

Diophantine Equations using the Modular Approach

Diana Mocanu, University of Warwick

Tue 22nd Oct, 2024

Outline

- 1. Introduction Chapter 1
- 2. The Modular Method Chapter 2
- 3. Signatures (p, p, 2) and (p, p, 3) Chapter 3
- 4. Signature (r, r, p) Chapter 4
- 5. First step in Darmon's Program Chapter 5

Introduction - Chapter 1

$$a^p + b^q = c^r, \quad p, q, r \text{ primes.}$$

A solution $(a, b, c) \in \mathbb{Z}^3$ is called **non-trivial** if $abc \neq 0$ and **primitive** if gcd(a, b, c) = 1.

$$a^p+b^q=c^r, \quad p,q,r$$
 primes.

A solution $(a, b, c) \in \mathbb{Z}^3$ is called **non-trivial** if $abc \neq 0$ and **primitive** if gcd(a, b, c) = 1.

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p, q, r satisfying 1/p + 1/q + 1/r < 1 the above equation has only finitely many integer solutions (a, b, c) which are non-trivial and primitive. (Here solutions like $2^3 + 1^q = 3^2$ are counted only once.)

$$a^p + b^q = c^r$$
, p, q, r primes ≥ 2 .

We call (p,q,r) the signature of the equation.

$$a^p + b^q = c^r$$
, p, q, r primes ≥ 2 .

We call (p,q,r) the signature of the equation. Some families of signatures that have been 'solved':

- $(p, p, p), p \ge 3$ Wiles, Taylor–Wiles 1995;
- $(p, p, 2), p \ge 4$ and $(p, p, 3), p \ge 3$ Darmon–Merel, Poonen 1998;
- $(11, 11, p)^*, p \ge 2$, Billerey, Chen, Dieulefait, Freitas 2022 (BCDF22);
- $(13, 13, p)^*, (19, 19, p)^*, (23, 23, p)^*, (37, 37, p)^*, (43, 43, p)^*, p$ large enough M. 2022.

The Modular Method - Chapter 2

Let K be a totally real number field. We say the $\ensuremath{\mathsf{asymptotic}}$ $\ensuremath{\mathsf{Fermat}}$ Last Theorem holds for

$$a^p + b^p = c^p$$

if there is some bound B_K such that for all $p > B_K$, the equation has no non-trivial (i.e. $abc \neq 0$), primitive (i.e. $a\mathcal{O}_K + b\mathcal{O}_K + c\mathcal{O}_K = \mathcal{O}_K$) solutions $(a, b, c) \in \mathcal{O}_K^3$.

Let K be a totally real number field. We say the $\ensuremath{\mathsf{asymptotic}}$ $\ensuremath{\mathsf{Fermat}}$ Last Theorem holds for

$$a^p + b^p = c^p$$

if there is some bound B_K such that for all $p > B_K$, the equation has no non-trivial (i.e. $abc \neq 0$), primitive (i.e. $a\mathcal{O}_K + b\mathcal{O}_K + c\mathcal{O}_K = \mathcal{O}_K$) solutions $(a, b, c) \in \mathcal{O}_K^3$.

Theorem (Freitas-Siksek, 2014)

Let $d \ge 2$ be squarefree such that $d \equiv 3 \mod 8$. Then the effective asymptotic Fermat's Last Theorem holds over $K = \mathbb{Q}(\sqrt{d})$.

Idea: Diophantine equations \rightsquigarrow S-unit equations (finetely many computable solutions)

Let K as above, denote by \mathfrak{P} its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

Let K as above, denote by \mathfrak{P} its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

• Frey curve:

$$E(a, b, c)/K : y^2 = x(x - a^p)(x + b^p)$$

with $\mathcal{N}_E = \mathfrak{P}^r \prod_{\substack{\mathfrak{q} \mid abc, \\ \mathfrak{q} \nmid 2}} \mathfrak{q}.$

Let K as above, denote by \mathfrak{P} its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

• Frey curve:

$$E(a,b,c)/K: y^2 = x(x-a^p)(x+b^p)$$

- with $\mathcal{N}_E = \mathfrak{P}^r \prod_{\substack{\mathfrak{q} \mid abc, \\ \mathfrak{q} \nmid 2}} \mathfrak{q}.$
- Modularity (Freitas-Siksek):

elliptic curves / totally real fields $E/K \rightsquigarrow$ Hilbert modular forms of level \mathcal{N}_E

Let K as above, denote by \mathfrak{P} its unique (totally ramified) prime above 2. Assume $a^p + b^p = c^p$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive.

• Frey curve:

$$E(a,b,c)/K: y^2 = x(x-a^p)(x+b^p)$$

with
$$\mathcal{N}_E = \mathfrak{P}^r \prod_{\substack{\mathfrak{q} \mid abc, \\ \mathfrak{q} \nmid 2}} \mathfrak{q}.$$

• Modularity (Freitas-Siksek):

elliptic curves / totally real fields $E/K \rightsquigarrow$ Hilbert modular forms of level \mathcal{N}_E

• Irreducibility, Level Lowering (Freitas-Siksek): for p large enough $E/K \rightsquigarrow$ Hilbert modular form f of level

$$\mathcal{N}_p = \mathfrak{P}^{r'}, \quad 0 \le r' \le r \le 14$$

 $E/K \rightsquigarrow \mathfrak{f} \rightsquigarrow E'/K$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'} = \mathcal{N}_p = \mathfrak{P}^{r'}$;

 $E/K \leadsto \mathfrak{f} \leadsto E'/K$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'} = \mathcal{N}_p = \mathfrak{P}^{r'}$;

• Image of inertia comparison: E' has potentially multiplicative reduction at \mathfrak{P} ;

$$E/K \rightsquigarrow \mathfrak{f} \rightsquigarrow E'/K$$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'} = \mathcal{N}_p = \mathfrak{P}^{r'}$;

- Image of inertia comparison: E' has potentially multiplicative reduction at \mathfrak{P} ;
- S-unit equations: all such elliptic curves E' are parametrized by S-unit equations

$$\lambda + \mu = 1,$$

where $S := \{\mathfrak{P}\}$, $\lambda, \mu \in \mathcal{O}_S^*$ such that

 $\max(|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|) > 8;$

$$E/K \rightsquigarrow \mathfrak{f} \rightsquigarrow E'/K$$

where E'/K elliptic curve with full 2-torsion* and $\mathcal{N}_{E'} = \mathcal{N}_p = \mathfrak{P}^{r'}$;

- Image of inertia comparison: E' has potentially multiplicative reduction at \mathfrak{P} ;
- S-unit equations: all such elliptic curves E' are parametrized by S-unit equations

$$\lambda + \mu = 1,$$

where $S := \{\mathfrak{P}\}$, $\lambda, \mu \in \mathcal{O}_S^*$ such that

 $\max(|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|) > 8;$

• Contradiction: such pairs (λ, μ) do not exist.

Signatures (p, p, 2) and (p, p, 3) - Chapter 3

Theorem (M. 2021)

Let d > 5 be a rational prime satisfying $d \equiv 5 \mod 8$. Write $K = \mathbb{Q}(\sqrt{d})$. Then, there is a constant B_K such that for each rational prime $p > B_K$, the equation

$$a^p + b^p = c^2$$

has no coprime, non-trivial solutions $(a, b, c) \in \mathcal{O}_K^3$ with 2|b.

Signature (p, p, 2)

Let K as above and denote by 2 the unique (inert) prime above 2. Assume $a^p + b^p = c^2$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive and 2|b.

 \bullet Modularity machinery \rightsquigarrow find solutions to

$$\alpha + \beta = \gamma^2 \tag{3.1}$$

where
$$S = \{2\}$$
, $\alpha, \beta \in \mathcal{O}_S^*$, and $\gamma \in \mathcal{O}_S$ such that $|v_2(\frac{\alpha}{\beta})| > 6$.

Signature (p, p, 2)

Let K as above and denote by 2 the unique (inert) prime above 2. Assume $a^p + b^p = c^2$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive and 2|b.

 \bullet Modularity machinery \rightsquigarrow find solutions to

$$\alpha + \beta = \gamma^2 \tag{3.1}$$

where $S = \{2\}$, $\alpha, \beta \in \mathcal{O}_S^*$, and $\gamma \in \mathcal{O}_S$ such that $|v_2(\frac{\alpha}{\beta})| > 6$.

• Class Field Theory \rightsquigarrow relate (3.1) to an S-unit equation

$$\lambda + \mu = 1, \tag{3.2}$$

such that $|v_2(\lambda \mu)| > 4$.

Signature (p, p, 2)

Let K as above and denote by 2 the unique (inert) prime above 2. Assume $a^p + b^p = c^2$ with $(a, b, c) \in (\mathcal{O}_K)^3$ non-trivial, primitive and 2|b.

 \bullet Modularity machinery \rightsquigarrow find solutions to

$$\alpha + \beta = \gamma^2 \tag{3.1}$$

where $S = \{2\}$, $\alpha, \beta \in \mathcal{O}_S^*$, and $\gamma \in \mathcal{O}_S$ such that $|v_2(\frac{\alpha}{\beta})| > 6$.

• Class Field Theory \rightsquigarrow relate (3.1) to an S-unit equation

$$\lambda + \mu = 1, \tag{3.2}$$

such that $|v_2(\lambda \mu)| > 4$.

• Contradiction: the only solutions to (3.2) are the so-called *irrelevant* solutions (-1,2), (1/2,1/2), (2,-1).

Theorem (M. 2021)

Let d a positive, square-free satisfying $d \equiv 2 \mod 3$. Write $K = \mathbb{Q}(\sqrt{d})$ and suppose $3 \nmid h_{K(\zeta_3)}, 3 \nmid h_K$. Then, there is a constant B_K such that for each prime $p > B_K$, the equation

$$a^p + b^p = c^3$$

has no coprime, non-trivial solutions $(a, b, c) \in \mathcal{O}_K^3$ with $3 \mid b$.

S-unit equations and computability

Theorem

Let K be a number field and S a finite set of prime ideals. Consider the equation

$$\alpha + \beta = \gamma^i, \ \alpha, \beta \in \mathcal{O}_S^*, \ \gamma \in \mathcal{O}_S.$$

For i = 2, 3, the equation has a finite number of solutions up to scaling.

Idea of the proof: break it down in several S-unit equations over some L/K

Signature (r, r, p) - Chapter 4

Theorem (M. 2022)

There exists a constant B_r depending on r such that the equation

 $a^r + b^r = c^p$

no non-trivial, primitive, integer solutions with $2 \mid c$ and $p > B_r$ for

 $r \in \{5, 7, 11, 13, 19, 23, 37, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 131, 139, 149\}.$

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime and $2 \mid c$.

• Frey curve Define $E(a,b)/\mathbb{Q}(\zeta_r+\zeta_r^{-1})$ as follows. Consider

$$a^{r} + b^{r} = (a+b)(a+\zeta_{r}b)(a+\zeta_{r}^{2}b)\cdots(a+\zeta_{r}^{r-2}b)(a+\zeta_{r}^{r-1}b).$$

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime and $2 \mid c$.

• Frey curve Define $E(a,b)/\mathbb{Q}(\zeta_r+\zeta_r^{-1})$ as follows. Consider

$$a^{r} + b^{r} = (a+b)(a+\zeta_{r}b)(a+\zeta_{r}^{2}b)\cdots(a+\zeta_{r}^{r-2}b)(a+\zeta_{r}^{r-1}b).$$

Let

$$f_k(a,b) = a^2 + (\zeta_r^k + \zeta_r^{r-k})ab + b^2, \quad 0 \le k \le \frac{r-1}{2}.$$

Signature (r, r, p)

We find (α,β,γ) such that

$$\alpha f_{k_1} + \beta f_{k_2} + \gamma f_{k_3} = 0$$

for some suitable chosen $0 \le k_1 < k_2 < k_3 \le \frac{r-1}{2}$. Write $A = \alpha f_{k_1}, B = \beta f_{k_2}, C = \gamma f_{k_3}$ and define

$$E: y^{2} = x(x - A)(x + B).$$
(4.1)

Let $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$, 2 is inert for the specified values of r, and let \mathfrak{P}_r be the unique prime above r.

• Modularity machinery \sim find solutions to the S-unit equation

$$\lambda + \mu = 1$$

where $S := \{2, \mathfrak{P}_r\}$ such that $2^5 | \lambda$.

Let $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$, 2 is inert for the specified values of r, and let \mathfrak{P}_r be the unique prime above r.

• Modularity machinery \sim find solutions to the S-unit equation

$$\lambda+\mu=1$$

where $S := \{2, \mathfrak{P}_r\}$ such that $2^5 | \lambda$.

• Class Field Theory argument \rightsquigarrow construct (λ_n, μ_n) with $v_2(\lambda_{n+1}) > v_2(\lambda_n)$.

Let $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$, 2 is inert for the specified values of r, and let \mathfrak{P}_r be the unique prime above r.

• Modularity machinery \sim find solutions to the S-unit equation

$$\lambda+\mu=1$$

where $S := \{2, \mathfrak{P}_r\}$ such that $2^5 | \lambda$.

- Class Field Theory argument \rightsquigarrow construct (λ_n, μ_n) with $v_2(\lambda_{n+1}) > v_2(\lambda_n)$.
- Contradiction: Infinite descent on finiteness of solutions of S-unit equations.

First step in Darmon's Program - Chapter 5

Darmon's Program

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime.

- Frey representation: Kraus constructs a family of hyperelliptic curves $C_r(a, b)$
- Compute the conductor of $C_r(a, b) = \text{conductor of the } l\text{-adic representation } \rho_{J_r, l}$.

Assume $a^r + b^r = c^p$ with (a, b, c) non-trivial, primitive, r is a fixed prime, and p is a varying prime.

- Frey representation: Kraus constructs a family of hyperelliptic curves $C_r(a,b)$
- Compute the conductor of $C_r(a, b) = \text{conductor of the } l\text{-adic representation } \rho_{J_r, l}$.
- BCDF22 show that $\mathsf{Jac}(C_r)\otimes K \rightsquigarrow$

$$\rho_{J_r,\lambda}: G_K \to GL_2(K_\lambda).$$

where $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$ and $J_r := \operatorname{Jac}(C_r)$

- Modularity, Irreducibility, Level Lowering apply to $\rho_{J_r,\lambda}$.
- BCDF22 $\rightsquigarrow (11, 11, p)$ has no solution with 2|a + b or 11|a + b.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a,b,c)\in\mathbb{Z}^3$ such that $a^r+b^r=c^p$ define

$$C_r(a,b): y^2 = \underbrace{(ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r}_{f_r(a,b)}$$

where $h_r(x) := \prod_{j=1}^{\frac{r-1}{2}} (x - (\zeta_r^j + \zeta_r^{-j}))$ the defining polynomial of $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$. • $C_r(a, b)$ is a hyperelliptic curve of genus $\frac{r-1}{2}$.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a,b,c)\in\mathbb{Z}^3$ such that $a^r+b^r=c^p$ define

$$C_r(a,b): y^2 = \underbrace{(ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r}_{f_r(a,b)}$$

where $h_r(x) := \prod_{j=1}^{\frac{r-1}{2}} (x - (\zeta_r^j + \zeta_r^{-j}))$ the defining polynomial of $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$. • $C_r(a, b)$ is a hyperelliptic curve of genus $\frac{r-1}{2}$.

Example

•
$$r = 5: C_5(a, b): y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5$$

•
$$r = 7: C_7(a,b): y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$$

Frey curve and Conductor

The discriminant of the curve is

$$\Delta(C_r(a,b)) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r c^{p(r-1)}.$$

Frey curve and Conductor

The discriminant of the curve is

$$\Delta(C_r(a,b)) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r c^{p(r-1)}.$$

Theorem (ACKMM24 (*))

The conductor of $C_r(a,b)/K$ at odd primes is

$$\mathcal{N} = 2^{e_2} \mathfrak{p}_r^{r-1} \prod_{\mathfrak{q}|c} \mathfrak{q}^{(r-1)/2}.$$

In particular, J_r is semistable at all primes not dividing 2r.

(*) joint work with Martin Azon, Mar Curcó-Iranzo, Maleeha Khawaja, Céline Maistret

Cluster Pictures

Example

Consider the hyperelliptic curve

$$C: y^{2} = x(x - p^{2})(x - 3p^{2})(x - 1)(x - 1 + p^{4})(x - 1 - p^{4})$$

where $p \ge 5$ is a prime. Its cluster picture at p is given by

$$(\bigcirc \bigcirc \bigcirc_2 \bigcirc \bigcirc_4)_0.$$

Recall $C_r(a,b)/K : y^2 = f_r(a,b)$.

• The roots of $f_r(a,b)$ are given by $\alpha_i := \zeta_r^i a - \zeta_r^{-i} b$, where $i = 0, \ldots, r-1$.

Recall $C_r(a,b)/K : y^2 = f_r(a,b)$.

- The roots of $f_r(a, b)$ are given by $\alpha_i := \zeta_r^i a \zeta_r^{-i} b$, where $i = 0, \dots, r-1$.
- The cluster pictures of $C_r(a,b)$ at odd bad primes \mathfrak{q} of K are given as follows:

1.
$$(\textcircled{oo}_n \textcircled{oo}_n \cdots \textcircled{oo}_n \bullet)_{_0}$$
, if $\mathfrak{q} \neq \mathfrak{p}_r$ and $\mathfrak{q} \mid c$. Here $n := pv_{\mathfrak{q}}(c) \in \mathbb{Z}$.

3. $(\mathfrak{O}_m \mathfrak{O}_m \cdots \mathfrak{O}_m)_1$, if $\mathfrak{q} = \mathfrak{p}_r$ and $\mathfrak{p}_r \mid c$. Here $m = \frac{r-1}{2}v_r(a+b) - \frac{1}{2}$.

where p_r is the unique prime above r in K.

Semistable case: $\mathfrak{q} \neq \mathfrak{p}_r, \mathfrak{q}|c$

Theorem (Dokchitser–Dokchitser–Maistret–Morgan, 2017)

Suppose C/K is semistable at a prime q. Then the exponent of the conductor at q is the number of "twins".

Semistable case: $\mathfrak{q} \neq \mathfrak{p}_r, \mathfrak{q}|c$

Theorem (Dokchitser–Dokchitser–Maistret–Morgan, 2017)

Suppose C/K is semistable at a prime q. Then the exponent of the conductor at q is the number of "twins".

 \rightsquigarrow exponent of \mathfrak{q} in the conductor is $\frac{r-1}{2}$

Conductors from the Cluster Pictures

Using a more general Theorem from DDMM17

$$\mathcal{N} = 2^{e_2} \mathfrak{p}_r^{r-1} \prod_{\mathfrak{q}|c} \mathfrak{q}^{(r-1)/2}.$$

Thank you!