b)(a+\zeta_r^{r-1} b).
$$

Let

$$
f_k(a,b) = a^2 + (\zeta_r^k + \zeta_r^{r-k})ab + b^2, \quad 0 \le k \le \frac{r-1}{2}.
$$

Signature (r, r, p)

We find (α, β, γ) such that

$$
\alpha f_{k_1} + \beta f_{k_2} + \gamma f_{k_3} = 0
$$

for some suitable chosen $0\leq k_1 < k_2 < k_3 \leq \frac{r-1}{2}$ $\frac{-1}{2}$. Write $A=\alpha f_{k_1}, B=\beta f_{k_2}, C=\gamma f_{k_3}$ and define

$$
E: y^2 = x(x - A)(x + B). \tag{4.1}
$$

Let $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1}),$ 2 is inert for the specified values of $r,$ and let \mathfrak{P}_r be the unique prime above r.

• Modularity machinery \rightsquigarrow find solutions to the S-unit equation

$$
\lambda + \mu = 1
$$

where $S:=\{2, \mathfrak{P}_r\}$ such that $2^5 |\lambda.$

Let $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1}),$ 2 is inert for the specified values of $r,$ and let \mathfrak{P}_r be the unique prime above r.

• Modularity machinery \rightsquigarrow find solutions to the S-unit equation

$$
\lambda + \mu = 1
$$

where $S:=\{2, \mathfrak{P}_r\}$ such that $2^5 |\lambda.$

• Class Field Theory argument \leadsto construct (λ_n, μ_n) with $v_2(\lambda_{n+1}) > v_2(\lambda_n)$.

Let $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1}),$ 2 is inert for the specified values of $r,$ and let \mathfrak{P}_r be the unique prime above r.

• Modularity machinery \rightsquigarrow find solutions to the S-unit equation

$$
\lambda + \mu = 1
$$

where $S:=\{2, \mathfrak{P}_r\}$ such that $2^5 |\lambda.$

- Class Field Theory argument \leadsto construct (λ_n, μ_n) with $v_2(\lambda_{n+1}) > v_2(\lambda_n)$.
- \bullet Contradiction: Infinite descent on finiteness of solutions of S -unit equations.

[First step in Darmon's Program - Chapter 5](#page-33-0)

Darmon's Program

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime.

- Frey representation: Kraus constructs a family of hyperelliptic curves $C_r(a, b)$
- Compute the conductor of $C_r(a, b)$ = conductor of the *l*-adic representation $\rho_{J_r,l}$.

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime.

- Frey representation: Kraus constructs a family of hyperelliptic curves $C_r(a, b)$
- Compute the conductor of $C_r(a, b) =$ conductor of the *l*-adic representation $\rho_{J_r,j}$.
- BCDF22 show that $Jac(C_r) \otimes K \rightarrow$

$$
\rho_{J_r,\lambda}: G_K \to GL_2(K_{\lambda}).
$$

where $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1})$ and $J_r:=\mathsf{Jac}(C_r)$

- Modularity, Irreducibility, Level Lowering apply to $\rho_{J_r,\lambda}$.
- BCDF22 \rightsquigarrow (11, 11, p) has no solution with $2|a+b$ or $11|a+b$.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a, b, c) \in \mathbb{Z}^3$ such that $a^r + b^r = c^p$ define

$$
C_r(a,b): y^2 = (ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r
$$

 $f_r(a,b)$

where $h_r(x):=\prod_{j=1}^{\frac{r-1}{2}}(x-(\zeta_r^j+\zeta_r^{-j}))$ the defining polynomial of $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1}).$ $C_r(a, b)$ is a hyperelliptic curve of genus $\frac{r-1}{2}$.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a, b, c) \in \mathbb{Z}^3$ such that $a^r + b^r = c^p$ define

$$
C_r(a,b): y^2 = (ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r
$$

 $f_r(a,b)$

where $h_r(x):=\prod_{j=1}^{\frac{r-1}{2}}(x-(\zeta_r^j+\zeta_r^{-j}))$ the defining polynomial of $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1}).$ $C_r(a, b)$ is a hyperelliptic curve of genus $\frac{r-1}{2}$.

Example

•
$$
r = 5 : C_5(a, b) : y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5
$$

$$
\bullet \ r = 7 : C_7(a, b) : y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7
$$

Frey curve and Conductor

The discriminant of the curve is

$$
\Delta(C_r(a,b)) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r c^{p(r-1)}.
$$

Frey curve and Conductor

The discriminant of the curve is

$$
\Delta(C_r(a,b)) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r c^{p(r-1)}.
$$

Theorem (ACKMM24 (\star))

The conductor of $C_r(a, b)/K$ at odd primes is

$$
\mathcal{N}=2^{e_2}\mathfrak{p}_r^{r-1}\prod_{\mathfrak{q}\mid c}\mathfrak{q}^{(r-1)/2}.
$$

In particular, J_r is semistable at all primes not dividing $2r$.

 (\star) joint work with Martin Azon, Mar Curcó-Iranzo, Maleeha Khawaja, Céline Maistret

Cluster Pictures

Example

Consider the hyperelliptic curve

$$
C: y2 = x(x - p2)(x - 3p2)(x - 1)(x - 1 + p4)(x - 1 - p4)
$$

where $p \geq 5$ is a prime. Its cluster picture at p is given by

$$
\boxed{\textcircled{\bullet}\textcircled{\bullet}_2\textcircled{\bullet}\textcircled{\bullet}_4}_0.
$$

Recall $C_r(a, b)/K$: $y^2 = f_r(a, b)$.

The roots of $f_r(a, b)$ are given by $\alpha_i := \zeta_r^i a - \zeta_r^{-i} b$, where $i = 0, \ldots, r - 1$.

Recall $C_r(a, b)/K$: $y^2 = f_r(a, b)$.

- The roots of $f_r(a, b)$ are given by $\alpha_i := \zeta_r^i a \zeta_r^{-i} b$, where $i = 0, \ldots, r 1$.
- The cluster pictures of $C_r(a, b)$ at odd bad primes q of K are given as follows:

1.
$$
\boxed{\bulletledcirc_n \bulletledcirc_n \quad \cdots \quad \bulletledcirc_n \bullet_0}, \text{ if } \mathfrak{q} \neq \mathfrak{p}_r \text{ and } \mathfrak{q} \mid c. \text{ Here } n := pv_{\mathfrak{q}}(c) \in \mathbb{Z}.
$$

2. **0000**
$$
\cdots
$$
 00 _{$\frac{1}{2}$} , if $q = p_r$ and $p_r \nmid c$.

3. $\textcircled{\tiny{\bullet}}_m \textcircled{\tiny{\bullet}}_m \cdots \textcircled{\tiny{\bullet}}_m \textcircled{\tiny{\bullet}}_1$, if $\mathfrak{q} = \mathfrak{p}_r$ and $\mathfrak{p}_r \mid c$. Here $m = \frac{r-1}{2}$ $\frac{-1}{2}v_r(a+b) - \frac{1}{2}$ $rac{1}{2}$.

where \mathfrak{p}_r is the unique prime above r in K.

Semistable case: $q \neq p_r, q|c$

Theorem (Dokchitser–Dokchitser–Maistret–Morgan, 2017)

Suppose C/K is semistable at a prime q. Then the exponent of the conductor at q is the number of "twins".

Semistable case: $q \neq p_r, q|c$

Theorem (Dokchitser–Dokchitser–Maistret–Morgan, 2017)

Suppose C/K is semistable at a prime q. Then the exponent of the conductor at q is the number of "twins".

 \rightsquigarrow exponent of q in the conductor is $\frac{r-1}{2}$

Conductors from the Cluster Pictures

Using a more general Theorem from DDMM17

$$
\mathcal{N}=2^{e_2}\mathfrak{p}_r^{r-1}\prod_{\mathfrak{q}|c}\mathfrak{q}^{(r-1)/2}.
$$

Thank you!